Integrating transformer and autoencoder techniques with spectral graph algorithms for the prediction of scarcely labeled molecular data
In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advan...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 153; p. 106479 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.02.2023
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2022.106479 | 
Cover
| Abstract | In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.
[Display omitted]
•Three new machine learning models for data classification are proposed in this paper.•The proposed methods are very useful for the case of a small amount of labeled data.•The proposed techniques incorporate molecular fingerprints for multi-task learning.•We integrate autoencoders, bidirectional encoder transformers, circular fingerprints.•The performances are analyzed using residue-similarity (R-S) scores and R-S indices. | 
    
|---|---|
| AbstractList | AbstractIn molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme is integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosted decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. [Display omitted] •Three new machine learning models for data classification are proposed in this paper.•The proposed methods are very useful for the case of a small amount of labeled data.•The proposed techniques incorporate molecular fingerprints for multi-task learning.•We integrate autoencoders, bidirectional encoder transformers, circular fingerprints.•The performances are analyzed using residue-similarity (R-S) scores and R-S indices. In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme is integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosted decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.  | 
    
| ArticleNumber | 106479 | 
    
| Author | Merkurjev, Ekaterina Wei, Guo-Wei Hayes, Nicole  | 
    
| AuthorAffiliation | a Department of Mathematics, Michigan State University, MI 48824, USA c Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA d Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA b Department of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA  | 
    
| AuthorAffiliation_xml | – name: d Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA – name: b Department of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA – name: c Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA – name: a Department of Mathematics, Michigan State University, MI 48824, USA  | 
    
| Author_xml | – sequence: 1 givenname: Nicole orcidid: 0000-0003-1772-0306 surname: Hayes fullname: Hayes, Nicole organization: Department of Mathematics, Michigan State University, MI 48824, USA – sequence: 2 givenname: Ekaterina surname: Merkurjev fullname: Merkurjev, Ekaterina email: merkurje@msu.edu organization: Department of Mathematics, Michigan State University, MI 48824, USA – sequence: 3 givenname: Guo-Wei surname: Wei fullname: Wei, Guo-Wei organization: Department of Mathematics, Michigan State University, MI 48824, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36610214$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqdkstuFDEQRVsoiDzgF5AlNmxmsN1Ot2eDIBGPSJFYAGur2nbPeHDbje1ONF_Ab1OtCcNDQgqsLNu3rqpO3dPqKMRgq4owumSUNS-2Sx2HsXNxsGbJKef43Ih29aA6YbJdLeh5LY6qE0oZXQjJz4-r05y3lFJBa_qoOq6bhlHOxEn17SoUu05QXFiTkiDkPqbBJgLBEJhKtEFHg_di9Sa4r5PN5NaVDcmj1aj3BIvHDQG_jgnfh0zQgJSNJWOyxuniYiCxJ1lD0tbviIfOemvIEL3Vk4dEDBR4XD3swWf75O48qz6_ffPp8v3i-sO7q8vX1wvdsFVZ1KZmRre9aIXgvZS6XfVWtNKKuusYb3oqOwpcgjYIooW6MYbzDiiYBpjU9Vm12vtOYYTdLXivxuQGSDvFqJrhqq36CVfNcNUeLta-3NeOU4d_2oYZwKE-glO__wS3Uet4o1aykYwJNHh-Z5DiTLKowWWE4iHYOGXFWxxS8kZwlD77Q7qNUwqIZlY1LeO4SlQ9_bWjQys_9osCuRfoFHNOtv-PaQ-l2hWY14mzOX8fg4u9gcV93jibVNYO44SpSJgdZaL7hy4OJtq74DT4L3Zn8wEKU5krqj7OkZ8TzzllmACJBq_-bnC_Hr4D-_UZ2A | 
    
| CitedBy_id | crossref_primary_10_1016_j_infrared_2024_105304 crossref_primary_10_1016_j_cma_2023_116347 crossref_primary_10_1016_j_jpha_2024_101081 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1142_S2737416524500479 crossref_primary_10_1007_s10994_024_06616_w crossref_primary_10_1038_s41524_024_01479_0  | 
    
| Cites_doi | 10.1016/j.ifacol.2015.10.185 10.1021/acs.jcim.0c00599 10.1002/sam.10099 10.1021/ci300124c 10.1039/D0CP00305K 10.1023/A:1022821128753 10.1145/1458082.1458099 10.1109/TSP.2002.1003062 10.1093/nar/gkv951 10.1021/acs.jcim.9b01184 10.1109/JPROC.2020.3004555 10.1021/acs.jpclett.1c03133 10.1080/1062936X.2018.1513953 10.1039/C8SC04175J 10.1145/1553374.1553411 10.1021/ci00057a005 10.1016/j.matdes.2018.11.060 10.1016/j.artmed.2016.12.003 10.1038/s43588-021-00168-y 10.1021/ci049714+ 10.1006/jcph.1994.1105 10.1038/nature02236 10.1016/j.aml.2014.02.008 10.1109/TPAMI.2004.1262185 10.1093/nar/gkw1074 10.1016/j.chembiol.2016.07.023 10.1145/3308558.3313620 10.1109/CVPR.2010.5540064 10.1137/120886935 10.1021/ci900161g 10.1126/science.aaa8415 10.1007/s10115-015-0821-z 10.1021/acs.jpclett.1c03058 10.1137/1.9781611972825.47 10.1109/TKDE.2009.205 10.1021/acs.jcim.6b00290 10.1021/ci100050t 10.1109/TNNLS.2011.2178556 10.1021/c160017a018 10.1109/CVPR.2001.990481  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd  | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.compbiomed.2022.106479 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (ProQuest) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library (ProQuest) Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 106479 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9868114 PMC9868114 36610214 10_1016_j_compbiomed_2022_106479 S0010482522011878 1_s2_0_S0010482522011878  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM126189 – fundername: NIAID NIH HHS grantid: R01 AI164266  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c619t-3d31dc7f47442f88c79fe478e43bb126f08b0a28acd1877a36dd22ba0ad6a18c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sun Oct 26 04:15:41 EDT 2025 Tue Sep 30 17:10:04 EDT 2025 Sun Sep 28 11:26:02 EDT 2025 Tue Oct 07 06:25:05 EDT 2025 Mon Jul 21 05:37:59 EDT 2025 Wed Oct 01 05:27:43 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Fri Feb 23 02:37:44 EST 2024 Tue Feb 25 20:03:27 EST 2025 Tue Oct 14 19:33:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Spectral graph Small data Scarcely labeled data R-S scores Transformer Autoencoder  | 
    
| Language | English | 
    
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c619t-3d31dc7f47442f88c79fe478e43bb126f08b0a28acd1877a36dd22ba0ad6a18c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1772-0306 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9868114 | 
    
| PMID | 36610214 | 
    
| PQID | 2766712403 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2022_106479 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9868114 proquest_miscellaneous_2761982642 proquest_journals_2766712403 pubmed_primary_36610214 crossref_primary_10_1016_j_compbiomed_2022_106479 crossref_citationtrail_10_1016_j_compbiomed_2022_106479 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106479 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522011878 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106479  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-02-01 | 
    
| PublicationDateYYYYMMDD | 2023-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Morgan (b63) 1965; 5 Shaikhina, Lowe, Daga, Briggs, Higgins, Khovanova (b10) 2015; 48 L. Duan, I. Tsang, D. Xu, T.-S. Chua, Domain adaptation from multiple sources via auxiliary classifiers, in: Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 289–296. Angluin (b29) 1988; 2 Lewis, Gale (b33) 1994 Zhao, Zhang, Wu, Moura, Costeira, Gordon (b27) 2018; 31 Belongie, Fowlkes, Chung, Malik (b56) 2002 Kotsiantis, Zaharakis, Pintelas (b2) 2007; 160 Chen, Gao, Nguyen, Chen, Jiang, Wei, Pan (b5) 2021; 12 C. Fowlkes, S. Belongie, J. Malik, Efficient spatiotemporal grouping using the Nyström method, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, p. 1. Chen, Zheng, Wei, Pan (b12) 2021; 12 RDKit, RDKit: Open-source cheminformatics Venko, Drgan, Novič (b50) 2018; 29 King, Whelan, Jones, Reiser, Bryant, Muggleton, Kell, Oliver (b30) 2004; 427 Zhuang, Luo, Xiong, Xiong, He, Shi (b17) 2009; 22 Saha, Gupta, Phung, Venkatesh (b9) 2016; 46 Krishnamurthy (b32) 2002; 50 N. Ostapuk, J. Yang, P. Cudré-Mauroux, Activelink: deep active learning for link prediction in knowledge graphs, in: World Wide Web Conference, 2019, pp. 1398–1408. Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit, Leach (b59) 2017; 45 Gao, Nguyen, Sresht, Mathiowetz, Tu, Wei (b43) 2020; 22 Martins, Teixeira, Pinheiro, Falcao (b49) 2012; 52 Hudson, Cohen (b8) 2000 Kato, Kashima, Sugiyama, Asai (b19) 2007; 20 Winter, Montanari, Noé, Clevert (b65) 2019; 10 Jiang, Wang, Wang, Gao, Nguyen, Wei (b7) 2020; 60 . Cao, Long, Wang, Jordan (b25) 2018 Merkurjev, Kostic, Bertozzi (b42) 2013; 6 Jordan, Mitchell (b1) 2015; 349 Irwin, Shoichet (b61) 2005; 45 Zhuang, Luo, Xiong, He, Xiong, Shi (b20) 2011; 4 T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 3081–3088. Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b26) 2016; 17 Garcia-Cardona, Merkurjev, Bertozzi, Flenner, Percus (b41) 2013; 36 P. Luo, F. Zhuang, H. Xiong, Y. Xiong, Q. He, Transfer learning from multiple source domains via consensus regularization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 103–112. Qiu, Hu, Wei (b40) 2021; 1 Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He. (b13) 2020; 109 Weininger (b45) 1988; 28 Zupan, Gasteiger (b57) 2015 Dagan, Engelson (b31) 1995; 1995 Feng, Zhou, Dong (b28) 2019; 162 Hozumi, Wang, Wei (b64) 2022 Hansen, Mika, Schroeter, Sutter, Ter Laak, Steger-Hartmann, Heinrich, Müller (b47) 2009; 49 Merriman, Bence, Osher. (b52) 1994; 112 Duan, Xu, Tsang (b15) 2012; 23 Fowlkes, Belongie, Chung, Malik (b54) 2004; 26 Merkurjev, Nguyen, Wei (b6) 2021 Gao, Chen, Robison, Wei (b44) 2021; 12 Shaikhina, Khovanova (b11) 2017; 75 Kim, Thiessen, Bolton, Chen, Fu, Gindulyte, Han, He, He, Shoemaker, Wang, Yu, Zhang, Bryant (b60) 2016; 44 Settles (b34) 2009 Evgeniou, Micchelli, Pontil, Shawe-Taylor (b18) 2005; 6 Geifman, El-Yaniv (b38) 2019; 32 Liu, Wang, Gong, Lu, Tao. (b39) 2019 Gayvert, Madhukar, Elemento (b51) 2016; 23 10 Gao, Nguyen, Tu, Wei (b4) 2020; 60 Schwab (b3) 2017 Gal, Islam, Ghahramani (b35) 2017 Subramanian, Ramsundar, Pande, Denny (b48) 2016; 56 Zhuang, Cheng, Luo, Pan, He (b23) 2017; 9 Rogers, Hahn (b62) 2010; 50 Merkurjev, Garcia-Cardona, Bertozzi, Flenner, Percus (b53) 2014; 33 M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang, W. Wang, Dual transfer learning, in: Proceedings of the 2012 SIAM International Conference on Data Mining, 2012, pp. 540–551. Long, Zhu, Wang, Jordan (b24) 2016; 29 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b58) 2017 Geifman, El-Yaniv (b37) 2017 Qiu (10.1016/j.compbiomed.2022.106479_b40) 2021; 1 Martins (10.1016/j.compbiomed.2022.106479_b49) 2012; 52 Gal (10.1016/j.compbiomed.2022.106479_b35) 2017 10.1016/j.compbiomed.2022.106479_b22 Zhuang (10.1016/j.compbiomed.2022.106479_b13) 2020; 109 10.1016/j.compbiomed.2022.106479_b21 Feng (10.1016/j.compbiomed.2022.106479_b28) 2019; 162 Zupan (10.1016/j.compbiomed.2022.106479_b57) 2015 Gao (10.1016/j.compbiomed.2022.106479_b44) 2021; 12 Merkurjev (10.1016/j.compbiomed.2022.106479_b6) 2021 Duan (10.1016/j.compbiomed.2022.106479_b15) 2012; 23 Gayvert (10.1016/j.compbiomed.2022.106479_b51) 2016; 23 10 King (10.1016/j.compbiomed.2022.106479_b30) 2004; 427 Lewis (10.1016/j.compbiomed.2022.106479_b33) 1994 Merkurjev (10.1016/j.compbiomed.2022.106479_b53) 2014; 33 Schwab (10.1016/j.compbiomed.2022.106479_b3) 2017 Hozumi (10.1016/j.compbiomed.2022.106479_b64) 2022 Vaswani (10.1016/j.compbiomed.2022.106479_b58) 2017 Zhuang (10.1016/j.compbiomed.2022.106479_b23) 2017; 9 10.1016/j.compbiomed.2022.106479_b36 Ganin (10.1016/j.compbiomed.2022.106479_b26) 2016; 17 Venko (10.1016/j.compbiomed.2022.106479_b50) 2018; 29 Garcia-Cardona (10.1016/j.compbiomed.2022.106479_b41) 2013; 36 Zhuang (10.1016/j.compbiomed.2022.106479_b20) 2011; 4 Fowlkes (10.1016/j.compbiomed.2022.106479_b54) 2004; 26 Hansen (10.1016/j.compbiomed.2022.106479_b47) 2009; 49 Subramanian (10.1016/j.compbiomed.2022.106479_b48) 2016; 56 Chen (10.1016/j.compbiomed.2022.106479_b12) 2021; 12 Saha (10.1016/j.compbiomed.2022.106479_b9) 2016; 46 Merriman (10.1016/j.compbiomed.2022.106479_b52) 1994; 112 Gao (10.1016/j.compbiomed.2022.106479_b4) 2020; 60 10.1016/j.compbiomed.2022.106479_b46 Long (10.1016/j.compbiomed.2022.106479_b24) 2016; 29 Settles (10.1016/j.compbiomed.2022.106479_b34) 2009 Kato (10.1016/j.compbiomed.2022.106479_b19) 2007; 20 Geifman (10.1016/j.compbiomed.2022.106479_b37) 2017 Hudson (10.1016/j.compbiomed.2022.106479_b8) 2000 Kim (10.1016/j.compbiomed.2022.106479_b60) 2016; 44 Zhuang (10.1016/j.compbiomed.2022.106479_b17) 2009; 22 Zhao (10.1016/j.compbiomed.2022.106479_b27) 2018; 31 Merkurjev (10.1016/j.compbiomed.2022.106479_b42) 2013; 6 Belongie (10.1016/j.compbiomed.2022.106479_b56) 2002 Kotsiantis (10.1016/j.compbiomed.2022.106479_b2) 2007; 160 Rogers (10.1016/j.compbiomed.2022.106479_b62) 2010; 50 Evgeniou (10.1016/j.compbiomed.2022.106479_b18) 2005; 6 Dagan (10.1016/j.compbiomed.2022.106479_b31) 1995; 1995 Gaulton (10.1016/j.compbiomed.2022.106479_b59) 2017; 45 Morgan (10.1016/j.compbiomed.2022.106479_b63) 1965; 5 Geifman (10.1016/j.compbiomed.2022.106479_b38) 2019; 32 Krishnamurthy (10.1016/j.compbiomed.2022.106479_b32) 2002; 50 Shaikhina (10.1016/j.compbiomed.2022.106479_b11) 2017; 75 Winter (10.1016/j.compbiomed.2022.106479_b65) 2019; 10 Jiang (10.1016/j.compbiomed.2022.106479_b7) 2020; 60 Cao (10.1016/j.compbiomed.2022.106479_b25) 2018 Irwin (10.1016/j.compbiomed.2022.106479_b61) 2005; 45 Shaikhina (10.1016/j.compbiomed.2022.106479_b10) 2015; 48 10.1016/j.compbiomed.2022.106479_b16 Angluin (10.1016/j.compbiomed.2022.106479_b29) 1988; 2 10.1016/j.compbiomed.2022.106479_b14 Gao (10.1016/j.compbiomed.2022.106479_b43) 2020; 22 Jordan (10.1016/j.compbiomed.2022.106479_b1) 2015; 349 Weininger (10.1016/j.compbiomed.2022.106479_b45) 1988; 28 10.1016/j.compbiomed.2022.106479_b55 Chen (10.1016/j.compbiomed.2022.106479_b5) 2021; 12 Liu (10.1016/j.compbiomed.2022.106479_b39) 2019  | 
    
| References_xml | – reference: T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 3081–3088. – volume: 2 start-page: 319 year: 1988 end-page: 342 ident: b29 article-title: Queries and concept learning publication-title: Mach. Learn. – volume: 23 start-page: 504 year: 2012 end-page: 518 ident: b15 article-title: Domain adaptation from multiple sources: A domain-dependent regularization approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2017 ident: b3 article-title: The Fourth Industrial Revolution – reference: P. Luo, F. Zhuang, H. Xiong, Y. Xiong, Q. He, Transfer learning from multiple source domains via consensus regularization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 103–112. – volume: 427 start-page: 247 year: 2004 end-page: 252 ident: b30 article-title: Functional genomic hypothesis generation and experimentation by a robot scientist publication-title: Nature – volume: 56 start-page: 1936 year: 2016 end-page: 1949 ident: b48 article-title: Computational modeling of publication-title: J. Chem. Inf. Model. – volume: 10 start-page: 1692 year: 2019 end-page: 1701 ident: b65 article-title: Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations publication-title: Chem. Sci. – volume: 9 start-page: 1 year: 2017 end-page: 17 ident: b23 article-title: Supervised representation learning with double encoding-layer autoencoder for transfer learning publication-title: Trans. Intell. Syst. Technol. – volume: 12 start-page: 1 year: 2021 end-page: 9 ident: b5 article-title: Algebraic graph-assisted bidirectional transformers for molecular property prediction publication-title: Nature Commun. – year: 2009 ident: b34 article-title: Active Learning Literature Survey – volume: 36 year: 2013 ident: b41 article-title: Multiclass data segmentation using diffuse interface methods on graphs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 109 start-page: 43 year: 2020 end-page: 76 ident: b13 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE – start-page: 1183 year: 2017 end-page: 1192 ident: b35 article-title: Deep bayesian active learning with image data publication-title: Int. Conf. Mach. Learn. – volume: 6 start-page: 1903 year: 2013 end-page: 1930 ident: b42 article-title: An MBO scheme on graphs for classification and image processing publication-title: SIAM J. Imaging Sci. – reference: C. Fowlkes, S. Belongie, J. Malik, Efficient spatiotemporal grouping using the Nyström method, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, p. 1. – volume: 60 start-page: 5682 year: 2020 end-page: 5698 ident: b4 article-title: Generative network complex for the automated generation of drug-like molecules publication-title: J. Chem. Inf. Model. – volume: 12 start-page: 10793 year: 2021 end-page: 10801 ident: b12 article-title: Extracting predictive representations from hundreds of millions of molecules publication-title: J. Phys. Chem. Lett. – year: 2015 ident: b57 article-title: Neural Networks in Chemistry and Drug Design – start-page: 6122 year: 2019 end-page: 6131 ident: b39 article-title: Deep reinforcement active learning for human-in-the-loop person re-identification publication-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. – volume: 49 start-page: 2077 year: 2009 end-page: 2081 ident: b47 article-title: Benchmark data set for in silico prediction of Ames mutagenicity publication-title: J. Chem. Inf. Model. – volume: 50 start-page: 1382 year: 2002 end-page: 1397 ident: b32 article-title: Algorithms for optimal scheduling and management of hidden markov model sensors publication-title: IEEE Trans. Signal Process. – start-page: 3 year: 1994 end-page: 12 ident: b33 article-title: A sequential algorithm for training text classifiers publication-title: ACM-SIGIR Conf. Res. Dev. Inf. Retrieval – volume: 17 start-page: 2030 year: 2016 end-page: 2096 ident: b26 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 2724 year: 2018 end-page: 2732 ident: b25 article-title: Partial transfer learning with selective adversarial networks publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – reference: M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang, W. Wang, Dual transfer learning, in: Proceedings of the 2012 SIAM International Conference on Data Mining, 2012, pp. 540–551. – volume: 23 10 start-page: 1294 year: 2016 end-page: 1301 ident: b51 article-title: A data-driven approach to predicting successes and failures of clinical trials publication-title: Cell Chem. Biol. – volume: 29 start-page: 743 year: 2018 end-page: 754 ident: b50 article-title: Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera) publication-title: SAR QSAR Environ. Res. – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: b1 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science – reference: . RDKit, RDKit: Open-source cheminformatics, – volume: 50 start-page: 742 year: 2010 end-page: 754 ident: b62 article-title: Extended-connectivity fingerprints publication-title: J. Chem. Inform. Model. – volume: 45 start-page: 177 year: 2005 end-page: 182 ident: b61 article-title: ZINC- A free database of commercially available compounds for virtual screening publication-title: J. Chem. Inf. Model. – start-page: 531 year: 2002 end-page: 542 ident: b56 article-title: Spectral partitioning with indefinite kernels using the nyström extension publication-title: European Conference on Computer Vision – volume: 44 start-page: D1202 year: 2016 end-page: D1213 ident: b60 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res. – volume: 52 start-page: 1686 year: 2012 end-page: 1697 ident: b49 article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling publication-title: J. Chem. Inf. Model. – volume: 1 start-page: 818 year: 2021 end-page: 819 ident: b40 article-title: Cluster learning-assisted directed evolution publication-title: Nat. Comput. Sci. – volume: 29 year: 2016 ident: b24 article-title: Unsupervised domain adaptation with residual transfer networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 8373 year: 2020 end-page: 8390 ident: b43 article-title: Are 2D fingerprints still valuable for drug discovery? publication-title: Phys. Chem. Chem. Phys. – year: 2021 ident: b6 article-title: Multiscale Laplacian learning – volume: 4 start-page: 100 year: 2011 end-page: 114 ident: b20 article-title: Exploiting associations between word clusters and document classes for cross-domain text categorization publication-title: Stat. Anal. Data Min. ASA Data Sci. J. – reference: N. Ostapuk, J. Yang, P. Cudré-Mauroux, Activelink: deep active learning for link prediction in knowledge graphs, in: World Wide Web Conference, 2019, pp. 1398–1408. – volume: 162 start-page: 300 year: 2019 end-page: 310 ident: b28 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater. Des. – volume: 6 year: 2005 ident: b18 article-title: Learning multiple tasks with kernel methods publication-title: J. Mach. Learn. Res. – volume: 160 start-page: 3 year: 2007 end-page: 24 ident: b2 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 1995 start-page: 150 year: 1995 end-page: 157 ident: b31 article-title: Committee-based sampling for training probabilistic classifiers publication-title: Mach. Learn. Proc. – volume: 31 year: 2018 ident: b27 article-title: Adversarial multiple source domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – reference: L. Duan, I. Tsang, D. Xu, T.-S. Chua, Domain adaptation from multiple sources via auxiliary classifiers, in: Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 289–296. – volume: 33 start-page: 29 year: 2014 end-page: 34 ident: b53 article-title: Diffuse interface methods for multiclass segmentation of high-dimensional data publication-title: Appl. Math. Lett. – year: 2000 ident: b8 article-title: Neural networks and artificial intelligence for biomedical engineering publication-title: Inst. Electr. Electron. Eng. – volume: 45 start-page: D945 year: 2017 end-page: D954 ident: b59 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res. – volume: 28 start-page: 31 year: 1988 end-page: 36 ident: b45 article-title: SMILES, a chemical language and information system publication-title: J. Chem. Inf. Comput. Sci. – year: 2022 ident: b64 article-title: CCP: Correlated clustering and projection for dimensionality reduction – volume: 32 year: 2019 ident: b38 article-title: Deep active learning with a neural architecture search publication-title: Adv. Neural Inf. Process. Syst. – volume: 26 start-page: 214 year: 2004 end-page: 225 ident: b54 article-title: Spectral grouping using the Nyström method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 60 start-page: 1235 year: 2020 end-page: 1244 ident: b7 article-title: Boosting tree-assisted multitask deep learning for small scientific datasets publication-title: J. Chem. Inf. Model. – volume: 5 start-page: 107 year: 1965 end-page: 113 ident: b63 article-title: The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service publication-title: J. Chem. Doc. – volume: 12 start-page: 11122 year: 2021 end-page: 11134 ident: b44 article-title: Proteome-informed machine learning studies of cocaine addiction publication-title: J. Phys. Chem. Lett. – volume: 48 start-page: 469 year: 2015 end-page: 474 ident: b10 article-title: Machine learning for predictive modelling based on small data in biomedical engineering publication-title: IFAC-PapersOnLine – volume: 22 start-page: 1664 year: 2009 end-page: 1678 ident: b17 article-title: Cross-domain learning from multiple sources: A consensus regularization perspective publication-title: IEEE Trans. Knowl. Data Eng. – volume: 75 start-page: 51 year: 2017 end-page: 63 ident: b11 article-title: Handling limited datasets with neural networks in medical applications: A small-data approach publication-title: Artif. Intell. Med. – reference: . – year: 2017 ident: b58 article-title: Attention is all you need – year: 2017 ident: b37 article-title: Deep active learning over the long tail – volume: 112 start-page: 334 year: 1994 end-page: 363 ident: b52 article-title: Motion of multiple junctions: a level set approach publication-title: J. Comput. Phys. – volume: 46 start-page: 315 year: 2016 end-page: 342 ident: b9 article-title: Multiple task transfer learning with small sample sizes publication-title: Knowl. Inf. Syst. – volume: 20 year: 2007 ident: b19 article-title: Multi-task learning via conic programming publication-title: Adv. Neural Inf. Process. Syst. – volume: 48 start-page: 469 issue: 20 year: 2015 ident: 10.1016/j.compbiomed.2022.106479_b10 article-title: Machine learning for predictive modelling based on small data in biomedical engineering publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.185 – volume: 60 start-page: 5682 issue: 12 year: 2020 ident: 10.1016/j.compbiomed.2022.106479_b4 article-title: Generative network complex for the automated generation of drug-like molecules publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00599 – start-page: 2724 year: 2018 ident: 10.1016/j.compbiomed.2022.106479_b25 article-title: Partial transfer learning with selective adversarial networks publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – start-page: 531 year: 2002 ident: 10.1016/j.compbiomed.2022.106479_b56 article-title: Spectral partitioning with indefinite kernels using the nyström extension – volume: 4 start-page: 100 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.106479_b20 article-title: Exploiting associations between word clusters and document classes for cross-domain text categorization publication-title: Stat. Anal. Data Min. ASA Data Sci. J. doi: 10.1002/sam.10099 – volume: 6 issue: 4 year: 2005 ident: 10.1016/j.compbiomed.2022.106479_b18 article-title: Learning multiple tasks with kernel methods publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 1686 issue: 6 year: 2012 ident: 10.1016/j.compbiomed.2022.106479_b49 article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300124c – year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b58 – volume: 20 year: 2007 ident: 10.1016/j.compbiomed.2022.106479_b19 article-title: Multi-task learning via conic programming publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 8373 year: 2020 ident: 10.1016/j.compbiomed.2022.106479_b43 article-title: Are 2D fingerprints still valuable for drug discovery? publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00305K – volume: 2 start-page: 319 issue: 4 year: 1988 ident: 10.1016/j.compbiomed.2022.106479_b29 article-title: Queries and concept learning publication-title: Mach. Learn. doi: 10.1023/A:1022821128753 – ident: 10.1016/j.compbiomed.2022.106479_b16 doi: 10.1145/1458082.1458099 – volume: 31 year: 2018 ident: 10.1016/j.compbiomed.2022.106479_b27 article-title: Adversarial multiple source domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – volume: 50 start-page: 1382 issue: 6 year: 2002 ident: 10.1016/j.compbiomed.2022.106479_b32 article-title: Algorithms for optimal scheduling and management of hidden markov model sensors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.1003062 – volume: 44 start-page: D1202 issue: D1 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b60 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv951 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.106479_b5 article-title: Algebraic graph-assisted bidirectional transformers for molecular property prediction publication-title: Nature Commun. – year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b3 – volume: 60 start-page: 1235 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2022.106479_b7 article-title: Boosting tree-assisted multitask deep learning for small scientific datasets publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b01184 – volume: 109 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.106479_b13 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 12 start-page: 11122 issue: 45 year: 2021 ident: 10.1016/j.compbiomed.2022.106479_b44 article-title: Proteome-informed machine learning studies of cocaine addiction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03133 – volume: 29 start-page: 743 issue: 9 year: 2018 ident: 10.1016/j.compbiomed.2022.106479_b50 article-title: Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera) publication-title: SAR QSAR Environ. Res. doi: 10.1080/1062936X.2018.1513953 – year: 2021 ident: 10.1016/j.compbiomed.2022.106479_b6 – year: 2000 ident: 10.1016/j.compbiomed.2022.106479_b8 article-title: Neural networks and artificial intelligence for biomedical engineering publication-title: Inst. Electr. Electron. Eng. – volume: 9 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b23 article-title: Supervised representation learning with double encoding-layer autoencoder for transfer learning publication-title: Trans. Intell. Syst. Technol. – year: 2009 ident: 10.1016/j.compbiomed.2022.106479_b34 – volume: 10 start-page: 1692 year: 2019 ident: 10.1016/j.compbiomed.2022.106479_b65 article-title: Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations publication-title: Chem. Sci. doi: 10.1039/C8SC04175J – ident: 10.1016/j.compbiomed.2022.106479_b14 doi: 10.1145/1553374.1553411 – volume: 17 start-page: 2030 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b26 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 31 year: 1988 ident: 10.1016/j.compbiomed.2022.106479_b45 article-title: SMILES, a chemical language and information system publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00057a005 – volume: 162 start-page: 300 issn: 0264-1275 year: 2019 ident: 10.1016/j.compbiomed.2022.106479_b28 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.11.060 – volume: 75 start-page: 51 year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b11 article-title: Handling limited datasets with neural networks in medical applications: A small-data approach publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2016.12.003 – volume: 1 start-page: 818 year: 2021 ident: 10.1016/j.compbiomed.2022.106479_b40 article-title: Cluster learning-assisted directed evolution publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-021-00168-y – volume: 45 start-page: 177 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2022.106479_b61 article-title: ZINC- A free database of commercially available compounds for virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci049714+ – volume: 112 start-page: 334 issue: 2 year: 1994 ident: 10.1016/j.compbiomed.2022.106479_b52 article-title: Motion of multiple junctions: a level set approach publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1105 – start-page: 3 year: 1994 ident: 10.1016/j.compbiomed.2022.106479_b33 article-title: A sequential algorithm for training text classifiers publication-title: ACM-SIGIR Conf. Res. Dev. Inf. Retrieval – volume: 32 year: 2019 ident: 10.1016/j.compbiomed.2022.106479_b38 article-title: Deep active learning with a neural architecture search publication-title: Adv. Neural Inf. Process. Syst. – volume: 427 start-page: 247 issue: 6971 year: 2004 ident: 10.1016/j.compbiomed.2022.106479_b30 article-title: Functional genomic hypothesis generation and experimentation by a robot scientist publication-title: Nature doi: 10.1038/nature02236 – volume: 29 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b24 article-title: Unsupervised domain adaptation with residual transfer networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 29 year: 2014 ident: 10.1016/j.compbiomed.2022.106479_b53 article-title: Diffuse interface methods for multiclass segmentation of high-dimensional data publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.02.008 – year: 2022 ident: 10.1016/j.compbiomed.2022.106479_b64 – volume: 26 start-page: 214 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2022.106479_b54 article-title: Spectral grouping using the Nyström method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1262185 – year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b37 – volume: 45 start-page: D945 issue: D1 year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b59 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1074 – volume: 23 10 start-page: 1294 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b51 article-title: A data-driven approach to predicting successes and failures of clinical trials publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2016.07.023 – ident: 10.1016/j.compbiomed.2022.106479_b36 doi: 10.1145/3308558.3313620 – ident: 10.1016/j.compbiomed.2022.106479_b22 doi: 10.1109/CVPR.2010.5540064 – volume: 6 start-page: 1903 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2022.106479_b42 article-title: An MBO scheme on graphs for classification and image processing publication-title: SIAM J. Imaging Sci. doi: 10.1137/120886935 – volume: 49 start-page: 2077 issue: 9 year: 2009 ident: 10.1016/j.compbiomed.2022.106479_b47 article-title: Benchmark data set for in silico prediction of Ames mutagenicity publication-title: J. Chem. Inf. Model. doi: 10.1021/ci900161g – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.compbiomed.2022.106479_b1 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 46 start-page: 315 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b9 article-title: Multiple task transfer learning with small sample sizes publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0821-z – volume: 12 start-page: 10793 issue: 44 year: 2021 ident: 10.1016/j.compbiomed.2022.106479_b12 article-title: Extracting predictive representations from hundreds of millions of molecules publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03058 – ident: 10.1016/j.compbiomed.2022.106479_b21 doi: 10.1137/1.9781611972825.47 – start-page: 1183 year: 2017 ident: 10.1016/j.compbiomed.2022.106479_b35 article-title: Deep bayesian active learning with image data publication-title: Int. Conf. Mach. Learn. – volume: 36 year: 2013 ident: 10.1016/j.compbiomed.2022.106479_b41 article-title: Multiclass data segmentation using diffuse interface methods on graphs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 1664 issue: 12 year: 2009 ident: 10.1016/j.compbiomed.2022.106479_b17 article-title: Cross-domain learning from multiple sources: A consensus regularization perspective publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.205 – volume: 1995 start-page: 150 year: 1995 ident: 10.1016/j.compbiomed.2022.106479_b31 article-title: Committee-based sampling for training probabilistic classifiers publication-title: Mach. Learn. Proc. – year: 2015 ident: 10.1016/j.compbiomed.2022.106479_b57 – volume: 56 start-page: 1936 issue: 10 year: 2016 ident: 10.1016/j.compbiomed.2022.106479_b48 article-title: Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00290 – volume: 50 start-page: 742 issue: 5 year: 2010 ident: 10.1016/j.compbiomed.2022.106479_b62 article-title: Extended-connectivity fingerprints publication-title: J. Chem. Inform. Model. doi: 10.1021/ci100050t – ident: 10.1016/j.compbiomed.2022.106479_b46 – start-page: 6122 year: 2019 ident: 10.1016/j.compbiomed.2022.106479_b39 article-title: Deep reinforcement active learning for human-in-the-loop person re-identification publication-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. – volume: 160 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2022.106479_b2 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 23 start-page: 504 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2022.106479_b15 article-title: Domain adaptation from multiple sources: A domain-dependent regularization approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2178556 – volume: 5 start-page: 107 issue: 2 year: 1965 ident: 10.1016/j.compbiomed.2022.106479_b63 article-title: The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service publication-title: J. Chem. Doc. doi: 10.1021/c160017a018 – ident: 10.1016/j.compbiomed.2022.106479_b55 doi: 10.1109/CVPR.2001.990481  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.3979187 | 
    
| Snippet | In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the... AbstractIn molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 106479 | 
    
| SubjectTerms | Algorithms Autoencoder Computer applications Datasets Decision trees Internal Medicine Other R-S scores Random Forest Scarcely labeled data Small data Spectral graph Support Vector Machine Support vector machines Transfer learning Transformer Transformers  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxDU0cr-2IE6qoClI5Uak3y_EDFqXJapNV1QtX_jYziZOy2h5W4hjHEyszo3kkM98Q8t5mBgzjwqZlWVUpBx-YGu-z1OGobssLGYamsPNv4uyCf71cXB6Qk6kXBssqo-0fbfpgrePKceTm8Wq5xB5fSCUgwWFsmJmNDb-cS5xi8OH3bZkHz4qxDQXsDe6O1TxjjReWbY9t7pApMgbLgmNR190uajcE3a2kvL9pVubm2tT1P27q9BF5GONL-ml8hcfkwDdPyL3z-Af9KfnzJeJDgMui_RS1-jU1jaNm07cIbOngegZ37Sh-q6VDSyYcTgeIa2rqH-0a1q86Cg-gEEbS1RpPQUHTNtDOYhdlfUNBzcC1OXo1DeKlWJX6jFycfv5-cpbGYQyphRyrTwtX5M7KwCXnLChlZRk8l8rzoqpyJkKmqswwZawDYUhTCOcYq0xmnDC5ssVzcti0jX9JaBAKIYSEDSXnhQvKSOeV4MaELCyCSIic-K9tRCrHgRm1nkrSfulbyWmUnB4ll5B8plyNaB170JSTiPXUjQr2U4NL2YNW3kXru2gIOp3rjulM7yhrQj7OlFv6vue5R5Mu6vkoJoWQOeIrJuTdfBusBf4CMo1vN8OevISMkrOEvBhVd2ZUAaEaIujBS20p9bwBkci37zTLnwMieamEypGSzeq_N_9f_RcnXpMHaFXGOvojctivN_4NhIl99XawA38BjIZrHg priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF7qKagv4t1olRV8DSabPbsbRESlpQo9iFro27LZS6ukyfEkB-kv8G87k9uxtMh5zGWyZGcyM5v95htCXtnEgGOc2zjPiyLmEANj430SO2zVbXkmQ1cUdrQQh8f888n8ZIcsxloYhFWOPrFz1K62-I_8NZNCyBTZ494tf8XYNQp3V8cWGmZoreDedhRjN8guQ2asGdn9sL_48nVTKZlkfVEKeB8Oi6MB29MjvhDE3Re9w7qRMTgtOEK8rg9YVxPSq7jKW-tqaS5-m7L8J2gd3CV3hmyTvu_N4x7Z8dV9cvNo2E9_QP58GtgiIIDRdsxh_YqaylGzbmukuXRwPFG9NhT_3NKuQBMGpx3hNTXlKcxVe3beUHgAhaSSLlc4Cqqd1oE2FmsqywsKRgeBztHzsS0vRYzqQ3J8sP_942E8tGaILay42jhzWeqsDFxyzoJSVubBc6k8z4oiZSIkqkgMU8a6VElpMuEcY4VJjBMmVTZ7RGZVXfknhAahkFBI2JBznrmgjHReCW5MSMI8iIjIcf61HXjLsX1GqUeA2k-90ZxGzelecxFJJ8llz92xhUw-qliPtangTTUEmC1k5XWyvhncQqNT3TCd6G8dKxKYH2Ndu3cVkTeT5JD59BnNluPujbaop6E230tEXk6XwXfghpCpfL3u7klzWF9yFpHHvelOE5VB4oZ8evBSl4x6ugF5yS9fqX6cdfzkuRIqRUk2mf_W8__0_-_yjNxGJ9LD5vfIrF2t_XPICtvixfCp_wUU6GZ1 priority: 102 providerName: ProQuest  | 
    
| Title | Integrating transformer and autoencoder techniques with spectral graph algorithms for the prediction of scarcely labeled molecular data | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522011878 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522011878 https://dx.doi.org/10.1016/j.compbiomed.2022.106479 https://www.ncbi.nlm.nih.gov/pubmed/36610214 https://www.proquest.com/docview/2766712403 https://www.proquest.com/docview/2761982642 https://pubmed.ncbi.nlm.nih.gov/PMC9868114 https://www.ncbi.nlm.nih.gov/pmc/articles/9868114  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 153 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWVgIuvB-BpTIS13QTx7UdcSpoSxe01WqhUjlZjh3DQppWTSq0HLjytxnnBcvuoXBJ1Tiu5eTzzLj55huEXuhAgWEcaT-Ok8Sn4AN9laaBb1ypbk0jbquksOMZm87p28VosYfCNhemIu3r5GyYZ8thfva54laul_qg5YkdxIKJ0JWu7rMRhN891J_PTsYfa4sb-FRUhVZdEW0fAEYb9k7N6XI07TqtHXaGhMBpRh2J62qXdDnkvMycvLHN1-r8m8qyP9zS5DY6bSdUs1G-DrdlMtTf_9J6_KcZ30G3miAVj-umu2gvze-h68fNa_j76OdRIzIBfg-XbeibbrDKDVbbcuXUMQ187xRiC-z-8MVVXifMCFc62Vhln1YbOL8sMPwAhlgUrzduFIcWvLK40C4VMzvHgFXwjwYv22q-2FFbH6D55PDD66nfVHTwNWzUSj8yUWg0t5RTSqwQmsc2pVykNEqSkDAbiCRQRCht4AFyFTFjCElUoAxTodDRQ9TLV3n6GGHLhNMhYtrGlEbGCsVNKhhVygZ2ZJmHePtQpW7kzl3VjUy2vLYv8jccpIODrOHgobDrua4lP3boE7e4kW1KKxhhCX5ph778qr5p0ViTQoayIDKQ7ysxJcA3IVWVeOGhl13PJmCqA6Edx91vAS67oQhnjIdOpNFDz7tmMDnuPZLK09W2uiaMYVtKiYce1euhu1ERxHtOhg8mdWGldBc4OfOLLYD5Sta8gbmHSLemdr7_T_6n01N001mkmoO_j3rlZps-gxCzTAbo2vBHCEe-4HAUkzcD1B8fvZvO4PPV4ezkdNCYnV8mP4Zy | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDcLBYwEx4jE8dqOUIV4tNql3QpBK_XmOn5Q0Da7bLKq9hfwr_htjBMnS9UK7aXHJJ5Y8YznEc98g9ArHStQjH0dZVmeRxRsYKSsjSPjW3VrmnJXF4WNDtjgiH4-7h-voT9tLYxPq2x1Yq2ozUT7f-RvCGeMJx497t30V-S7RvnT1baFhgqtFcx2DTEWCjv27OIcQrhye_gJ-P2akN2dw4-DKHQZiDQED1WUmjQxmjvKKSVOCM0zZykXlqZ5nhDmYpHHigilTSI4VykzhpBcxcowlQidwntvoA2a0gyCv40POwdfvi4rM-O0KYIBbUchGAu5RE2GmU8ab4rsIU4lBG4z6lPKrjaQlx3gy3mcm_Niqhbnajz-x0ju3kG3g3eL3zfieBet2eIeujkK5_f30e9hQKcAg4mr1me2M6wKg9W8mnhYTQPXHbRsif2fYlwXhMLkuAbYxmr8HXhTnZ6VGF6AwYnF05mfxYsZnjhcal_DOV5gEHIwrAaftW2Asc-JfYCOroVJD9F6MSnsY4QdEx7AiGmXUZoaJxQ3VjCqlItd37Ee4u36Sx1w0n27jrFsE-J-yiXnpOecbDjXQ0lHOW2wQlagyVoWy7YWFrS3BIO2Ai2_itaWQQ2VMpElkbH8VqMwgfgRUreXFz30tqMMnlbjQa0471Yri7Kbark_e-hl9xh0lT-AUoWdzOsxSQbxLCU99KgR3W6hUnAUPX4ffNQFoe4GeBz0i0-KH6c1HnommEg8JenEf-X1f_L_b3mBNgeHo325PzzYe4pueQXWpOxvofVqNrfPwCOt8udh22N0ct2a5i_NmaPv | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkQoviDsLBYwEj1ETx2s7QgghyqpLaYUElfpmHF8oaJtdNllV-wX8E1_HTG5L1QrtSx9zmVjxTGbG8ZkzhLy0sQHHOLRRluV5xCEGRsb7OHLYqtvyVIa6KOzgUOwd8Y_Hw-MN8qerhUFYZecTa0ftphb_ke8wKYRMkD1uJ7SwiM-7o7ezXxF2kMKd1q6dRmMi-355Bsu38s14F3T9irHRh6_v96K2w0BkYeFQRalLE2dl4JJzFpSyMgueS-V5mucJEyFWeWyYMtYlSkqTCucYy01snDCJsik89xq5LtM0QzihPJarmsw4bcpfwM9xWIa1KKIGW4Zw8aa8HlaojMFpwRFMdnlovJj6XkRw3lgUM7M8M5PJP-FxdJvcavNa-q4xxDtkwxd3ydZBu3N_j_wet7wUECpp1WXLfk5N4ahZVFMk1HRw3JPKlhT_EdO6FBQGpzW1NjWT76CJ6uS0pPAACukrnc1xFDQwOg20tFi9OVlSMG8IqY6edg2AKaJh75OjK1HRA7JZTAv_iNAgFFIXCRsyzlMXlJHOK8GNCXEYBjEgspt_bVuGdGzUMdEdFO6nXmlOo-Z0o7kBSXrJWcMSsoZM1qlYd1Ww4Lc1hLI1ZOVlsr5sHVCpE10yHesvNf8SmB9jdWN5NSCve8k2x2pypzXH3e5sUfdDrb7MAXnRXwYvhVtPpvDTRX1PksFKlrMBediYbj9RKaSIyNwHL3XOqPsbkAH9_JXix0nNhJ4poRKUZL35rz3_j___Ls_JFvgX_Wl8uP-E3ETP1WD1t8lmNV_4p5CKVvmz-pun5NtVO5m_ZwihiQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJa7aJ47UdcaoQVUFqhYCVysly_IBCNlltEqHyB_jbjJM4UNrDwnHjzEZOPs-Mk2--QeiFThQ4xoWO87woYgoxMFbWJrHxrbo1zbjri8KOT9jRkr49XZzuoDTUwvSkfV2czatyNa_OvvTcyvVK7wee2H4umEh96-pdtoD0e4Z2lyfvDj4NHjeJqegbrfom2jEAjI7snYHT5WnaQ1k77AwJgcOMehLX1SHpcsp5mTl5vavW6vy7Kss_wtLhLfQ-TGhgo3ybd20x1z_-0nr8pxnfRjfHJBUfDEN30I6t7qJrx-Nn-Hvo55tRZALiHm5D6ms3WFUGq66tvTqmgd-TQmyD_Qtf3Nd1woxwr5ONVfm53sDxVYPhDzDkoni98VfxaMG1w432pZjlOQasQnw0eBW6-WJPbb2PloevP746iseODrGGjVobZyZLjeaOckqJE0Lz3FnKhaVZUaSEuUQUiSJCaQMPkKuMGUNIoRJlmEqFzh6gWVVX9hHCjgmvQ8S0yynNjBOKGysYVcolbuFYhHh4qFKPcue-60YpA6_tq_wNB-nhIAc4RCidLNeD5McWNnnAjQwlreCEJcSlLWz5Vba2Gb1JI1PZEJnID72YEuCbkL5LvIjQy8lyTJiGRGjL6-4FgMvpUoQzxlMv0hih59MwuBz_HUlVtu76c9IctqWUROjhsB6mG5VBvudl-GBSF1bKdIKXM784ApjvZc1HmEeITGtq6_v_-H-MnqAb3iMNHPw9NGs3nX0KKWZbPBudyi_CLYB_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+transformer+and+autoencoder+techniques+with+spectral+graph+algorithms+for+the+prediction+of+scarcely+labeled+molecular+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hayes%2C+Nicole&rft.au=Rapinchuk%2C+Ekaterina&rft.au=Wei%2C+Guo-Wei&rft.date=2023-02-01&rft.issn=0010-4825&rft.spage=106479&rft.epage=106479&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106479&rft.externalDBID=ECK1-s2.0-S0010482522011878&rft.externalDocID=1_s2_0_S0010482522011878 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |