Integrating transformer and autoencoder techniques with spectral graph algorithms for the prediction of scarcely labeled molecular data

In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advan...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 153; p. 106479
Main Authors Hayes, Nicole, Merkurjev, Ekaterina, Wei, Guo-Wei
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.106479

Cover

Abstract In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. [Display omitted] •Three new machine learning models for data classification are proposed in this paper.•The proposed methods are very useful for the case of a small amount of labeled data.•The proposed techniques incorporate molecular fingerprints for multi-task learning.•We integrate autoencoders, bidirectional encoder transformers, circular fingerprints.•The performances are analyzed using residue-similarity (R-S) scores and R-S indices.
AbstractList AbstractIn molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme is integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosted decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.
In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data. [Display omitted] •Three new machine learning models for data classification are proposed in this paper.•The proposed methods are very useful for the case of a small amount of labeled data.•The proposed techniques incorporate molecular fingerprints for multi-task learning.•We integrate autoencoders, bidirectional encoder transformers, circular fingerprints.•The performances are analyzed using residue-similarity (R-S) scores and R-S indices.
In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.
In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman–Bence–Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme are integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosting decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.
In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the challenging task of predicting desirable properties from small data sets or scarcely-labeled data sets. Although transfer learning can be advantageous, it requires the existence of a related large data set. This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-based modifications of the MBO scheme is integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder, in order to deal with scarcely-labeled data sets. In addition, a consensus technique is detailed. The proposed models are validated using five benchmark data sets. We also provide a thorough comparison to other competing methods, such as support vector machines, random forests, and gradient boosted decision trees, which are known for their good performance on small data sets. The performances of various methods are analyzed using residue-similarity (R-S) scores and R-S indices. Extensive computational experiments and theoretical analysis show that the new models perform very well even when as little as 1% of the data set is used as labeled data.
ArticleNumber 106479
Author Merkurjev, Ekaterina
Wei, Guo-Wei
Hayes, Nicole
AuthorAffiliation a Department of Mathematics, Michigan State University, MI 48824, USA
c Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
d Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
b Department of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA
AuthorAffiliation_xml – name: d Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
– name: b Department of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA
– name: c Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
– name: a Department of Mathematics, Michigan State University, MI 48824, USA
Author_xml – sequence: 1
  givenname: Nicole
  orcidid: 0000-0003-1772-0306
  surname: Hayes
  fullname: Hayes, Nicole
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
– sequence: 2
  givenname: Ekaterina
  surname: Merkurjev
  fullname: Merkurjev, Ekaterina
  email: merkurje@msu.edu
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
– sequence: 3
  givenname: Guo-Wei
  surname: Wei
  fullname: Wei, Guo-Wei
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36610214$$D View this record in MEDLINE/PubMed
BookMark eNqdkstuFDEQRVsoiDzgF5AlNmxmsN1Ot2eDIBGPSJFYAGur2nbPeHDbje1ONF_Ab1OtCcNDQgqsLNu3rqpO3dPqKMRgq4owumSUNS-2Sx2HsXNxsGbJKef43Ih29aA6YbJdLeh5LY6qE0oZXQjJz4-r05y3lFJBa_qoOq6bhlHOxEn17SoUu05QXFiTkiDkPqbBJgLBEJhKtEFHg_di9Sa4r5PN5NaVDcmj1aj3BIvHDQG_jgnfh0zQgJSNJWOyxuniYiCxJ1lD0tbviIfOemvIEL3Vk4dEDBR4XD3swWf75O48qz6_ffPp8v3i-sO7q8vX1wvdsFVZ1KZmRre9aIXgvZS6XfVWtNKKuusYb3oqOwpcgjYIooW6MYbzDiiYBpjU9Vm12vtOYYTdLXivxuQGSDvFqJrhqq36CVfNcNUeLta-3NeOU4d_2oYZwKE-glO__wS3Uet4o1aykYwJNHh-Z5DiTLKowWWE4iHYOGXFWxxS8kZwlD77Q7qNUwqIZlY1LeO4SlQ9_bWjQys_9osCuRfoFHNOtv-PaQ-l2hWY14mzOX8fg4u9gcV93jibVNYO44SpSJgdZaL7hy4OJtq74DT4L3Zn8wEKU5krqj7OkZ8TzzllmACJBq_-bnC_Hr4D-_UZ2A
CitedBy_id crossref_primary_10_1016_j_infrared_2024_105304
crossref_primary_10_1016_j_cma_2023_116347
crossref_primary_10_1016_j_jpha_2024_101081
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1142_S2737416524500479
crossref_primary_10_1007_s10994_024_06616_w
crossref_primary_10_1038_s41524_024_01479_0
Cites_doi 10.1016/j.ifacol.2015.10.185
10.1021/acs.jcim.0c00599
10.1002/sam.10099
10.1021/ci300124c
10.1039/D0CP00305K
10.1023/A:1022821128753
10.1145/1458082.1458099
10.1109/TSP.2002.1003062
10.1093/nar/gkv951
10.1021/acs.jcim.9b01184
10.1109/JPROC.2020.3004555
10.1021/acs.jpclett.1c03133
10.1080/1062936X.2018.1513953
10.1039/C8SC04175J
10.1145/1553374.1553411
10.1021/ci00057a005
10.1016/j.matdes.2018.11.060
10.1016/j.artmed.2016.12.003
10.1038/s43588-021-00168-y
10.1021/ci049714+
10.1006/jcph.1994.1105
10.1038/nature02236
10.1016/j.aml.2014.02.008
10.1109/TPAMI.2004.1262185
10.1093/nar/gkw1074
10.1016/j.chembiol.2016.07.023
10.1145/3308558.3313620
10.1109/CVPR.2010.5540064
10.1137/120886935
10.1021/ci900161g
10.1126/science.aaa8415
10.1007/s10115-015-0821-z
10.1021/acs.jpclett.1c03058
10.1137/1.9781611972825.47
10.1109/TKDE.2009.205
10.1021/acs.jcim.6b00290
10.1021/ci100050t
10.1109/TNNLS.2011.2178556
10.1021/c160017a018
10.1109/CVPR.2001.990481
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2022.106479
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library (ProQuest)
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Research Library Prep


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106479
ExternalDocumentID oai:pubmedcentral.nih.gov:9868114
PMC9868114
36610214
10_1016_j_compbiomed_2022_106479
S0010482522011878
1_s2_0_S0010482522011878
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM126189
– fundername: NIAID NIH HHS
  grantid: R01 AI164266
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c619t-3d31dc7f47442f88c79fe478e43bb126f08b0a28acd1877a36dd22ba0ad6a18c3
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 04:15:41 EDT 2025
Tue Sep 30 17:10:04 EDT 2025
Sun Sep 28 11:26:02 EDT 2025
Tue Oct 07 06:25:05 EDT 2025
Mon Jul 21 05:37:59 EDT 2025
Wed Oct 01 05:27:43 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Fri Feb 23 02:37:44 EST 2024
Tue Feb 25 20:03:27 EST 2025
Tue Oct 14 19:33:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spectral graph
Small data
Scarcely labeled data
R-S scores
Transformer
Autoencoder
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-3d31dc7f47442f88c79fe478e43bb126f08b0a28acd1877a36dd22ba0ad6a18c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1772-0306
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9868114
PMID 36610214
PQID 2766712403
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2022_106479
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9868114
proquest_miscellaneous_2761982642
proquest_journals_2766712403
pubmed_primary_36610214
crossref_primary_10_1016_j_compbiomed_2022_106479
crossref_citationtrail_10_1016_j_compbiomed_2022_106479
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106479
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522011878
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Morgan (b63) 1965; 5
Shaikhina, Lowe, Daga, Briggs, Higgins, Khovanova (b10) 2015; 48
L. Duan, I. Tsang, D. Xu, T.-S. Chua, Domain adaptation from multiple sources via auxiliary classifiers, in: Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 289–296.
Angluin (b29) 1988; 2
Lewis, Gale (b33) 1994
Zhao, Zhang, Wu, Moura, Costeira, Gordon (b27) 2018; 31
Belongie, Fowlkes, Chung, Malik (b56) 2002
Kotsiantis, Zaharakis, Pintelas (b2) 2007; 160
Chen, Gao, Nguyen, Chen, Jiang, Wei, Pan (b5) 2021; 12
C. Fowlkes, S. Belongie, J. Malik, Efficient spatiotemporal grouping using the Nyström method, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, p. 1.
Chen, Zheng, Wei, Pan (b12) 2021; 12
RDKit, RDKit: Open-source cheminformatics
Venko, Drgan, Novič (b50) 2018; 29
King, Whelan, Jones, Reiser, Bryant, Muggleton, Kell, Oliver (b30) 2004; 427
Zhuang, Luo, Xiong, Xiong, He, Shi (b17) 2009; 22
Saha, Gupta, Phung, Venkatesh (b9) 2016; 46
Krishnamurthy (b32) 2002; 50
N. Ostapuk, J. Yang, P. Cudré-Mauroux, Activelink: deep active learning for link prediction in knowledge graphs, in: World Wide Web Conference, 2019, pp. 1398–1408.
Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit, Leach (b59) 2017; 45
Gao, Nguyen, Sresht, Mathiowetz, Tu, Wei (b43) 2020; 22
Martins, Teixeira, Pinheiro, Falcao (b49) 2012; 52
Hudson, Cohen (b8) 2000
Kato, Kashima, Sugiyama, Asai (b19) 2007; 20
Winter, Montanari, Noé, Clevert (b65) 2019; 10
Jiang, Wang, Wang, Gao, Nguyen, Wei (b7) 2020; 60
.
Cao, Long, Wang, Jordan (b25) 2018
Merkurjev, Kostic, Bertozzi (b42) 2013; 6
Jordan, Mitchell (b1) 2015; 349
Irwin, Shoichet (b61) 2005; 45
Zhuang, Luo, Xiong, He, Xiong, Shi (b20) 2011; 4
T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 3081–3088.
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b26) 2016; 17
Garcia-Cardona, Merkurjev, Bertozzi, Flenner, Percus (b41) 2013; 36
P. Luo, F. Zhuang, H. Xiong, Y. Xiong, Q. He, Transfer learning from multiple source domains via consensus regularization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 103–112.
Qiu, Hu, Wei (b40) 2021; 1
Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He. (b13) 2020; 109
Weininger (b45) 1988; 28
Zupan, Gasteiger (b57) 2015
Dagan, Engelson (b31) 1995; 1995
Feng, Zhou, Dong (b28) 2019; 162
Hozumi, Wang, Wei (b64) 2022
Hansen, Mika, Schroeter, Sutter, Ter Laak, Steger-Hartmann, Heinrich, Müller (b47) 2009; 49
Merriman, Bence, Osher. (b52) 1994; 112
Duan, Xu, Tsang (b15) 2012; 23
Fowlkes, Belongie, Chung, Malik (b54) 2004; 26
Merkurjev, Nguyen, Wei (b6) 2021
Gao, Chen, Robison, Wei (b44) 2021; 12
Shaikhina, Khovanova (b11) 2017; 75
Kim, Thiessen, Bolton, Chen, Fu, Gindulyte, Han, He, He, Shoemaker, Wang, Yu, Zhang, Bryant (b60) 2016; 44
Settles (b34) 2009
Evgeniou, Micchelli, Pontil, Shawe-Taylor (b18) 2005; 6
Geifman, El-Yaniv (b38) 2019; 32
Liu, Wang, Gong, Lu, Tao. (b39) 2019
Gayvert, Madhukar, Elemento (b51) 2016; 23 10
Gao, Nguyen, Tu, Wei (b4) 2020; 60
Schwab (b3) 2017
Gal, Islam, Ghahramani (b35) 2017
Subramanian, Ramsundar, Pande, Denny (b48) 2016; 56
Zhuang, Cheng, Luo, Pan, He (b23) 2017; 9
Rogers, Hahn (b62) 2010; 50
Merkurjev, Garcia-Cardona, Bertozzi, Flenner, Percus (b53) 2014; 33
M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang, W. Wang, Dual transfer learning, in: Proceedings of the 2012 SIAM International Conference on Data Mining, 2012, pp. 540–551.
Long, Zhu, Wang, Jordan (b24) 2016; 29
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b58) 2017
Geifman, El-Yaniv (b37) 2017
Qiu (10.1016/j.compbiomed.2022.106479_b40) 2021; 1
Martins (10.1016/j.compbiomed.2022.106479_b49) 2012; 52
Gal (10.1016/j.compbiomed.2022.106479_b35) 2017
10.1016/j.compbiomed.2022.106479_b22
Zhuang (10.1016/j.compbiomed.2022.106479_b13) 2020; 109
10.1016/j.compbiomed.2022.106479_b21
Feng (10.1016/j.compbiomed.2022.106479_b28) 2019; 162
Zupan (10.1016/j.compbiomed.2022.106479_b57) 2015
Gao (10.1016/j.compbiomed.2022.106479_b44) 2021; 12
Merkurjev (10.1016/j.compbiomed.2022.106479_b6) 2021
Duan (10.1016/j.compbiomed.2022.106479_b15) 2012; 23
Gayvert (10.1016/j.compbiomed.2022.106479_b51) 2016; 23 10
King (10.1016/j.compbiomed.2022.106479_b30) 2004; 427
Lewis (10.1016/j.compbiomed.2022.106479_b33) 1994
Merkurjev (10.1016/j.compbiomed.2022.106479_b53) 2014; 33
Schwab (10.1016/j.compbiomed.2022.106479_b3) 2017
Hozumi (10.1016/j.compbiomed.2022.106479_b64) 2022
Vaswani (10.1016/j.compbiomed.2022.106479_b58) 2017
Zhuang (10.1016/j.compbiomed.2022.106479_b23) 2017; 9
10.1016/j.compbiomed.2022.106479_b36
Ganin (10.1016/j.compbiomed.2022.106479_b26) 2016; 17
Venko (10.1016/j.compbiomed.2022.106479_b50) 2018; 29
Garcia-Cardona (10.1016/j.compbiomed.2022.106479_b41) 2013; 36
Zhuang (10.1016/j.compbiomed.2022.106479_b20) 2011; 4
Fowlkes (10.1016/j.compbiomed.2022.106479_b54) 2004; 26
Hansen (10.1016/j.compbiomed.2022.106479_b47) 2009; 49
Subramanian (10.1016/j.compbiomed.2022.106479_b48) 2016; 56
Chen (10.1016/j.compbiomed.2022.106479_b12) 2021; 12
Saha (10.1016/j.compbiomed.2022.106479_b9) 2016; 46
Merriman (10.1016/j.compbiomed.2022.106479_b52) 1994; 112
Gao (10.1016/j.compbiomed.2022.106479_b4) 2020; 60
10.1016/j.compbiomed.2022.106479_b46
Long (10.1016/j.compbiomed.2022.106479_b24) 2016; 29
Settles (10.1016/j.compbiomed.2022.106479_b34) 2009
Kato (10.1016/j.compbiomed.2022.106479_b19) 2007; 20
Geifman (10.1016/j.compbiomed.2022.106479_b37) 2017
Hudson (10.1016/j.compbiomed.2022.106479_b8) 2000
Kim (10.1016/j.compbiomed.2022.106479_b60) 2016; 44
Zhuang (10.1016/j.compbiomed.2022.106479_b17) 2009; 22
Zhao (10.1016/j.compbiomed.2022.106479_b27) 2018; 31
Merkurjev (10.1016/j.compbiomed.2022.106479_b42) 2013; 6
Belongie (10.1016/j.compbiomed.2022.106479_b56) 2002
Kotsiantis (10.1016/j.compbiomed.2022.106479_b2) 2007; 160
Rogers (10.1016/j.compbiomed.2022.106479_b62) 2010; 50
Evgeniou (10.1016/j.compbiomed.2022.106479_b18) 2005; 6
Dagan (10.1016/j.compbiomed.2022.106479_b31) 1995; 1995
Gaulton (10.1016/j.compbiomed.2022.106479_b59) 2017; 45
Morgan (10.1016/j.compbiomed.2022.106479_b63) 1965; 5
Geifman (10.1016/j.compbiomed.2022.106479_b38) 2019; 32
Krishnamurthy (10.1016/j.compbiomed.2022.106479_b32) 2002; 50
Shaikhina (10.1016/j.compbiomed.2022.106479_b11) 2017; 75
Winter (10.1016/j.compbiomed.2022.106479_b65) 2019; 10
Jiang (10.1016/j.compbiomed.2022.106479_b7) 2020; 60
Cao (10.1016/j.compbiomed.2022.106479_b25) 2018
Irwin (10.1016/j.compbiomed.2022.106479_b61) 2005; 45
Shaikhina (10.1016/j.compbiomed.2022.106479_b10) 2015; 48
10.1016/j.compbiomed.2022.106479_b16
Angluin (10.1016/j.compbiomed.2022.106479_b29) 1988; 2
10.1016/j.compbiomed.2022.106479_b14
Gao (10.1016/j.compbiomed.2022.106479_b43) 2020; 22
Jordan (10.1016/j.compbiomed.2022.106479_b1) 2015; 349
Weininger (10.1016/j.compbiomed.2022.106479_b45) 1988; 28
10.1016/j.compbiomed.2022.106479_b55
Chen (10.1016/j.compbiomed.2022.106479_b5) 2021; 12
Liu (10.1016/j.compbiomed.2022.106479_b39) 2019
References_xml – reference: T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 3081–3088.
– volume: 2
  start-page: 319
  year: 1988
  end-page: 342
  ident: b29
  article-title: Queries and concept learning
  publication-title: Mach. Learn.
– volume: 23
  start-page: 504
  year: 2012
  end-page: 518
  ident: b15
  article-title: Domain adaptation from multiple sources: A domain-dependent regularization approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: b3
  article-title: The Fourth Industrial Revolution
– reference: P. Luo, F. Zhuang, H. Xiong, Y. Xiong, Q. He, Transfer learning from multiple source domains via consensus regularization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 103–112.
– volume: 427
  start-page: 247
  year: 2004
  end-page: 252
  ident: b30
  article-title: Functional genomic hypothesis generation and experimentation by a robot scientist
  publication-title: Nature
– volume: 56
  start-page: 1936
  year: 2016
  end-page: 1949
  ident: b48
  article-title: Computational modeling of
  publication-title: J. Chem. Inf. Model.
– volume: 10
  start-page: 1692
  year: 2019
  end-page: 1701
  ident: b65
  article-title: Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
  publication-title: Chem. Sci.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 17
  ident: b23
  article-title: Supervised representation learning with double encoding-layer autoencoder for transfer learning
  publication-title: Trans. Intell. Syst. Technol.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 9
  ident: b5
  article-title: Algebraic graph-assisted bidirectional transformers for molecular property prediction
  publication-title: Nature Commun.
– year: 2009
  ident: b34
  article-title: Active Learning Literature Survey
– volume: 36
  year: 2013
  ident: b41
  article-title: Multiclass data segmentation using diffuse interface methods on graphs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 109
  start-page: 43
  year: 2020
  end-page: 76
  ident: b13
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
– start-page: 1183
  year: 2017
  end-page: 1192
  ident: b35
  article-title: Deep bayesian active learning with image data
  publication-title: Int. Conf. Mach. Learn.
– volume: 6
  start-page: 1903
  year: 2013
  end-page: 1930
  ident: b42
  article-title: An MBO scheme on graphs for classification and image processing
  publication-title: SIAM J. Imaging Sci.
– reference: C. Fowlkes, S. Belongie, J. Malik, Efficient spatiotemporal grouping using the Nyström method, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, p. 1.
– volume: 60
  start-page: 5682
  year: 2020
  end-page: 5698
  ident: b4
  article-title: Generative network complex for the automated generation of drug-like molecules
  publication-title: J. Chem. Inf. Model.
– volume: 12
  start-page: 10793
  year: 2021
  end-page: 10801
  ident: b12
  article-title: Extracting predictive representations from hundreds of millions of molecules
  publication-title: J. Phys. Chem. Lett.
– year: 2015
  ident: b57
  article-title: Neural Networks in Chemistry and Drug Design
– start-page: 6122
  year: 2019
  end-page: 6131
  ident: b39
  article-title: Deep reinforcement active learning for human-in-the-loop person re-identification
  publication-title: Proc. IEEE/CVF Int. Conf. Comput. Vis.
– volume: 49
  start-page: 2077
  year: 2009
  end-page: 2081
  ident: b47
  article-title: Benchmark data set for in silico prediction of Ames mutagenicity
  publication-title: J. Chem. Inf. Model.
– volume: 50
  start-page: 1382
  year: 2002
  end-page: 1397
  ident: b32
  article-title: Algorithms for optimal scheduling and management of hidden markov model sensors
  publication-title: IEEE Trans. Signal Process.
– start-page: 3
  year: 1994
  end-page: 12
  ident: b33
  article-title: A sequential algorithm for training text classifiers
  publication-title: ACM-SIGIR Conf. Res. Dev. Inf. Retrieval
– volume: 17
  start-page: 2030
  year: 2016
  end-page: 2096
  ident: b26
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 2724
  year: 2018
  end-page: 2732
  ident: b25
  article-title: Partial transfer learning with selective adversarial networks
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– reference: M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang, W. Wang, Dual transfer learning, in: Proceedings of the 2012 SIAM International Conference on Data Mining, 2012, pp. 540–551.
– volume: 23 10
  start-page: 1294
  year: 2016
  end-page: 1301
  ident: b51
  article-title: A data-driven approach to predicting successes and failures of clinical trials
  publication-title: Cell Chem. Biol.
– volume: 29
  start-page: 743
  year: 2018
  end-page: 754
  ident: b50
  article-title: Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
  publication-title: SAR QSAR Environ. Res.
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b1
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– reference: . RDKit, RDKit: Open-source cheminformatics,
– volume: 50
  start-page: 742
  year: 2010
  end-page: 754
  ident: b62
  article-title: Extended-connectivity fingerprints
  publication-title: J. Chem. Inform. Model.
– volume: 45
  start-page: 177
  year: 2005
  end-page: 182
  ident: b61
  article-title: ZINC- A free database of commercially available compounds for virtual screening
  publication-title: J. Chem. Inf. Model.
– start-page: 531
  year: 2002
  end-page: 542
  ident: b56
  article-title: Spectral partitioning with indefinite kernels using the nyström extension
  publication-title: European Conference on Computer Vision
– volume: 44
  start-page: D1202
  year: 2016
  end-page: D1213
  ident: b60
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res.
– volume: 52
  start-page: 1686
  year: 2012
  end-page: 1697
  ident: b49
  article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling
  publication-title: J. Chem. Inf. Model.
– volume: 1
  start-page: 818
  year: 2021
  end-page: 819
  ident: b40
  article-title: Cluster learning-assisted directed evolution
  publication-title: Nat. Comput. Sci.
– volume: 29
  year: 2016
  ident: b24
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 8373
  year: 2020
  end-page: 8390
  ident: b43
  article-title: Are 2D fingerprints still valuable for drug discovery?
  publication-title: Phys. Chem. Chem. Phys.
– year: 2021
  ident: b6
  article-title: Multiscale Laplacian learning
– volume: 4
  start-page: 100
  year: 2011
  end-page: 114
  ident: b20
  article-title: Exploiting associations between word clusters and document classes for cross-domain text categorization
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
– reference: N. Ostapuk, J. Yang, P. Cudré-Mauroux, Activelink: deep active learning for link prediction in knowledge graphs, in: World Wide Web Conference, 2019, pp. 1398–1408.
– volume: 162
  start-page: 300
  year: 2019
  end-page: 310
  ident: b28
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater. Des.
– volume: 6
  year: 2005
  ident: b18
  article-title: Learning multiple tasks with kernel methods
  publication-title: J. Mach. Learn. Res.
– volume: 160
  start-page: 3
  year: 2007
  end-page: 24
  ident: b2
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 1995
  start-page: 150
  year: 1995
  end-page: 157
  ident: b31
  article-title: Committee-based sampling for training probabilistic classifiers
  publication-title: Mach. Learn. Proc.
– volume: 31
  year: 2018
  ident: b27
  article-title: Adversarial multiple source domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: L. Duan, I. Tsang, D. Xu, T.-S. Chua, Domain adaptation from multiple sources via auxiliary classifiers, in: Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 289–296.
– volume: 33
  start-page: 29
  year: 2014
  end-page: 34
  ident: b53
  article-title: Diffuse interface methods for multiclass segmentation of high-dimensional data
  publication-title: Appl. Math. Lett.
– year: 2000
  ident: b8
  article-title: Neural networks and artificial intelligence for biomedical engineering
  publication-title: Inst. Electr. Electron. Eng.
– volume: 45
  start-page: D945
  year: 2017
  end-page: D954
  ident: b59
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 31
  year: 1988
  end-page: 36
  ident: b45
  article-title: SMILES, a chemical language and information system
  publication-title: J. Chem. Inf. Comput. Sci.
– year: 2022
  ident: b64
  article-title: CCP: Correlated clustering and projection for dimensionality reduction
– volume: 32
  year: 2019
  ident: b38
  article-title: Deep active learning with a neural architecture search
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 26
  start-page: 214
  year: 2004
  end-page: 225
  ident: b54
  article-title: Spectral grouping using the Nyström method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 1235
  year: 2020
  end-page: 1244
  ident: b7
  article-title: Boosting tree-assisted multitask deep learning for small scientific datasets
  publication-title: J. Chem. Inf. Model.
– volume: 5
  start-page: 107
  year: 1965
  end-page: 113
  ident: b63
  article-title: The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service
  publication-title: J. Chem. Doc.
– volume: 12
  start-page: 11122
  year: 2021
  end-page: 11134
  ident: b44
  article-title: Proteome-informed machine learning studies of cocaine addiction
  publication-title: J. Phys. Chem. Lett.
– volume: 48
  start-page: 469
  year: 2015
  end-page: 474
  ident: b10
  article-title: Machine learning for predictive modelling based on small data in biomedical engineering
  publication-title: IFAC-PapersOnLine
– volume: 22
  start-page: 1664
  year: 2009
  end-page: 1678
  ident: b17
  article-title: Cross-domain learning from multiple sources: A consensus regularization perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 75
  start-page: 51
  year: 2017
  end-page: 63
  ident: b11
  article-title: Handling limited datasets with neural networks in medical applications: A small-data approach
  publication-title: Artif. Intell. Med.
– reference: .
– year: 2017
  ident: b58
  article-title: Attention is all you need
– year: 2017
  ident: b37
  article-title: Deep active learning over the long tail
– volume: 112
  start-page: 334
  year: 1994
  end-page: 363
  ident: b52
  article-title: Motion of multiple junctions: a level set approach
  publication-title: J. Comput. Phys.
– volume: 46
  start-page: 315
  year: 2016
  end-page: 342
  ident: b9
  article-title: Multiple task transfer learning with small sample sizes
  publication-title: Knowl. Inf. Syst.
– volume: 20
  year: 2007
  ident: b19
  article-title: Multi-task learning via conic programming
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 48
  start-page: 469
  issue: 20
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106479_b10
  article-title: Machine learning for predictive modelling based on small data in biomedical engineering
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.185
– volume: 60
  start-page: 5682
  issue: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106479_b4
  article-title: Generative network complex for the automated generation of drug-like molecules
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00599
– start-page: 2724
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106479_b25
  article-title: Partial transfer learning with selective adversarial networks
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 531
  year: 2002
  ident: 10.1016/j.compbiomed.2022.106479_b56
  article-title: Spectral partitioning with indefinite kernels using the nyström extension
– volume: 4
  start-page: 100
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106479_b20
  article-title: Exploiting associations between word clusters and document classes for cross-domain text categorization
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.10099
– volume: 6
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2022.106479_b18
  article-title: Learning multiple tasks with kernel methods
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 1686
  issue: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106479_b49
  article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300124c
– year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b58
– volume: 20
  year: 2007
  ident: 10.1016/j.compbiomed.2022.106479_b19
  article-title: Multi-task learning via conic programming
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 8373
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106479_b43
  article-title: Are 2D fingerprints still valuable for drug discovery?
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00305K
– volume: 2
  start-page: 319
  issue: 4
  year: 1988
  ident: 10.1016/j.compbiomed.2022.106479_b29
  article-title: Queries and concept learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022821128753
– ident: 10.1016/j.compbiomed.2022.106479_b16
  doi: 10.1145/1458082.1458099
– volume: 31
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106479_b27
  article-title: Adversarial multiple source domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 50
  start-page: 1382
  issue: 6
  year: 2002
  ident: 10.1016/j.compbiomed.2022.106479_b32
  article-title: Algorithms for optimal scheduling and management of hidden markov model sensors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.1003062
– volume: 44
  start-page: D1202
  issue: D1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b60
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv951
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106479_b5
  article-title: Algebraic graph-assisted bidirectional transformers for molecular property prediction
  publication-title: Nature Commun.
– year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b3
– volume: 60
  start-page: 1235
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106479_b7
  article-title: Boosting tree-assisted multitask deep learning for small scientific datasets
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b01184
– volume: 109
  start-page: 43
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106479_b13
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 12
  start-page: 11122
  issue: 45
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106479_b44
  article-title: Proteome-informed machine learning studies of cocaine addiction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03133
– volume: 29
  start-page: 743
  issue: 9
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106479_b50
  article-title: Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/1062936X.2018.1513953
– year: 2021
  ident: 10.1016/j.compbiomed.2022.106479_b6
– year: 2000
  ident: 10.1016/j.compbiomed.2022.106479_b8
  article-title: Neural networks and artificial intelligence for biomedical engineering
  publication-title: Inst. Electr. Electron. Eng.
– volume: 9
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b23
  article-title: Supervised representation learning with double encoding-layer autoencoder for transfer learning
  publication-title: Trans. Intell. Syst. Technol.
– year: 2009
  ident: 10.1016/j.compbiomed.2022.106479_b34
– volume: 10
  start-page: 1692
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106479_b65
  article-title: Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04175J
– ident: 10.1016/j.compbiomed.2022.106479_b14
  doi: 10.1145/1553374.1553411
– volume: 17
  start-page: 2030
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b26
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 31
  year: 1988
  ident: 10.1016/j.compbiomed.2022.106479_b45
  article-title: SMILES, a chemical language and information system
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– volume: 162
  start-page: 300
  issn: 0264-1275
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106479_b28
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.11.060
– volume: 75
  start-page: 51
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b11
  article-title: Handling limited datasets with neural networks in medical applications: A small-data approach
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.12.003
– volume: 1
  start-page: 818
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106479_b40
  article-title: Cluster learning-assisted directed evolution
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00168-y
– volume: 45
  start-page: 177
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2022.106479_b61
  article-title: ZINC- A free database of commercially available compounds for virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci049714+
– volume: 112
  start-page: 334
  issue: 2
  year: 1994
  ident: 10.1016/j.compbiomed.2022.106479_b52
  article-title: Motion of multiple junctions: a level set approach
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1105
– start-page: 3
  year: 1994
  ident: 10.1016/j.compbiomed.2022.106479_b33
  article-title: A sequential algorithm for training text classifiers
  publication-title: ACM-SIGIR Conf. Res. Dev. Inf. Retrieval
– volume: 32
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106479_b38
  article-title: Deep active learning with a neural architecture search
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 427
  start-page: 247
  issue: 6971
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106479_b30
  article-title: Functional genomic hypothesis generation and experimentation by a robot scientist
  publication-title: Nature
  doi: 10.1038/nature02236
– volume: 29
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b24
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 29
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106479_b53
  article-title: Diffuse interface methods for multiclass segmentation of high-dimensional data
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.02.008
– year: 2022
  ident: 10.1016/j.compbiomed.2022.106479_b64
– volume: 26
  start-page: 214
  issue: 2
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106479_b54
  article-title: Spectral grouping using the Nyström method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262185
– year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b37
– volume: 45
  start-page: D945
  issue: D1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b59
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1074
– volume: 23 10
  start-page: 1294
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b51
  article-title: A data-driven approach to predicting successes and failures of clinical trials
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2016.07.023
– ident: 10.1016/j.compbiomed.2022.106479_b36
  doi: 10.1145/3308558.3313620
– ident: 10.1016/j.compbiomed.2022.106479_b22
  doi: 10.1109/CVPR.2010.5540064
– volume: 6
  start-page: 1903
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106479_b42
  article-title: An MBO scheme on graphs for classification and image processing
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120886935
– volume: 49
  start-page: 2077
  issue: 9
  year: 2009
  ident: 10.1016/j.compbiomed.2022.106479_b47
  article-title: Benchmark data set for in silico prediction of Ames mutagenicity
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci900161g
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106479_b1
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 46
  start-page: 315
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b9
  article-title: Multiple task transfer learning with small sample sizes
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0821-z
– volume: 12
  start-page: 10793
  issue: 44
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106479_b12
  article-title: Extracting predictive representations from hundreds of millions of molecules
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03058
– ident: 10.1016/j.compbiomed.2022.106479_b21
  doi: 10.1137/1.9781611972825.47
– start-page: 1183
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106479_b35
  article-title: Deep bayesian active learning with image data
  publication-title: Int. Conf. Mach. Learn.
– volume: 36
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106479_b41
  article-title: Multiclass data segmentation using diffuse interface methods on graphs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 1664
  issue: 12
  year: 2009
  ident: 10.1016/j.compbiomed.2022.106479_b17
  article-title: Cross-domain learning from multiple sources: A consensus regularization perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.205
– volume: 1995
  start-page: 150
  year: 1995
  ident: 10.1016/j.compbiomed.2022.106479_b31
  article-title: Committee-based sampling for training probabilistic classifiers
  publication-title: Mach. Learn. Proc.
– year: 2015
  ident: 10.1016/j.compbiomed.2022.106479_b57
– volume: 56
  start-page: 1936
  issue: 10
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106479_b48
  article-title: Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00290
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  ident: 10.1016/j.compbiomed.2022.106479_b62
  article-title: Extended-connectivity fingerprints
  publication-title: J. Chem. Inform. Model.
  doi: 10.1021/ci100050t
– ident: 10.1016/j.compbiomed.2022.106479_b46
– start-page: 6122
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106479_b39
  article-title: Deep reinforcement active learning for human-in-the-loop person re-identification
  publication-title: Proc. IEEE/CVF Int. Conf. Comput. Vis.
– volume: 160
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2022.106479_b2
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 23
  start-page: 504
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106479_b15
  article-title: Domain adaptation from multiple sources: A domain-dependent regularization approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178556
– volume: 5
  start-page: 107
  issue: 2
  year: 1965
  ident: 10.1016/j.compbiomed.2022.106479_b63
  article-title: The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service
  publication-title: J. Chem. Doc.
  doi: 10.1021/c160017a018
– ident: 10.1016/j.compbiomed.2022.106479_b55
  doi: 10.1109/CVPR.2001.990481
SSID ssj0004030
Score 2.3979187
Snippet In molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often faces the...
AbstractIn molecular and biological sciences, experiments are expensive, time-consuming, and often subject to ethical constraints. Consequently, one often...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106479
SubjectTerms Algorithms
Autoencoder
Computer applications
Datasets
Decision trees
Internal Medicine
Other
R-S scores
Random Forest
Scarcely labeled data
Small data
Spectral graph
Support Vector Machine
Support vector machines
Transfer learning
Transformer
Transformers
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxDU0cr-2IE6qoClI5Uak3y_EDFqXJapNV1QtX_jYziZOy2h5W4hjHEyszo3kkM98Q8t5mBgzjwqZlWVUpBx-YGu-z1OGobssLGYamsPNv4uyCf71cXB6Qk6kXBssqo-0fbfpgrePKceTm8Wq5xB5fSCUgwWFsmJmNDb-cS5xi8OH3bZkHz4qxDQXsDe6O1TxjjReWbY9t7pApMgbLgmNR190uajcE3a2kvL9pVubm2tT1P27q9BF5GONL-ml8hcfkwDdPyL3z-Af9KfnzJeJDgMui_RS1-jU1jaNm07cIbOngegZ37Sh-q6VDSyYcTgeIa2rqH-0a1q86Cg-gEEbS1RpPQUHTNtDOYhdlfUNBzcC1OXo1DeKlWJX6jFycfv5-cpbGYQyphRyrTwtX5M7KwCXnLChlZRk8l8rzoqpyJkKmqswwZawDYUhTCOcYq0xmnDC5ssVzcti0jX9JaBAKIYSEDSXnhQvKSOeV4MaELCyCSIic-K9tRCrHgRm1nkrSfulbyWmUnB4ll5B8plyNaB170JSTiPXUjQr2U4NL2YNW3kXru2gIOp3rjulM7yhrQj7OlFv6vue5R5Mu6vkoJoWQOeIrJuTdfBusBf4CMo1vN8OevISMkrOEvBhVd2ZUAaEaIujBS20p9bwBkci37zTLnwMieamEypGSzeq_N_9f_RcnXpMHaFXGOvojctivN_4NhIl99XawA38BjIZrHg
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF7qKagv4t1olRV8DSabPbsbRESlpQo9iFro27LZS6ukyfEkB-kv8G87k9uxtMh5zGWyZGcyM5v95htCXtnEgGOc2zjPiyLmEANj430SO2zVbXkmQ1cUdrQQh8f888n8ZIcsxloYhFWOPrFz1K62-I_8NZNCyBTZ494tf8XYNQp3V8cWGmZoreDedhRjN8guQ2asGdn9sL_48nVTKZlkfVEKeB8Oi6MB29MjvhDE3Re9w7qRMTgtOEK8rg9YVxPSq7jKW-tqaS5-m7L8J2gd3CV3hmyTvu_N4x7Z8dV9cvNo2E9_QP58GtgiIIDRdsxh_YqaylGzbmukuXRwPFG9NhT_3NKuQBMGpx3hNTXlKcxVe3beUHgAhaSSLlc4Cqqd1oE2FmsqywsKRgeBztHzsS0vRYzqQ3J8sP_942E8tGaILay42jhzWeqsDFxyzoJSVubBc6k8z4oiZSIkqkgMU8a6VElpMuEcY4VJjBMmVTZ7RGZVXfknhAahkFBI2JBznrmgjHReCW5MSMI8iIjIcf61HXjLsX1GqUeA2k-90ZxGzelecxFJJ8llz92xhUw-qliPtangTTUEmC1k5XWyvhncQqNT3TCd6G8dKxKYH2Ndu3cVkTeT5JD59BnNluPujbaop6E230tEXk6XwXfghpCpfL3u7klzWF9yFpHHvelOE5VB4oZ8evBSl4x6ugF5yS9fqX6cdfzkuRIqRUk2mf_W8__0_-_yjNxGJ9LD5vfIrF2t_XPICtvixfCp_wUU6GZ1
  priority: 102
  providerName: ProQuest
Title Integrating transformer and autoencoder techniques with spectral graph algorithms for the prediction of scarcely labeled molecular data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522011878
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522011878
https://dx.doi.org/10.1016/j.compbiomed.2022.106479
https://www.ncbi.nlm.nih.gov/pubmed/36610214
https://www.proquest.com/docview/2766712403
https://www.proquest.com/docview/2761982642
https://pubmed.ncbi.nlm.nih.gov/PMC9868114
https://www.ncbi.nlm.nih.gov/pmc/articles/9868114
UnpaywallVersion submittedVersion
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWVgIuvB-BpTIS13QTx7UdcSpoSxe01WqhUjlZjh3DQppWTSq0HLjytxnnBcvuoXBJ1Tiu5eTzzLj55huEXuhAgWEcaT-Ok8Sn4AN9laaBb1ypbk0jbquksOMZm87p28VosYfCNhemIu3r5GyYZ8thfva54laul_qg5YkdxIKJ0JWu7rMRhN891J_PTsYfa4sb-FRUhVZdEW0fAEYb9k7N6XI07TqtHXaGhMBpRh2J62qXdDnkvMycvLHN1-r8m8qyP9zS5DY6bSdUs1G-DrdlMtTf_9J6_KcZ30G3miAVj-umu2gvze-h68fNa_j76OdRIzIBfg-XbeibbrDKDVbbcuXUMQ187xRiC-z-8MVVXifMCFc62Vhln1YbOL8sMPwAhlgUrzduFIcWvLK40C4VMzvHgFXwjwYv22q-2FFbH6D55PDD66nfVHTwNWzUSj8yUWg0t5RTSqwQmsc2pVykNEqSkDAbiCRQRCht4AFyFTFjCElUoAxTodDRQ9TLV3n6GGHLhNMhYtrGlEbGCsVNKhhVygZ2ZJmHePtQpW7kzl3VjUy2vLYv8jccpIODrOHgobDrua4lP3boE7e4kW1KKxhhCX5ph778qr5p0ViTQoayIDKQ7ysxJcA3IVWVeOGhl13PJmCqA6Edx91vAS67oQhnjIdOpNFDz7tmMDnuPZLK09W2uiaMYVtKiYce1euhu1ERxHtOhg8mdWGldBc4OfOLLYD5Sta8gbmHSLemdr7_T_6n01N001mkmoO_j3rlZps-gxCzTAbo2vBHCEe-4HAUkzcD1B8fvZvO4PPV4ezkdNCYnV8mP4Zy
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDcLBYwEx4jE8dqOUIV4tNql3QpBK_XmOn5Q0Da7bLKq9hfwr_htjBMnS9UK7aXHJJ5Y8YznEc98g9ArHStQjH0dZVmeRxRsYKSsjSPjW3VrmnJXF4WNDtjgiH4-7h-voT9tLYxPq2x1Yq2ozUT7f-RvCGeMJx497t30V-S7RvnT1baFhgqtFcx2DTEWCjv27OIcQrhye_gJ-P2akN2dw4-DKHQZiDQED1WUmjQxmjvKKSVOCM0zZykXlqZ5nhDmYpHHigilTSI4VykzhpBcxcowlQidwntvoA2a0gyCv40POwdfvi4rM-O0KYIBbUchGAu5RE2GmU8ab4rsIU4lBG4z6lPKrjaQlx3gy3mcm_Niqhbnajz-x0ju3kG3g3eL3zfieBet2eIeujkK5_f30e9hQKcAg4mr1me2M6wKg9W8mnhYTQPXHbRsif2fYlwXhMLkuAbYxmr8HXhTnZ6VGF6AwYnF05mfxYsZnjhcal_DOV5gEHIwrAaftW2Asc-JfYCOroVJD9F6MSnsY4QdEx7AiGmXUZoaJxQ3VjCqlItd37Ee4u36Sx1w0n27jrFsE-J-yiXnpOecbDjXQ0lHOW2wQlagyVoWy7YWFrS3BIO2Ai2_itaWQQ2VMpElkbH8VqMwgfgRUreXFz30tqMMnlbjQa0471Yri7Kbark_e-hl9xh0lT-AUoWdzOsxSQbxLCU99KgR3W6hUnAUPX4ffNQFoe4GeBz0i0-KH6c1HnommEg8JenEf-X1f_L_b3mBNgeHo325PzzYe4pueQXWpOxvofVqNrfPwCOt8udh22N0ct2a5i_NmaPv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkQoviDsLBYwEj1ETx2s7QgghyqpLaYUElfpmHF8oaJtdNllV-wX8E1_HTG5L1QrtSx9zmVjxTGbG8ZkzhLy0sQHHOLRRluV5xCEGRsb7OHLYqtvyVIa6KOzgUOwd8Y_Hw-MN8qerhUFYZecTa0ftphb_ke8wKYRMkD1uJ7SwiM-7o7ezXxF2kMKd1q6dRmMi-355Bsu38s14F3T9irHRh6_v96K2w0BkYeFQRalLE2dl4JJzFpSyMgueS-V5mucJEyFWeWyYMtYlSkqTCucYy01snDCJsik89xq5LtM0QzihPJarmsw4bcpfwM9xWIa1KKIGW4Zw8aa8HlaojMFpwRFMdnlovJj6XkRw3lgUM7M8M5PJP-FxdJvcavNa-q4xxDtkwxd3ydZBu3N_j_wet7wUECpp1WXLfk5N4ahZVFMk1HRw3JPKlhT_EdO6FBQGpzW1NjWT76CJ6uS0pPAACukrnc1xFDQwOg20tFi9OVlSMG8IqY6edg2AKaJh75OjK1HRA7JZTAv_iNAgFFIXCRsyzlMXlJHOK8GNCXEYBjEgspt_bVuGdGzUMdEdFO6nXmlOo-Z0o7kBSXrJWcMSsoZM1qlYd1Ww4Lc1hLI1ZOVlsr5sHVCpE10yHesvNf8SmB9jdWN5NSCve8k2x2pypzXH3e5sUfdDrb7MAXnRXwYvhVtPpvDTRX1PksFKlrMBediYbj9RKaSIyNwHL3XOqPsbkAH9_JXix0nNhJ4poRKUZL35rz3_j___Ls_JFvgX_Wl8uP-E3ETP1WD1t8lmNV_4p5CKVvmz-pun5NtVO5m_ZwihiQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJa7aJ47UdcaoQVUFqhYCVysly_IBCNlltEqHyB_jbjJM4UNrDwnHjzEZOPs-Mk2--QeiFThQ4xoWO87woYgoxMFbWJrHxrbo1zbjri8KOT9jRkr49XZzuoDTUwvSkfV2czatyNa_OvvTcyvVK7wee2H4umEh96-pdtoD0e4Z2lyfvDj4NHjeJqegbrfom2jEAjI7snYHT5WnaQ1k77AwJgcOMehLX1SHpcsp5mTl5vavW6vy7Kss_wtLhLfQ-TGhgo3ybd20x1z_-0nr8pxnfRjfHJBUfDEN30I6t7qJrx-Nn-Hvo55tRZALiHm5D6ms3WFUGq66tvTqmgd-TQmyD_Qtf3Nd1woxwr5ONVfm53sDxVYPhDzDkoni98VfxaMG1w432pZjlOQasQnw0eBW6-WJPbb2PloevP746iseODrGGjVobZyZLjeaOckqJE0Lz3FnKhaVZUaSEuUQUiSJCaQMPkKuMGUNIoRJlmEqFzh6gWVVX9hHCjgmvQ8S0yynNjBOKGysYVcolbuFYhHh4qFKPcue-60YpA6_tq_wNB-nhIAc4RCidLNeD5McWNnnAjQwlreCEJcSlLWz5Vba2Gb1JI1PZEJnID72YEuCbkL5LvIjQy8lyTJiGRGjL6-4FgMvpUoQzxlMv0hih59MwuBz_HUlVtu76c9IctqWUROjhsB6mG5VBvudl-GBSF1bKdIKXM784ApjvZc1HmEeITGtq6_v_-H-MnqAb3iMNHPw9NGs3nX0KKWZbPBudyi_CLYB_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+transformer+and+autoencoder+techniques+with+spectral+graph+algorithms+for+the+prediction+of+scarcely+labeled+molecular+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hayes%2C+Nicole&rft.au=Rapinchuk%2C+Ekaterina&rft.au=Wei%2C+Guo-Wei&rft.date=2023-02-01&rft.issn=0010-4825&rft.spage=106479&rft.epage=106479&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106479&rft.externalDBID=ECK1-s2.0-S0010482522011878&rft.externalDocID=1_s2_0_S0010482522011878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon