Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates

Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in d...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 137; p. 104833
Main Authors Rezaei, Asghar, Tilton, Maryam, Li, Yong, Yaszemski, Michael J., Lu, Lichun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104833

Cover

Abstract Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%). •A single-vertebral model is capable of estimating fracture outcomes in a three-level spine segment.•QCT/FEA technique, alone, accounted for 70% variability between experimentally measured fracture strength and the prediction.•Adding disk degeneration grading can significantly increase predictive ability of the single vertebral modeling.•The loading rates of 5 mm/min and 12000 mm/min did not change the density-elastic modulus equations significantly.
AbstractList Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2=0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2=0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%).
AbstractOsteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R 2=0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R 2=0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R 2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%).
Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70–84%). •A single-vertebral model is capable of estimating fracture outcomes in a three-level spine segment.•QCT/FEA technique, alone, accounted for 70% variability between experimentally measured fracture strength and the prediction.•Adding disk degeneration grading can significantly increase predictive ability of the single vertebral modeling.•The loading rates of 5 mm/min and 12000 mm/min did not change the density-elastic modulus equations significantly.
Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%).Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R2 = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R2 = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R2 of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%).
Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture. Different loading rates, either high-energy traumas such as falls or low-energy traumas under normal physiological activities, can result in different fracture outcomes. The aim of the current study was to develop a quantitative computed tomography-based finite element analysis (QCT/FEA) technique for single vertebral bodies to predict fracture strength of three-level spine segments. Developed QCT/FEA technique was also used to characterize vertebral elastic moduli at two loading rates of 5 mm/min, representing a physiologic loading condition, and 12000 mm/min, representing a high-energy trauma. To this end, a cohort of human spine segments divided into three groups of intact, defect, and augmented were mechanically tested to fracture; then, experimental stiffness and fracture strength values were measured. Outcomes of this study showed no significant difference between the elastic modulus equations at the two testing speeds. Areal bone mineral density measured by dual x-ray absorptiometry (DXA/BMD) explained only 53% variability (R  = 0.53) in fracture strength outcomes. However, QCT/FEA could explain 70% of the variability (R  = 0.70) in experimentally measured fracture strength values. Adding disk degeneration grading, testing speed, and sex to QCT/FEA-estimated fracture strength values further increased the performance of our statistical model by 14% (adjusted R of 0.84 between the prediction and experimental fracture forces). In summary, our results indicated that a single-vertebra model, which is computationally less expensive and more time efficient, is capable of estimating fracture outcomes with acceptable performance (range: 70-84%).
ArticleNumber 104833
Author Yaszemski, Michael J.
Li, Yong
Rezaei, Asghar
Tilton, Maryam
Lu, Lichun
AuthorAffiliation 2 Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
AuthorAffiliation_xml – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– name: 2 Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
Author_xml – sequence: 1
  givenname: Asghar
  surname: Rezaei
  fullname: Rezaei, Asghar
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– sequence: 2
  givenname: Maryam
  surname: Tilton
  fullname: Tilton, Maryam
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– sequence: 3
  givenname: Yong
  surname: Li
  fullname: Li, Yong
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– sequence: 4
  givenname: Michael J.
  surname: Yaszemski
  fullname: Yaszemski, Michael J.
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– sequence: 5
  givenname: Lichun
  surname: Lu
  fullname: Lu, Lichun
  email: Lu.Lichun@mayo.edu
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34534795$$D View this record in MEDLINE/PubMed
BookMark eNqdkt1uEzEQhS1URNPAKyBL3HCzwT_7lxsErWhBqsRF4dryesepg9debG9Q3oGHxquUFJCQClcj2Wc-nTkzZ-jEeQcIYUpWlND61Xal_DB2xg_QrxhhND-XLeeP0IK2zbogFS9P0IIQSoqyZdUpOotxSwgpCSdP0Ckvs6BZVwv0_ca4jYXCwg4sjlO3BZWKOIIy2iisjTMJMFgYwCU8-D6rlHR4DNAblbAOUqUpAPZTyp4gYuNwug1wRI7GAY6wmQERT66HgHujNYSZaL3sswMcZIL4FD3W0kZ4dleX6PPlu08X74vrj1cfLt5eF6qm61TwvmWkIVLm2mle1Z2WJStpqfqO1JpKWjHNqFJdBZzxSlcNKNZK0tO6banmS7Q-cCc3yv03aa0Ygxlk2AtKxJyw2Ir7hMWcsDgknHtfH3rHqct_Kg8R5H2_l0b8_uPMrdj4nWiblteEZMDLO0DwXyeISQwmKrBWOvBTFKxqSr5ueVNl6Ys_pFs_BZejmVVZVs-LXKLnvzo6Wvm55CxoDwIVfIwB9H9Me2xVJslk_DybsQ8BnB8AkPe5MxBEVAacytcT8qWJ3pt_cHGEKJsPU0n7BfYQj6FQEZkg4ma--_nsGSWkZg3LgDd_BzzMww_8zhrQ
CitedBy_id crossref_primary_10_1016_j_bone_2023_116810
crossref_primary_10_1016_j_jmbbm_2024_106827
crossref_primary_10_3390_app122010256
crossref_primary_10_1007_s10439_023_03402_y
crossref_primary_10_1016_j_medengphy_2024_104147
Cites_doi 10.1007/BF01622200
10.1007/s00198-011-1568-3
10.1016/j.jbiomech.2013.06.035
10.1007/BF01623679
10.1016/j.actbio.2014.12.024
10.1007/s00198-004-1622-5
10.1114/1.1313773
10.1016/S0268-0033(97)00035-1
10.1016/j.clinbiomech.2007.08.024
10.2106/00004623-197759070-00021
10.1016/j.acra.2008.05.005
10.1016/S8756-3282(03)00210-2
10.1016/0021-9290(94)90056-6
10.1007/s10614-013-9377-8
10.1016/j.cmpb.2020.105870
10.1016/j.jbiomech.2008.05.017
10.1089/ten.tec.2016.0078
10.1016/S0021-9290(98)00057-8
10.1016/j.jmbbm.2021.104559
10.1007/s10439-010-0196-y
10.1016/j.bone.2018.08.005
10.1080/10255842.2015.1006209
10.1016/j.jbiomech.2003.09.027
10.1016/S0021-9290(03)00071-X
10.1016/j.jmbbm.2016.10.002
10.1007/s00198-018-4716-1
10.1016/j.clinbiomech.2021.105365
10.1007/s10439-020-02595-w
10.1115/1.4040458
10.1007/s10439-019-02238-9
10.1016/j.jbiomech.2014.11.042
10.1089/ten.tea.2013.0275
10.1097/BRS.0000000000000540
10.1016/j.ejmp.2009.08.002
10.1016/0021-9290(88)90008-5
10.1016/j.jmbbm.2021.104457
10.1016/j.compbiomed.2021.104395
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2021.104833
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library (subscription)
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104833
ExternalDocumentID oai:pubmedcentral.nih.gov:8783600
PMC8783600
34534795
10_1016_j_compbiomed_2021_104833
S0010482521006272
1_s2_0_S0010482521006272
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Ann Arbor Michigan
United States--US
GeographicLocations_xml – name: Ann Arbor Michigan
– name: United States--US
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: TL1 TR000137
– fundername: NIAMS NIH HHS
  grantid: T32 AR056950
– fundername: NIAMS NIH HHS
  grantid: R01 AR056212
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
77I
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c619t-3d82070aad82bf356bfa42414cdb06f1a152f21ccb5e3235f57ec28a0d16881f3
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Wed Aug 20 00:14:43 EDT 2025
Tue Sep 30 17:19:00 EDT 2025
Sat Sep 27 23:31:38 EDT 2025
Sun Sep 07 08:41:02 EDT 2025
Wed Feb 19 02:27:57 EST 2025
Wed Oct 01 05:22:24 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 23 02:42:45 EST 2024
Tue Feb 25 20:03:25 EST 2025
Tue Aug 26 20:14:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vertebral fracture
Material characterization
QCT/FEA
Vertebral augmentation
material characterization
vertebral augmentation
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-3d82070aad82bf356bfa42414cdb06f1a152f21ccb5e3235f57ec28a0d16881f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8783600
PMID 34534795
PQID 2577436345
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2021_104833
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8783600
proquest_miscellaneous_2574398375
proquest_journals_2577436345
pubmed_primary_34534795
crossref_primary_10_1016_j_compbiomed_2021_104833
crossref_citationtrail_10_1016_j_compbiomed_2021_104833
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104833
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521006272
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Crawford, Cann, Keaveny (bib18) 2003; 33
Kopperdahl, Keaveny (bib11) 1998; 31
Myers, Wilson, Greenspan (bib1) 1996; 11
Galibert, Deramond, Rosat, Le (bib15) 1987; 33
Morgan, Bayraktar, Keaveny (bib10) 2003; 36
Rice, Cowin, Bowman (bib25) 1988; 21
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib26) 2008; 23
Hallberg, Rosenqvist, Kartous, Löfman, Wahlström, Toss (bib3) 2004; 15
Kanis (bib4) 1994; 4
Kobayashi, Numaguchi, Fuwa, Uemura, Matsusako, Okajima, Ishiyama, Takahashi (bib17) 2009; 16
Rezaei, Tilton, Giambini, Li, Hooke, Miller, Yaszemski, Lu (bib7) 2021
Rossman, Kushvaha, Dragomir-Daescu (bib22) 2016; 19
Prado, Rezaei, Giambini (bib23) 2021; 49
Eberle, Gottlinger, Augat (bib33) 2013; 46
Ariza, Gilchrist, Widmer, Guy, Ferguson, Cripton, Helgason (bib41) 2015; 48
Dall'Ara, Pahr, Varga, Kainberger, Zysset (bib19) 2012; 23
Wu, Todo, Umebayashi, Yamamoto (bib38) 2021; 85
Giambini, Fang, Zeng, Camp, Yaszemski, Lu (bib40) 2016; 22
Keller (bib9) 1994; 27
Zeinali, Hashemi, Akhlaghpoor (bib20) 2010; 26
Teng, Giambini, Rezaei, Liu, Lee Miller, Waletzki, Lu (bib31) 2018; 140
Rezaei, Carlson, Giambini, Javid, Dragomir-Daescu (bib30) 2019; 47
Rezaei, Giambini, Rossman, Carlson, Yaszemski, Lu, Dragomir-Daescu (bib39) 2017
Robinson, Tse, Franklyn, Zhang, Fernandez, Ackland, Lee (bib12) 2021; 118
Rezaei, Giambini, Miller, Xu, Xu, Li, Yaszemski, Lu (bib36) 2021; 133
Carter, Hayes (bib13) 1977; 59
Sabet, Koric, Idkaidek, Jasiuk (bib42) 2021; 200
Fang, Giambini, Zeng, Camp, Dadsetan, Robb, An, Yaszemski, Lu (bib16) 2014; 20
Dragomir-Daescu, Den Buijs, McEligot, Dai, Entwistle, Salas, Melton, Bennet, Khosla, Amin (bib34) 2011; 39
Giambini, Fang, Zeng, Camp, Yaszemski, Lu (bib27) 2016; 22
Allaire, Lu, Johannesdottir, Kopperdahl, Keaveny, Jarraya, Guermazi, Bredella, Samelson, Kiel (bib37) 2019; 30
Ouyang, Yang, Wu, Zhu, Zhong (bib14) 1997; 12
Klein, Neira (bib32) 2014; 43
Gustafson, Cripton, Ferguson, Helgason (bib21) 2017; 65
Whyne, Hu, Workman, Lotz (bib5) 2000; 28
Matsuura, Giambini, Ogawa, Fang, Thoreson, Yaszemski, Lu, K N (bib28) 2014; 39
Heggeness (bib2) 1993; 3
Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (bib8) 2008; 23
Schileo, Dall'Ara, Taddei, Malandrino, Schotkamp, Baleani, Viceconti (bib24) 2008; 41
Dadsetan, Guda, Runge, Mijares, LeGeros, LeGeros, Silliman, Lu, Wenke, Baer (bib29) 2015; 18
Dragomir-Daescu, Rossman, Rezaei, Carlson, Kallmes, Skinner, Khosla, Amin (bib35) 2018; 116
Tschirhart, Nagpurkar, Whyne (bib6) 2004; 37
Prado (10.1016/j.compbiomed.2021.104833_bib23) 2021; 49
Heggeness (10.1016/j.compbiomed.2021.104833_bib2) 1993; 3
Giambini (10.1016/j.compbiomed.2021.104833_bib27) 2016; 22
Dadsetan (10.1016/j.compbiomed.2021.104833_bib29) 2015; 18
Tschirhart (10.1016/j.compbiomed.2021.104833_bib6) 2004; 37
Galibert (10.1016/j.compbiomed.2021.104833_bib15) 1987; 33
Ouyang (10.1016/j.compbiomed.2021.104833_bib14) 1997; 12
Wu (10.1016/j.compbiomed.2021.104833_bib38) 2021; 85
Rezaei (10.1016/j.compbiomed.2021.104833_bib36) 2021; 133
Dall'Ara (10.1016/j.compbiomed.2021.104833_bib19) 2012; 23
Teng (10.1016/j.compbiomed.2021.104833_bib31) 2018; 140
Allaire (10.1016/j.compbiomed.2021.104833_bib37) 2019; 30
Morgan (10.1016/j.compbiomed.2021.104833_bib10) 2003; 36
Fang (10.1016/j.compbiomed.2021.104833_bib16) 2014; 20
Helgason (10.1016/j.compbiomed.2021.104833_bib8) 2008; 23
Robinson (10.1016/j.compbiomed.2021.104833_bib12) 2021; 118
Rezaei (10.1016/j.compbiomed.2021.104833_bib30) 2019; 47
Kopperdahl (10.1016/j.compbiomed.2021.104833_bib11) 1998; 31
Dragomir-Daescu (10.1016/j.compbiomed.2021.104833_bib35) 2018; 116
Sabet (10.1016/j.compbiomed.2021.104833_bib42) 2021; 200
Zeinali (10.1016/j.compbiomed.2021.104833_bib20) 2010; 26
Eberle (10.1016/j.compbiomed.2021.104833_bib33) 2013; 46
Hallberg (10.1016/j.compbiomed.2021.104833_bib3) 2004; 15
Dragomir-Daescu (10.1016/j.compbiomed.2021.104833_bib34) 2011; 39
Matsuura (10.1016/j.compbiomed.2021.104833_bib28) 2014; 39
Kanis (10.1016/j.compbiomed.2021.104833_bib4) 1994; 4
Gustafson (10.1016/j.compbiomed.2021.104833_bib21) 2017; 65
Whyne (10.1016/j.compbiomed.2021.104833_bib5) 2000; 28
Rezaei (10.1016/j.compbiomed.2021.104833_bib7) 2021
Crawford (10.1016/j.compbiomed.2021.104833_bib18) 2003; 33
Schileo (10.1016/j.compbiomed.2021.104833_bib24) 2008; 41
Giambini (10.1016/j.compbiomed.2021.104833_bib40) 2016; 22
Ariza (10.1016/j.compbiomed.2021.104833_bib41) 2015; 48
Rice (10.1016/j.compbiomed.2021.104833_bib25) 1988; 21
Keller (10.1016/j.compbiomed.2021.104833_bib9) 1994; 27
Kobayashi (10.1016/j.compbiomed.2021.104833_bib17) 2009; 16
Klein (10.1016/j.compbiomed.2021.104833_bib32) 2014; 43
Rezaei (10.1016/j.compbiomed.2021.104833_bib39) 2017
Carter (10.1016/j.compbiomed.2021.104833_bib13) 1977; 59
Rossman (10.1016/j.compbiomed.2021.104833_bib22) 2016; 19
Myers (10.1016/j.compbiomed.2021.104833_bib1) 1996; 11
Helgason (10.1016/j.compbiomed.2021.104833_bib26) 2008; 23
References_xml – volume: 28
  start-page: 1154
  year: 2000
  end-page: 1158
  ident: bib5
  article-title: Biphasic material properties of lytic bone metastases
  publication-title: Ann. Biomed. Eng.
– start-page: 104559
  year: 2021
  ident: bib7
  article-title: Three-dimensional surface strain analyses of simulated defect and augmented spine segments: a biomechanical cadaveric study
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 48
  start-page: 224
  year: 2015
  end-page: 232
  ident: bib41
  article-title: Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing
  publication-title: J. Biomech.
– volume: 116
  start-page: 196
  year: 2018
  end-page: 202
  ident: bib35
  article-title: Factors associated with proximal femur fracture determined in a large cadaveric cohort
  publication-title: Bone
– volume: 22
  start-page: 717
  year: 2016
  end-page: 724
  ident: bib40
  article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation, tissue engineering
  publication-title: Part C, Methods
– volume: 21
  start-page: 155
  year: 1988
  end-page: 168
  ident: bib25
  article-title: On the dependence of the elasticity and strength of cancellous bone on apparent density
  publication-title: J. Biomech.
– volume: 133
  start-page: 104395
  year: 2021
  ident: bib36
  article-title: CT-based structural analyses of vertebral fractures with polymeric augmentation: a study of cadaveric three-level spine segments
  publication-title: Comput. Biol. Med.
– volume: 22
  start-page: 717
  year: 2016
  end-page: 724
  ident: bib27
  article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation
  publication-title: Tissue Eng. C Methods
– volume: 39
  start-page: 742
  year: 2011
  end-page: 755
  ident: bib34
  article-title: Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip
  publication-title: Ann. Biomed. Eng.
– volume: 31
  start-page: 601
  year: 1998
  end-page: 608
  ident: bib11
  article-title: Yield strain behavior of trabecular bone
  publication-title: J. Biomech.
– volume: 46
  start-page: 2152
  year: 2013
  end-page: 2157
  ident: bib33
  article-title: Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs
  publication-title: J. Biomech.
– volume: 43
  start-page: 447
  year: 2014
  end-page: 461
  ident: bib32
  article-title: Nelder-Mead simplex optimization routine for large-scale problems: a distributed memory implementation
  publication-title: Comput. Econ.
– volume: 39
  start-page: E1291
  year: 2014
  ident: bib28
  article-title: An, Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty
  publication-title: Spine
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib39
  article-title: Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age?
  publication-title: Ann. Biomed. Eng.
– volume: 12
  start-page: 522
  year: 1997
  end-page: 524
  ident: bib14
  article-title: Biomechanical characteristics of human trabecular bone
  publication-title: Clin. BioMech.
– volume: 59
  start-page: 954
  year: 1977
  end-page: 962
  ident: bib13
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J. Bone Joint Surg.
– volume: 20
  start-page: 1096
  year: 2014
  end-page: 1102
  ident: bib16
  article-title: Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model
  publication-title: Tissue Eng Part A
– volume: 15
  start-page: 834
  year: 2004
  end-page: 841
  ident: bib3
  article-title: Health-related quality of life after osteoporotic fractures
  publication-title: Osteoporos. Int.
– volume: 49
  start-page: 663
  year: 2021
  end-page: 672
  ident: bib23
  article-title: Density-dependent material and failure criteria equations highly affect the accuracy and precision of QCT/FEA-Based predictions of osteoporotic vertebral fracture properties
  publication-title: Ann. Biomed. Eng.
– volume: 33
  start-page: 166
  year: 1987
  end-page: 168
  ident: bib15
  article-title: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty
  publication-title: Neurochirurgie
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib8
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
– volume: 200
  start-page: 105870
  year: 2021
  ident: bib42
  article-title: High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone
  publication-title: Comput. Methods Progr. Biomed.
– volume: 30
  start-page: 323
  year: 2019
  end-page: 331
  ident: bib37
  article-title: Prediction of incident vertebral fracture using CT-based finite element analysis
  publication-title: Osteoporos. Int.
– volume: 23
  start-page: 563
  year: 2012
  end-page: 572
  ident: bib19
  article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA
  publication-title: Osteoporos. Int.
– volume: 3
  start-page: 215
  year: 1993
  end-page: 221
  ident: bib2
  article-title: Spine fracture with neurological deficit in osteoporosis
  publication-title: Osteoporos. Int.
– volume: 4
  start-page: 368
  year: 1994
  end-page: 381
  ident: bib4
  article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report
  publication-title: Osteoporos. Int.
– volume: 118
  start-page: 104457
  year: 2021
  ident: bib12
  article-title: Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 140
  year: 2018
  ident: bib31
  article-title: Poly (propylene fumarate)–hydroxyapatite nanocomposite can be a suitable candidate for cervical cages
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 653
  year: 2004
  end-page: 660
  ident: bib6
  article-title: Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine
  publication-title: J. Biomech.
– volume: 11
  start-page: S355
  year: 1996
  ident: bib1
  article-title: Vertebral fractures in the elderly occur with falling and bending
  publication-title: J. Bone Miner. Res.
– volume: 33
  start-page: 744
  year: 2003
  end-page: 750
  ident: bib18
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
– volume: 41
  start-page: 2483
  year: 2008
  end-page: 2491
  ident: bib24
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J. Biomech.
– volume: 26
  start-page: 88
  year: 2010
  end-page: 97
  ident: bib20
  article-title: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique
  publication-title: Phys. Med.
– volume: 19
  start-page: 208
  year: 2016
  end-page: 216
  ident: bib22
  article-title: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib26
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
– volume: 18
  start-page: 9
  year: 2015
  end-page: 20
  ident: bib29
  article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds
  publication-title: Acta Biomater.
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib10
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J. Biomech.
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: bib9
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J. Biomech.
– volume: 65
  start-page: 801
  year: 2017
  end-page: 807
  ident: bib21
  article-title: Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements
  publication-title: Journal of the mechanical behavior of biomedical materials
– volume: 16
  start-page: 136
  year: 2009
  end-page: 143
  ident: bib17
  article-title: Prophylactic vertebroplasty: cement injection into non-fractured vertebral bodies during percutaneous vertebroplasty
  publication-title: Acad. Radiol.
– volume: 85
  start-page: 105365
  year: 2021
  ident: bib38
  article-title: Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis
  publication-title: Clin. BioMech.
– volume: 47
  start-page: 1391
  year: 2019
  end-page: 1399
  ident: bib30
  article-title: Optimizing accuracy of proximal femur elastic modulus equations
  publication-title: Ann. Biomed. Eng.
– volume: 4
  start-page: 368
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104833_bib4
  article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report
  publication-title: Osteoporos. Int.
  doi: 10.1007/BF01622200
– volume: 23
  start-page: 563
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104833_bib19
  article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-011-1568-3
– volume: 46
  start-page: 2152
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104833_bib33
  article-title: Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.06.035
– volume: 3
  start-page: 215
  year: 1993
  ident: 10.1016/j.compbiomed.2021.104833_bib2
  article-title: Spine fracture with neurological deficit in osteoporosis
  publication-title: Osteoporos. Int.
  doi: 10.1007/BF01623679
– volume: 18
  start-page: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104833_bib29
  article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.12.024
– volume: 15
  start-page: 834
  year: 2004
  ident: 10.1016/j.compbiomed.2021.104833_bib3
  article-title: Health-related quality of life after osteoporotic fractures
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-004-1622-5
– volume: 28
  start-page: 1154
  year: 2000
  ident: 10.1016/j.compbiomed.2021.104833_bib5
  article-title: Biphasic material properties of lytic bone metastases
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1313773
– volume: 12
  start-page: 522
  year: 1997
  ident: 10.1016/j.compbiomed.2021.104833_bib14
  article-title: Biomechanical characteristics of human trabecular bone
  publication-title: Clin. BioMech.
  doi: 10.1016/S0268-0033(97)00035-1
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104833_bib26
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.08.024
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104833_bib39
  article-title: Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age?
  publication-title: Ann. Biomed. Eng.
– volume: 59
  start-page: 954
  year: 1977
  ident: 10.1016/j.compbiomed.2021.104833_bib13
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-197759070-00021
– volume: 16
  start-page: 136
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104833_bib17
  article-title: Prophylactic vertebroplasty: cement injection into non-fractured vertebral bodies during percutaneous vertebroplasty
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.05.005
– volume: 33
  start-page: 744
  year: 2003
  ident: 10.1016/j.compbiomed.2021.104833_bib18
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00210-2
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104833_bib8
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 27
  start-page: 1159
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104833_bib9
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90056-6
– volume: 43
  start-page: 447
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104833_bib32
  article-title: Nelder-Mead simplex optimization routine for large-scale problems: a distributed memory implementation
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-013-9377-8
– volume: 200
  start-page: 105870
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib42
  article-title: High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105870
– volume: 41
  start-page: 2483
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104833_bib24
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.05.017
– volume: 22
  start-page: 717
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104833_bib40
  article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation, tissue engineering
  publication-title: Part C, Methods
  doi: 10.1089/ten.tec.2016.0078
– volume: 31
  start-page: 601
  year: 1998
  ident: 10.1016/j.compbiomed.2021.104833_bib11
  article-title: Yield strain behavior of trabecular bone
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00057-8
– start-page: 104559
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib7
  article-title: Three-dimensional surface strain analyses of simulated defect and augmented spine segments: a biomechanical cadaveric study
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
  doi: 10.1016/j.jmbbm.2021.104559
– volume: 39
  start-page: 742
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104833_bib34
  article-title: Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0196-y
– volume: 116
  start-page: 196
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104833_bib35
  article-title: Factors associated with proximal femur fracture determined in a large cadaveric cohort
  publication-title: Bone
  doi: 10.1016/j.bone.2018.08.005
– volume: 19
  start-page: 208
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104833_bib22
  article-title: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1006209
– volume: 37
  start-page: 653
  year: 2004
  ident: 10.1016/j.compbiomed.2021.104833_bib6
  article-title: Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.09.027
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.compbiomed.2021.104833_bib10
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 33
  start-page: 166
  year: 1987
  ident: 10.1016/j.compbiomed.2021.104833_bib15
  article-title: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty
  publication-title: Neurochirurgie
– volume: 65
  start-page: 801
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104833_bib21
  article-title: Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements
  publication-title: Journal of the mechanical behavior of biomedical materials
  doi: 10.1016/j.jmbbm.2016.10.002
– volume: 30
  start-page: 323
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104833_bib37
  article-title: Prediction of incident vertebral fracture using CT-based finite element analysis
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-018-4716-1
– volume: 85
  start-page: 105365
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib38
  article-title: Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis
  publication-title: Clin. BioMech.
  doi: 10.1016/j.clinbiomech.2021.105365
– volume: 49
  start-page: 663
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib23
  article-title: Density-dependent material and failure criteria equations highly affect the accuracy and precision of QCT/FEA-Based predictions of osteoporotic vertebral fracture properties
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02595-w
– volume: 140
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104833_bib31
  article-title: Poly (propylene fumarate)–hydroxyapatite nanocomposite can be a suitable candidate for cervical cages
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4040458
– volume: 11
  start-page: S355
  year: 1996
  ident: 10.1016/j.compbiomed.2021.104833_bib1
  article-title: Vertebral fractures in the elderly occur with falling and bending
  publication-title: J. Bone Miner. Res.
– volume: 47
  start-page: 1391
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104833_bib30
  article-title: Optimizing accuracy of proximal femur elastic modulus equations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02238-9
– volume: 48
  start-page: 224
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104833_bib41
  article-title: Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.11.042
– volume: 20
  start-page: 1096
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104833_bib16
  article-title: Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2013.0275
– volume: 39
  start-page: E1291
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104833_bib28
  article-title: An, Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty
  publication-title: Spine
  doi: 10.1097/BRS.0000000000000540
– volume: 22
  start-page: 717
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104833_bib27
  article-title: Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2016.0078
– volume: 26
  start-page: 88
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104833_bib20
  article-title: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2009.08.002
– volume: 21
  start-page: 155
  year: 1988
  ident: 10.1016/j.compbiomed.2021.104833_bib25
  article-title: On the dependence of the elasticity and strength of cancellous bone on apparent density
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90008-5
– volume: 118
  start-page: 104457
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib12
  article-title: Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
  doi: 10.1016/j.jmbbm.2021.104457
– volume: 133
  start-page: 104395
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104833_bib36
  article-title: CT-based structural analyses of vertebral fractures with polymeric augmentation: a study of cadaveric three-level spine segments
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104395
SSID ssj0004030
Score 2.3332312
Snippet Osteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral fracture....
AbstractOsteoporosis-related vertebral compression fracture can occur under normal physiological activities. Bone metastasis is another source of vertebral...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104833
SubjectTerms Absorptiometry
Absorptiometry, Photon
Biomechanics
Biomedical materials
Bone Density
Bone mineral density
Bones
Boundary conditions
Compression
Computed tomography
Degeneration
Dual energy X-ray absorptiometry
Energy
Finite Element Analysis
Finite element method
Fracture strength
Fractures
Fractures, Compression - diagnostic imaging
Humans
Internal Medicine
Loading rate
Material characterization
Mathematical models
Mechanical loading
Mechanical properties
Metastases
Metastasis
Modulus of elasticity
Osteoporosis
Other
Physiology
QCT/FEA
Risk assessment
Segments
Software
Spinal Fractures - diagnostic imaging
Spine
Statistical models
Stiffness
Trauma
Vertebrae
Vertebral augmentation
Vertebral fracture
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHgoXRPkMFGQkrqGJHduJeqoqqgqpXKBSb5bjtSEoykabRIgLv4AfzUycpKwWpJU4RRt7YsUzO34TvxkT8tYqJVRiRFxk1kOA4mRslF_FAhwmd0ZKZvE75PVHeXWTfbgVtwfkYs6FQVrl5PuDTx-99XTndJrN07aqMMcXQgkIcCBowVq76Iex-hfY9LufdzSPLOEhDQX8Dfae2DyB44W07ZDmDpEiS3HDM-f8X0vULgTdZVLeG5rW_Phu6vqPZeryIXkw4Ut6Hl7hmBy45hE5up520B-TX59grapdXCNZiHZDid9hYsy3RM4Q9RViUOoCqZyO5-RQmH3abvARPfWYVTVsHF0PPbyX62jV0B4MYnlkC-PQzn0Zc-co5qht6HwMS0_r9Ujap1ihontCbi7ff764iqcTGWILgVYf8xUABlCtgWvpuZClNxlggMyuykT61AAa8Cy1thSOMy68UM6y3CSrVOZ56vlTctisG_ecUICRrsgAjTGbwALpCgAaxuWFZBDysVxGRM1K0HYqV46nZtR65qV903fq06g-HdQXkXSRbEPJjj1kilnPek5JBSeqYV3ZQ1b9TdZ1kzfodKo7phO9Y7EROVskt4x-z3FPZoPUy1DggQETSp6JiLxZmsFl4D6Qadx6GPsADM25gj7Pgv0uEwWCmFsMLWrLspcOWI58u6Wpvo5lyfMxISiJCFv-A3vP_4v_momX5D7-ChzLE3LYbwb3CrBiX74encFvBNlqag
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMClKu9AQUbiGpHYiZOIQ4VQlwqpXEql3izHsWGrKAmbRFX_Az-amdjJUhXQnnKwJ1E845lv7HkQ8k5nWZpFKg2LRFtwUIwIVWarMAWFyY0Sgmk8hzz9Kk7Oky8X6YU_cOt9WOWsEydFXbUaz8jfg2iBsRM8SY-6nyF2jcLbVd9C4y65FzOQJMwUX33e5kVG3KWggK5JwBXykTwuvgtDtl2KO3iJLMbLzpzzf5mn2_DzdhTlg7Hp1PWVqus_TNTqgOx7bEk_OmF4RO6Y5jG5f-pvz5-QX2dgp2oT1hgoRPuxxDOYEHMtMV6I2jXiT2pcQDmdeuRQWHnabfAVA7WYUTVuDG3HAf7L9HTd0AGEYXllB9-hvfk-5c1RzE_b0LkFy0DrdgrYp1idon9KzlfH3z6dhL4bQ6jByRpCXgFYALYqeJaWp6K0KgH7n-iqjISNFSABy2Kty9RwxlObZkazXEVVLPI8tvwZ2WvaxrwgFCCkKRJAYkxHYBxNASBDmbwQDNw9louAZDMTpPalyrFjRi3nmLRLuWWfRPZJx76AxAtl58p17EBTzHyWczoqKFAJNmUH2uxvtKb3mqCXseyZjOTZVAgJZBBcbKwMzQLyYaH0YMeBmB2_ezgLpFw-td0iAXm7DIO6wDsg1Zh2nOYABM15BnOeO_ldFgoIMa8YRrIbkr1MwFLkN0ea9Y-pJHk-JQNFAWHLHth5_V_-_19ekYc42QVQHpK9YTOa1wAEh_LNtNt_Az-EX1Y
  priority: 102
  providerName: ProQuest
Title Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521006272
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521006272
https://dx.doi.org/10.1016/j.compbiomed.2021.104833
https://www.ncbi.nlm.nih.gov/pubmed/34534795
https://www.proquest.com/docview/2577436345
https://www.proquest.com/docview/2574398375
https://pubmed.ncbi.nlm.nih.gov/PMC8783600
https://www.ncbi.nlm.nih.gov/pmc/articles/8783600
UnpaywallVersion submittedVersion
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NVgJe-D0IjMpIvKZLnMROxVNBKwW0atqoVJ4sx3WgkKVVkwjBA38BfzTnOAmMgVR4SRTZFyvO5fxd_N0dwFPFecQ9GbmjUKXooGjmSp4u3QgNZqAlY1SZ_5DHMzadh68X0WIP_DYWpibtq2Q1zLPzYb76UHMrN-fqsOWJHcZ13AF66X1m9pR60J_PTsbvrMX13DCuC62aItouKljYsHcsp8vQtG1YO3qG1DcbnHEQ_G1Jugw5LzMnr1X5Rn75LLPsl2VpchNO2weybJRPw6pMhurrb7ke_-mJb8GNBqSSsW26DXs6vwNXj5tt-Lvw_QwXvEy7mWEckaJKzM8c1wRtGuIRSVcGyBJtmemkLrZD8BWSzdbcoiSpCc2qtpqsqxInSxdklZMStaq75QbHIYV-XwfgERPotiVtLZeSZOua-U9MmoviHswnR29fTN2mrIOr0Fsr3WCJqAP1Q-I5SYOIJakMEUiEapl4LPUlQoqU-kolkQ5oEKUR14rG0lv6LI79NNiHXr7O9QMgiEX1KERIR5WHq6weIVqROh4xin4jjZkDvH2zQjU5z03pjUy05LaP4qdOCKMTwuqEA34nubF5P3aQGbXKI9q4VrTEAhenHWT5n2R10ZiUQviioMITZ3VGJVRy9NVNimnqwLNOskFNFg3tOO5Bq-WiGwrNOAJLFoSRA0-6ZrQ7ZjNJ5npd1X0Qy8YBxz737UfRTRQKmgBlbOEXPpeug8lpfrEFFb_Obd7ougO0-7B2nv-H_yP0CK6bK8vPPIBeua30Y8SZZTKAK8NvPh75guMxnrwcQH_86s10hufnR7OT00Fje34Aw5GFrw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSgXxD-BAkaCY0RiJ3EihBACqi3t9tJW2ptxHAcWRUnYJKr6DjwLz8hMnGSpCmgvPe3BGXuTGc-PPd8MIS-1EKHwVOgmgc4hQDGRq0SeuSEoTG5UFDGN55Dzo2h2GnxehIst8mvEwmBa5agTe0WdVRrPyF-DaIGxi3gQvqt_uNg1Cm9XxxYaViwOzPkZhGzN2_2PwN9XjO19Ovkwc4euAq6GYKF1eQZGD_6egt8052GU5ioAOxboLPWi3Fdg0XLma52GhjMe5qEwmsXKy_wojv2cw7zXyPWAewHW6hcLscZhetxCXkC3BRB6DZlDNp8MU8QtpB6iUubj5WrM-b_M4WV393LW5k5X1ur8TBXFHyZx7za5Nfiy9L0Vvjtky5R3yY35cFt_j_w8BrtYGLfAxCTadCme-biI7cT8JJov0d-lxiaw074nDwVO03qFU7Q0RwRXtzK06lp4L9PQZUlbEL5pyhrWoY352uP0KOLhVnRs-dLSouoBAhSrYTT3yemV8OkB2S6r0jwiFFxWkwTg-THtgTE2CTg1ysRJxCC8ZHHkEDEyQeqhNDp26CjkmAP3Xa7ZJ5F90rLPIf5EWdvyIBvQJCOf5Qh_BYUtwYZtQCv-RmuaQfM00pcNk5487gsvgQxCSI-VqJlD3kyUg3NlnaYN190dBVJOS623pENeTMOgnvDOSZWm6vpnwOWNuYBnHlr5nT4UECKOGUbEBcmeHsDS5xdHyuW3vgR63IOPPIewaQ9s_P0f__9dnpOd2cn8UB7uHx08ITeR0CZv7pLtdtWZp-CEtumzfudT8uWqVc1vDDScIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkQoXxG9ZKGAkOEZN7CROhBBClFVLaYVUKu3NOI4Ni6Js2CSq-g48EU_HTJxkqQpoLz3twRl7kxnPj_3NDCEvtBCR8FXkpaG2EKCY2FPC5l4ECpMbFcdM4znk0XG8fxp-mEWzDfJryIVBWOWgEztFnS80npHvgmiBsYt5GO3aHhbxaW_6pvrhYQcpvGkd2mk4ETk052cQvtWvD_aA1y8Zm77__G7f6zsMeBoCh8bjORhA-KsKfjPLozizKgSbFuo882MbKLBulgVaZ5HhjEc2EkazRPl5ECdJYDnMe41cFzzkCCcTM7HKyfS5S38BPRdCGNajiBy2DOHiLr0eIlQW4EVrwvm_TONl1_cygvNGW1bq_EwVxR_mcXqb3Or9WvrWCeIdsmHKu2TrqL-5v0d-noCNLIxXIEiJ1m2G5z8e5nkiVonaOfq-1DgwO-3681DgOq2WOEVDLWZztUtDF20D72VqOi9pA4I4TlnBOrQ2X7ucPYq5cUs6tH9paLHokgUoVsao75PTK-HTA7JZLkrzkFBwX00aghfItA-G2aTg4CiTpDGDUJMl8YSIgQlS92XSsVtHIQc83He5Yp9E9knHvgkJRsrKlQpZgyYd-CyHVFhQ3hLs2Rq04m-0pu61UC0DWTPpy5OuCBPIIIT3WJWaTcirkbJ3tJwDtea6O4NAynGp1fackOfjMKgqvH9SpVm03TPg_iZcwDPbTn7HDwWEmNMMI-KCZI8PYBn0iyPl_FtXDj3pEpH8CWHjHlj7-z_6_7s8I1ugZOTHg-PDx-Qm0jkc5w7ZbJateQL-aJM97TY-JV-uWtP8BmS5oF0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HHqgvfn9UT4nga_fapE1bfDrE4xDuEM-F8ymk2cRb7XXLtkX0b_CPdiZpq-cprD6VkkxD08nkN81vZgh5obMszSKVhkWiLTgoRoQqs8swBYPJjRKCafwPeXwijhbJm7P0bIfEYyyMI-3rcjWvq4t5vTp33MrmQu-PPLH93MUdgJe-K_BMaUZ2FydvDz54ixuFSe4KrWIR7RAULBnYO57ThTRtH9YOniGL8YAz5_xvW9JVyHmVOXm9rxv19Yuqql-2pcNb5N34Qp6N8nned-Vcf_st1-M_vfFtcnMAqfTAN90hO6a-S64dD8fw98j3U9jwKhNWyDiibV_iz5wQgzaReETtCoEsNZ6ZTl2xHQqfkDYbfERHLYZm9RtD130Hk2VauqppB1o1PbKBcWhrProAPIqBbhs61nLpaLV2zH-KaS7a-2Rx-Pr9q6NwKOsQavDWupAvAXWAfii4lpanorQqASCR6GUZCRsrgBSWxVqXqeGMpzbNjGa5ipaxyPPY8gdkVq9r84hQwKKmSADSMR3BLmsKQCvK5IVg4DeyXAQkG7-s1EPOcyy9UcmR3PZJ_tQJiTohvU4EJJ4kG5_3YwuZYlQeOca1giWWsDltIZv9Sda0g0lpZSxbJiN56jIqgZKDr44ppllAXk6SA2ryaGjLcfdGLZfTUGDGAVgKnqQBeT41g93BwyRVm3Xv-gCWzXkGfR76RTFNFAhigDK0ZJeWy9QBc5pfbgHFd7nNB10PCJsW1tbz__h_hJ6QG3jn-Zl7ZNZtevMUcGZXPhssyw95dH-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Level+Subject-Specific+Finite+Element+Model+Can+Predict+Fracture+Outcomes+in+Three-Level+Spine+Segments+Under+Different+Loading+Rates&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Rezaei%2C+Asghar&rft.au=Tilton%2C+Maryam&rft.au=Li%2C+Yong&rft.au=Yaszemski%2C+Michael+J.&rft.date=2021-10-01&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=137&rft.spage=104833&rft.epage=104833&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104833&rft_id=info%3Apmid%2F34534795&rft.externalDocID=PMC8783600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon