COVID-19 image classification using deep learning: Advances, challenges and opportunities
Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast a...
Saved in:
| Published in | Computers in biology and medicine Vol. 144; p. 105350 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2022
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2022.105350 |
Cover
| Abstract | Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.
•This study presents a comprehensive review on COVID-19 image classification using prominent deep learning approaches.•The study summarizes the number of important contributions to the field by various researchers.•The work includes critical discussions and open challenges for an automated detection of COVID-19 using CT and X-ray images.•Finally, the study enumerates opportunities and directions for future research work. |
|---|---|
| AbstractList | AbstractCorona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. •This study presents a comprehensive review on COVID-19 image classification using prominent deep learning approaches.•The study summarizes the number of important contributions to the field by various researchers.•The work includes critical discussions and open challenges for an automated detection of COVID-19 using CT and X-ray images.•Finally, the study enumerates opportunities and directions for future research work. Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. |
| ArticleNumber | 105350 |
| Author | Aggarwal, Priya Mishra, Narendra Kumar Gupta, Anubha Fatimah, Binish Singh, Pushpendra Joshi, Shiv Dutt |
| Author_xml | – sequence: 1 givenname: Priya surname: Aggarwal fullname: Aggarwal, Priya email: priyaaggarwal27@gmail.com organization: The Vehant Technology Pvt. Ltd., Noida, India – sequence: 2 givenname: Narendra Kumar orcidid: 0000-0003-3735-8906 surname: Mishra fullname: Mishra, Narendra Kumar email: eez188568@ee.iitd.ac.in organization: The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India – sequence: 3 givenname: Binish surname: Fatimah fullname: Fatimah, Binish email: binish.fatimah@gmail.com organization: The Department of ECE, CMR Institute of Technology, Bengaluru, India – sequence: 4 givenname: Pushpendra orcidid: 0000-0001-5615-519X surname: Singh fullname: Singh, Pushpendra email: spushp@nith.ac.in, spushp@gmail.com organization: The Department of ECE, National Institute of Technology Hamirpur, HP, India – sequence: 5 givenname: Anubha orcidid: 0000-0002-7752-1926 surname: Gupta fullname: Gupta, Anubha email: anubha@iiitd.ac.in organization: The Department of ECE, IIIT-Delhi, Delhi, 110020, India – sequence: 6 givenname: Shiv Dutt surname: Joshi fullname: Joshi, Shiv Dutt email: sdjoshi@ee.iitd.ac.in organization: The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35305501$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1v1DAQhiNURLeFv4AiceFAlrFjOzEHRFkKVKrUAx8SJ8u1J1svWTvEyaL99_V2yy5UQmpP_piZV-88M0fZgQ8esywnMCVAxOvF1IRld-nCEu2UAqXpm5ccHmUTUleySA92kE0ACBSspvwwO4pxAQAMSniSHZa8BM6BTLIfs4vvZx8KInO31HPMTatjdI0zenDB52N0fp5bxC5vUfc-vd7kJ3alvcH4KjdXum3RzzHm2ts8dF3oh9G7wWF8mj1udBvx2e15nH37ePp19rk4v_h0Njs5L4wgcigEp2VTccZYgxXQWgstRA2aGsDUWCMqCQxtZTlhljDJrdS00g2vdG0rjuVxJre6o-_0-ncypLo-NdOvFQG1waUWao9LbXCpLa5U-3Zb242XKWbQD73e1wft1L8R767UPKxUXUuoapkEXt4K9OHXiHFQSxcNtq32GMaoqGAgpaBCpNQXd1IXYex9QrPJEhWBmpKU9fxvRzsrfya2t2z6EGOPjTJuuBlWMuja-_Rc3xF4AK7321JM81w57FU0DtMqWNejGZQN7gHMdyKmdT4tXPsT1xh3UIiKVIH6slnizQ5Tmm7sBtG7_wvcz8M1G_sFLQ |
| CitedBy_id | crossref_primary_10_1080_10255842_2022_2112185 crossref_primary_10_1016_j_bspc_2024_106295 crossref_primary_10_1109_ACCESS_2022_3221750 crossref_primary_10_1016_j_bspc_2024_106133 crossref_primary_10_1088_2057_1976_ad8c46 crossref_primary_10_1016_j_engappai_2022_105398 crossref_primary_10_1115_1_4066251 crossref_primary_10_3390_bioengineering11070672 crossref_primary_10_1007_s13198_025_02735_2 crossref_primary_10_1016_j_compbiomed_2022_105540 crossref_primary_10_3934_era_2023383 crossref_primary_10_3390_buildings13010070 crossref_primary_10_1016_j_bspc_2023_105197 crossref_primary_10_3390_diagnostics13010162 crossref_primary_10_1016_j_envsoft_2024_106165 crossref_primary_10_1007_s11042_023_17767_8 crossref_primary_10_1016_j_atech_2023_100321 crossref_primary_10_1109_ACCESS_2024_3367772 crossref_primary_10_1007_s00354_024_00247_4 crossref_primary_10_1007_s11042_023_15805_z crossref_primary_10_1007_s11042_023_17642_6 crossref_primary_10_1007_s00354_024_00279_w crossref_primary_10_1007_s11042_023_15485_9 crossref_primary_10_3390_s22218578 crossref_primary_10_1177_20552076251318155 crossref_primary_10_1109_ACCESS_2024_3496728 crossref_primary_10_1016_j_compbiomed_2022_106065 crossref_primary_10_22399_ijcesen_425 crossref_primary_10_1016_j_engmed_2024_100021 crossref_primary_10_1016_j_metrad_2023_100018 crossref_primary_10_1371_journal_pone_0303049 crossref_primary_10_1007_s00521_024_10862_3 crossref_primary_10_29130_dubited_1120967 crossref_primary_10_1186_s42492_024_00168_5 crossref_primary_10_1016_j_patter_2023_100856 crossref_primary_10_3390_math11061279 crossref_primary_10_54097_hset_v23i_3199 crossref_primary_10_1186_s12880_024_01192_w crossref_primary_10_1186_s43067_023_00129_7 crossref_primary_10_1371_journal_pone_0278487 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1155_2023_3248192 crossref_primary_10_3390_app12157554 crossref_primary_10_1007_s42979_023_02002_w crossref_primary_10_1016_j_asoc_2023_110014 crossref_primary_10_1093_comjnl_bxae099 crossref_primary_10_3934_era_2023362 crossref_primary_10_1007_s11042_023_16605_1 crossref_primary_10_1177_01926233241300451 crossref_primary_10_1016_j_neucom_2025_129731 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_1007_s13748_023_00308_7 crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_3389_frai_2023_1235204 crossref_primary_10_4015_S1016237223500199 crossref_primary_10_3390_diagnostics12071527 crossref_primary_10_1088_2057_1976_ad6f12 crossref_primary_10_3390_electronics14010075 crossref_primary_10_7759_cureus_57336 crossref_primary_10_1371_journal_pone_0293125 crossref_primary_10_1038_s41598_023_49159_1 crossref_primary_10_37990_medr_1130194 crossref_primary_10_1016_j_nmni_2024_101457 crossref_primary_10_1039_D3NH00532A crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1002_ima_22905 crossref_primary_10_3390_app122110715 crossref_primary_10_1016_j_imu_2023_101312 crossref_primary_10_1186_s40537_023_00762_z |
| Cites_doi | 10.1016/j.bbe.2020.08.008 10.1016/j.imu.2020.100412 10.1038/s41467-020-18685-1 10.1016/j.ijmedinf.2020.104284 10.1016/j.chaos.2020.109944 10.1109/TMI.2020.2995508 10.1016/j.cell.2020.04.045 10.1183/13993003.00775-2020 10.1002/mp.14609 10.1109/TMI.2020.2996645 10.1007/s00500-021-06137-x 10.1109/ACCESS.2020.3028012 10.1016/j.asoc.2020.106885 10.1016/j.inffus.2019.12.012 10.1016/j.patrec.2020.10.001 10.1038/s41591-020-0931-3 10.1016/j.patcog.2020.107613 10.1109/ACCESS.2020.3025010 10.1016/j.eswa.2020.114054 10.1016/j.asoc.2020.106744 10.1016/j.cmpb.2020.105608 10.1016/j.imu.2021.100681 10.1056/NEJMoa2001017 10.1148/radiol.2020201365 10.1016/j.cmpb.2020.105532 10.1016/j.eng.2020.04.010 10.1016/j.knosys.2020.106647 10.1007/s10489-020-01943-6 10.1016/j.compbiomed.2020.103795 10.1016/j.media.2020.101797 10.1016/j.bspc.2020.102365 10.1007/s13246-020-00865-4 10.1016/S0140-6736(20)30154-9 10.1016/j.imu.2020.100360 10.1007/s10044-021-00970-4 10.1016/j.compbiomed.2020.103869 10.1016/j.compbiomed.2021.104306 10.1016/j.bbe.2021.04.006 10.1016/j.patrec.2020.09.010 10.3390/e23010018 10.1109/ACCESS.2020.3010287 10.1016/j.compbiomed.2020.103805 10.1007/s10489-020-01829-7 10.1109/TMI.2020.2993291 10.1016/j.asoc.2020.106859 10.1016/j.compbiomed.2020.103792 10.1016/j.asoc.2020.106897 10.1109/JBHI.2020.3037127 10.1016/j.inffus.2020.10.004 10.1016/j.compbiomed.2021.104575 10.1016/j.ando.2020.05.001 10.1038/s41746-021-00399-3 10.1007/s10489-020-02055-x 10.1016/j.scs.2020.102589 10.1038/s41551-020-00633-5 10.1148/radiol.2020200905 10.1016/j.cmpbup.2021.100025 10.1007/s10140-020-01886-y 10.1007/s42979-021-00823-1 10.1016/j.bbe.2020.08.005 10.1016/j.eswa.2019.05.035 10.3389/fpubh.2020.599550 10.3390/s21020455 10.1016/j.asoc.2020.106742 10.1016/j.compbiomed.2021.104348 10.1016/j.chaos.2020.110122 10.3390/sym12040651 10.1016/j.mehy.2020.109761 10.1016/j.ins.2020.09.041 10.1109/TIP.2021.3058783 10.3390/ijerph18063056 10.1148/radiol.2020200432 10.1016/j.cmpb.2020.105581 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd – notice: 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2022.105350 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 105350 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8890789 PMC8890789 35305501 10_1016_j_compbiomed_2022_105350 S0010482522001421 1_s2_0_S0010482522001421 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c619t-6523f75444fe7028a6a6680a2c0e022f67904ed7d514d1495d9a27af57a8d75e3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 04:16:47 EDT 2025 Tue Sep 30 16:53:34 EDT 2025 Sun Sep 28 07:05:21 EDT 2025 Tue Oct 07 06:15:58 EDT 2025 Mon Jul 21 05:37:43 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Wed Oct 01 05:30:03 EDT 2025 Fri Feb 23 02:39:35 EST 2024 Tue Feb 25 20:11:33 EST 2025 Tue Oct 14 19:33:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning X-ray and CT scan Images COVID-19 detection Convolutional neural networks |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c619t-6523f75444fe7028a6a6680a2c0e022f67904ed7d514d1495d9a27af57a8d75e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3735-8906 0000-0001-5615-519X 0000-0002-7752-1926 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8890789 |
| PMID | 35305501 |
| PQID | 2646710821 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2022_105350 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8890789 proquest_miscellaneous_2640996266 proquest_journals_2646710821 pubmed_primary_35305501 crossref_citationtrail_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1016_j_compbiomed_2022_105350 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105350 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001421 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105350 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Arora, Ng, Leekha, Darshan, Singh (bib118) 2021; 135 Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song, Cao, Liu, Wang, Xu, Fang, Zhang, Xia, Xia (bib31) Aug 2020; 296 Soares, Angelov, Biaso, Froes, Abe (bib116) 2020 Zhao, Zhang, He, Xie (bib120) 2020 Mukherjee, Ghosh, Dhar, Sk, Santosh, Roy (bib10) 05 2021; 51 bib119 bib115 bib114 Wang, Jin, Yan, Xu, Luo, Wei, Zhao, Hou, Ma, Xu, Zheng, Sun, Lan, Zhang, Mu, Shi, Wang, Lee, Jin, Lin, Jin, Zhang, Guo, Zhao, Ren, Wang, Xu, Wang, Wang, You, Dong (bib32) 2021; 98 bib113 bib111 Zhang, Liu, Shen, Li, Sang, Wu, Cha, Liang, Wang, Wang, Ye, Gao, Zhou, Li, Wang, Yang, Cai, Xu, Yang, Wang (bib128) 05 2020; 181 Mei, Lee, Diao, Huang, Lin, Liu, Xie, Ma, Robson, Chung, Bernheim, Mani, Calcagno, Li, Li, Shan, Lv, Zhao, Xia, Long, Steinberger, Jacobi, Deyer, Luksza, Liu, Little, Fayad, Yang (bib8) Aug 2020; 26 AI diagnosis Shah, Joy, Ahmed, Hossain, Humaira, Ami, Paul, Jim, Ahmed (bib14) Aug 2021; 2 Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof, Schluger, Volpi, Yim, Martin, Anderson, Kong, Altes, Bush, Desai, Goldin, Mo Goo, Humbert, Inoue, Kauczor, Luo, Mazzone, Prokop, Remy-Jardin, Richeldi, Schaefer-Prokop, Tomiyama, Wells, Leung (bib3) Jul. 2020; 296 Deng, Dong, Socher, Li, Li, Fei-Fei (bib37) 2009 DeGrave, Janizek, Lee (bib53) May 2021 Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (bib66) 2020; 121 Pathak, Shukla, Tiwari, Stalin, Singh, Shukla (bib107) 2020 bib48 Apostolopoulos, Mpesiana (bib90) Jun 2020; 43 Chollet (bib42) July 2017 bib108 Hammoudi, Benhabiles, Melkemi, Dornaika, Arganda-Carreras, Collard, Scherpereel (bib145) 04 2020 bib106 Alzubaidi, Zubaydi, Bin-Salem, Abd-Alrazaq, Ahmed, Househ (bib12) 2021; 1 bib105 Xu, Jiang, Ma, Du, Li, Lv, Yu, Ni, Chen, Su (bib33) 2020; 6 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib41) 2015 bib104 Orioli, Hermans, Thissen, Maiter, Vandeleene, Yombi (bib6) 2020; 81 Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib18) 2020; 39 bib102 bib100 Kaul, Manandhar, Pears (bib144) 2019 bib50 Ronneberger, Fischer, Brox, U-Net (bib22) 2015 Müller, Soto-Rey, Kramer (bib20) 2021; 25 Linardatos, Papastefanopoulos, Kotsiantis, Explainable (bib147) 2021; 23 Frederick (bib7) Datasets & analysis Selvaraj, Arunachalam, Mahesh, Joseph Raj (bib19) 2020; 31 El-Kenawy, Ibrahim, Mirjalili, Eid, Hussein (bib131) 2020; 8 bib58 bib56 Hariri, Narin (bib13) Aug 2021; 25 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib46) 2017 Madaan, Roy, Gupta, Agrawal, Sharma, Bologa, Prodan (bib77) 02 2021 Khadidos, Khadidos, Kannan, Natarajan, Mohanty, Tsaramirsis (bib86) 2020; 8 bib49 Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (bib36) 2021; 48 de la Iglesia Vaya, Saborit, Montell, Pertusa, Bustos, Cazorla, Galant, Barber, Orozco-Beltrán, García-García, Caparrós, González, Salinas (bib124) 2020 Turkoglu (bib122) 2021 Polsinelli, Cinque, Placidi (bib121) 2020; 140 Toraman, Alakus, Turkoglu (bib68) 2020; 140 Jin, Chen, Cao, Xu, Tan, Zhang, Deng, Zheng, Zhou, Shi, Feng (bib30) Oct 2020; 11 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib45) 2016 Rahimzadeh, Attar (bib80) 2020; 19 Wang, Lin, Wong (bib126) Nov 2020; 10 Abbas, Abdelsamea, Gaber (bib70) Feb 2021; 51 Sakib, Tazrin, Fouda, Fadlullah, Guizani (bib71) 2020; 8 LIDC-IDRI (bib101) Erion, Janizek, Sturmfels, Lundberg, Lee (bib138) May 2021 Irvin, Rajpurkar, Ko, Yu, Ciurea-Ilcus, Chute, Marklund, Haghgoo, Ball, Shpanskaya (bib95) 2019; 33 Szegedy, Ioffe, Vanhoucke, Alemi (bib43) 2017 Toğaçar, Ergen, Cömert (bib51) 2020; 121 Jaeger, Candemir, Antani, Wang, Lu, Thoma (bib96) 2014; 4 6 Azad, Asadi-Aghbolaghi, Fathy, Escalera (bib29) 2019 Alshazly, Linse, Barth, Martinetz (bib117) 2021; 21 Ucar, Korkmaz (bib69) 2020; 140 Zhou, Lu, Yang, Qiu, Huo, Dong (bib141) 2021; 98 Huang, Liu, Van Der Maaten, Weinberger (bib44) 2017 Lin, Shafiee, Bochkarev, Jules, Wang, Wong (bib146) 2019 Abdel-Basset, Chang, Hawash, Chakrabortty, Ryan (bib16) 2021; 212 Wu, Gao, Mei, Xu, Fan, Zhang, Cheng (bib135) 2021; 30 Nayak, Nayak, Sinha, Arora, Pachori (bib83) 2021; 64 Chan, Yuan, Kok, To, Chu, Yang, Xing, Liu, Yip, Poon, Tsoi, Lo, Chan, Poon, Chan, Ip, Cai, Cheng, Chen, Hui, Yuen (bib2) Feb 2020; 395 Hilmizen, Bustamam, Sarwinda (bib9) 2020 Jun, Cheng, Yixin, Xingle, Jiantao, Ziqi, Minqing, Xin, Xueyuan, Shucheng, Hao, Sen, Xiaoyu, Ziwei, Chen, Lu, Yuntao, Qiongjie, Guoqiang, Jian (bib129) Apr. 2020 Bhattacharya, Reddy Maddikunta, Pham, Gadekallu, Krishnan S, Chowdhary, Alazab, Jalil Piran (bib11) 2021; 65 Abraham, Nair (bib72) 2020; 40 He, Zhang, Ren, Sun (bib40) 2016 Panwar, Gupta, Siddiqui, Morales-Menendez, Singh (bib64) 2020; 138 Mishra, Singh, Joshi (bib110) 2021; 41 Das, Ghosh, Thunder, Dutta, Agarwal, Chakrabarti (bib57) Mar 2021 Khan, Shah, Bhat (bib87) 2020; 196 Pham (bib61) 2020; 9 Heidari, Mirniaharikandehei, Khuzani, Danala, Qiu, Zheng (bib75) 2020; 144 Gupta, Anjum, Gupta, Katarya (bib74) 2021; 99 Krizhevsky, Sutskever, Hinton (bib38) 2012; 25 Wang, Kang, Ma, Zeng, Xiao, Guo, Cai, Yang, Li, Meng (bib137) 2021 Luz, Silva, Silva, Silva, Guimarães, Miozzo, Moreira, Menotti (bib112) Apr 2021 Narayanan, Hardie, Krishnaraja, Karam, Davuluru (bib23) 2020; 1 Voulodimos, Protopapadakis, Katsamenis, Doulamis, Doulamis (bib17) 2021 Ning, Lei, Yang, Cao, Jiang, Yang, Zhang, Wang, Chen, Geng, Xiong, Zhou, Guo, Zeng, Shi, Wang, Xue, Wang (bib130) 2020; 4 Milletari, Navab, Ahmadi, V-Net (bib24) 2016 Zhou, Rahman Siddiquee, Tajbakhsh, Liang (bib25) 2018 Thakur, Kumar (bib94) 2021 Wang, Xiao, Li, Zhang, Lu, Hou, Liu (bib28) 2021; 110 Serte, Demirel (bib103) 2021; 132 Zheng, Deng, Fu, Zhou, Feng, Ma, Liu, Wang (bib34) 2020 Bustos, Pertusa, Salinas, de la Iglesia-Vayá (bib52) 2020; 66 Pereira, Bertolini, Teixeira, Silla, Costa (bib79) 2020; 194 Loey, Smarandache, Khalifa (bib89) 2020; 12 Wang, Govindaraj, Górriz, Zhang, Zhang (bib142) 2021; 67 Al-Bawi, Al-Kaabi, Jeryo, Al-Fatlawi (bib88) Nov 2020 Tabik, Gómez-Ríos, Martín-Rodríguez, Sevillano-García, Rey-Area, Charte, Guirado, Suárez, Luengo, Valero-González, García-Villanova, Olmedo-Sánchez, Herrera (bib91) 2020; 24 Jain, Mittal, Thakur, Mittal (bib76) 2020; 40 Islam, Islam, Asraf (bib60) 2020; 20 kamil (bib82) 02 2021; 11 Hussain, Hasan, Rahman, Lee, Tamanna, Parvez (bib59) 2021; vol. 142 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib1) 2020; 382 Ibrahim, Elshennawy, Sarhan (bib109) 2021; 132 bib92 Mahmud, Rahman, Fattah (bib99) 2020; 122 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib136) 2016 Javaheri, Homayounfar, Amoozgar, Reiazi, Homayounieh, Abbas, Laali, Radmard, Gharib, Mousavi, Ghaemi, Babaei, Mobin, Hosseinzadeh, Jahanban-Esfahlan, Seidi, Kalra, Zhang, Chitkushev, Haibe-Kains, Malekzadeh, Rawassizadeh (bib15) Feb 2021; 4 Brunese, Mercaldo, Reginelli, Santone (bib84) 2020; 196 Ouyang, Huo, Xia, Shan, Liu, Mo, Yan, Ding, Yang, Song, Shi, Yuan, Wei, Cao, Gao, Wu, Wang, Shen (bib35) 2020; 39 Keles, Keles, Keles (bib98) Jan 2021 Karthik, Menaka, M (bib26) 2021; 99 Dhiman, Chang, Singh, Shankar (bib85) 2021 COVIDx (bib93) Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib67) 2020; 138 bib97 Ardakani, Kanafi, Acharya, Khadem, Mohammadi (bib133) 2020; 121 Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Wang, Zhao, Zha, Shen, Chong, Yang (bib143) 2021 Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (bib148) 2020; 58 Ismael, Şengür (bib63) 2021; 164 Oh, Park, Ye (bib27) 2020; 39 Varela-Santos, Melin (bib81) 2021; 545 Fang, Zhang, Xie, Lin, Ying, Pang, Ji (bib4) 2020; 296 Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (bib134) Mar 2021; 48 Sitaula, Hossain (bib132) May 2021; 51 Balochian, Baloochian (bib140) 2019; 134 Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Emadi, Reaz, Islam (bib5) 2020; 8 Irfan, Iftikhar, Yasin, Draz, Ali, Hussain, Bukhari, Alwadie, Rahman, Glowacz, Althobiani (bib55) 2021; 18 Ezzat, Hassanien, Ella (bib73) 2021; 98 Wang, Zha, Li, Wu, Li, Niu, Wang, Qiu, Li, Yu (bib139) 2020; 56 Cohen, Morrison, Dao (bib62) 2020 Wang, Peng, Lu, Lu, Bagheri, Summers (bib125) 2017 Hemdan, Shouman, Karar (bib78) 2020 Chattopadhay, Sarkar, Howlader, Balasubramanian (bib47) 2018 Simonyan, Zisserman (bib39) 09 2014 Shah, Keniya, Shridharani, Punjabi, Shah, Mehendale (bib123) Jun 2021; 28 Long, Shelhamer, Darrell (bib21) 2015 last Accessed: 2021-08-15. Agrawal, Choudhary (bib65) 2021 Hariri (10.1016/j.compbiomed.2022.105350_bib13) 2021; 25 Shan (10.1016/j.compbiomed.2022.105350_bib36) 2021; 48 Toğaçar (10.1016/j.compbiomed.2022.105350_bib51) 2020; 121 Brunese (10.1016/j.compbiomed.2022.105350_bib84) 2020; 196 Irfan (10.1016/j.compbiomed.2022.105350_bib55) 2021; 18 Narayanan (10.1016/j.compbiomed.2022.105350_bib23) 2020; 1 Al-Bawi (10.1016/j.compbiomed.2022.105350_bib88) 2020 de la Iglesia Vaya (10.1016/j.compbiomed.2022.105350_bib124) 2020 Chan (10.1016/j.compbiomed.2022.105350_bib2) 2020; 395 Pereira (10.1016/j.compbiomed.2022.105350_bib79) 2020; 194 Pham (10.1016/j.compbiomed.2022.105350_bib61) 2020; 9 Zhu (10.1016/j.compbiomed.2022.105350_bib1) 2020; 382 Apostolopoulos (10.1016/j.compbiomed.2022.105350_bib90) 2020; 43 Deng (10.1016/j.compbiomed.2022.105350_bib37) 2009 Islam (10.1016/j.compbiomed.2022.105350_bib60) 2020; 20 Dhiman (10.1016/j.compbiomed.2022.105350_bib85) 2021 Orioli (10.1016/j.compbiomed.2022.105350_bib6) 2020; 81 Panwar (10.1016/j.compbiomed.2022.105350_bib64) 2020; 138 Jain (10.1016/j.compbiomed.2022.105350_bib76) 2020; 40 Wang (10.1016/j.compbiomed.2022.105350_bib139) 2020; 56 Selvaraju (10.1016/j.compbiomed.2022.105350_bib46) 2017 COVIDx (10.1016/j.compbiomed.2022.105350_bib93) Gupta (10.1016/j.compbiomed.2022.105350_bib74) 2021; 99 Mukherjee (10.1016/j.compbiomed.2022.105350_bib10) 2021; 51 Arora (10.1016/j.compbiomed.2022.105350_bib118) 2021; 135 Abbas (10.1016/j.compbiomed.2022.105350_bib70) 2021; 51 Azad (10.1016/j.compbiomed.2022.105350_bib29) 2019 Szegedy (10.1016/j.compbiomed.2022.105350_bib136) 2016 Shah (10.1016/j.compbiomed.2022.105350_bib14) 2021; 2 Zhou (10.1016/j.compbiomed.2022.105350_bib141) 2021; 98 Erion (10.1016/j.compbiomed.2022.105350_bib138) 2021 Zhou (10.1016/j.compbiomed.2022.105350_bib25) 2018 Lin (10.1016/j.compbiomed.2022.105350_bib146) 2019 Zhou (10.1016/j.compbiomed.2022.105350_bib45) 2016 Jun (10.1016/j.compbiomed.2022.105350_bib129) 2020 Li (10.1016/j.compbiomed.2022.105350_bib31) 2020; 296 Szegedy (10.1016/j.compbiomed.2022.105350_bib41) 2015 Ouyang (10.1016/j.compbiomed.2022.105350_bib35) 2020; 39 Hussain (10.1016/j.compbiomed.2022.105350_bib59) 2021; vol. 142 Chowdhury (10.1016/j.compbiomed.2022.105350_bib5) 2020; 8 Long (10.1016/j.compbiomed.2022.105350_bib21) 2015 Ezzat (10.1016/j.compbiomed.2022.105350_bib73) 2021; 98 Hemdan (10.1016/j.compbiomed.2022.105350_bib78) 2020 Huang (10.1016/j.compbiomed.2022.105350_bib44) 2017 He (10.1016/j.compbiomed.2022.105350_bib40) 2016 Kaul (10.1016/j.compbiomed.2022.105350_bib144) 2019 Wang (10.1016/j.compbiomed.2022.105350_bib137) 2021 Ardakani (10.1016/j.compbiomed.2022.105350_bib133) 2020; 121 Karthik (10.1016/j.compbiomed.2022.105350_bib26) 2021; 99 Frederick (10.1016/j.compbiomed.2022.105350_bib7) kamil (10.1016/j.compbiomed.2022.105350_bib82) 2021; 11 Jin (10.1016/j.compbiomed.2022.105350_bib30) 2020; 11 Madaan (10.1016/j.compbiomed.2022.105350_bib77) 2021 Wang (10.1016/j.compbiomed.2022.105350_bib142) 2021; 67 Oh (10.1016/j.compbiomed.2022.105350_bib27) 2020; 39 Ozturk (10.1016/j.compbiomed.2022.105350_bib66) 2020; 121 Wang (10.1016/j.compbiomed.2022.105350_bib126) 2020; 10 Sitaula (10.1016/j.compbiomed.2022.105350_bib132) 2021; 51 Song (10.1016/j.compbiomed.2022.105350_bib143) 2021 Loey (10.1016/j.compbiomed.2022.105350_bib89) 2020; 12 Wu (10.1016/j.compbiomed.2022.105350_bib135) 2021; 30 Wang (10.1016/j.compbiomed.2022.105350_bib32) 2021; 98 Wang (10.1016/j.compbiomed.2022.105350_bib125) 2017 Varela-Santos (10.1016/j.compbiomed.2022.105350_bib81) 2021; 545 Ibrahim (10.1016/j.compbiomed.2022.105350_bib109) 2021; 132 Ning (10.1016/j.compbiomed.2022.105350_bib130) 2020; 4 Luz (10.1016/j.compbiomed.2022.105350_bib112) 2021 Khadidos (10.1016/j.compbiomed.2022.105350_bib86) 2020; 8 Rubin (10.1016/j.compbiomed.2022.105350_bib3) 2020; 296 Thakur (10.1016/j.compbiomed.2022.105350_bib94) 2021 Zhao (10.1016/j.compbiomed.2022.105350_bib120) 2020 Cohen (10.1016/j.compbiomed.2022.105350_bib62) 2020 Bustos (10.1016/j.compbiomed.2022.105350_bib52) 2020; 66 Ucar (10.1016/j.compbiomed.2022.105350_bib69) 2020; 140 Khan (10.1016/j.compbiomed.2022.105350_bib87) 2020; 196 Jaeger (10.1016/j.compbiomed.2022.105350_bib96) 2014; 4 6 Hilmizen (10.1016/j.compbiomed.2022.105350_bib9) 2020 Müller (10.1016/j.compbiomed.2022.105350_bib20) 2021; 25 Wang (10.1016/j.compbiomed.2022.105350_bib28) 2021; 110 Krizhevsky (10.1016/j.compbiomed.2022.105350_bib38) 2012; 25 Serte (10.1016/j.compbiomed.2022.105350_bib103) 2021; 132 Javaheri (10.1016/j.compbiomed.2022.105350_bib15) 2021; 4 Zheng (10.1016/j.compbiomed.2022.105350_bib34) 2020 Abraham (10.1016/j.compbiomed.2022.105350_bib72) 2020; 40 El-Kenawy (10.1016/j.compbiomed.2022.105350_bib131) 2020; 8 Balochian (10.1016/j.compbiomed.2022.105350_bib140) 2019; 134 Nayak (10.1016/j.compbiomed.2022.105350_bib83) 2021; 64 LIDC-IDRI (10.1016/j.compbiomed.2022.105350_bib101) Soares (10.1016/j.compbiomed.2022.105350_bib116) 2020 Rahimzadeh (10.1016/j.compbiomed.2022.105350_bib80) 2020; 19 Linardatos (10.1016/j.compbiomed.2022.105350_bib147) 2021; 23 Xu (10.1016/j.compbiomed.2022.105350_bib33) 2020; 6 Alzubaidi (10.1016/j.compbiomed.2022.105350_bib12) 2021; 1 Mahmud (10.1016/j.compbiomed.2022.105350_bib99) 2020; 122 Mishra (10.1016/j.compbiomed.2022.105350_bib110) 2021; 41 Fang (10.1016/j.compbiomed.2022.105350_bib4) 2020; 296 Alshazly (10.1016/j.compbiomed.2022.105350_bib117) 2021; 21 Turkoglu (10.1016/j.compbiomed.2022.105350_bib122) 2021 Abdel-Basset (10.1016/j.compbiomed.2022.105350_bib16) 2021; 212 Milletari (10.1016/j.compbiomed.2022.105350_bib24) 2016 Afshar (10.1016/j.compbiomed.2022.105350_bib67) 2020; 138 10.1016/j.compbiomed.2022.105350_bib54 Keles (10.1016/j.compbiomed.2022.105350_bib98) 2021 Simonyan (10.1016/j.compbiomed.2022.105350_bib39) 2014 Toraman (10.1016/j.compbiomed.2022.105350_bib68) 2020; 140 Irvin (10.1016/j.compbiomed.2022.105350_bib95) 2019; 33 Ronneberger (10.1016/j.compbiomed.2022.105350_bib22) 2015 Shah (10.1016/j.compbiomed.2022.105350_bib123) 2021; 28 Pathak (10.1016/j.compbiomed.2022.105350_bib107) 2020 Hammoudi (10.1016/j.compbiomed.2022.105350_bib145) 2020 Mei (10.1016/j.compbiomed.2022.105350_bib8) 2020; 26 Selvaraj (10.1016/j.compbiomed.2022.105350_bib19) 2020; 31 DeGrave (10.1016/j.compbiomed.2022.105350_bib53) 2021 Tabik (10.1016/j.compbiomed.2022.105350_bib91) 2020; 24 Chollet (10.1016/j.compbiomed.2022.105350_bib42) 2017 Das (10.1016/j.compbiomed.2022.105350_bib57) 2021 Barredo Arrieta (10.1016/j.compbiomed.2022.105350_bib148) 2020; 58 Shan (10.1016/j.compbiomed.2022.105350_bib134) 2021; 48 Chattopadhay (10.1016/j.compbiomed.2022.105350_bib47) 2018 Voulodimos (10.1016/j.compbiomed.2022.105350_bib17) 2021 Ismael (10.1016/j.compbiomed.2022.105350_bib63) 2021; 164 Heidari (10.1016/j.compbiomed.2022.105350_bib75) 2020; 144 Sakib (10.1016/j.compbiomed.2022.105350_bib71) 2020; 8 Polsinelli (10.1016/j.compbiomed.2022.105350_bib121) 2020; 140 Bhattacharya (10.1016/j.compbiomed.2022.105350_bib11) 2021; 65 10.1016/j.compbiomed.2022.105350_bib127 Zhang (10.1016/j.compbiomed.2022.105350_bib128) 2020; 181 Szegedy (10.1016/j.compbiomed.2022.105350_bib43) 2017 Fan (10.1016/j.compbiomed.2022.105350_bib18) 2020; 39 Agrawal (10.1016/j.compbiomed.2022.105350_bib65) 2021 |
| References_xml | – year: 2020 ident: bib62 article-title: COVID-19 Image Data Collection – volume: 132 start-page: 104348 year: 2021 ident: bib109 article-title: Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases publication-title: Comput. Biol. Med. – volume: 140 start-page: 109761 year: 2020 ident: bib69 article-title: COVIDiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images publication-title: Med. Hypotheses – ident: bib114 article-title: Tuberculosis chest X-ray image data sets – start-page: 1 year: 2021 end-page: 13 ident: bib85 article-title: ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images publication-title: J. Biomol. Struct. Dyn. – year: 2020 ident: bib120 article-title: Covid-CT-dataset: a CT Scan Dataset about COVID-19 – reference: Datasets & analysis,” – volume: 1 start-page: 539 year: 2020 end-page: 557 ident: bib23 article-title: Transfer-to-transfer learning approach for computer aided detection of COVID-19 in Chest Radiographs publication-title: A&I – start-page: 2261 year: 2017 end-page: 2269 ident: bib44 article-title: Densely connected convolutional networks publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib34 article-title: Deep Learning-Based Detection for COVID-19 from Chest CT Using Weak Label – year: 2019 ident: bib146 article-title: Do Explanations Reflect Decisions? a Machine-Centric Strategy to Quantify the Performance of Explainability Algorithms – volume: 196 start-page: 105608 year: 2020 ident: bib84 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays publication-title: Comput. Methods Progr. Biomed. – year: July 2017 ident: bib42 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: vol. 142 start-page: 110495 year: 2021 ident: bib59 publication-title: CoroDet: A Deep Learning Based Classification for COVID-19 Detection Using Chest X-Ray Images,” – volume: 121 start-page: 103805 year: 2020 ident: bib51 article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches publication-title: Comput. Biol. Med. – volume: 43 start-page: 635 year: Jun 2020 end-page: 640 ident: bib90 article-title: COVID-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks publication-title: Phys. Eng. Sci. Med. – ident: bib104 article-title: Chest X-ray (Covid-19 & Pneumonia), Dataset contains chest x-ray images of Covid-19, Pneumonia and normal patients – volume: 48 start-page: 1633 year: Mar 2021 end-page: 1645 ident: bib134 article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. – ident: bib58 article-title: Actualmed-covid-chestxray-dataset – volume: 135 start-page: 104575 year: 2021 ident: bib118 article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan publication-title: Comput. Biol. Med. – ident: bib111 article-title: RSNA pneumonia detection challenge – volume: 40 start-page: 1436 year: 2020 end-page: 1445 ident: bib72 article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier publication-title: Biocybern. Biomed. Eng. – start-page: 1111 year: Mar 2021 end-page: 1124 ident: bib57 article-title: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network publication-title: Pattern Anal. Appl. – volume: 30 start-page: 3113 year: 2021 end-page: 3126 ident: bib135 article-title: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation publication-title: IEEE Trans. Image Process. – volume: 56 year: 2020 ident: bib139 article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis publication-title: Eur. Respir. J. – volume: 51 start-page: 1 year: 05 2021 end-page: 13 ident: bib10 article-title: Deep neural network to detect COVID-19: one architecture for both CT scans and chest X-rays publication-title: Appl. Intell. – start-page: 1 year: 2021 end-page: 15 ident: bib65 article-title: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images publication-title: Evolv. Syst. – ident: bib92 article-title: Covid cases – year: 02 2021 ident: bib77 article-title: XCOVNet: Chest X-Ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks – start-page: 770 year: 2016 end-page: 778 ident: bib40 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 134 start-page: 178 year: 2019 end-page: 191 ident: bib140 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Syst. Appl. – volume: 164 start-page: 114054 year: 2021 ident: bib63 article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images publication-title: Expert Syst. Appl. – volume: 39 start-page: 2595 year: 2020 end-page: 2605 ident: bib35 article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia publication-title: IEEE Trans. Med. Imag. – ident: bib108 article-title: Covid cases – ident: bib101 – volume: 545 start-page: 403 year: 2021 end-page: 414 ident: bib81 article-title: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks publication-title: Inf. Sci. – volume: 8 start-page: 132 665 year: 2020 end-page: 132 676 ident: bib5 article-title: Can AI help in screening viral and COVID-19 pneumonia? publication-title: IEEE Access – ident: bib102 – ident: bib56 article-title: COVID-19 CXR (all SARS-CoV-2 PCR+) – volume: 24 start-page: 3595 year: 2020 end-page: 3605 ident: bib91 article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images publication-title: IEEE J. Biomed. Health Inform. – volume: 20 start-page: 100412 year: 2020 ident: bib60 article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images publication-title: Inform. Med. Unlock. – volume: 212 start-page: 106647 year: 2021 ident: bib16 article-title: FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection publication-title: Knowl. Base Syst. – volume: 25 start-page: 15345 year: Aug 2021 end-page: 15362 ident: bib13 article-title: Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review publication-title: Soft Comput. – volume: 41 start-page: 572 year: 2021 end-page: 588 ident: bib110 article-title: Automated detection of COVID-19 from CT scan using convolutional neural network publication-title: Biocybern. Biomed. Eng. – start-page: 26 year: 2020 end-page: 31 ident: bib9 article-title: The multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images publication-title: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems – volume: 25 start-page: 100681 year: 2021 ident: bib20 article-title: Robust chest CT image segmentation of COVID-19 lung infection based on limited data publication-title: Inform. Med. Unlock. – volume: 39 start-page: 2626 year: 2020 end-page: 2637 ident: bib18 article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images publication-title: IEEE Trans. Med. Imag. – volume: 6 start-page: 1122 year: 2020 end-page: 1129 ident: bib33 article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia publication-title: Engineering – volume: 64 start-page: 102365 year: 2021 ident: bib83 article-title: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study publication-title: Biomed. Signal Process Control – volume: 181 year: 05 2020 ident: bib128 article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using Computed Tomography publication-title: Cell – year: Jan 2021 ident: bib98 article-title: COV19-CNNet and COV19-ResNet: Diagnostic Inference Engines for Early Detection of COVID-19 – year: Apr 2021 ident: bib112 article-title: Towards an Effective and Efficient Deep Learning Model for COVID-19 Patterns Detection in X-Ray Images – year: 2020 ident: bib116 article-title: SARS-CoV-2 CT-scan Dataset: A Large Dataset of Real Patients CT Scans for SARS-CoV-2 Identification publication-title: medRxiv – volume: 194 start-page: 105532 year: 2020 ident: bib79 article-title: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios publication-title: Comput. Methods Progr. Biomed. – volume: 99 start-page: 106859 year: 2021 ident: bib74 article-title: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray publication-title: Appl. Soft Comput. – ident: bib97 article-title: Digital image database – volume: 99 start-page: 106744 year: 2021 ident: bib26 article-title: Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN publication-title: Appl. Soft Comput. – start-page: 1 year: 2015 end-page: 9 ident: bib41 article-title: Going deeper with convolutions – start-page: 248 year: 2009 end-page: 255 ident: bib37 article-title: ImageNet: a large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 18 year: 2021 ident: bib55 article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19 publication-title: Int. J. Environ. Res. Publ. Health – volume: 138 start-page: 638 year: 2020 end-page: 643 ident: bib67 article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images publication-title: Pattern Recogn. Lett. – start-page: 406 year: 2019 end-page: 415 ident: bib29 article-title: Bi-Directional ConvLSTM U-Net with densley connected convolutions publication-title: 2019 IEEE/CVF International Conference on Computer Vision Workshop – volume: 33 start-page: 590 year: 2019 end-page: 597 ident: bib95 article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 618 year: 2017 end-page: 626 ident: bib46 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization publication-title: 2017 IEEE International Conference on Computer Vision – volume: 144 start-page: 104284 year: 2020 ident: bib75 article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms publication-title: Int. J. Med. Inf. – year: 2020 ident: bib78 article-title: COVIDX-net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images publication-title: arXiv – volume: 51 start-page: 2850 year: May 2021 end-page: 2863 ident: bib132 article-title: Attention-based VGG-16 model for COVID-19 chest X-ray image classification publication-title: Appl. Intell. – volume: 11 start-page: 5088 year: Oct 2020 ident: bib30 article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis publication-title: Nat. Commun. – volume: 21 year: 2021 ident: bib117 article-title: Explainable COVID-19 detection using chest CT scans and deep learning publication-title: Sensors – volume: 28 start-page: 497 year: Jun 2021 end-page: 505 ident: bib123 article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques publication-title: Emerg. Radiol. – volume: 65 start-page: 102589 year: 2021 ident: bib11 article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey publication-title: Sustain. Cities Soc. – volume: 140 start-page: 95 year: 2020 end-page: 100 ident: bib121 article-title: A light CNN for detecting COVID-19 from CT scans of the chest publication-title: Pattern Recogn. Lett. – start-page: 404 year: 2021 end-page: 411 ident: bib17 article-title: Deep learning models for COVID-19 infected area segmentation in CT images publication-title: . Plus 0.5em Minus 0 – start-page: 3431 year: 2015 end-page: 3440 ident: bib21 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 122 start-page: 103869 year: 2020 ident: bib99 article-title: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization publication-title: Comput. Biol. Med. – ident: bib105 article-title: CoronaHack -chest X-Ray-dataset, classify the X Ray image which is having Corona – volume: 110 start-page: 107613 year: 2021 ident: bib28 article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays publication-title: Pattern Recogn. – volume: 132 start-page: 104306 year: 2021 ident: bib103 article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans publication-title: Comput. Biol. Med. – ident: bib49 article-title: Chest X-ray images (pneumonia) – volume: 10 year: Nov 2020 ident: bib126 article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. – volume: 140 start-page: 110122 year: 2020 ident: bib68 article-title: Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks publication-title: Chaos, Solit. Fractals – volume: 8 start-page: 171 575 year: 2020 end-page: 171 589 ident: bib71 article-title: DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach publication-title: IEEE Access – volume: 31 start-page: 11 year: 2020 ident: bib19 article-title: An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images publication-title: Int. J. Imag. Syst. Technol. – volume: 67 start-page: 208 year: 2021 end-page: 229 ident: bib142 article-title: COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Inf. Fusion – year: Apr. 2020 ident: bib129 article-title: COVID-19 CT Lung and Infection Segmentation Dataset – ident: bib119 article-title: Tianchi competition – year: 09 2014 ident: bib39 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – volume: 98 start-page: 106897 year: 2021 ident: bib32 article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system publication-title: Appl. Soft Comput. – ident: bib48 article-title: Labeled optical coherence tomography (OCT) and chest X-Ray images for classification – volume: 121 start-page: 103795 year: 2020 ident: bib133 article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks publication-title: Comput. Biol. Med. – start-page: 839 year: 2018 end-page: 847 ident: bib47 article-title: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision – volume: 98 start-page: 106885 year: 2021 ident: bib141 article-title: The ensemble deep learning model for novel COVID-19 on CT images publication-title: Appl. Soft Comput. – start-page: 565 year: 2016 end-page: 571 ident: bib24 article-title: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV – ident: bib93 – volume: 395 start-page: 514 year: Feb 2020 end-page: 523 ident: bib2 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: Lancet – volume: 81 start-page: 101 year: 2020 end-page: 109 ident: bib6 article-title: COVID-19 in diabetic patients: related risks and specifics of management publication-title: Ann. Endocrinol. – volume: 121 start-page: 103792 year: 2020 ident: bib66 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. – volume: 296 start-page: E65 year: Aug 2020 end-page: E71 ident: bib31 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy publication-title: Radiology – volume: 12 year: 2020 ident: bib89 article-title: Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning publication-title: Symmetry – start-page: 234 year: 2015 end-page: 241 ident: bib22 article-title: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention. Plus 0.5em Minus 0 – start-page: 3 year: 2018 end-page: 11 ident: bib25 article-title: UNet++: a nested U-Net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 39 start-page: 2688 year: 2020 end-page: 2700 ident: bib27 article-title: Deep learning COVID-19 features on CXR using limited training data sets publication-title: IEEE Trans. Med. Imag. – start-page: 102920 year: 2021 ident: bib94 article-title: X-ray and CT-scan-based Automated Detection and Classification of COVID-19 Using Convolutional Neural Networks (CNN) – reference: , last Accessed: 2021-08-15. – volume: 40 start-page: 1391 year: 2020 end-page: 1405 ident: bib76 article-title: A deep learning approach to detect COVID-19 coronavirus with X-ray images publication-title: Biocybern. Biomed. Eng. – volume: 19 start-page: 100360 year: 2020 ident: bib80 article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2 publication-title: Inform. Med. Unlock. – volume: 296 start-page: 172 year: Jul. 2020 end-page: 180 ident: bib3 article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society publication-title: Radiology – start-page: 2818 year: 2016 end-page: 2826 ident: bib136 article-title: Rethinking the inception architecture for computer vision publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 26 start-page: 1224 year: Aug 2020 end-page: 1228 ident: bib8 article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 publication-title: Nat. Med. – year: 2020 ident: bib124 article-title: BIMCV COVID-19+: a Large Annotated Dataset of RX and CT Images from COVID-19 Patients – year: May 2021 ident: bib53 article-title: AI for Radiographic Covid-19 Detection Selects Shortcuts over Signal – reference: AI diagnosis,” – year: 2021 ident: bib122 article-title: COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network – ident: bib106 article-title: COVID-19 radiography database – year: 04 2020 ident: bib145 article-title: Deep Learning on Chest X-Ray Images to Detect and Evaluate Pneumonia Cases at the Era of Covid-19 – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: bib148 article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion – ident: bib7 article-title: New research reveals why some patients may test positive for COVID-19 long after recovery – start-page: 2921 year: 2016 end-page: 2929 ident: bib45 article-title: Learning deep features for discriminative localization publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: bib43 article-title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning – volume: 138 start-page: 109944 year: 2020 ident: bib64 article-title: Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet publication-title: , Solit. Fractals – start-page: 1 year: Nov 2020 end-page: 10 ident: bib88 article-title: CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images publication-title: Res. Biomed. Eng. – volume: 98 start-page: 106742 year: 2021 ident: bib73 article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization publication-title: Appl. Soft Comput. – volume: 23 year: 2021 ident: bib147 article-title: A review of machine learning interpretability methods publication-title: Entropy – start-page: 1 year: 2021 end-page: 9 ident: bib137 article-title: A Deep Learning Algorithm Using CT Images to Screen for Corona Virus Disease (COVID-19) – volume: 51 start-page: 854 year: Feb 2021 end-page: 864 ident: bib70 article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network publication-title: Appl. Intell. – year: 2021 ident: bib143 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – ident: bib50 article-title: Pneumonia sample xrays – start-page: 455 year: 2019 end-page: 458 ident: bib144 article-title: FocusNet: an attention-based fully convolutional network for medical image segmentation publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging ( – volume: 296 start-page: E115 year: 2020 end-page: E117 ident: bib4 article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR publication-title: Radiology – volume: 11 start-page: 844 year: 02 2021 end-page: 850 ident: bib82 article-title: A deep learning framework to detect COVID-19 disease via chest X-ray and CT scan images publication-title: Int. J. Electr. Comput. Eng. – ident: bib115 article-title: COVID cases – volume: 1 start-page: 100025 year: 2021 ident: bib12 article-title: Role of deep learning in early detection of COVID-19: scoping review publication-title: Comput. Methods Progr. Biomed. Upd. – start-page: 3462 year: 2017 end-page: 3471 ident: bib125 article-title: ChestX-Ray8: hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 179 317 year: 2020 end-page: 179 335 ident: bib131 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access – volume: 196 start-page: 105581 year: 2020 ident: bib87 article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images publication-title: Comput. Methods Progr. Biomed. – volume: 4 start-page: 1 year: 2020 end-page: 11 ident: bib130 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib38 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: bib107 article-title: Deep Transfer Learning Based Classification Model for COVID-19 Disease – ident: bib113 article-title: COVID-19 patients lungs X ray images 10000 – year: May 2021 ident: bib138 article-title: Improving Performance of Deep Learning Models with Axiomatic Attribution Priors and Expected Gradients – volume: 8 start-page: 751 year: 2020 ident: bib86 article-title: Analysis of COVID-19 infections on a CT image using deepsense model publication-title: Front. Public Health – volume: 48 start-page: 1633 year: 2021 end-page: 1645 ident: bib36 article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. – volume: 66 start-page: 101797 year: 2020 ident: bib52 article-title: Padchest: a large chest x-ray image dataset with multi-label annotated reports publication-title: Med. Image Anal. – volume: 4 6 start-page: 475 year: 2014 end-page: 477 ident: bib96 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imag. Med. Surg. – volume: 2 start-page: 434 year: Aug 2021 ident: bib14 article-title: A comprehensive survey of COVID-19 detection using medical images publication-title: SN Comput. Sci. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 9 start-page: 11 year: 2020 ident: bib61 article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? publication-title: Health Inf. Sci. Syst. – ident: bib100 article-title: COVID-19 xray dataset (train & test sets) – volume: 4 start-page: 29 year: Feb 2021 ident: bib15 article-title: CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images publication-title: npj Digit. Med. – start-page: 248 year: 2009 ident: 10.1016/j.compbiomed.2022.105350_bib37 article-title: ImageNet: a large-scale hierarchical image database – start-page: 3 year: 2018 ident: 10.1016/j.compbiomed.2022.105350_bib25 article-title: UNet++: a nested U-Net architecture for medical image segmentation – volume: 40 start-page: 1391 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib76 article-title: A deep learning approach to detect COVID-19 coronavirus with X-ray images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.08.008 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib107 – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib138 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib137 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib78 article-title: COVIDX-net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images publication-title: arXiv – volume: 20 start-page: 100412 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib60 article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images publication-title: Inform. Med. Unlock. doi: 10.1016/j.imu.2020.100412 – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2022.105350_bib41 – volume: 11 start-page: 5088 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib30 article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis publication-title: Nat. Commun. doi: 10.1038/s41467-020-18685-1 – volume: 144 start-page: 104284 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib75 article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2020.104284 – volume: 138 start-page: 109944 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib64 article-title: Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2020.109944 – volume: 39 start-page: 2595 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib35 article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2995508 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib126 article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. – volume: 181 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib128 article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using Computed Tomography publication-title: Cell doi: 10.1016/j.cell.2020.04.045 – volume: 56 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib139 article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis publication-title: Eur. Respir. J. doi: 10.1183/13993003.00775-2020 – volume: 48 start-page: 1633 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib36 article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. doi: 10.1002/mp.14609 – volume: 39 start-page: 2626 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib18 article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2996645 – volume: vol. 142 start-page: 110495 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib59 – volume: 25 start-page: 15345 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib13 article-title: Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review publication-title: Soft Comput. doi: 10.1007/s00500-021-06137-x – volume: 8 start-page: 179 317 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib131 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028012 – volume: 9 start-page: 11 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib61 article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? publication-title: Health Inf. Sci. Syst. – start-page: 2261 year: 2017 ident: 10.1016/j.compbiomed.2022.105350_bib44 article-title: Densely connected convolutional networks – volume: 98 start-page: 106885 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib141 article-title: The ensemble deep learning model for novel COVID-19 on CT images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106885 – volume: 58 start-page: 82 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib148 article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 140 start-page: 95 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib121 article-title: A light CNN for detecting COVID-19 from CT scans of the chest publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.10.001 – ident: 10.1016/j.compbiomed.2022.105350_bib127 – volume: 26 start-page: 1224 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib8 article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0931-3 – volume: 110 start-page: 107613 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib28 article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107613 – volume: 8 start-page: 171 575 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib71 article-title: DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025010 – volume: 164 start-page: 114054 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib63 article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114054 – volume: 99 start-page: 106744 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib26 article-title: Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106744 – volume: 196 start-page: 105608 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib84 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105608 – volume: 25 start-page: 100681 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib20 article-title: Robust chest CT image segmentation of COVID-19 lung infection based on limited data publication-title: Inform. Med. Unlock. doi: 10.1016/j.imu.2021.100681 – volume: 382 start-page: 727 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 296 start-page: 172 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib3 article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society publication-title: Radiology doi: 10.1148/radiol.2020201365 – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib88 article-title: CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images publication-title: Res. Biomed. Eng. – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib77 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib65 article-title: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images publication-title: Evolv. Syst. – start-page: 404 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib17 article-title: Deep learning models for COVID-19 infected area segmentation in CT images – volume: 48 start-page: 1633 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib134 article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. doi: 10.1002/mp.14609 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2022.105350_bib22 article-title: Convolutional networks for biomedical image segmentation – volume: 194 start-page: 105532 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib79 article-title: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105532 – volume: 6 start-page: 1122 issue: 10 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib33 article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia publication-title: Engineering doi: 10.1016/j.eng.2020.04.010 – volume: 31 start-page: 11 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib19 article-title: An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images publication-title: Int. J. Imag. Syst. Technol. – volume: 212 start-page: 106647 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib16 article-title: FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.106647 – start-page: 26 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib9 article-title: The multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images – volume: 51 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib10 article-title: Deep neural network to detect COVID-19: one architecture for both CT scans and chest X-rays publication-title: Appl. Intell. doi: 10.1007/s10489-020-01943-6 – ident: 10.1016/j.compbiomed.2022.105350_bib7 – volume: 121 start-page: 103795 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib133 article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103795 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2022.105350_bib40 article-title: Deep residual learning for image recognition – year: 2017 ident: 10.1016/j.compbiomed.2022.105350_bib43 – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib122 – start-page: 2921 year: 2016 ident: 10.1016/j.compbiomed.2022.105350_bib45 article-title: Learning deep features for discriminative localization – volume: 66 start-page: 101797 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib52 article-title: Padchest: a large chest x-ray image dataset with multi-label annotated reports publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101797 – volume: 64 start-page: 102365 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib83 article-title: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2020.102365 – volume: 43 start-page: 635 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib90 article-title: COVID-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00865-4 – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib98 – ident: 10.1016/j.compbiomed.2022.105350_bib93 – volume: 395 start-page: 514 issue: 10223 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib2 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 19 start-page: 100360 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib80 article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2 publication-title: Inform. Med. Unlock. doi: 10.1016/j.imu.2020.100360 – start-page: 1111 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib57 article-title: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-021-00970-4 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib120 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib124 – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib112 – volume: 122 start-page: 103869 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib99 article-title: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103869 – volume: 132 start-page: 104306 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib103 article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104306 – volume: 41 start-page: 572 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib110 article-title: Automated detection of COVID-19 from CT scan using convolutional neural network publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2021.04.006 – volume: 138 start-page: 638 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib67 article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.09.010 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib34 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib129 – volume: 23 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib147 article-title: A review of machine learning interpretability methods publication-title: Entropy doi: 10.3390/e23010018 – volume: 8 start-page: 132 665 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib5 article-title: Can AI help in screening viral and COVID-19 pneumonia? publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010287 – volume: 121 start-page: 103805 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib51 article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103805 – volume: 51 start-page: 854 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib70 article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network publication-title: Appl. Intell. doi: 10.1007/s10489-020-01829-7 – volume: 39 start-page: 2688 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib27 article-title: Deep learning COVID-19 features on CXR using limited training data sets publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2993291 – volume: 99 start-page: 106859 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib74 article-title: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106859 – start-page: 839 year: 2018 ident: 10.1016/j.compbiomed.2022.105350_bib47 article-title: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2022.105350_bib38 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 121 start-page: 103792 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib66 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – year: 2019 ident: 10.1016/j.compbiomed.2022.105350_bib146 – volume: 98 start-page: 106897 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib32 article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106897 – volume: 24 start-page: 3595 issue: 12 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib91 article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3037127 – ident: 10.1016/j.compbiomed.2022.105350_bib101 – volume: 67 start-page: 208 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib142 article-title: COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.004 – year: 2014 ident: 10.1016/j.compbiomed.2022.105350_bib39 – start-page: 455 year: 2019 ident: 10.1016/j.compbiomed.2022.105350_bib144 article-title: FocusNet: an attention-based fully convolutional network for medical image segmentation – volume: 4 6 start-page: 475 year: 2014 ident: 10.1016/j.compbiomed.2022.105350_bib96 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imag. Med. Surg. – volume: 135 start-page: 104575 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib118 article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104575 – start-page: 565 year: 2016 ident: 10.1016/j.compbiomed.2022.105350_bib24 article-title: Fully convolutional neural networks for volumetric medical image segmentation – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib62 – volume: 33 start-page: 590 year: 2019 ident: 10.1016/j.compbiomed.2022.105350_bib95 article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison – volume: 81 start-page: 101 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib6 article-title: COVID-19 in diabetic patients: related risks and specifics of management publication-title: Ann. Endocrinol. doi: 10.1016/j.ando.2020.05.001 – issue: 1–1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib143 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – volume: 4 start-page: 29 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib15 article-title: CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images publication-title: npj Digit. Med. doi: 10.1038/s41746-021-00399-3 – year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib53 – start-page: 3462 year: 2017 ident: 10.1016/j.compbiomed.2022.105350_bib125 article-title: ChestX-Ray8: hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – volume: 1 start-page: 539 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib23 article-title: Transfer-to-transfer learning approach for computer aided detection of COVID-19 in Chest Radiographs publication-title: A&I – volume: 51 start-page: 2850 issue: 5 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib132 article-title: Attention-based VGG-16 model for COVID-19 chest X-ray image classification publication-title: Appl. Intell. doi: 10.1007/s10489-020-02055-x – volume: 65 start-page: 102589 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib11 article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102589 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib130 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00633-5 – volume: 296 start-page: E65 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib31 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy publication-title: Radiology doi: 10.1148/radiol.2020200905 – volume: 1 start-page: 100025 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib12 article-title: Role of deep learning in early detection of COVID-19: scoping review publication-title: Comput. Methods Progr. Biomed. Upd. doi: 10.1016/j.cmpbup.2021.100025 – start-page: 102920 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib94 – volume: 28 start-page: 497 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib123 article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques publication-title: Emerg. Radiol. doi: 10.1007/s10140-020-01886-y – volume: 2 start-page: 434 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib14 article-title: A comprehensive survey of COVID-19 detection using medical images publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00823-1 – start-page: 406 year: 2019 ident: 10.1016/j.compbiomed.2022.105350_bib29 article-title: Bi-Directional ConvLSTM U-Net with densley connected convolutions – volume: 40 start-page: 1436 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib72 article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.08.005 – volume: 11 start-page: 844 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib82 article-title: A deep learning framework to detect COVID-19 disease via chest X-ray and CT scan images publication-title: Int. J. Electr. Comput. Eng. – volume: 134 start-page: 178 year: 2019 ident: 10.1016/j.compbiomed.2022.105350_bib140 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.035 – year: 2017 ident: 10.1016/j.compbiomed.2022.105350_bib42 article-title: Xception: deep learning with depthwise separable convolutions – volume: 8 start-page: 751 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib86 article-title: Analysis of COVID-19 infections on a CT image using deepsense model publication-title: Front. Public Health doi: 10.3389/fpubh.2020.599550 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib85 article-title: ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images publication-title: J. Biomol. Struct. Dyn. – start-page: 3431 year: 2015 ident: 10.1016/j.compbiomed.2022.105350_bib21 article-title: Fully convolutional networks for semantic segmentation – ident: 10.1016/j.compbiomed.2022.105350_bib54 – volume: 21 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib117 article-title: Explainable COVID-19 detection using chest CT scans and deep learning publication-title: Sensors doi: 10.3390/s21020455 – volume: 98 start-page: 106742 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib73 article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106742 – volume: 132 start-page: 104348 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib109 article-title: Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104348 – volume: 140 start-page: 110122 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib68 article-title: Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2020.110122 – volume: 12 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib89 article-title: Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning publication-title: Symmetry doi: 10.3390/sym12040651 – volume: 140 start-page: 109761 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib69 article-title: COVIDiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109761 – volume: 545 start-page: 403 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib81 article-title: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.041 – start-page: 2818 year: 2016 ident: 10.1016/j.compbiomed.2022.105350_bib136 article-title: Rethinking the inception architecture for computer vision – volume: 30 start-page: 3113 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib135 article-title: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3058783 – volume: 18 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2022.105350_bib55 article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19 publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph18063056 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib145 – volume: 296 start-page: E115 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib4 article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 – year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib116 article-title: SARS-CoV-2 CT-scan Dataset: A Large Dataset of Real Patients CT Scans for SARS-CoV-2 Identification publication-title: medRxiv – start-page: 618 year: 2017 ident: 10.1016/j.compbiomed.2022.105350_bib46 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization – volume: 196 start-page: 105581 year: 2020 ident: 10.1016/j.compbiomed.2022.105350_bib87 article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105581 |
| SSID | ssj0004030 |
| Score | 2.6215796 |
| SecondaryResourceType | review_article |
| Snippet | Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected... AbstractCorona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105350 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Automation Classification Computed tomography Convolutional neural networks Coronaviruses COVID-19 COVID-19 - diagnostic imaging COVID-19 detection COVID-19 vaccines Data analysis Datasets Deep Learning Human error Humans Image classification Immunization Infections Internal Medicine Machine learning Medical imaging Medical research Neural networks Neural Networks, Computer Other Pneumonia Radio imagery Respiratory diseases SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Viral diseases Viruses X-ray and CT scan Images |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGTQJeEL8pDBQkHqlo016agqZpjE0DaQcChsZTlCXpGDp6hd4J7b-f3aQ9pk3onpuoqu3Yn5vPNsCLwqboGWUWO6kxQSmFi2VuHGYp0pQUwWR3FXMwEfuH-Yej8dEaTPpaGKJV9j6xc9R2Zugf-SsM3AKjoeTpVvM7pqlRdLvaj9DQYbSC3exajF2DdU6dsUaw_nZ38unzslIyyXxRCnqfHJOjwO3xjC8icfuid8wbOacRuBnV418dsC4D0su8yhuLutFnf_V0-k_Q2rsNtwLaZNvePO7AmqvvwvWDcJ9-D77vfPz2_l2cluz0FzoWZghLE3mo0xcjUvwJs841LEyXOHnNtj1roH3JTD-IpWW6tmzWEJZf1F2P1vtwuLf7dWc_DsMWYoM51DwWmJFW1A0vr1yBoEMLLYRMNDeJQ2FUoiiT3NnCIsKylFbZUvNCV-NCS1uMXfYARvWsdo-AZdryzDpEZscm59yU6BUy7QzXLnWVSCMoeokqEzqR00CMqeopZz_VUheKdKG8LiJIh52N78axwp6yV5rqq03RPyoMGSvsLa7a69pw0FuVqparRH3p-hyhQXHiqOUcv_HNsDNgGY9RVnzvRm9danjV8gRE8Hx4jN6Arnh07WaLbg1CfkxSRQQPvTEOgsrG1N0tIfFfMNNhAXUav_ikPv3RdRyXsqSxBBHwwaBXlv_j_3_LE7hJiz2HdANG8z8L9xRx3vz4WTi856H8USQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEv_P5R2JCReCRd4iSOM56qsWkgbSCgaHuyXNsZhTaNSCPE_nruYicwtofCY-VcI_su5-_kz98R8iIzEWRGEQdWKChQcm4DkWgLVYrQOe5goj2KOTrmh5Pk7Ul6skGi7i5MS9rX09monC9G5exLy62sFnqn44ntCJGjRPo1sslTgN8Dsjk5fj8-dRk3DBLRNlrFJtoBBFji2TuO04U0bXetHSpDxrDJbYw37q_eki5DzsvMyRtNWamfP9R8_se2dHCbfOgm5Ngo30bNajrS539pPf7TjO-QWx6k0rEbuks2bHmPXD_yx_D3yeneu89vXgdRTmcLyEdUIwRHzlHrZopc-jNqrK2ob0pxtkvHjmxQv6S6699SU1UauqywBGjKVtr1AZkc7H_aOwx8j4ZAQ-m1CjgUsgWK6CWFzQCrKK44F6FiOrSwwgXP8jCxJjMAzAxWYyZXLFNFmilhstTGD8mgXJb2MaGxMiw2FgDdVCeM6RySSaysZspGtuDRkGSdm6T2AubYR2MuO6baV_nbwRIdLJ2DhyTqLSsn4rGGTd5FguwuqUJalbDTrGGbXWVra58fahnJmslQfmzlkSBiGVLbEgZzfNVbegjkoM2a793qQlb2rwLEywFGCvzz5_0wJBE8GVKlXTbtM1ApQG3Lh-SRi_B-oeIUReFCXP4Lsd8_gALlF0cgiluhch-4Q8L6r2Tt9X_yP0ZPyU385QipW2Sw-t7YbQCNq-kznyZ-AV84azs priority: 102 providerName: Unpaywall |
| Title | COVID-19 image classification using deep learning: Advances, challenges and opportunities |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001421 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001421 https://dx.doi.org/10.1016/j.compbiomed.2022.105350 https://www.ncbi.nlm.nih.gov/pubmed/35305501 https://www.proquest.com/docview/2646710821 https://www.proquest.com/docview/2640996266 https://pubmed.ncbi.nlm.nih.gov/PMC8890789 https://www.ncbi.nlm.nih.gov/pmc/articles/8890789 |
| UnpaywallVersion | submittedVersion |
| Volume | 144 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamIQEviN_LGJOReCQscVLbgadSVjrQyoQo6p4sz3ZGUUmjpRXihb-du8TJqLqHSrwkamM36t35_J383R0hL4WNwTPKJHRSQ4CScRfK1DiIUqTJcAeT9VHM6ZiPJunHaW-6QwZtLgzSKr3vb3x67a39N0demkflbIY5vhBKQIDDkBaU1snkaSqwi8HrP9c0jzRKmjQU8Dc42rN5Go4X0rabNHeIFBnDprcJZuDfvEVtQtBNJuWdVVHq37_0fP7PNjW8T-55fEn7zV94QHZc8ZDcPvUn6I_I-eDzt5P3YZzR2U9wJdQgeka6UK0hijT4S2qdK6nvJ3H5hvYbnkD1ipq29UpFdWHpokT0virqqqyPyWR4_HUwCn17hdBA1LQMOcSgOda_S3MnAGZorjmXkWYmciCMnIssSp0VFjCVxUDKZpoJnfeEllb0XPKE7BaLwu0RmmjLEusAi12YlDGTgR9ItDNMu9jlPA6IaCWqjK89ji0w5qolmf1Q17pQqAvV6CIgcTezbOpvbDEna5Wm2vxS8IgKNokt5oqb5rrKL-1KxapiKlIb5heQt93MNQve8r0HrXWp7lUAVjkgQIk__qJ7DOsfD3V04RaregyAfAhLeUCeNsbYCSrpYT23CMW_ZqbdAKwtvv6kmH2va4xLmWEjgoCwzqC3lv_-f0niGbmLnxpS6QHZXV6t3HMAfsuLw3plw1VMBVzl8MMhudU_-TQaw_3d8fjsC9wn47P--V_52lxW |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJrG9IL4JDDASvBGROKnjgCY09qGWrQXBNo0n49nONlTSQlpN--f427iLnZRpE-rLnpNrlLvL3f3q390R8jIzMURGkYRWKAAoObehSLUFlCJ0jhlM1Ecx_QHv7qcfDzuHC-RP0wuDtMomJtaB2ow0_kf-BhI3h2woWPx-_CvErVF4utqs0FB-tYJZq0eM-caOHXt-BhCuWuttgr1fMba9tbfRDf2WgVADeJiEHKBYgWPg0sJmkG0VV5yLSDEdWUhwBc_yKLUmM1BaGMQTJlcsU0UnU8JkHZvA794gS2mS5gD-lj5sDT5_mXVmRolrgoFolwIY81wixzBD0rhrsgecyhiu3E2w___qBHm5AL7M41yelmN1fqaGw3-S5PZtcstXt3TdueMdsmDLu-Rm35_f3yPfNj4d9DbDOKenPyGQUY21O5KVav-gSMI_psbaMfXbLI7f0nXHUqheU90sfqmoKg0djRE7TMt6Jux9sn8tan9AFstRaR8RmijDEmOhEjzSKWM6hyiUKKuZsrEteByQrNGo1H7yOS7gGMqG4vZDzmwh0RbS2SIgcSs5dtM_5pDJG6PJprsV4rGEFDWHbHaVrK18YKlkLCsmI_m1nqsEDsWQE5cyeMd3raSvnVxNNOdzVxvvku2jZl9cQF60lyH64JGSKu1oWt8DEANAMQ_IQ-eMraKSDk6Ti1D9F9y0vQEnm1-8Up6e1BPOhchxDUJAWOvQc-v_8f_f5TlZ7u71d-Vub7DzhKygoOOvrpLFye-pfQo15uTomf-QKfl-3bHjLzFHjIQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviN8UBhgJ3oiW2KntgBCaVqqVsYEEQ92T8WxnDJU0kFbT_jX-Ou7iJGXahPqy5-Qaxb58d1_93R0hz6VLABkVj7wyQFAy4SOVWg8sRdkMI5iqj2J298T2fvp-3B-vkD9tLQzKKltMrIHaTS3-R74BgVtANFQs2cgbWcSnwfBt-SvCCVJ40tqO0wgusuNPT4C-VW9GA9jrF4wN333Z2o6aCQORBeIwiwTQsBxbwKW5lxBpjTBCqNgwG3sIbrmQWZx6Jx2kFQ65hMsMkybvS6Oc7HsOv3uFXJWcZygnlGO5qMmMeSh_AZxLgYY1KqKgLUO5eCivB4bKGA7b5Vj5f3FoPJ_6nldwXpsXpTk9MZPJP-FxeJPcaPJauhkc8RZZ8cVtsrbbnNzfIQdbH7-OBlGS0eOfAGHUYtaOMqXaMyjK74-o876kzRyLo1d0M-gTqpfUtiNfKmoKR6clsoZ5UXeDvUv2L2XR75HVYlr4B4Ry4xh3HnLAQ5syZjPAH268ZcYnPhdJj8h2RbVtep7j6I2JbsVtP_RiLzTuhQ570SNJZ1mGvh9L2GTtpum2rhWQWENwWsJWXmTrqwZSKp3oiulYf647KoFDMVTDpQze8XVn2WRNIRta8rnrrXfp7lGLb61HnnWXAXfwMMkUfjqv7wFyAXRY9Mj94IzdQvE-9pGLcfnPuGl3A_Y0P3ulOP5e9zZXKsMBCD3COodeev0f_v9dnpI1QAz9YbS384hcR7sgXF0nq7Pfc_8YksvZ4ZP6K6bk22XDxl9RkIoe |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEv_P5R2JCReCRd4iSOM56qsWkgbSCgaHuyXNsZhTaNSCPE_nruYicwtofCY-VcI_su5-_kz98R8iIzEWRGEQdWKChQcm4DkWgLVYrQOe5goj2KOTrmh5Pk7Ul6skGi7i5MS9rX09monC9G5exLy62sFnqn44ntCJGjRPo1sslTgN8Dsjk5fj8-dRk3DBLRNlrFJtoBBFji2TuO04U0bXetHSpDxrDJbYw37q_eki5DzsvMyRtNWamfP9R8_se2dHCbfOgm5Ngo30bNajrS539pPf7TjO-QWx6k0rEbuks2bHmPXD_yx_D3yeneu89vXgdRTmcLyEdUIwRHzlHrZopc-jNqrK2ob0pxtkvHjmxQv6S6699SU1UauqywBGjKVtr1AZkc7H_aOwx8j4ZAQ-m1CjgUsgWK6CWFzQCrKK44F6FiOrSwwgXP8jCxJjMAzAxWYyZXLFNFmilhstTGD8mgXJb2MaGxMiw2FgDdVCeM6RySSaysZspGtuDRkGSdm6T2AubYR2MuO6baV_nbwRIdLJ2DhyTqLSsn4rGGTd5FguwuqUJalbDTrGGbXWVra58fahnJmslQfmzlkSBiGVLbEgZzfNVbegjkoM2a793qQlb2rwLEywFGCvzz5_0wJBE8GVKlXTbtM1ApQG3Lh-SRi_B-oeIUReFCXP4Lsd8_gALlF0cgiluhch-4Q8L6r2Tt9X_yP0ZPyU385QipW2Sw-t7YbQCNq-kznyZ-AV84azs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+image+classification+using+deep+learning%3A+Advances%2C+challenges+and+opportunities&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Aggarwal%2C+Priya&rft.au=Mishra%2C+Narendra+Kumar&rft.au=Fatimah%2C+Binish&rft.au=Singh%2C+Pushpendra&rft.date=2022-05-01&rft.issn=0010-4825&rft.spage=105350&rft.epage=105350&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105350&rft.externalDBID=ECK1-s2.0-S0010482522001421&rft.externalDocID=1_s2_0_S0010482522001421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |