Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates
Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in d...
Saved in:
Published in | Computers in biology and medicine Vol. 137; p. 104833 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2021.104833 |
Cover
Abstract | Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%).
•A single-vertebral model is capable of estimating fracture outcomes in a three-level spine segment.•QCT/FEA technique, alone, accounted for 70% variability between experimentally measured fracture strength and the prediction.•Adding disk degeneration grading can significantly increase predictive ability of the single vertebral modeling.•The loading rates of 5 mm/min and 12000 mm/min did not change the density-elastic modulus equations significantly. |
---|---|
AbstractList | Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2=0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2=0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%). AbstractOsteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R 2=0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R 2=0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R 2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%). Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%). •A single-vertebral model is capable of estimating fracture outcomes in a three-level spine segment.•QCT/FEA technique, alone, accounted for 70% variability between experimentally measured fracture strength and the prediction.•Adding disk degeneration grading can significantly increase predictive ability of the single vertebral modeling.•The loading rates of 5 mm/min and 12000 mm/min did not change the density-elastic modulus equations significantly. Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%).Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%). Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%). |
ArticleNumber | 104833 |
Author | Yaszemski, Michael J. Li, Yong Rezaei, Asghar Tilton, Maryam Lu, Lichun |
AuthorAffiliation | 2 Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA |
AuthorAffiliation_xml | – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – name: 2 Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA |
Author_xml | – sequence: 1 givenname: Asghar surname: Rezaei fullname: Rezaei, Asghar organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – sequence: 2 givenname: Maryam surname: Tilton fullname: Tilton, Maryam organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – sequence: 3 givenname: Yong surname: Li fullname: Li, Yong organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – sequence: 4 givenname: Michael J. surname: Yaszemski fullname: Yaszemski, Michael J. organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – sequence: 5 givenname: Lichun surname: Lu fullname: Lu, Lichun email: Lu.Lichun@mayo.edu organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34534795$$D View this record in MEDLINE/PubMed |
BookMark | eNqdkt1uEzEQhS1URNPAKyBL3HCzwT_7lxsErWhBqsRF4dryesepg9debG9Q3oGHxquUFJCQClcj2Wc-nTkzZ-jEeQcIYUpWlND61Xal_DB2xg_QrxhhND-XLeeP0IK2zbogFS9P0IIQSoqyZdUpOotxSwgpCSdP0Ckvs6BZVwv0_ca4jYXCwg4sjlO3BZWKOIIy2iisjTMJMFgYwCU8-D6rlHR4DNAblbAOUqUpAPZTyp4gYuNwug1wRI7GAY6wmQERT66HgHujNYSZaL3sswMcZIL4FD3W0kZ4dleX6PPlu08X74vrj1cfLt5eF6qm61TwvmWkIVLm2mle1Z2WJStpqfqO1JpKWjHNqFJdBZzxSlcNKNZK0tO6banmS7Q-cCc3yv03aa0Ygxlk2AtKxJyw2Ir7hMWcsDgknHtfH3rHqct_Kg8R5H2_l0b8_uPMrdj4nWiblteEZMDLO0DwXyeISQwmKrBWOvBTFKxqSr5ueVNl6Ys_pFs_BZejmVVZVs-LXKLnvzo6Wvm55CxoDwIVfIwB9H9Me2xVJslk_DybsQ8BnB8AkPe5MxBEVAacytcT8qWJ3pt_cHGEKJsPU0n7BfYQj6FQEZkg4ma--_nsGSWkZg3LgDd_BzzMww_8zhrQ |
CitedBy_id | crossref_primary_10_1016_j_bone_2023_116810 crossref_primary_10_1016_j_jmbbm_2024_106827 crossref_primary_10_3390_app122010256 crossref_primary_10_1007_s10439_023_03402_y crossref_primary_10_1016_j_medengphy_2024_104147 |
Cites_doi | 10.1007/BF01622200 10.1007/s00198-011-1568-3 10.1016/j.jbiomech.2013.06.035 10.1007/BF01623679 10.1016/j.actbio.2014.12.024 10.1007/s00198-004-1622-5 10.1114/1.1313773 10.1016/S0268-0033(97)00035-1 10.1016/j.clinbiomech.2007.08.024 10.2106/00004623-197759070-00021 10.1016/j.acra.2008.05.005 10.1016/S8756-3282(03)00210-2 10.1016/0021-9290(94)90056-6 10.1007/s10614-013-9377-8 10.1016/j.cmpb.2020.105870 10.1016/j.jbiomech.2008.05.017 10.1089/ten.tec.2016.0078 10.1016/S0021-9290(98)00057-8 10.1016/j.jmbbm.2021.104559 10.1007/s10439-010-0196-y 10.1016/j.bone.2018.08.005 10.1080/10255842.2015.1006209 10.1016/j.jbiomech.2003.09.027 10.1016/S0021-9290(03)00071-X 10.1016/j.jmbbm.2016.10.002 10.1007/s00198-018-4716-1 10.1016/j.clinbiomech.2021.105365 10.1007/s10439-020-02595-w 10.1115/1.4040458 10.1007/s10439-019-02238-9 10.1016/j.jbiomech.2014.11.042 10.1089/ten.tea.2013.0275 10.1097/BRS.0000000000000540 10.1016/j.ejmp.2009.08.002 10.1016/0021-9290(88)90008-5 10.1016/j.jmbbm.2021.104457 10.1016/j.compbiomed.2021.104395 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
DOI | 10.1016/j.compbiomed.2021.104833 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central - New (Subscription) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library (subscription) Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 104833 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:8783600 PMC8783600 34534795 10_1016_j_compbiomed_2021_104833 S0010482521006272 1_s2_0_S0010482521006272 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Ann Arbor Michigan United States--US |
GeographicLocations_xml | – name: Ann Arbor Michigan – name: United States--US |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: TL1 TR000137 – fundername: NIAMS NIH HHS grantid: T32 AR056950 – fundername: NIAMS NIH HHS grantid: R01 AR056212 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR 77I AAYXX ACLOT CITATION ~HD CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c619t-3d82070aad82bf356bfa42414cdb06f1a152f21ccb5e3235f57ec28a0d16881f3 |
IEDL.DBID | UNPAY |
ISSN | 0010-4825 1879-0534 |
IngestDate | Wed Aug 20 00:14:43 EDT 2025 Tue Sep 30 17:19:00 EDT 2025 Sat Sep 27 23:31:38 EDT 2025 Sun Sep 07 08:41:02 EDT 2025 Wed Feb 19 02:27:57 EST 2025 Wed Oct 01 05:22:24 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Fri Feb 23 02:42:45 EST 2024 Tue Feb 25 20:03:25 EST 2025 Tue Aug 26 20:14:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vertebral fracture Material characterization QCT/FEA Vertebral augmentation material characterization vertebral augmentation |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c619t-3d82070aad82bf356bfa42414cdb06f1a152f21ccb5e3235f57ec28a0d16881f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8783600 |
PMID | 34534795 |
PQID | 2577436345 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2021_104833 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8783600 proquest_miscellaneous_2574398375 proquest_journals_2577436345 pubmed_primary_34534795 crossref_primary_10_1016_j_compbiomed_2021_104833 crossref_citationtrail_10_1016_j_compbiomed_2021_104833 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104833 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521006272 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Crawford, Cann, Keaveny (bib18) 2003; 33 Kopperdahl, Keaveny (bib11) 1998; 31 Myers, Wilson, Greenspan (bib1) 1996; 11 Galibert, Deramond, Rosat, Le (bib15) 1987; 33 Morgan, Bayraktar, Keaveny (bib10) 2003; 36 Rice, Cowin, Bowman (bib25) 1988; 21 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib26) 2008; 23 Hallberg, Rosenqvist, Kartous, Löfman, Wahlström, Toss (bib3) 2004; 15 Kanis (bib4) 1994; 4 Kobayashi, Numaguchi, Fuwa, Uemura, Matsusako, Okajima, Ishiyama, Takahashi (bib17) 2009; 16 Rezaei, Tilton, Giambini, Li, Hooke, Miller, Yaszemski, Lu (bib7) 2021 Rossman, Kushvaha, Dragomir-Daescu (bib22) 2016; 19 Prado, Rezaei, Giambini (bib23) 2021; 49 Eberle, Gottlinger, Augat (bib33) 2013; 46 Ariza, Gilchrist, Widmer, Guy, Ferguson, Cripton, Helgason (bib41) 2015; 48 Dall'Ara, Pahr, Varga, Kainberger, Zysset (bib19) 2012; 23 Wu, Todo, Umebayashi, Yamamoto (bib38) 2021; 85 Giambini, Fang, Zeng, Camp, Yaszemski, Lu (bib40) 2016; 22 Keller (bib9) 1994; 27 Zeinali, Hashemi, Akhlaghpoor (bib20) 2010; 26 Teng, Giambini, Rezaei, Liu, Lee Miller, Waletzki, Lu (bib31) 2018; 140 Rezaei, Carlson, Giambini, Javid, Dragomir-Daescu (bib30) 2019; 47 Rezaei, Giambini, Rossman, Carlson, Yaszemski, Lu, Dragomir-Daescu (bib39) 2017 Robinson, Tse, Franklyn, Zhang, Fernandez, Ackland, Lee (bib12) 2021; 118 Rezaei, Giambini, Miller, Xu, Xu, Li, Yaszemski, Lu (bib36) 2021; 133 Carter, Hayes (bib13) 1977; 59 Sabet, Koric, Idkaidek, Jasiuk (bib42) 2021; 200 Fang, Giambini, Zeng, Camp, Dadsetan, Robb, An, Yaszemski, Lu (bib16) 2014; 20 Dragomir-Daescu, Den Buijs, McEligot, Dai, Entwistle, Salas, Melton, Bennet, Khosla, Amin (bib34) 2011; 39 Giambini, Fang, Zeng, Camp, Yaszemski, Lu (bib27) 2016; 22 Allaire, Lu, Johannesdottir, Kopperdahl, Keaveny, Jarraya, Guermazi, Bredella, Samelson, Kiel (bib37) 2019; 30 Ouyang, Yang, Wu, Zhu, Zhong (bib14) 1997; 12 Klein, Neira (bib32) 2014; 43 Gustafson, Cripton, Ferguson, Helgason (bib21) 2017; 65 Whyne, Hu, Workman, Lotz (bib5) 2000; 28 Matsuura, Giambini, Ogawa, Fang, Thoreson, Yaszemski, Lu, K N (bib28) 2014; 39 Heggeness (bib2) 1993; 3 Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (bib8) 2008; 23 Schileo, Dall'Ara, Taddei, Malandrino, Schotkamp, Baleani, Viceconti (bib24) 2008; 41 Dadsetan, Guda, Runge, Mijares, LeGeros, LeGeros, Silliman, Lu, Wenke, Baer (bib29) 2015; 18 Dragomir-Daescu, Rossman, Rezaei, Carlson, Kallmes, Skinner, Khosla, Amin (bib35) 2018; 116 Tschirhart, Nagpurkar, Whyne (bib6) 2004; 37 Prado (10.1016/j.compbiomed.2021.104833_bib23) 2021; 49 Heggeness (10.1016/j.compbiomed.2021.104833_bib2) 1993; 3 Giambini (10.1016/j.compbiomed.2021.104833_bib27) 2016; 22 Dadsetan (10.1016/j.compbiomed.2021.104833_bib29) 2015; 18 Tschirhart (10.1016/j.compbiomed.2021.104833_bib6) 2004; 37 Galibert (10.1016/j.compbiomed.2021.104833_bib15) 1987; 33 Ouyang (10.1016/j.compbiomed.2021.104833_bib14) 1997; 12 Wu (10.1016/j.compbiomed.2021.104833_bib38) 2021; 85 Rezaei (10.1016/j.compbiomed.2021.104833_bib36) 2021; 133 Dall'Ara (10.1016/j.compbiomed.2021.104833_bib19) 2012; 23 Teng (10.1016/j.compbiomed.2021.104833_bib31) 2018; 140 Allaire (10.1016/j.compbiomed.2021.104833_bib37) 2019; 30 Morgan (10.1016/j.compbiomed.2021.104833_bib10) 2003; 36 Fang (10.1016/j.compbiomed.2021.104833_bib16) 2014; 20 Helgason (10.1016/j.compbiomed.2021.104833_bib8) 2008; 23 Robinson (10.1016/j.compbiomed.2021.104833_bib12) 2021; 118 Rezaei (10.1016/j.compbiomed.2021.104833_bib30) 2019; 47 Kopperdahl (10.1016/j.compbiomed.2021.104833_bib11) 1998; 31 Dragomir-Daescu (10.1016/j.compbiomed.2021.104833_bib35) 2018; 116 Sabet (10.1016/j.compbiomed.2021.104833_bib42) 2021; 200 Zeinali (10.1016/j.compbiomed.2021.104833_bib20) 2010; 26 Eberle (10.1016/j.compbiomed.2021.104833_bib33) 2013; 46 Hallberg (10.1016/j.compbiomed.2021.104833_bib3) 2004; 15 Dragomir-Daescu (10.1016/j.compbiomed.2021.104833_bib34) 2011; 39 Matsuura (10.1016/j.compbiomed.2021.104833_bib28) 2014; 39 Kanis (10.1016/j.compbiomed.2021.104833_bib4) 1994; 4 Gustafson (10.1016/j.compbiomed.2021.104833_bib21) 2017; 65 Whyne (10.1016/j.compbiomed.2021.104833_bib5) 2000; 28 Rezaei (10.1016/j.compbiomed.2021.104833_bib7) 2021 Crawford (10.1016/j.compbiomed.2021.104833_bib18) 2003; 33 Schileo (10.1016/j.compbiomed.2021.104833_bib24) 2008; 41 Giambini (10.1016/j.compbiomed.2021.104833_bib40) 2016; 22 Ariza (10.1016/j.compbiomed.2021.104833_bib41) 2015; 48 Rice (10.1016/j.compbiomed.2021.104833_bib25) 1988; 21 Keller (10.1016/j.compbiomed.2021.104833_bib9) 1994; 27 Kobayashi (10.1016/j.compbiomed.2021.104833_bib17) 2009; 16 Klein (10.1016/j.compbiomed.2021.104833_bib32) 2014; 43 Rezaei (10.1016/j.compbiomed.2021.104833_bib39) 2017 Carter (10.1016/j.compbiomed.2021.104833_bib13) 1977; 59 Rossman (10.1016/j.compbiomed.2021.104833_bib22) 2016; 19 Myers (10.1016/j.compbiomed.2021.104833_bib1) 1996; 11 Helgason (10.1016/j.compbiomed.2021.104833_bib26) 2008; 23 |
References_xml | – volume: 28 start-page: 1154 year: 2000 end-page: 1158 ident: bib5 article-title: Biphasic material properties of lytic bone metastases publication-title: Ann. Biomed. Eng. – start-page: 104559 year: 2021 ident: bib7 article-title: Three-dimensional surface strain analyses of simulated defect and augmented spine segments: a biomechanical cadaveric study publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 48 start-page: 224 year: 2015 end-page: 232 ident: bib41 article-title: Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing publication-title: J. Biomech. – volume: 116 start-page: 196 year: 2018 end-page: 202 ident: bib35 article-title: Factors associated with proximal femur fracture determined in a large cadaveric cohort publication-title: Bone – volume: 22 start-page: 717 year: 2016 end-page: 724 ident: bib40 article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation, tissue engineering publication-title: Part C, Methods – volume: 21 start-page: 155 year: 1988 end-page: 168 ident: bib25 article-title: On the dependence of the elasticity and strength of cancellous bone on apparent density publication-title: J. Biomech. – volume: 133 start-page: 104395 year: 2021 ident: bib36 article-title: CT-based structural analyses of vertebral fractures with polymeric augmentation: a study of cadaveric three-level spine segments publication-title: Comput. Biol. Med. – volume: 22 start-page: 717 year: 2016 end-page: 724 ident: bib27 article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation publication-title: Tissue Eng. C Methods – volume: 39 start-page: 742 year: 2011 end-page: 755 ident: bib34 article-title: Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip publication-title: Ann. Biomed. Eng. – volume: 31 start-page: 601 year: 1998 end-page: 608 ident: bib11 article-title: Yield strain behavior of trabecular bone publication-title: J. Biomech. – volume: 46 start-page: 2152 year: 2013 end-page: 2157 ident: bib33 article-title: Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs publication-title: J. Biomech. – volume: 43 start-page: 447 year: 2014 end-page: 461 ident: bib32 article-title: Nelder-Mead simplex optimization routine for large-scale problems: a distributed memory implementation publication-title: Comput. Econ. – volume: 39 start-page: E1291 year: 2014 ident: bib28 article-title: An, Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty publication-title: Spine – start-page: 1 year: 2017 end-page: 10 ident: bib39 article-title: Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? publication-title: Ann. Biomed. Eng. – volume: 12 start-page: 522 year: 1997 end-page: 524 ident: bib14 article-title: Biomechanical characteristics of human trabecular bone publication-title: Clin. BioMech. – volume: 59 start-page: 954 year: 1977 end-page: 962 ident: bib13 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J. Bone Joint Surg. – volume: 20 start-page: 1096 year: 2014 end-page: 1102 ident: bib16 article-title: Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model publication-title: Tissue Eng Part A – volume: 15 start-page: 834 year: 2004 end-page: 841 ident: bib3 article-title: Health-related quality of life after osteoporotic fractures publication-title: Osteoporos. Int. – volume: 49 start-page: 663 year: 2021 end-page: 672 ident: bib23 article-title: Density-dependent material and failure criteria equations highly affect the accuracy and precision of QCT/FEA-Based predictions of osteoporotic vertebral fracture properties publication-title: Ann. Biomed. Eng. – volume: 33 start-page: 166 year: 1987 end-page: 168 ident: bib15 article-title: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty publication-title: Neurochirurgie – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib8 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. – volume: 200 start-page: 105870 year: 2021 ident: bib42 article-title: High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone publication-title: Comput. Methods Progr. Biomed. – volume: 30 start-page: 323 year: 2019 end-page: 331 ident: bib37 article-title: Prediction of incident vertebral fracture using CT-based finite element analysis publication-title: Osteoporos. Int. – volume: 23 start-page: 563 year: 2012 end-page: 572 ident: bib19 article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA publication-title: Osteoporos. Int. – volume: 3 start-page: 215 year: 1993 end-page: 221 ident: bib2 article-title: Spine fracture with neurological deficit in osteoporosis publication-title: Osteoporos. Int. – volume: 4 start-page: 368 year: 1994 end-page: 381 ident: bib4 article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report publication-title: Osteoporos. Int. – volume: 118 start-page: 104457 year: 2021 ident: bib12 article-title: Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 140 year: 2018 ident: bib31 article-title: Poly (propylene fumarate)–hydroxyapatite nanocomposite can be a suitable candidate for cervical cages publication-title: J. Biomech. Eng. – volume: 37 start-page: 653 year: 2004 end-page: 660 ident: bib6 article-title: Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine publication-title: J. Biomech. – volume: 11 start-page: S355 year: 1996 ident: bib1 article-title: Vertebral fractures in the elderly occur with falling and bending publication-title: J. Bone Miner. Res. – volume: 33 start-page: 744 year: 2003 end-page: 750 ident: bib18 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone – volume: 41 start-page: 2483 year: 2008 end-page: 2491 ident: bib24 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J. Biomech. – volume: 26 start-page: 88 year: 2010 end-page: 97 ident: bib20 article-title: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique publication-title: Phys. Med. – volume: 19 start-page: 208 year: 2016 end-page: 216 ident: bib22 article-title: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib26 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. – volume: 18 start-page: 9 year: 2015 end-page: 20 ident: bib29 article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds publication-title: Acta Biomater. – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib10 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J. Biomech. – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: bib9 article-title: Predicting the compressive mechanical behavior of bone publication-title: J. Biomech. – volume: 65 start-page: 801 year: 2017 end-page: 807 ident: bib21 article-title: Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements publication-title: Journal of the mechanical behavior of biomedical materials – volume: 16 start-page: 136 year: 2009 end-page: 143 ident: bib17 article-title: Prophylactic vertebroplasty: cement injection into non-fractured vertebral bodies during percutaneous vertebroplasty publication-title: Acad. Radiol. – volume: 85 start-page: 105365 year: 2021 ident: bib38 article-title: Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis publication-title: Clin. BioMech. – volume: 47 start-page: 1391 year: 2019 end-page: 1399 ident: bib30 article-title: Optimizing accuracy of proximal femur elastic modulus equations publication-title: Ann. Biomed. Eng. – volume: 4 start-page: 368 year: 1994 ident: 10.1016/j.compbiomed.2021.104833_bib4 article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report publication-title: Osteoporos. Int. doi: 10.1007/BF01622200 – volume: 23 start-page: 563 year: 2012 ident: 10.1016/j.compbiomed.2021.104833_bib19 article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA publication-title: Osteoporos. Int. doi: 10.1007/s00198-011-1568-3 – volume: 46 start-page: 2152 year: 2013 ident: 10.1016/j.compbiomed.2021.104833_bib33 article-title: Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.06.035 – volume: 3 start-page: 215 year: 1993 ident: 10.1016/j.compbiomed.2021.104833_bib2 article-title: Spine fracture with neurological deficit in osteoporosis publication-title: Osteoporos. Int. doi: 10.1007/BF01623679 – volume: 18 start-page: 9 year: 2015 ident: 10.1016/j.compbiomed.2021.104833_bib29 article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.12.024 – volume: 15 start-page: 834 year: 2004 ident: 10.1016/j.compbiomed.2021.104833_bib3 article-title: Health-related quality of life after osteoporotic fractures publication-title: Osteoporos. Int. doi: 10.1007/s00198-004-1622-5 – volume: 28 start-page: 1154 year: 2000 ident: 10.1016/j.compbiomed.2021.104833_bib5 article-title: Biphasic material properties of lytic bone metastases publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1313773 – volume: 12 start-page: 522 year: 1997 ident: 10.1016/j.compbiomed.2021.104833_bib14 article-title: Biomechanical characteristics of human trabecular bone publication-title: Clin. BioMech. doi: 10.1016/S0268-0033(97)00035-1 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.compbiomed.2021.104833_bib26 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.08.024 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2021.104833_bib39 article-title: Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? publication-title: Ann. Biomed. Eng. – volume: 59 start-page: 954 year: 1977 ident: 10.1016/j.compbiomed.2021.104833_bib13 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J. Bone Joint Surg. doi: 10.2106/00004623-197759070-00021 – volume: 16 start-page: 136 year: 2009 ident: 10.1016/j.compbiomed.2021.104833_bib17 article-title: Prophylactic vertebroplasty: cement injection into non-fractured vertebral bodies during percutaneous vertebroplasty publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.05.005 – volume: 33 start-page: 744 year: 2003 ident: 10.1016/j.compbiomed.2021.104833_bib18 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone doi: 10.1016/S8756-3282(03)00210-2 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.compbiomed.2021.104833_bib8 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 27 start-page: 1159 year: 1994 ident: 10.1016/j.compbiomed.2021.104833_bib9 article-title: Predicting the compressive mechanical behavior of bone publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90056-6 – volume: 43 start-page: 447 year: 2014 ident: 10.1016/j.compbiomed.2021.104833_bib32 article-title: Nelder-Mead simplex optimization routine for large-scale problems: a distributed memory implementation publication-title: Comput. Econ. doi: 10.1007/s10614-013-9377-8 – volume: 200 start-page: 105870 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib42 article-title: High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105870 – volume: 41 start-page: 2483 year: 2008 ident: 10.1016/j.compbiomed.2021.104833_bib24 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.05.017 – volume: 22 start-page: 717 year: 2016 ident: 10.1016/j.compbiomed.2021.104833_bib40 article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation, tissue engineering publication-title: Part C, Methods doi: 10.1089/ten.tec.2016.0078 – volume: 31 start-page: 601 year: 1998 ident: 10.1016/j.compbiomed.2021.104833_bib11 article-title: Yield strain behavior of trabecular bone publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00057-8 – start-page: 104559 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib7 article-title: Three-dimensional surface strain analyses of simulated defect and augmented spine segments: a biomechanical cadaveric study publication-title: Journal of the Mechanical Behavior of Biomedical Materials doi: 10.1016/j.jmbbm.2021.104559 – volume: 39 start-page: 742 year: 2011 ident: 10.1016/j.compbiomed.2021.104833_bib34 article-title: Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0196-y – volume: 116 start-page: 196 year: 2018 ident: 10.1016/j.compbiomed.2021.104833_bib35 article-title: Factors associated with proximal femur fracture determined in a large cadaveric cohort publication-title: Bone doi: 10.1016/j.bone.2018.08.005 – volume: 19 start-page: 208 year: 2016 ident: 10.1016/j.compbiomed.2021.104833_bib22 article-title: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2015.1006209 – volume: 37 start-page: 653 year: 2004 ident: 10.1016/j.compbiomed.2021.104833_bib6 article-title: Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.09.027 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.compbiomed.2021.104833_bib10 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00071-X – volume: 33 start-page: 166 year: 1987 ident: 10.1016/j.compbiomed.2021.104833_bib15 article-title: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty publication-title: Neurochirurgie – volume: 65 start-page: 801 year: 2017 ident: 10.1016/j.compbiomed.2021.104833_bib21 article-title: Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements publication-title: Journal of the mechanical behavior of biomedical materials doi: 10.1016/j.jmbbm.2016.10.002 – volume: 30 start-page: 323 year: 2019 ident: 10.1016/j.compbiomed.2021.104833_bib37 article-title: Prediction of incident vertebral fracture using CT-based finite element analysis publication-title: Osteoporos. Int. doi: 10.1007/s00198-018-4716-1 – volume: 85 start-page: 105365 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib38 article-title: Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis publication-title: Clin. BioMech. doi: 10.1016/j.clinbiomech.2021.105365 – volume: 49 start-page: 663 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib23 article-title: Density-dependent material and failure criteria equations highly affect the accuracy and precision of QCT/FEA-Based predictions of osteoporotic vertebral fracture properties publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02595-w – volume: 140 year: 2018 ident: 10.1016/j.compbiomed.2021.104833_bib31 article-title: Poly (propylene fumarate)–hydroxyapatite nanocomposite can be a suitable candidate for cervical cages publication-title: J. Biomech. Eng. doi: 10.1115/1.4040458 – volume: 11 start-page: S355 year: 1996 ident: 10.1016/j.compbiomed.2021.104833_bib1 article-title: Vertebral fractures in the elderly occur with falling and bending publication-title: J. Bone Miner. Res. – volume: 47 start-page: 1391 year: 2019 ident: 10.1016/j.compbiomed.2021.104833_bib30 article-title: Optimizing accuracy of proximal femur elastic modulus equations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02238-9 – volume: 48 start-page: 224 year: 2015 ident: 10.1016/j.compbiomed.2021.104833_bib41 article-title: Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.11.042 – volume: 20 start-page: 1096 year: 2014 ident: 10.1016/j.compbiomed.2021.104833_bib16 article-title: Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2013.0275 – volume: 39 start-page: E1291 year: 2014 ident: 10.1016/j.compbiomed.2021.104833_bib28 article-title: An, Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty publication-title: Spine doi: 10.1097/BRS.0000000000000540 – volume: 22 start-page: 717 year: 2016 ident: 10.1016/j.compbiomed.2021.104833_bib27 article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2016.0078 – volume: 26 start-page: 88 year: 2010 ident: 10.1016/j.compbiomed.2021.104833_bib20 article-title: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique publication-title: Phys. Med. doi: 10.1016/j.ejmp.2009.08.002 – volume: 21 start-page: 155 year: 1988 ident: 10.1016/j.compbiomed.2021.104833_bib25 article-title: On the dependence of the elasticity and strength of cancellous bone on apparent density publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90008-5 – volume: 118 start-page: 104457 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib12 article-title: Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression publication-title: Journal of the Mechanical Behavior of Biomedical Materials doi: 10.1016/j.jmbbm.2021.104457 – volume: 133 start-page: 104395 year: 2021 ident: 10.1016/j.compbiomed.2021.104833_bib36 article-title: CT-based structural analyses of vertebral fractures with polymeric augmentation: a study of cadaveric three-level spine segments publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104395 |
SSID | ssj0004030 |
Score | 2.3332312 |
Snippet | Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture.... AbstractOsteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104833 |
SubjectTerms | Absorptiometry Absorptiometry, Photon Biomechanics Biomedical materials Bone Density Bone mineral density Bones Boundary conditions Compression Computed tomography Degeneration Dual energy X-ray absorptiometry Energy Finite Element Analysis Finite element method Fracture strength Fractures Fractures, Compression - diagnostic imaging Humans Internal Medicine Loading rate Material characterization Mathematical models Mechanical loading Mechanical properties Metastases Metastasis Modulus of elasticity Osteoporosis Other Physiology QCT/FEA Risk assessment Segments Software Spinal Fractures - diagnostic imaging Spine Statistical models Stiffness Trauma Vertebrae Vertebral augmentation Vertebral fracture |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHgoXRPkMFGQkrqGJHduJeqoqqgqpXKBSb5bjtSEoykabRIgLv4AfzUycpKwWpJU4RRt7YsUzO34TvxkT8tYqJVRiRFxk1kOA4mRslF_FAhwmd0ZKZvE75PVHeXWTfbgVtwfkYs6FQVrl5PuDTx-99XTndJrN07aqMMcXQgkIcCBowVq76Iex-hfY9LufdzSPLOEhDQX8Dfae2DyB44W07ZDmDpEiS3HDM-f8X0vULgTdZVLeG5rW_Phu6vqPZeryIXkw4Ut6Hl7hmBy45hE5up520B-TX59grapdXCNZiHZDid9hYsy3RM4Q9RViUOoCqZyO5-RQmH3abvARPfWYVTVsHF0PPbyX62jV0B4MYnlkC-PQzn0Zc-co5qht6HwMS0_r9Ujap1ihontCbi7ff764iqcTGWILgVYf8xUABlCtgWvpuZClNxlggMyuykT61AAa8Cy1thSOMy68UM6y3CSrVOZ56vlTctisG_ecUICRrsgAjTGbwALpCgAaxuWFZBDysVxGRM1K0HYqV46nZtR65qV903fq06g-HdQXkXSRbEPJjj1kilnPek5JBSeqYV3ZQ1b9TdZ1kzfodKo7phO9Y7EROVskt4x-z3FPZoPUy1DggQETSp6JiLxZmsFl4D6Qadx6GPsADM25gj7Pgv0uEwWCmFsMLWrLspcOWI58u6Wpvo5lyfMxISiJCFv-A3vP_4v_momX5D7-ChzLE3LYbwb3CrBiX74encFvBNlqag priority: 102 providerName: Elsevier – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMClKu9AQUbiGpHYiZOIQ4VQlwqpXEql3izHsWGrKAmbRFX_Az-amdjJUhXQnnKwJ1E845lv7HkQ8k5nWZpFKg2LRFtwUIwIVWarMAWFyY0Sgmk8hzz9Kk7Oky8X6YU_cOt9WOWsEydFXbUaz8jfg2iBsRM8SY-6nyF2jcLbVd9C4y65FzOQJMwUX33e5kVG3KWggK5JwBXykTwuvgtDtl2KO3iJLMbLzpzzf5mn2_DzdhTlg7Hp1PWVqus_TNTqgOx7bEk_OmF4RO6Y5jG5f-pvz5-QX2dgp2oT1hgoRPuxxDOYEHMtMV6I2jXiT2pcQDmdeuRQWHnabfAVA7WYUTVuDG3HAf7L9HTd0AGEYXllB9-hvfk-5c1RzE_b0LkFy0DrdgrYp1idon9KzlfH3z6dhL4bQ6jByRpCXgFYALYqeJaWp6K0KgH7n-iqjISNFSABy2Kty9RwxlObZkazXEVVLPI8tvwZ2WvaxrwgFCCkKRJAYkxHYBxNASBDmbwQDNw9louAZDMTpPalyrFjRi3nmLRLuWWfRPZJx76AxAtl58p17EBTzHyWczoqKFAJNmUH2uxvtKb3mqCXseyZjOTZVAgJZBBcbKwMzQLyYaH0YMeBmB2_ezgLpFw-td0iAXm7DIO6wDsg1Zh2nOYABM15BnOeO_ldFgoIMa8YRrIbkr1MwFLkN0ea9Y-pJHk-JQNFAWHLHth5_V_-_19ekYc42QVQHpK9YTOa1wAEh_LNtNt_Az-EX1Y priority: 102 providerName: ProQuest |
Title | Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521006272 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521006272 https://dx.doi.org/10.1016/j.compbiomed.2021.104833 https://www.ncbi.nlm.nih.gov/pubmed/34534795 https://www.proquest.com/docview/2577436345 https://www.proquest.com/docview/2574398375 https://pubmed.ncbi.nlm.nih.gov/PMC8783600 https://www.ncbi.nlm.nih.gov/pmc/articles/8783600 |
UnpaywallVersion | submittedVersion |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NVgJe-D0IjMpIvKZLnMROxVNBKwW0atqoVJ4sx3WgkKVVkwjBA38BfzTnOAmMgVR4SRTZFyvO5fxd_N0dwFPFecQ9GbmjUKXooGjmSp4u3QgNZqAlY1SZ_5DHMzadh68X0WIP_DYWpibtq2Q1zLPzYb76UHMrN-fqsOWJHcZ13AF66X1m9pR60J_PTsbvrMX13DCuC62aItouKljYsHcsp8vQtG1YO3qG1DcbnHEQ_G1Jugw5LzMnr1X5Rn75LLPsl2VpchNO2weybJRPw6pMhurrb7ke_-mJb8GNBqSSsW26DXs6vwNXj5tt-Lvw_QwXvEy7mWEckaJKzM8c1wRtGuIRSVcGyBJtmemkLrZD8BWSzdbcoiSpCc2qtpqsqxInSxdklZMStaq75QbHIYV-XwfgERPotiVtLZeSZOua-U9MmoviHswnR29fTN2mrIOr0Fsr3WCJqAP1Q-I5SYOIJakMEUiEapl4LPUlQoqU-kolkQ5oEKUR14rG0lv6LI79NNiHXr7O9QMgiEX1KERIR5WHq6weIVqROh4xin4jjZkDvH2zQjU5z03pjUy05LaP4qdOCKMTwuqEA34nubF5P3aQGbXKI9q4VrTEAhenHWT5n2R10ZiUQviioMITZ3VGJVRy9NVNimnqwLNOskFNFg3tOO5Bq-WiGwrNOAJLFoSRA0-6ZrQ7ZjNJ5npd1X0Qy8YBxz737UfRTRQKmgBlbOEXPpeug8lpfrEFFb_Obd7ougO0-7B2nv-H_yP0CK6bK8vPPIBeua30Y8SZZTKAK8NvPh75guMxnrwcQH_86s10hufnR7OT00Fje34Aw5GFrw |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSgXxD-BAkaCY0RiJ3EihBACqi3t9tJW2ptxHAcWRUnYJKr6DjwLz8hMnGSpCmgvPe3BGXuTGc-PPd8MIS-1EKHwVOgmgc4hQDGRq0SeuSEoTG5UFDGN55Dzo2h2GnxehIst8mvEwmBa5agTe0WdVRrPyF-DaIGxi3gQvqt_uNg1Cm9XxxYaViwOzPkZhGzN2_2PwN9XjO19Ovkwc4euAq6GYKF1eQZGD_6egt8052GU5ioAOxboLPWi3Fdg0XLma52GhjMe5qEwmsXKy_wojv2cw7zXyPWAewHW6hcLscZhetxCXkC3BRB6DZlDNp8MU8QtpB6iUubj5WrM-b_M4WV393LW5k5X1ur8TBXFHyZx7za5Nfiy9L0Vvjtky5R3yY35cFt_j_w8BrtYGLfAxCTadCme-biI7cT8JJov0d-lxiaw074nDwVO03qFU7Q0RwRXtzK06lp4L9PQZUlbEL5pyhrWoY352uP0KOLhVnRs-dLSouoBAhSrYTT3yemV8OkB2S6r0jwiFFxWkwTg-THtgTE2CTg1ysRJxCC8ZHHkEDEyQeqhNDp26CjkmAP3Xa7ZJ5F90rLPIf5EWdvyIBvQJCOf5Qh_BYUtwYZtQCv-RmuaQfM00pcNk5487gsvgQxCSI-VqJlD3kyUg3NlnaYN190dBVJOS623pENeTMOgnvDOSZWm6vpnwOWNuYBnHlr5nT4UECKOGUbEBcmeHsDS5xdHyuW3vgR63IOPPIewaQ9s_P0f__9dnpOd2cn8UB7uHx08ITeR0CZv7pLtdtWZp-CEtumzfudT8uWqVc1vDDScIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkQoXxG9ZKGAkOEZN7CROhBBClFVLaYVUKu3NOI4Ni6Js2CSq-g48EU_HTJxkqQpoLz3twRl7kxnPj_3NDCEvtBCR8FXkpaG2EKCY2FPC5l4ECpMbFcdM4znk0XG8fxp-mEWzDfJryIVBWOWgEztFnS80npHvgmiBsYt5GO3aHhbxaW_6pvrhYQcpvGkd2mk4ETk052cQvtWvD_aA1y8Zm77__G7f6zsMeBoCh8bjORhA-KsKfjPLozizKgSbFuo882MbKLBulgVaZ5HhjEc2EkazRPl5ECdJYDnMe41cFzzkCCcTM7HKyfS5S38BPRdCGNajiBy2DOHiLr0eIlQW4EVrwvm_TONl1_cygvNGW1bq_EwVxR_mcXqb3Or9WvrWCeIdsmHKu2TrqL-5v0d-noCNLIxXIEiJ1m2G5z8e5nkiVonaOfq-1DgwO-3681DgOq2WOEVDLWZztUtDF20D72VqOi9pA4I4TlnBOrQ2X7ucPYq5cUs6tH9paLHokgUoVsao75PTK-HTA7JZLkrzkFBwX00aghfItA-G2aTg4CiTpDGDUJMl8YSIgQlS92XSsVtHIQc83He5Yp9E9knHvgkJRsrKlQpZgyYd-CyHVFhQ3hLs2Rq04m-0pu61UC0DWTPpy5OuCBPIIIT3WJWaTcirkbJ3tJwDtea6O4NAynGp1fackOfjMKgqvH9SpVm03TPg_iZcwDPbTn7HDwWEmNMMI-KCZI8PYBn0iyPl_FtXDj3pEpH8CWHjHlj7-z_6_7s8I1ugZOTHg-PDx-Qm0jkc5w7ZbJateQL-aJM97TY-JV-uWtP8BmS5oF0 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HHqgvfn9UT4nga_fapE1bfDrE4xDuEM-F8ymk2cRb7XXLtkX0b_CPdiZpq-cprD6VkkxD08nkN81vZgh5obMszSKVhkWiLTgoRoQqs8swBYPJjRKCafwPeXwijhbJm7P0bIfEYyyMI-3rcjWvq4t5vTp33MrmQu-PPLH93MUdgJe-K_BMaUZ2FydvDz54ixuFSe4KrWIR7RAULBnYO57ThTRtH9YOniGL8YAz5_xvW9JVyHmVOXm9rxv19Yuqql-2pcNb5N34Qp6N8nned-Vcf_st1-M_vfFtcnMAqfTAN90hO6a-S64dD8fw98j3U9jwKhNWyDiibV_iz5wQgzaReETtCoEsNZ6ZTl2xHQqfkDYbfERHLYZm9RtD130Hk2VauqppB1o1PbKBcWhrProAPIqBbhs61nLpaLV2zH-KaS7a-2Rx-Pr9q6NwKOsQavDWupAvAXWAfii4lpanorQqASCR6GUZCRsrgBSWxVqXqeGMpzbNjGa5ipaxyPPY8gdkVq9r84hQwKKmSADSMR3BLmsKQCvK5IVg4DeyXAQkG7-s1EPOcyy9UcmR3PZJ_tQJiTohvU4EJJ4kG5_3YwuZYlQeOca1giWWsDltIZv9Sda0g0lpZSxbJiN56jIqgZKDr44ppllAXk6SA2ryaGjLcfdGLZfTUGDGAVgKnqQBeT41g93BwyRVm3Xv-gCWzXkGfR76RTFNFAhigDK0ZJeWy9QBc5pfbgHFd7nNB10PCJsW1tbz__h_hJ6QG3jn-Zl7ZNZtevMUcGZXPhssyw95dH-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Level+Subject-Specific+Finite+Element+Model+Can+Predict+Fracture+Outcomes+in+Three-Level+Spine+Segments+Under+Different+Loading+Rates&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Rezaei%2C+Asghar&rft.au=Tilton%2C+Maryam&rft.au=Li%2C+Yong&rft.au=Yaszemski%2C+Michael+J.&rft.date=2021-10-01&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=137&rft.spage=104833&rft.epage=104833&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104833&rft_id=info%3Apmid%2F34534795&rft.externalDocID=PMC8783600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |