COVID-19 image classification using deep learning: Advances, challenges and opportunities

Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast a...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 144; p. 105350
Main Authors Aggarwal, Priya, Mishra, Narendra Kumar, Fatimah, Binish, Singh, Pushpendra, Gupta, Anubha, Joshi, Shiv Dutt
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105350

Cover

Abstract Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. •This study presents a comprehensive review on COVID-19 image classification using prominent deep learning approaches.•The study summarizes the number of important contributions to the field by various researchers.•The work includes critical discussions and open challenges for an automated detection of COVID-19 using CT and X-ray images.•Finally, the study enumerates opportunities and directions for future research work.
AbstractList AbstractCorona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.
Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.
Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification. •This study presents a comprehensive review on COVID-19 image classification using prominent deep learning approaches.•The study summarizes the number of important contributions to the field by various researchers.•The work includes critical discussions and open challenges for an automated detection of COVID-19 using CT and X-ray images.•Finally, the study enumerates opportunities and directions for future research work.
Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.
ArticleNumber 105350
Author Aggarwal, Priya
Mishra, Narendra Kumar
Gupta, Anubha
Fatimah, Binish
Singh, Pushpendra
Joshi, Shiv Dutt
Author_xml – sequence: 1
  givenname: Priya
  surname: Aggarwal
  fullname: Aggarwal, Priya
  email: priyaaggarwal27@gmail.com
  organization: The Vehant Technology Pvt. Ltd., Noida, India
– sequence: 2
  givenname: Narendra Kumar
  orcidid: 0000-0003-3735-8906
  surname: Mishra
  fullname: Mishra, Narendra Kumar
  email: eez188568@ee.iitd.ac.in
  organization: The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India
– sequence: 3
  givenname: Binish
  surname: Fatimah
  fullname: Fatimah, Binish
  email: binish.fatimah@gmail.com
  organization: The Department of ECE, CMR Institute of Technology, Bengaluru, India
– sequence: 4
  givenname: Pushpendra
  orcidid: 0000-0001-5615-519X
  surname: Singh
  fullname: Singh, Pushpendra
  email: spushp@nith.ac.in, spushp@gmail.com
  organization: The Department of ECE, National Institute of Technology Hamirpur, HP, India
– sequence: 5
  givenname: Anubha
  orcidid: 0000-0002-7752-1926
  surname: Gupta
  fullname: Gupta, Anubha
  email: anubha@iiitd.ac.in
  organization: The Department of ECE, IIIT-Delhi, Delhi, 110020, India
– sequence: 6
  givenname: Shiv Dutt
  surname: Joshi
  fullname: Joshi, Shiv Dutt
  email: sdjoshi@ee.iitd.ac.in
  organization: The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35305501$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhiNURLeFv4AiceFAlrFjOzEHRFkKVKrUAx8SJ8u1J1svWTvEyaL99_V2yy5UQmpP_piZV-88M0fZgQ8esywnMCVAxOvF1IRld-nCEu2UAqXpm5ccHmUTUleySA92kE0ACBSspvwwO4pxAQAMSniSHZa8BM6BTLIfs4vvZx8KInO31HPMTatjdI0zenDB52N0fp5bxC5vUfc-vd7kJ3alvcH4KjdXum3RzzHm2ts8dF3oh9G7wWF8mj1udBvx2e15nH37ePp19rk4v_h0Njs5L4wgcigEp2VTccZYgxXQWgstRA2aGsDUWCMqCQxtZTlhljDJrdS00g2vdG0rjuVxJre6o-_0-ncypLo-NdOvFQG1waUWao9LbXCpLa5U-3Zb242XKWbQD73e1wft1L8R767UPKxUXUuoapkEXt4K9OHXiHFQSxcNtq32GMaoqGAgpaBCpNQXd1IXYex9QrPJEhWBmpKU9fxvRzsrfya2t2z6EGOPjTJuuBlWMuja-_Rc3xF4AK7321JM81w57FU0DtMqWNejGZQN7gHMdyKmdT4tXPsT1xh3UIiKVIH6slnizQ5Tmm7sBtG7_wvcz8M1G_sFLQ
CitedBy_id crossref_primary_10_1080_10255842_2022_2112185
crossref_primary_10_1016_j_bspc_2024_106295
crossref_primary_10_1109_ACCESS_2022_3221750
crossref_primary_10_1016_j_bspc_2024_106133
crossref_primary_10_1088_2057_1976_ad8c46
crossref_primary_10_1016_j_engappai_2022_105398
crossref_primary_10_1115_1_4066251
crossref_primary_10_3390_bioengineering11070672
crossref_primary_10_1007_s13198_025_02735_2
crossref_primary_10_1016_j_compbiomed_2022_105540
crossref_primary_10_3934_era_2023383
crossref_primary_10_3390_buildings13010070
crossref_primary_10_1016_j_bspc_2023_105197
crossref_primary_10_3390_diagnostics13010162
crossref_primary_10_1016_j_envsoft_2024_106165
crossref_primary_10_1007_s11042_023_17767_8
crossref_primary_10_1016_j_atech_2023_100321
crossref_primary_10_1109_ACCESS_2024_3367772
crossref_primary_10_1007_s00354_024_00247_4
crossref_primary_10_1007_s11042_023_15805_z
crossref_primary_10_1007_s11042_023_17642_6
crossref_primary_10_1007_s00354_024_00279_w
crossref_primary_10_1007_s11042_023_15485_9
crossref_primary_10_3390_s22218578
crossref_primary_10_1177_20552076251318155
crossref_primary_10_1109_ACCESS_2024_3496728
crossref_primary_10_1016_j_compbiomed_2022_106065
crossref_primary_10_22399_ijcesen_425
crossref_primary_10_1016_j_engmed_2024_100021
crossref_primary_10_1016_j_metrad_2023_100018
crossref_primary_10_1371_journal_pone_0303049
crossref_primary_10_1007_s00521_024_10862_3
crossref_primary_10_29130_dubited_1120967
crossref_primary_10_1186_s42492_024_00168_5
crossref_primary_10_1016_j_patter_2023_100856
crossref_primary_10_3390_math11061279
crossref_primary_10_54097_hset_v23i_3199
crossref_primary_10_1186_s12880_024_01192_w
crossref_primary_10_1186_s43067_023_00129_7
crossref_primary_10_1371_journal_pone_0278487
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1155_2023_3248192
crossref_primary_10_3390_app12157554
crossref_primary_10_1007_s42979_023_02002_w
crossref_primary_10_1016_j_asoc_2023_110014
crossref_primary_10_1093_comjnl_bxae099
crossref_primary_10_3934_era_2023362
crossref_primary_10_1007_s11042_023_16605_1
crossref_primary_10_1177_01926233241300451
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_1007_s13748_023_00308_7
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_3389_frai_2023_1235204
crossref_primary_10_4015_S1016237223500199
crossref_primary_10_3390_diagnostics12071527
crossref_primary_10_1088_2057_1976_ad6f12
crossref_primary_10_3390_electronics14010075
crossref_primary_10_7759_cureus_57336
crossref_primary_10_1371_journal_pone_0293125
crossref_primary_10_1038_s41598_023_49159_1
crossref_primary_10_37990_medr_1130194
crossref_primary_10_1016_j_nmni_2024_101457
crossref_primary_10_1039_D3NH00532A
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1002_ima_22905
crossref_primary_10_3390_app122110715
crossref_primary_10_1016_j_imu_2023_101312
crossref_primary_10_1186_s40537_023_00762_z
Cites_doi 10.1016/j.bbe.2020.08.008
10.1016/j.imu.2020.100412
10.1038/s41467-020-18685-1
10.1016/j.ijmedinf.2020.104284
10.1016/j.chaos.2020.109944
10.1109/TMI.2020.2995508
10.1016/j.cell.2020.04.045
10.1183/13993003.00775-2020
10.1002/mp.14609
10.1109/TMI.2020.2996645
10.1007/s00500-021-06137-x
10.1109/ACCESS.2020.3028012
10.1016/j.asoc.2020.106885
10.1016/j.inffus.2019.12.012
10.1016/j.patrec.2020.10.001
10.1038/s41591-020-0931-3
10.1016/j.patcog.2020.107613
10.1109/ACCESS.2020.3025010
10.1016/j.eswa.2020.114054
10.1016/j.asoc.2020.106744
10.1016/j.cmpb.2020.105608
10.1016/j.imu.2021.100681
10.1056/NEJMoa2001017
10.1148/radiol.2020201365
10.1016/j.cmpb.2020.105532
10.1016/j.eng.2020.04.010
10.1016/j.knosys.2020.106647
10.1007/s10489-020-01943-6
10.1016/j.compbiomed.2020.103795
10.1016/j.media.2020.101797
10.1016/j.bspc.2020.102365
10.1007/s13246-020-00865-4
10.1016/S0140-6736(20)30154-9
10.1016/j.imu.2020.100360
10.1007/s10044-021-00970-4
10.1016/j.compbiomed.2020.103869
10.1016/j.compbiomed.2021.104306
10.1016/j.bbe.2021.04.006
10.1016/j.patrec.2020.09.010
10.3390/e23010018
10.1109/ACCESS.2020.3010287
10.1016/j.compbiomed.2020.103805
10.1007/s10489-020-01829-7
10.1109/TMI.2020.2993291
10.1016/j.asoc.2020.106859
10.1016/j.compbiomed.2020.103792
10.1016/j.asoc.2020.106897
10.1109/JBHI.2020.3037127
10.1016/j.inffus.2020.10.004
10.1016/j.compbiomed.2021.104575
10.1016/j.ando.2020.05.001
10.1038/s41746-021-00399-3
10.1007/s10489-020-02055-x
10.1016/j.scs.2020.102589
10.1038/s41551-020-00633-5
10.1148/radiol.2020200905
10.1016/j.cmpbup.2021.100025
10.1007/s10140-020-01886-y
10.1007/s42979-021-00823-1
10.1016/j.bbe.2020.08.005
10.1016/j.eswa.2019.05.035
10.3389/fpubh.2020.599550
10.3390/s21020455
10.1016/j.asoc.2020.106742
10.1016/j.compbiomed.2021.104348
10.1016/j.chaos.2020.110122
10.3390/sym12040651
10.1016/j.mehy.2020.109761
10.1016/j.ins.2020.09.041
10.1109/TIP.2021.3058783
10.3390/ijerph18063056
10.1148/radiol.2020200432
10.1016/j.cmpb.2020.105581
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
– notice: 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2022.105350
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Research Library Prep
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105350
ExternalDocumentID oai:pubmedcentral.nih.gov:8890789
PMC8890789
35305501
10_1016_j_compbiomed_2022_105350
S0010482522001421
1_s2_0_S0010482522001421
Genre Journal Article
Review
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c619t-6523f75444fe7028a6a6680a2c0e022f67904ed7d514d1495d9a27af57a8d75e3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 04:16:47 EDT 2025
Tue Sep 30 16:53:34 EDT 2025
Sun Sep 28 07:05:21 EDT 2025
Tue Oct 07 06:15:58 EDT 2025
Mon Jul 21 05:37:43 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Wed Oct 01 05:30:03 EDT 2025
Fri Feb 23 02:39:35 EST 2024
Tue Feb 25 20:11:33 EST 2025
Tue Oct 14 19:33:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
X-ray and CT scan Images
COVID-19 detection
Convolutional neural networks
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-6523f75444fe7028a6a6680a2c0e022f67904ed7d514d1495d9a27af57a8d75e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3735-8906
0000-0001-5615-519X
0000-0002-7752-1926
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8890789
PMID 35305501
PQID 2646710821
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2022_105350
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8890789
proquest_miscellaneous_2640996266
proquest_journals_2646710821
pubmed_primary_35305501
crossref_citationtrail_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1016_j_compbiomed_2022_105350
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105350
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001421
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Arora, Ng, Leekha, Darshan, Singh (bib118) 2021; 135
Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song, Cao, Liu, Wang, Xu, Fang, Zhang, Xia, Xia (bib31) Aug 2020; 296
Soares, Angelov, Biaso, Froes, Abe (bib116) 2020
Zhao, Zhang, He, Xie (bib120) 2020
Mukherjee, Ghosh, Dhar, Sk, Santosh, Roy (bib10) 05 2021; 51
bib119
bib115
bib114
Wang, Jin, Yan, Xu, Luo, Wei, Zhao, Hou, Ma, Xu, Zheng, Sun, Lan, Zhang, Mu, Shi, Wang, Lee, Jin, Lin, Jin, Zhang, Guo, Zhao, Ren, Wang, Xu, Wang, Wang, You, Dong (bib32) 2021; 98
bib113
bib111
Zhang, Liu, Shen, Li, Sang, Wu, Cha, Liang, Wang, Wang, Ye, Gao, Zhou, Li, Wang, Yang, Cai, Xu, Yang, Wang (bib128) 05 2020; 181
Mei, Lee, Diao, Huang, Lin, Liu, Xie, Ma, Robson, Chung, Bernheim, Mani, Calcagno, Li, Li, Shan, Lv, Zhao, Xia, Long, Steinberger, Jacobi, Deyer, Luksza, Liu, Little, Fayad, Yang (bib8) Aug 2020; 26
AI diagnosis
Shah, Joy, Ahmed, Hossain, Humaira, Ami, Paul, Jim, Ahmed (bib14) Aug 2021; 2
Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof, Schluger, Volpi, Yim, Martin, Anderson, Kong, Altes, Bush, Desai, Goldin, Mo Goo, Humbert, Inoue, Kauczor, Luo, Mazzone, Prokop, Remy-Jardin, Richeldi, Schaefer-Prokop, Tomiyama, Wells, Leung (bib3) Jul. 2020; 296
Deng, Dong, Socher, Li, Li, Fei-Fei (bib37) 2009
DeGrave, Janizek, Lee (bib53) May 2021
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (bib66) 2020; 121
Pathak, Shukla, Tiwari, Stalin, Singh, Shukla (bib107) 2020
bib48
Apostolopoulos, Mpesiana (bib90) Jun 2020; 43
Chollet (bib42) July 2017
bib108
Hammoudi, Benhabiles, Melkemi, Dornaika, Arganda-Carreras, Collard, Scherpereel (bib145) 04 2020
bib106
Alzubaidi, Zubaydi, Bin-Salem, Abd-Alrazaq, Ahmed, Househ (bib12) 2021; 1
bib105
Xu, Jiang, Ma, Du, Li, Lv, Yu, Ni, Chen, Su (bib33) 2020; 6
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib41) 2015
bib104
Orioli, Hermans, Thissen, Maiter, Vandeleene, Yombi (bib6) 2020; 81
Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib18) 2020; 39
bib102
bib100
Kaul, Manandhar, Pears (bib144) 2019
bib50
Ronneberger, Fischer, Brox, U-Net (bib22) 2015
Müller, Soto-Rey, Kramer (bib20) 2021; 25
Linardatos, Papastefanopoulos, Kotsiantis, Explainable (bib147) 2021; 23
Frederick (bib7)
Datasets & analysis
Selvaraj, Arunachalam, Mahesh, Joseph Raj (bib19) 2020; 31
El-Kenawy, Ibrahim, Mirjalili, Eid, Hussein (bib131) 2020; 8
bib58
bib56
Hariri, Narin (bib13) Aug 2021; 25
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib46) 2017
Madaan, Roy, Gupta, Agrawal, Sharma, Bologa, Prodan (bib77) 02 2021
Khadidos, Khadidos, Kannan, Natarajan, Mohanty, Tsaramirsis (bib86) 2020; 8
bib49
Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (bib36) 2021; 48
de la Iglesia Vaya, Saborit, Montell, Pertusa, Bustos, Cazorla, Galant, Barber, Orozco-Beltrán, García-García, Caparrós, González, Salinas (bib124) 2020
Turkoglu (bib122) 2021
Polsinelli, Cinque, Placidi (bib121) 2020; 140
Toraman, Alakus, Turkoglu (bib68) 2020; 140
Jin, Chen, Cao, Xu, Tan, Zhang, Deng, Zheng, Zhou, Shi, Feng (bib30) Oct 2020; 11
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib45) 2016
Rahimzadeh, Attar (bib80) 2020; 19
Wang, Lin, Wong (bib126) Nov 2020; 10
Abbas, Abdelsamea, Gaber (bib70) Feb 2021; 51
Sakib, Tazrin, Fouda, Fadlullah, Guizani (bib71) 2020; 8
LIDC-IDRI (bib101)
Erion, Janizek, Sturmfels, Lundberg, Lee (bib138) May 2021
Irvin, Rajpurkar, Ko, Yu, Ciurea-Ilcus, Chute, Marklund, Haghgoo, Ball, Shpanskaya (bib95) 2019; 33
Szegedy, Ioffe, Vanhoucke, Alemi (bib43) 2017
Toğaçar, Ergen, Cömert (bib51) 2020; 121
Jaeger, Candemir, Antani, Wang, Lu, Thoma (bib96) 2014; 4 6
Azad, Asadi-Aghbolaghi, Fathy, Escalera (bib29) 2019
Alshazly, Linse, Barth, Martinetz (bib117) 2021; 21
Ucar, Korkmaz (bib69) 2020; 140
Zhou, Lu, Yang, Qiu, Huo, Dong (bib141) 2021; 98
Huang, Liu, Van Der Maaten, Weinberger (bib44) 2017
Lin, Shafiee, Bochkarev, Jules, Wang, Wong (bib146) 2019
Abdel-Basset, Chang, Hawash, Chakrabortty, Ryan (bib16) 2021; 212
Wu, Gao, Mei, Xu, Fan, Zhang, Cheng (bib135) 2021; 30
Nayak, Nayak, Sinha, Arora, Pachori (bib83) 2021; 64
Chan, Yuan, Kok, To, Chu, Yang, Xing, Liu, Yip, Poon, Tsoi, Lo, Chan, Poon, Chan, Ip, Cai, Cheng, Chen, Hui, Yuen (bib2) Feb 2020; 395
Hilmizen, Bustamam, Sarwinda (bib9) 2020
Jun, Cheng, Yixin, Xingle, Jiantao, Ziqi, Minqing, Xin, Xueyuan, Shucheng, Hao, Sen, Xiaoyu, Ziwei, Chen, Lu, Yuntao, Qiongjie, Guoqiang, Jian (bib129) Apr. 2020
Bhattacharya, Reddy Maddikunta, Pham, Gadekallu, Krishnan S, Chowdhary, Alazab, Jalil Piran (bib11) 2021; 65
Abraham, Nair (bib72) 2020; 40
He, Zhang, Ren, Sun (bib40) 2016
Panwar, Gupta, Siddiqui, Morales-Menendez, Singh (bib64) 2020; 138
Mishra, Singh, Joshi (bib110) 2021; 41
Das, Ghosh, Thunder, Dutta, Agarwal, Chakrabarti (bib57) Mar 2021
Khan, Shah, Bhat (bib87) 2020; 196
Pham (bib61) 2020; 9
Heidari, Mirniaharikandehei, Khuzani, Danala, Qiu, Zheng (bib75) 2020; 144
Gupta, Anjum, Gupta, Katarya (bib74) 2021; 99
Krizhevsky, Sutskever, Hinton (bib38) 2012; 25
Wang, Kang, Ma, Zeng, Xiao, Guo, Cai, Yang, Li, Meng (bib137) 2021
Luz, Silva, Silva, Silva, Guimarães, Miozzo, Moreira, Menotti (bib112) Apr 2021
Narayanan, Hardie, Krishnaraja, Karam, Davuluru (bib23) 2020; 1
Voulodimos, Protopapadakis, Katsamenis, Doulamis, Doulamis (bib17) 2021
Ning, Lei, Yang, Cao, Jiang, Yang, Zhang, Wang, Chen, Geng, Xiong, Zhou, Guo, Zeng, Shi, Wang, Xue, Wang (bib130) 2020; 4
Milletari, Navab, Ahmadi, V-Net (bib24) 2016
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (bib25) 2018
Thakur, Kumar (bib94) 2021
Wang, Xiao, Li, Zhang, Lu, Hou, Liu (bib28) 2021; 110
Serte, Demirel (bib103) 2021; 132
Zheng, Deng, Fu, Zhou, Feng, Ma, Liu, Wang (bib34) 2020
Bustos, Pertusa, Salinas, de la Iglesia-Vayá (bib52) 2020; 66
Pereira, Bertolini, Teixeira, Silla, Costa (bib79) 2020; 194
Loey, Smarandache, Khalifa (bib89) 2020; 12
Wang, Govindaraj, Górriz, Zhang, Zhang (bib142) 2021; 67
Al-Bawi, Al-Kaabi, Jeryo, Al-Fatlawi (bib88) Nov 2020
Tabik, Gómez-Ríos, Martín-Rodríguez, Sevillano-García, Rey-Area, Charte, Guirado, Suárez, Luengo, Valero-González, García-Villanova, Olmedo-Sánchez, Herrera (bib91) 2020; 24
Jain, Mittal, Thakur, Mittal (bib76) 2020; 40
Islam, Islam, Asraf (bib60) 2020; 20
kamil (bib82) 02 2021; 11
Hussain, Hasan, Rahman, Lee, Tamanna, Parvez (bib59) 2021; vol. 142
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib1) 2020; 382
Ibrahim, Elshennawy, Sarhan (bib109) 2021; 132
bib92
Mahmud, Rahman, Fattah (bib99) 2020; 122
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib136) 2016
Javaheri, Homayounfar, Amoozgar, Reiazi, Homayounieh, Abbas, Laali, Radmard, Gharib, Mousavi, Ghaemi, Babaei, Mobin, Hosseinzadeh, Jahanban-Esfahlan, Seidi, Kalra, Zhang, Chitkushev, Haibe-Kains, Malekzadeh, Rawassizadeh (bib15) Feb 2021; 4
Brunese, Mercaldo, Reginelli, Santone (bib84) 2020; 196
Ouyang, Huo, Xia, Shan, Liu, Mo, Yan, Ding, Yang, Song, Shi, Yuan, Wei, Cao, Gao, Wu, Wang, Shen (bib35) 2020; 39
Keles, Keles, Keles (bib98) Jan 2021
Karthik, Menaka, M (bib26) 2021; 99
Dhiman, Chang, Singh, Shankar (bib85) 2021
COVIDx (bib93)
Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib67) 2020; 138
bib97
Ardakani, Kanafi, Acharya, Khadem, Mohammadi (bib133) 2020; 121
Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Wang, Zhao, Zha, Shen, Chong, Yang (bib143) 2021
Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (bib148) 2020; 58
Ismael, Şengür (bib63) 2021; 164
Oh, Park, Ye (bib27) 2020; 39
Varela-Santos, Melin (bib81) 2021; 545
Fang, Zhang, Xie, Lin, Ying, Pang, Ji (bib4) 2020; 296
Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (bib134) Mar 2021; 48
Sitaula, Hossain (bib132) May 2021; 51
Balochian, Baloochian (bib140) 2019; 134
Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Emadi, Reaz, Islam (bib5) 2020; 8
Irfan, Iftikhar, Yasin, Draz, Ali, Hussain, Bukhari, Alwadie, Rahman, Glowacz, Althobiani (bib55) 2021; 18
Ezzat, Hassanien, Ella (bib73) 2021; 98
Wang, Zha, Li, Wu, Li, Niu, Wang, Qiu, Li, Yu (bib139) 2020; 56
Cohen, Morrison, Dao (bib62) 2020
Wang, Peng, Lu, Lu, Bagheri, Summers (bib125) 2017
Hemdan, Shouman, Karar (bib78) 2020
Chattopadhay, Sarkar, Howlader, Balasubramanian (bib47) 2018
Simonyan, Zisserman (bib39) 09 2014
Shah, Keniya, Shridharani, Punjabi, Shah, Mehendale (bib123) Jun 2021; 28
Long, Shelhamer, Darrell (bib21) 2015
last Accessed: 2021-08-15.
Agrawal, Choudhary (bib65) 2021
Hariri (10.1016/j.compbiomed.2022.105350_bib13) 2021; 25
Shan (10.1016/j.compbiomed.2022.105350_bib36) 2021; 48
Toğaçar (10.1016/j.compbiomed.2022.105350_bib51) 2020; 121
Brunese (10.1016/j.compbiomed.2022.105350_bib84) 2020; 196
Irfan (10.1016/j.compbiomed.2022.105350_bib55) 2021; 18
Narayanan (10.1016/j.compbiomed.2022.105350_bib23) 2020; 1
Al-Bawi (10.1016/j.compbiomed.2022.105350_bib88) 2020
de la Iglesia Vaya (10.1016/j.compbiomed.2022.105350_bib124) 2020
Chan (10.1016/j.compbiomed.2022.105350_bib2) 2020; 395
Pereira (10.1016/j.compbiomed.2022.105350_bib79) 2020; 194
Pham (10.1016/j.compbiomed.2022.105350_bib61) 2020; 9
Zhu (10.1016/j.compbiomed.2022.105350_bib1) 2020; 382
Apostolopoulos (10.1016/j.compbiomed.2022.105350_bib90) 2020; 43
Deng (10.1016/j.compbiomed.2022.105350_bib37) 2009
Islam (10.1016/j.compbiomed.2022.105350_bib60) 2020; 20
Dhiman (10.1016/j.compbiomed.2022.105350_bib85) 2021
Orioli (10.1016/j.compbiomed.2022.105350_bib6) 2020; 81
Panwar (10.1016/j.compbiomed.2022.105350_bib64) 2020; 138
Jain (10.1016/j.compbiomed.2022.105350_bib76) 2020; 40
Wang (10.1016/j.compbiomed.2022.105350_bib139) 2020; 56
Selvaraju (10.1016/j.compbiomed.2022.105350_bib46) 2017
COVIDx (10.1016/j.compbiomed.2022.105350_bib93)
Gupta (10.1016/j.compbiomed.2022.105350_bib74) 2021; 99
Mukherjee (10.1016/j.compbiomed.2022.105350_bib10) 2021; 51
Arora (10.1016/j.compbiomed.2022.105350_bib118) 2021; 135
Abbas (10.1016/j.compbiomed.2022.105350_bib70) 2021; 51
Azad (10.1016/j.compbiomed.2022.105350_bib29) 2019
Szegedy (10.1016/j.compbiomed.2022.105350_bib136) 2016
Shah (10.1016/j.compbiomed.2022.105350_bib14) 2021; 2
Zhou (10.1016/j.compbiomed.2022.105350_bib141) 2021; 98
Erion (10.1016/j.compbiomed.2022.105350_bib138) 2021
Zhou (10.1016/j.compbiomed.2022.105350_bib25) 2018
Lin (10.1016/j.compbiomed.2022.105350_bib146) 2019
Zhou (10.1016/j.compbiomed.2022.105350_bib45) 2016
Jun (10.1016/j.compbiomed.2022.105350_bib129) 2020
Li (10.1016/j.compbiomed.2022.105350_bib31) 2020; 296
Szegedy (10.1016/j.compbiomed.2022.105350_bib41) 2015
Ouyang (10.1016/j.compbiomed.2022.105350_bib35) 2020; 39
Hussain (10.1016/j.compbiomed.2022.105350_bib59) 2021; vol. 142
Chowdhury (10.1016/j.compbiomed.2022.105350_bib5) 2020; 8
Long (10.1016/j.compbiomed.2022.105350_bib21) 2015
Ezzat (10.1016/j.compbiomed.2022.105350_bib73) 2021; 98
Hemdan (10.1016/j.compbiomed.2022.105350_bib78) 2020
Huang (10.1016/j.compbiomed.2022.105350_bib44) 2017
He (10.1016/j.compbiomed.2022.105350_bib40) 2016
Kaul (10.1016/j.compbiomed.2022.105350_bib144) 2019
Wang (10.1016/j.compbiomed.2022.105350_bib137) 2021
Ardakani (10.1016/j.compbiomed.2022.105350_bib133) 2020; 121
Karthik (10.1016/j.compbiomed.2022.105350_bib26) 2021; 99
Frederick (10.1016/j.compbiomed.2022.105350_bib7)
kamil (10.1016/j.compbiomed.2022.105350_bib82) 2021; 11
Jin (10.1016/j.compbiomed.2022.105350_bib30) 2020; 11
Madaan (10.1016/j.compbiomed.2022.105350_bib77) 2021
Wang (10.1016/j.compbiomed.2022.105350_bib142) 2021; 67
Oh (10.1016/j.compbiomed.2022.105350_bib27) 2020; 39
Ozturk (10.1016/j.compbiomed.2022.105350_bib66) 2020; 121
Wang (10.1016/j.compbiomed.2022.105350_bib126) 2020; 10
Sitaula (10.1016/j.compbiomed.2022.105350_bib132) 2021; 51
Song (10.1016/j.compbiomed.2022.105350_bib143) 2021
Loey (10.1016/j.compbiomed.2022.105350_bib89) 2020; 12
Wu (10.1016/j.compbiomed.2022.105350_bib135) 2021; 30
Wang (10.1016/j.compbiomed.2022.105350_bib32) 2021; 98
Wang (10.1016/j.compbiomed.2022.105350_bib125) 2017
Varela-Santos (10.1016/j.compbiomed.2022.105350_bib81) 2021; 545
Ibrahim (10.1016/j.compbiomed.2022.105350_bib109) 2021; 132
Ning (10.1016/j.compbiomed.2022.105350_bib130) 2020; 4
Luz (10.1016/j.compbiomed.2022.105350_bib112) 2021
Khadidos (10.1016/j.compbiomed.2022.105350_bib86) 2020; 8
Rubin (10.1016/j.compbiomed.2022.105350_bib3) 2020; 296
Thakur (10.1016/j.compbiomed.2022.105350_bib94) 2021
Zhao (10.1016/j.compbiomed.2022.105350_bib120) 2020
Cohen (10.1016/j.compbiomed.2022.105350_bib62) 2020
Bustos (10.1016/j.compbiomed.2022.105350_bib52) 2020; 66
Ucar (10.1016/j.compbiomed.2022.105350_bib69) 2020; 140
Khan (10.1016/j.compbiomed.2022.105350_bib87) 2020; 196
Jaeger (10.1016/j.compbiomed.2022.105350_bib96) 2014; 4 6
Hilmizen (10.1016/j.compbiomed.2022.105350_bib9) 2020
Müller (10.1016/j.compbiomed.2022.105350_bib20) 2021; 25
Wang (10.1016/j.compbiomed.2022.105350_bib28) 2021; 110
Krizhevsky (10.1016/j.compbiomed.2022.105350_bib38) 2012; 25
Serte (10.1016/j.compbiomed.2022.105350_bib103) 2021; 132
Javaheri (10.1016/j.compbiomed.2022.105350_bib15) 2021; 4
Zheng (10.1016/j.compbiomed.2022.105350_bib34) 2020
Abraham (10.1016/j.compbiomed.2022.105350_bib72) 2020; 40
El-Kenawy (10.1016/j.compbiomed.2022.105350_bib131) 2020; 8
Balochian (10.1016/j.compbiomed.2022.105350_bib140) 2019; 134
Nayak (10.1016/j.compbiomed.2022.105350_bib83) 2021; 64
LIDC-IDRI (10.1016/j.compbiomed.2022.105350_bib101)
Soares (10.1016/j.compbiomed.2022.105350_bib116) 2020
Rahimzadeh (10.1016/j.compbiomed.2022.105350_bib80) 2020; 19
Linardatos (10.1016/j.compbiomed.2022.105350_bib147) 2021; 23
Xu (10.1016/j.compbiomed.2022.105350_bib33) 2020; 6
Alzubaidi (10.1016/j.compbiomed.2022.105350_bib12) 2021; 1
Mahmud (10.1016/j.compbiomed.2022.105350_bib99) 2020; 122
Mishra (10.1016/j.compbiomed.2022.105350_bib110) 2021; 41
Fang (10.1016/j.compbiomed.2022.105350_bib4) 2020; 296
Alshazly (10.1016/j.compbiomed.2022.105350_bib117) 2021; 21
Turkoglu (10.1016/j.compbiomed.2022.105350_bib122) 2021
Abdel-Basset (10.1016/j.compbiomed.2022.105350_bib16) 2021; 212
Milletari (10.1016/j.compbiomed.2022.105350_bib24) 2016
Afshar (10.1016/j.compbiomed.2022.105350_bib67) 2020; 138
10.1016/j.compbiomed.2022.105350_bib54
Keles (10.1016/j.compbiomed.2022.105350_bib98) 2021
Simonyan (10.1016/j.compbiomed.2022.105350_bib39) 2014
Toraman (10.1016/j.compbiomed.2022.105350_bib68) 2020; 140
Irvin (10.1016/j.compbiomed.2022.105350_bib95) 2019; 33
Ronneberger (10.1016/j.compbiomed.2022.105350_bib22) 2015
Shah (10.1016/j.compbiomed.2022.105350_bib123) 2021; 28
Pathak (10.1016/j.compbiomed.2022.105350_bib107) 2020
Hammoudi (10.1016/j.compbiomed.2022.105350_bib145) 2020
Mei (10.1016/j.compbiomed.2022.105350_bib8) 2020; 26
Selvaraj (10.1016/j.compbiomed.2022.105350_bib19) 2020; 31
DeGrave (10.1016/j.compbiomed.2022.105350_bib53) 2021
Tabik (10.1016/j.compbiomed.2022.105350_bib91) 2020; 24
Chollet (10.1016/j.compbiomed.2022.105350_bib42) 2017
Das (10.1016/j.compbiomed.2022.105350_bib57) 2021
Barredo Arrieta (10.1016/j.compbiomed.2022.105350_bib148) 2020; 58
Shan (10.1016/j.compbiomed.2022.105350_bib134) 2021; 48
Chattopadhay (10.1016/j.compbiomed.2022.105350_bib47) 2018
Voulodimos (10.1016/j.compbiomed.2022.105350_bib17) 2021
Ismael (10.1016/j.compbiomed.2022.105350_bib63) 2021; 164
Heidari (10.1016/j.compbiomed.2022.105350_bib75) 2020; 144
Sakib (10.1016/j.compbiomed.2022.105350_bib71) 2020; 8
Polsinelli (10.1016/j.compbiomed.2022.105350_bib121) 2020; 140
Bhattacharya (10.1016/j.compbiomed.2022.105350_bib11) 2021; 65
10.1016/j.compbiomed.2022.105350_bib127
Zhang (10.1016/j.compbiomed.2022.105350_bib128) 2020; 181
Szegedy (10.1016/j.compbiomed.2022.105350_bib43) 2017
Fan (10.1016/j.compbiomed.2022.105350_bib18) 2020; 39
Agrawal (10.1016/j.compbiomed.2022.105350_bib65) 2021
References_xml – year: 2020
  ident: bib62
  article-title: COVID-19 Image Data Collection
– volume: 132
  start-page: 104348
  year: 2021
  ident: bib109
  article-title: Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases
  publication-title: Comput. Biol. Med.
– volume: 140
  start-page: 109761
  year: 2020
  ident: bib69
  article-title: COVIDiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
  publication-title: Med. Hypotheses
– ident: bib114
  article-title: Tuberculosis chest X-ray image data sets
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib85
  article-title: ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images
  publication-title: J. Biomol. Struct. Dyn.
– year: 2020
  ident: bib120
  article-title: Covid-CT-dataset: a CT Scan Dataset about COVID-19
– reference: Datasets & analysis,”
– volume: 1
  start-page: 539
  year: 2020
  end-page: 557
  ident: bib23
  article-title: Transfer-to-transfer learning approach for computer aided detection of COVID-19 in Chest Radiographs
  publication-title: A&I
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib44
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib34
  article-title: Deep Learning-Based Detection for COVID-19 from Chest CT Using Weak Label
– year: 2019
  ident: bib146
  article-title: Do Explanations Reflect Decisions? a Machine-Centric Strategy to Quantify the Performance of Explainability Algorithms
– volume: 196
  start-page: 105608
  year: 2020
  ident: bib84
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays
  publication-title: Comput. Methods Progr. Biomed.
– year: July 2017
  ident: bib42
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: vol. 142
  start-page: 110495
  year: 2021
  ident: bib59
  publication-title: CoroDet: A Deep Learning Based Classification for COVID-19 Detection Using Chest X-Ray Images,”
– volume: 121
  start-page: 103805
  year: 2020
  ident: bib51
  article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
– volume: 43
  start-page: 635
  year: Jun 2020
  end-page: 640
  ident: bib90
  article-title: COVID-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
– ident: bib104
  article-title: Chest X-ray (Covid-19 & Pneumonia), Dataset contains chest x-ray images of Covid-19, Pneumonia and normal patients
– volume: 48
  start-page: 1633
  year: Mar 2021
  end-page: 1645
  ident: bib134
  article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
– ident: bib58
  article-title: Actualmed-covid-chestxray-dataset
– volume: 135
  start-page: 104575
  year: 2021
  ident: bib118
  article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan
  publication-title: Comput. Biol. Med.
– ident: bib111
  article-title: RSNA pneumonia detection challenge
– volume: 40
  start-page: 1436
  year: 2020
  end-page: 1445
  ident: bib72
  article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier
  publication-title: Biocybern. Biomed. Eng.
– start-page: 1111
  year: Mar 2021
  end-page: 1124
  ident: bib57
  article-title: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network
  publication-title: Pattern Anal. Appl.
– volume: 30
  start-page: 3113
  year: 2021
  end-page: 3126
  ident: bib135
  article-title: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 56
  year: 2020
  ident: bib139
  article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
  publication-title: Eur. Respir. J.
– volume: 51
  start-page: 1
  year: 05 2021
  end-page: 13
  ident: bib10
  article-title: Deep neural network to detect COVID-19: one architecture for both CT scans and chest X-rays
  publication-title: Appl. Intell.
– start-page: 1
  year: 2021
  end-page: 15
  ident: bib65
  article-title: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
  publication-title: Evolv. Syst.
– ident: bib92
  article-title: Covid cases
– year: 02 2021
  ident: bib77
  article-title: XCOVNet: Chest X-Ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib40
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 134
  start-page: 178
  year: 2019
  end-page: 191
  ident: bib140
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Syst. Appl.
– volume: 164
  start-page: 114054
  year: 2021
  ident: bib63
  article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 2595
  year: 2020
  end-page: 2605
  ident: bib35
  article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia
  publication-title: IEEE Trans. Med. Imag.
– ident: bib108
  article-title: Covid cases
– ident: bib101
– volume: 545
  start-page: 403
  year: 2021
  end-page: 414
  ident: bib81
  article-title: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks
  publication-title: Inf. Sci.
– volume: 8
  start-page: 132 665
  year: 2020
  end-page: 132 676
  ident: bib5
  article-title: Can AI help in screening viral and COVID-19 pneumonia?
  publication-title: IEEE Access
– ident: bib102
– ident: bib56
  article-title: COVID-19 CXR (all SARS-CoV-2 PCR+)
– volume: 24
  start-page: 3595
  year: 2020
  end-page: 3605
  ident: bib91
  article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 20
  start-page: 100412
  year: 2020
  ident: bib60
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Inform. Med. Unlock.
– volume: 212
  start-page: 106647
  year: 2021
  ident: bib16
  article-title: FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
  publication-title: Knowl. Base Syst.
– volume: 25
  start-page: 15345
  year: Aug 2021
  end-page: 15362
  ident: bib13
  article-title: Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review
  publication-title: Soft Comput.
– volume: 41
  start-page: 572
  year: 2021
  end-page: 588
  ident: bib110
  article-title: Automated detection of COVID-19 from CT scan using convolutional neural network
  publication-title: Biocybern. Biomed. Eng.
– start-page: 26
  year: 2020
  end-page: 31
  ident: bib9
  article-title: The multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images
  publication-title: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems
– volume: 25
  start-page: 100681
  year: 2021
  ident: bib20
  article-title: Robust chest CT image segmentation of COVID-19 lung infection based on limited data
  publication-title: Inform. Med. Unlock.
– volume: 39
  start-page: 2626
  year: 2020
  end-page: 2637
  ident: bib18
  article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Trans. Med. Imag.
– volume: 6
  start-page: 1122
  year: 2020
  end-page: 1129
  ident: bib33
  article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia
  publication-title: Engineering
– volume: 64
  start-page: 102365
  year: 2021
  ident: bib83
  article-title: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study
  publication-title: Biomed. Signal Process Control
– volume: 181
  year: 05 2020
  ident: bib128
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using Computed Tomography
  publication-title: Cell
– year: Jan 2021
  ident: bib98
  article-title: COV19-CNNet and COV19-ResNet: Diagnostic Inference Engines for Early Detection of COVID-19
– year: Apr 2021
  ident: bib112
  article-title: Towards an Effective and Efficient Deep Learning Model for COVID-19 Patterns Detection in X-Ray Images
– year: 2020
  ident: bib116
  article-title: SARS-CoV-2 CT-scan Dataset: A Large Dataset of Real Patients CT Scans for SARS-CoV-2 Identification
  publication-title: medRxiv
– volume: 194
  start-page: 105532
  year: 2020
  ident: bib79
  article-title: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios
  publication-title: Comput. Methods Progr. Biomed.
– volume: 99
  start-page: 106859
  year: 2021
  ident: bib74
  article-title: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray
  publication-title: Appl. Soft Comput.
– ident: bib97
  article-title: Digital image database
– volume: 99
  start-page: 106744
  year: 2021
  ident: bib26
  article-title: Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib41
  article-title: Going deeper with convolutions
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib37
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 18
  year: 2021
  ident: bib55
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 138
  start-page: 638
  year: 2020
  end-page: 643
  ident: bib67
  article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images
  publication-title: Pattern Recogn. Lett.
– start-page: 406
  year: 2019
  end-page: 415
  ident: bib29
  article-title: Bi-Directional ConvLSTM U-Net with densley connected convolutions
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision Workshop
– volume: 33
  start-page: 590
  year: 2019
  end-page: 597
  ident: bib95
  article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib46
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
  publication-title: 2017 IEEE International Conference on Computer Vision
– volume: 144
  start-page: 104284
  year: 2020
  ident: bib75
  article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
  publication-title: Int. J. Med. Inf.
– year: 2020
  ident: bib78
  article-title: COVIDX-net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images
  publication-title: arXiv
– volume: 51
  start-page: 2850
  year: May 2021
  end-page: 2863
  ident: bib132
  article-title: Attention-based VGG-16 model for COVID-19 chest X-ray image classification
  publication-title: Appl. Intell.
– volume: 11
  start-page: 5088
  year: Oct 2020
  ident: bib30
  article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
  publication-title: Nat. Commun.
– volume: 21
  year: 2021
  ident: bib117
  article-title: Explainable COVID-19 detection using chest CT scans and deep learning
  publication-title: Sensors
– volume: 28
  start-page: 497
  year: Jun 2021
  end-page: 505
  ident: bib123
  article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques
  publication-title: Emerg. Radiol.
– volume: 65
  start-page: 102589
  year: 2021
  ident: bib11
  article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey
  publication-title: Sustain. Cities Soc.
– volume: 140
  start-page: 95
  year: 2020
  end-page: 100
  ident: bib121
  article-title: A light CNN for detecting COVID-19 from CT scans of the chest
  publication-title: Pattern Recogn. Lett.
– start-page: 404
  year: 2021
  end-page: 411
  ident: bib17
  article-title: Deep learning models for COVID-19 infected area segmentation in CT images
  publication-title: . Plus 0.5em Minus 0
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib21
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 122
  start-page: 103869
  year: 2020
  ident: bib99
  article-title: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization
  publication-title: Comput. Biol. Med.
– ident: bib105
  article-title: CoronaHack -chest X-Ray-dataset, classify the X Ray image which is having Corona
– volume: 110
  start-page: 107613
  year: 2021
  ident: bib28
  article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays
  publication-title: Pattern Recogn.
– volume: 132
  start-page: 104306
  year: 2021
  ident: bib103
  article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans
  publication-title: Comput. Biol. Med.
– ident: bib49
  article-title: Chest X-ray images (pneumonia)
– volume: 10
  year: Nov 2020
  ident: bib126
  article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– volume: 140
  start-page: 110122
  year: 2020
  ident: bib68
  article-title: Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks
  publication-title: Chaos, Solit. Fractals
– volume: 8
  start-page: 171 575
  year: 2020
  end-page: 171 589
  ident: bib71
  article-title: DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach
  publication-title: IEEE Access
– volume: 31
  start-page: 11
  year: 2020
  ident: bib19
  article-title: An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 67
  start-page: 208
  year: 2021
  end-page: 229
  ident: bib142
  article-title: COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Inf. Fusion
– year: Apr. 2020
  ident: bib129
  article-title: COVID-19 CT Lung and Infection Segmentation Dataset
– ident: bib119
  article-title: Tianchi competition
– year: 09 2014
  ident: bib39
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 98
  start-page: 106897
  year: 2021
  ident: bib32
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system
  publication-title: Appl. Soft Comput.
– ident: bib48
  article-title: Labeled optical coherence tomography (OCT) and chest X-Ray images for classification
– volume: 121
  start-page: 103795
  year: 2020
  ident: bib133
  article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks
  publication-title: Comput. Biol. Med.
– start-page: 839
  year: 2018
  end-page: 847
  ident: bib47
  article-title: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision
– volume: 98
  start-page: 106885
  year: 2021
  ident: bib141
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib24
  article-title: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV
– ident: bib93
– volume: 395
  start-page: 514
  year: Feb 2020
  end-page: 523
  ident: bib2
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
  publication-title: Lancet
– volume: 81
  start-page: 101
  year: 2020
  end-page: 109
  ident: bib6
  article-title: COVID-19 in diabetic patients: related risks and specifics of management
  publication-title: Ann. Endocrinol.
– volume: 121
  start-page: 103792
  year: 2020
  ident: bib66
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
– volume: 296
  start-page: E65
  year: Aug 2020
  end-page: E71
  ident: bib31
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy
  publication-title: Radiology
– volume: 12
  year: 2020
  ident: bib89
  article-title: Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning
  publication-title: Symmetry
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib22
  article-title: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention. Plus 0.5em Minus 0
– start-page: 3
  year: 2018
  end-page: 11
  ident: bib25
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 39
  start-page: 2688
  year: 2020
  end-page: 2700
  ident: bib27
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imag.
– start-page: 102920
  year: 2021
  ident: bib94
  article-title: X-ray and CT-scan-based Automated Detection and Classification of COVID-19 Using Convolutional Neural Networks (CNN)
– reference: , last Accessed: 2021-08-15.
– volume: 40
  start-page: 1391
  year: 2020
  end-page: 1405
  ident: bib76
  article-title: A deep learning approach to detect COVID-19 coronavirus with X-ray images
  publication-title: Biocybern. Biomed. Eng.
– volume: 19
  start-page: 100360
  year: 2020
  ident: bib80
  article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2
  publication-title: Inform. Med. Unlock.
– volume: 296
  start-page: 172
  year: Jul. 2020
  end-page: 180
  ident: bib3
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Radiology
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib136
  article-title: Rethinking the inception architecture for computer vision
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 1224
  year: Aug 2020
  end-page: 1228
  ident: bib8
  article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
  publication-title: Nat. Med.
– year: 2020
  ident: bib124
  article-title: BIMCV COVID-19+: a Large Annotated Dataset of RX and CT Images from COVID-19 Patients
– year: May 2021
  ident: bib53
  article-title: AI for Radiographic Covid-19 Detection Selects Shortcuts over Signal
– reference: AI diagnosis,”
– year: 2021
  ident: bib122
  article-title: COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network
– ident: bib106
  article-title: COVID-19 radiography database
– year: 04 2020
  ident: bib145
  article-title: Deep Learning on Chest X-Ray Images to Detect and Evaluate Pneumonia Cases at the Era of Covid-19
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: bib148
  article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
– ident: bib7
  article-title: New research reveals why some patients may test positive for COVID-19 long after recovery
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib45
  article-title: Learning deep features for discriminative localization
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib43
  article-title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
– volume: 138
  start-page: 109944
  year: 2020
  ident: bib64
  article-title: Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet
  publication-title: , Solit. Fractals
– start-page: 1
  year: Nov 2020
  end-page: 10
  ident: bib88
  article-title: CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images
  publication-title: Res. Biomed. Eng.
– volume: 98
  start-page: 106742
  year: 2021
  ident: bib73
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Appl. Soft Comput.
– volume: 23
  year: 2021
  ident: bib147
  article-title: A review of machine learning interpretability methods
  publication-title: Entropy
– start-page: 1
  year: 2021
  end-page: 9
  ident: bib137
  article-title: A Deep Learning Algorithm Using CT Images to Screen for Corona Virus Disease (COVID-19)
– volume: 51
  start-page: 854
  year: Feb 2021
  end-page: 864
  ident: bib70
  article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
  publication-title: Appl. Intell.
– year: 2021
  ident: bib143
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– ident: bib50
  article-title: Pneumonia sample xrays
– start-page: 455
  year: 2019
  end-page: 458
  ident: bib144
  article-title: FocusNet: an attention-based fully convolutional network for medical image segmentation
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (
– volume: 296
  start-page: E115
  year: 2020
  end-page: E117
  ident: bib4
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
– volume: 11
  start-page: 844
  year: 02 2021
  end-page: 850
  ident: bib82
  article-title: A deep learning framework to detect COVID-19 disease via chest X-ray and CT scan images
  publication-title: Int. J. Electr. Comput. Eng.
– ident: bib115
  article-title: COVID cases
– volume: 1
  start-page: 100025
  year: 2021
  ident: bib12
  article-title: Role of deep learning in early detection of COVID-19: scoping review
  publication-title: Comput. Methods Progr. Biomed. Upd.
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: bib125
  article-title: ChestX-Ray8: hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 179 317
  year: 2020
  end-page: 179 335
  ident: bib131
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
– volume: 196
  start-page: 105581
  year: 2020
  ident: bib87
  article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images
  publication-title: Comput. Methods Progr. Biomed.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib130
  article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning
  publication-title: Nat. Biomed. Eng.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib38
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: bib107
  article-title: Deep Transfer Learning Based Classification Model for COVID-19 Disease
– ident: bib113
  article-title: COVID-19 patients lungs X ray images 10000
– year: May 2021
  ident: bib138
  article-title: Improving Performance of Deep Learning Models with Axiomatic Attribution Priors and Expected Gradients
– volume: 8
  start-page: 751
  year: 2020
  ident: bib86
  article-title: Analysis of COVID-19 infections on a CT image using deepsense model
  publication-title: Front. Public Health
– volume: 48
  start-page: 1633
  year: 2021
  end-page: 1645
  ident: bib36
  article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
– volume: 66
  start-page: 101797
  year: 2020
  ident: bib52
  article-title: Padchest: a large chest x-ray image dataset with multi-label annotated reports
  publication-title: Med. Image Anal.
– volume: 4 6
  start-page: 475
  year: 2014
  end-page: 477
  ident: bib96
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imag. Med. Surg.
– volume: 2
  start-page: 434
  year: Aug 2021
  ident: bib14
  article-title: A comprehensive survey of COVID-19 detection using medical images
  publication-title: SN Comput. Sci.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 11
  year: 2020
  ident: bib61
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
  publication-title: Health Inf. Sci. Syst.
– ident: bib100
  article-title: COVID-19 xray dataset (train & test sets)
– volume: 4
  start-page: 29
  year: Feb 2021
  ident: bib15
  article-title: CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images
  publication-title: npj Digit. Med.
– start-page: 248
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105350_bib37
  article-title: ImageNet: a large-scale hierarchical image database
– start-page: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105350_bib25
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
– volume: 40
  start-page: 1391
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib76
  article-title: A deep learning approach to detect COVID-19 coronavirus with X-ray images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.08.008
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib107
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib138
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib137
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib78
  article-title: COVIDX-net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images
  publication-title: arXiv
– volume: 20
  start-page: 100412
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib60
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Inform. Med. Unlock.
  doi: 10.1016/j.imu.2020.100412
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105350_bib41
– volume: 11
  start-page: 5088
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib30
  article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18685-1
– volume: 144
  start-page: 104284
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib75
  article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2020.104284
– volume: 138
  start-page: 109944
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib64
  article-title: Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2020.109944
– volume: 39
  start-page: 2595
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib35
  article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.2995508
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib126
  article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– volume: 181
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib128
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using Computed Tomography
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.045
– volume: 56
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib139
  article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00775-2020
– volume: 48
  start-page: 1633
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib36
  article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
  doi: 10.1002/mp.14609
– volume: 39
  start-page: 2626
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib18
  article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.2996645
– volume: vol. 142
  start-page: 110495
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib59
– volume: 25
  start-page: 15345
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib13
  article-title: Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06137-x
– volume: 8
  start-page: 179 317
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib131
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028012
– volume: 9
  start-page: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib61
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
  publication-title: Health Inf. Sci. Syst.
– start-page: 2261
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105350_bib44
  article-title: Densely connected convolutional networks
– volume: 98
  start-page: 106885
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib141
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106885
– volume: 58
  start-page: 82
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib148
  article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 140
  start-page: 95
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib121
  article-title: A light CNN for detecting COVID-19 from CT scans of the chest
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.10.001
– ident: 10.1016/j.compbiomed.2022.105350_bib127
– volume: 26
  start-page: 1224
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib8
  article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– volume: 110
  start-page: 107613
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib28
  article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107613
– volume: 8
  start-page: 171 575
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib71
  article-title: DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025010
– volume: 164
  start-page: 114054
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib63
  article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114054
– volume: 99
  start-page: 106744
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib26
  article-title: Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106744
– volume: 196
  start-page: 105608
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib84
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105608
– volume: 25
  start-page: 100681
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib20
  article-title: Robust chest CT image segmentation of COVID-19 lung infection based on limited data
  publication-title: Inform. Med. Unlock.
  doi: 10.1016/j.imu.2021.100681
– volume: 382
  start-page: 727
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 296
  start-page: 172
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib3
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib88
  article-title: CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images
  publication-title: Res. Biomed. Eng.
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib77
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib65
  article-title: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
  publication-title: Evolv. Syst.
– start-page: 404
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib17
  article-title: Deep learning models for COVID-19 infected area segmentation in CT images
– volume: 48
  start-page: 1633
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib134
  article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
  doi: 10.1002/mp.14609
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105350_bib22
  article-title: Convolutional networks for biomedical image segmentation
– volume: 194
  start-page: 105532
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib79
  article-title: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105532
– volume: 6
  start-page: 1122
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib33
  article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– volume: 31
  start-page: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib19
  article-title: An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 212
  start-page: 106647
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib16
  article-title: FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106647
– start-page: 26
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib9
  article-title: The multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images
– volume: 51
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib10
  article-title: Deep neural network to detect COVID-19: one architecture for both CT scans and chest X-rays
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01943-6
– ident: 10.1016/j.compbiomed.2022.105350_bib7
– volume: 121
  start-page: 103795
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib133
  article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103795
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105350_bib40
  article-title: Deep residual learning for image recognition
– year: 2017
  ident: 10.1016/j.compbiomed.2022.105350_bib43
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib122
– start-page: 2921
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105350_bib45
  article-title: Learning deep features for discriminative localization
– volume: 66
  start-page: 101797
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib52
  article-title: Padchest: a large chest x-ray image dataset with multi-label annotated reports
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101797
– volume: 64
  start-page: 102365
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib83
  article-title: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2020.102365
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib90
  article-title: COVID-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib98
– ident: 10.1016/j.compbiomed.2022.105350_bib93
– volume: 395
  start-page: 514
  issue: 10223
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib2
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 19
  start-page: 100360
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib80
  article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2
  publication-title: Inform. Med. Unlock.
  doi: 10.1016/j.imu.2020.100360
– start-page: 1111
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib57
  article-title: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-021-00970-4
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib120
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib124
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib112
– volume: 122
  start-page: 103869
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib99
  article-title: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103869
– volume: 132
  start-page: 104306
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib103
  article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104306
– volume: 41
  start-page: 572
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib110
  article-title: Automated detection of COVID-19 from CT scan using convolutional neural network
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.04.006
– volume: 138
  start-page: 638
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib67
  article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.09.010
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib34
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib129
– volume: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib147
  article-title: A review of machine learning interpretability methods
  publication-title: Entropy
  doi: 10.3390/e23010018
– volume: 8
  start-page: 132 665
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib5
  article-title: Can AI help in screening viral and COVID-19 pneumonia?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– volume: 121
  start-page: 103805
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib51
  article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103805
– volume: 51
  start-page: 854
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib70
  article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01829-7
– volume: 39
  start-page: 2688
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib27
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.2993291
– volume: 99
  start-page: 106859
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib74
  article-title: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106859
– start-page: 839
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105350_bib47
  article-title: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105350_bib38
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 121
  start-page: 103792
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib66
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– year: 2019
  ident: 10.1016/j.compbiomed.2022.105350_bib146
– volume: 98
  start-page: 106897
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib32
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106897
– volume: 24
  start-page: 3595
  issue: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib91
  article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3037127
– ident: 10.1016/j.compbiomed.2022.105350_bib101
– volume: 67
  start-page: 208
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib142
  article-title: COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.004
– year: 2014
  ident: 10.1016/j.compbiomed.2022.105350_bib39
– start-page: 455
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105350_bib144
  article-title: FocusNet: an attention-based fully convolutional network for medical image segmentation
– volume: 4 6
  start-page: 475
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105350_bib96
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imag. Med. Surg.
– volume: 135
  start-page: 104575
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib118
  article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104575
– start-page: 565
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105350_bib24
  article-title: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib62
– volume: 33
  start-page: 590
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105350_bib95
  article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison
– volume: 81
  start-page: 101
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib6
  article-title: COVID-19 in diabetic patients: related risks and specifics of management
  publication-title: Ann. Endocrinol.
  doi: 10.1016/j.ando.2020.05.001
– issue: 1–1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib143
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– volume: 4
  start-page: 29
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib15
  article-title: CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-021-00399-3
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib53
– start-page: 3462
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105350_bib125
  article-title: ChestX-Ray8: hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– volume: 1
  start-page: 539
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib23
  article-title: Transfer-to-transfer learning approach for computer aided detection of COVID-19 in Chest Radiographs
  publication-title: A&I
– volume: 51
  start-page: 2850
  issue: 5
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib132
  article-title: Attention-based VGG-16 model for COVID-19 chest X-ray image classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02055-x
– volume: 65
  start-page: 102589
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib11
  article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102589
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib130
  article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00633-5
– volume: 296
  start-page: E65
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib31
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– volume: 1
  start-page: 100025
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib12
  article-title: Role of deep learning in early detection of COVID-19: scoping review
  publication-title: Comput. Methods Progr. Biomed. Upd.
  doi: 10.1016/j.cmpbup.2021.100025
– start-page: 102920
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib94
– volume: 28
  start-page: 497
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib123
  article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques
  publication-title: Emerg. Radiol.
  doi: 10.1007/s10140-020-01886-y
– volume: 2
  start-page: 434
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib14
  article-title: A comprehensive survey of COVID-19 detection using medical images
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00823-1
– start-page: 406
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105350_bib29
  article-title: Bi-Directional ConvLSTM U-Net with densley connected convolutions
– volume: 40
  start-page: 1436
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib72
  article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.08.005
– volume: 11
  start-page: 844
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib82
  article-title: A deep learning framework to detect COVID-19 disease via chest X-ray and CT scan images
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 134
  start-page: 178
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105350_bib140
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.035
– year: 2017
  ident: 10.1016/j.compbiomed.2022.105350_bib42
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 8
  start-page: 751
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib86
  article-title: Analysis of COVID-19 infections on a CT image using deepsense model
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.599550
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib85
  article-title: ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images
  publication-title: J. Biomol. Struct. Dyn.
– start-page: 3431
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105350_bib21
  article-title: Fully convolutional networks for semantic segmentation
– ident: 10.1016/j.compbiomed.2022.105350_bib54
– volume: 21
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib117
  article-title: Explainable COVID-19 detection using chest CT scans and deep learning
  publication-title: Sensors
  doi: 10.3390/s21020455
– volume: 98
  start-page: 106742
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib73
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106742
– volume: 132
  start-page: 104348
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib109
  article-title: Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104348
– volume: 140
  start-page: 110122
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib68
  article-title: Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2020.110122
– volume: 12
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib89
  article-title: Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning
  publication-title: Symmetry
  doi: 10.3390/sym12040651
– volume: 140
  start-page: 109761
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib69
  article-title: COVIDiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– volume: 545
  start-page: 403
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib81
  article-title: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.041
– start-page: 2818
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105350_bib136
  article-title: Rethinking the inception architecture for computer vision
– volume: 30
  start-page: 3113
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib135
  article-title: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3058783
– volume: 18
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105350_bib55
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph18063056
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib145
– volume: 296
  start-page: E115
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib4
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib116
  article-title: SARS-CoV-2 CT-scan Dataset: A Large Dataset of Real Patients CT Scans for SARS-CoV-2 Identification
  publication-title: medRxiv
– start-page: 618
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105350_bib46
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
– volume: 196
  start-page: 105581
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105350_bib87
  article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105581
SSID ssj0004030
Score 2.6215796
SecondaryResourceType review_article
Snippet Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected...
AbstractCorona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105350
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Automation
Classification
Computed tomography
Convolutional neural networks
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
COVID-19 detection
COVID-19 vaccines
Data analysis
Datasets
Deep Learning
Human error
Humans
Image classification
Immunization
Infections
Internal Medicine
Machine learning
Medical imaging
Medical research
Neural networks
Neural Networks, Computer
Other
Pneumonia
Radio imagery
Respiratory diseases
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Viruses
X-ray and CT scan Images
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGTQJeEL8pDBQkHqlo016agqZpjE0DaQcChsZTlCXpGDp6hd4J7b-f3aQ9pk3onpuoqu3Yn5vPNsCLwqboGWUWO6kxQSmFi2VuHGYp0pQUwWR3FXMwEfuH-Yej8dEaTPpaGKJV9j6xc9R2Zugf-SsM3AKjoeTpVvM7pqlRdLvaj9DQYbSC3exajF2DdU6dsUaw_nZ38unzslIyyXxRCnqfHJOjwO3xjC8icfuid8wbOacRuBnV418dsC4D0su8yhuLutFnf_V0-k_Q2rsNtwLaZNvePO7AmqvvwvWDcJ9-D77vfPz2_l2cluz0FzoWZghLE3mo0xcjUvwJs841LEyXOHnNtj1roH3JTD-IpWW6tmzWEJZf1F2P1vtwuLf7dWc_DsMWYoM51DwWmJFW1A0vr1yBoEMLLYRMNDeJQ2FUoiiT3NnCIsKylFbZUvNCV-NCS1uMXfYARvWsdo-AZdryzDpEZscm59yU6BUy7QzXLnWVSCMoeokqEzqR00CMqeopZz_VUheKdKG8LiJIh52N78axwp6yV5rqq03RPyoMGSvsLa7a69pw0FuVqparRH3p-hyhQXHiqOUcv_HNsDNgGY9RVnzvRm9danjV8gRE8Hx4jN6Arnh07WaLbg1CfkxSRQQPvTEOgsrG1N0tIfFfMNNhAXUav_ikPv3RdRyXsqSxBBHwwaBXlv_j_3_LE7hJiz2HdANG8z8L9xRx3vz4WTi856H8USQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEv_P5R2JCReCRd4iSOM56qsWkgbSCgaHuyXNsZhTaNSCPE_nruYicwtofCY-VcI_su5-_kz98R8iIzEWRGEQdWKChQcm4DkWgLVYrQOe5goj2KOTrmh5Pk7Ul6skGi7i5MS9rX09monC9G5exLy62sFnqn44ntCJGjRPo1sslTgN8Dsjk5fj8-dRk3DBLRNlrFJtoBBFji2TuO04U0bXetHSpDxrDJbYw37q_eki5DzsvMyRtNWamfP9R8_se2dHCbfOgm5Ngo30bNajrS539pPf7TjO-QWx6k0rEbuks2bHmPXD_yx_D3yeneu89vXgdRTmcLyEdUIwRHzlHrZopc-jNqrK2ob0pxtkvHjmxQv6S6699SU1UauqywBGjKVtr1AZkc7H_aOwx8j4ZAQ-m1CjgUsgWK6CWFzQCrKK44F6FiOrSwwgXP8jCxJjMAzAxWYyZXLFNFmilhstTGD8mgXJb2MaGxMiw2FgDdVCeM6RySSaysZspGtuDRkGSdm6T2AubYR2MuO6baV_nbwRIdLJ2DhyTqLSsn4rGGTd5FguwuqUJalbDTrGGbXWVra58fahnJmslQfmzlkSBiGVLbEgZzfNVbegjkoM2a793qQlb2rwLEywFGCvzz5_0wJBE8GVKlXTbtM1ApQG3Lh-SRi_B-oeIUReFCXP4Lsd8_gALlF0cgiluhch-4Q8L6r2Tt9X_yP0ZPyU385QipW2Sw-t7YbQCNq-kznyZ-AV84azs
  priority: 102
  providerName: Unpaywall
Title COVID-19 image classification using deep learning: Advances, challenges and opportunities
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001421
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001421
https://dx.doi.org/10.1016/j.compbiomed.2022.105350
https://www.ncbi.nlm.nih.gov/pubmed/35305501
https://www.proquest.com/docview/2646710821
https://www.proquest.com/docview/2640996266
https://pubmed.ncbi.nlm.nih.gov/PMC8890789
https://www.ncbi.nlm.nih.gov/pmc/articles/8890789
UnpaywallVersion submittedVersion
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamIQEviN_LGJOReCQscVLbgadSVjrQyoQo6p4sz3ZGUUmjpRXihb-du8TJqLqHSrwkamM36t35_J383R0hL4WNwTPKJHRSQ4CScRfK1DiIUqTJcAeT9VHM6ZiPJunHaW-6QwZtLgzSKr3vb3x67a39N0demkflbIY5vhBKQIDDkBaU1snkaSqwi8HrP9c0jzRKmjQU8Dc42rN5Go4X0rabNHeIFBnDprcJZuDfvEVtQtBNJuWdVVHq37_0fP7PNjW8T-55fEn7zV94QHZc8ZDcPvUn6I_I-eDzt5P3YZzR2U9wJdQgeka6UK0hijT4S2qdK6nvJ3H5hvYbnkD1ipq29UpFdWHpokT0virqqqyPyWR4_HUwCn17hdBA1LQMOcSgOda_S3MnAGZorjmXkWYmciCMnIssSp0VFjCVxUDKZpoJnfeEllb0XPKE7BaLwu0RmmjLEusAi12YlDGTgR9ItDNMu9jlPA6IaCWqjK89ji0w5qolmf1Q17pQqAvV6CIgcTezbOpvbDEna5Wm2vxS8IgKNokt5oqb5rrKL-1KxapiKlIb5heQt93MNQve8r0HrXWp7lUAVjkgQIk__qJ7DOsfD3V04RaregyAfAhLeUCeNsbYCSrpYT23CMW_ZqbdAKwtvv6kmH2va4xLmWEjgoCwzqC3lv_-f0niGbmLnxpS6QHZXV6t3HMAfsuLw3plw1VMBVzl8MMhudU_-TQaw_3d8fjsC9wn47P--V_52lxW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJrG9IL4JDDASvBGROKnjgCY09qGWrQXBNo0n49nONlTSQlpN--f427iLnZRpE-rLnpNrlLvL3f3q390R8jIzMURGkYRWKAAoObehSLUFlCJ0jhlM1Ecx_QHv7qcfDzuHC-RP0wuDtMomJtaB2ow0_kf-BhI3h2woWPx-_CvErVF4utqs0FB-tYJZq0eM-caOHXt-BhCuWuttgr1fMba9tbfRDf2WgVADeJiEHKBYgWPg0sJmkG0VV5yLSDEdWUhwBc_yKLUmM1BaGMQTJlcsU0UnU8JkHZvA794gS2mS5gD-lj5sDT5_mXVmRolrgoFolwIY81wixzBD0rhrsgecyhiu3E2w___qBHm5AL7M41yelmN1fqaGw3-S5PZtcstXt3TdueMdsmDLu-Rm35_f3yPfNj4d9DbDOKenPyGQUY21O5KVav-gSMI_psbaMfXbLI7f0nXHUqheU90sfqmoKg0djRE7TMt6Jux9sn8tan9AFstRaR8RmijDEmOhEjzSKWM6hyiUKKuZsrEteByQrNGo1H7yOS7gGMqG4vZDzmwh0RbS2SIgcSs5dtM_5pDJG6PJprsV4rGEFDWHbHaVrK18YKlkLCsmI_m1nqsEDsWQE5cyeMd3raSvnVxNNOdzVxvvku2jZl9cQF60lyH64JGSKu1oWt8DEANAMQ_IQ-eMraKSDk6Ti1D9F9y0vQEnm1-8Up6e1BPOhchxDUJAWOvQc-v_8f_f5TlZ7u71d-Vub7DzhKygoOOvrpLFye-pfQo15uTomf-QKfl-3bHjLzFHjIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviN8UBhgJ3oiW2KntgBCaVqqVsYEEQ92T8WxnDJU0kFbT_jX-Ou7iJGXahPqy5-Qaxb58d1_93R0hz6VLABkVj7wyQFAy4SOVWg8sRdkMI5iqj2J298T2fvp-3B-vkD9tLQzKKltMrIHaTS3-R74BgVtANFQs2cgbWcSnwfBt-SvCCVJ40tqO0wgusuNPT4C-VW9GA9jrF4wN333Z2o6aCQORBeIwiwTQsBxbwKW5lxBpjTBCqNgwG3sIbrmQWZx6Jx2kFQ65hMsMkybvS6Oc7HsOv3uFXJWcZygnlGO5qMmMeSh_AZxLgYY1KqKgLUO5eCivB4bKGA7b5Vj5f3FoPJ_6nldwXpsXpTk9MZPJP-FxeJPcaPJauhkc8RZZ8cVtsrbbnNzfIQdbH7-OBlGS0eOfAGHUYtaOMqXaMyjK74-o876kzRyLo1d0M-gTqpfUtiNfKmoKR6clsoZ5UXeDvUv2L2XR75HVYlr4B4Ry4xh3HnLAQ5syZjPAH268ZcYnPhdJj8h2RbVtep7j6I2JbsVtP_RiLzTuhQ570SNJZ1mGvh9L2GTtpum2rhWQWENwWsJWXmTrqwZSKp3oiulYf647KoFDMVTDpQze8XVn2WRNIRta8rnrrXfp7lGLb61HnnWXAXfwMMkUfjqv7wFyAXRY9Mj94IzdQvE-9pGLcfnPuGl3A_Y0P3ulOP5e9zZXKsMBCD3COodeev0f_v9dnpI1QAz9YbS384hcR7sgXF0nq7Pfc_8YksvZ4ZP6K6bk22XDxl9RkIoe
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEv_P5R2JCReCRd4iSOM56qsWkgbSCgaHuyXNsZhTaNSCPE_nruYicwtofCY-VcI_su5-_kz98R8iIzEWRGEQdWKChQcm4DkWgLVYrQOe5goj2KOTrmh5Pk7Ul6skGi7i5MS9rX09monC9G5exLy62sFnqn44ntCJGjRPo1sslTgN8Dsjk5fj8-dRk3DBLRNlrFJtoBBFji2TuO04U0bXetHSpDxrDJbYw37q_eki5DzsvMyRtNWamfP9R8_se2dHCbfOgm5Ngo30bNajrS539pPf7TjO-QWx6k0rEbuks2bHmPXD_yx_D3yeneu89vXgdRTmcLyEdUIwRHzlHrZopc-jNqrK2ob0pxtkvHjmxQv6S6699SU1UauqywBGjKVtr1AZkc7H_aOwx8j4ZAQ-m1CjgUsgWK6CWFzQCrKK44F6FiOrSwwgXP8jCxJjMAzAxWYyZXLFNFmilhstTGD8mgXJb2MaGxMiw2FgDdVCeM6RySSaysZspGtuDRkGSdm6T2AubYR2MuO6baV_nbwRIdLJ2DhyTqLSsn4rGGTd5FguwuqUJalbDTrGGbXWVra58fahnJmslQfmzlkSBiGVLbEgZzfNVbegjkoM2a793qQlb2rwLEywFGCvzz5_0wJBE8GVKlXTbtM1ApQG3Lh-SRi_B-oeIUReFCXP4Lsd8_gALlF0cgiluhch-4Q8L6r2Tt9X_yP0ZPyU385QipW2Sw-t7YbQCNq-kznyZ-AV84azs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+image+classification+using+deep+learning%3A+Advances%2C+challenges+and+opportunities&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Aggarwal%2C+Priya&rft.au=Mishra%2C+Narendra+Kumar&rft.au=Fatimah%2C+Binish&rft.au=Singh%2C+Pushpendra&rft.date=2022-05-01&rft.issn=0010-4825&rft.spage=105350&rft.epage=105350&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105350&rft.externalDBID=ECK1-s2.0-S0010482522001421&rft.externalDocID=1_s2_0_S0010482522001421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon