基于改进的Mean Shift鲁棒跟踪算法

Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 37; no. 6; pp. 1161 - 1167
Main Author 徐海明 黄山 李云彤
Format Journal Article
LanguageChinese
Published 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065 2015
四川大学计算机学院,四川成都610065
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2015.06.019

Cover

Abstract Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。
AbstractList Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。
TP391.41; Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷.针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分决抗遮挡的目标跟踪算法.该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽.同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果.实验结果表明,该算法具有很好的鲁棒性.
Author 徐海明 黄山 李云彤
AuthorAffiliation 四川大学电气信息学院,四川成都610065 四川大学计算机学院,四川成都610065
AuthorAffiliation_xml – name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065;四川大学计算机学院,四川成都610065
Author_FL HUANG Shan
XU Hai-ming
LI Yun-tong
Author_FL_xml – sequence: 1
  fullname: XU Hai-ming
– sequence: 2
  fullname: HUANG Shan
– sequence: 3
  fullname: LI Yun-tong
Author_xml – sequence: 1
  fullname: 徐海明 黄山 李云彤
BookMark eNo9j7tKxEAYhadYwXXddxCxEUn8J3NJppTFG6xYuIVdyGUmm6gTzSi6pWBtIYqgxRZ2FhZaqNv4MpqNb2FkxerA4eMcvhnU0LmWCC1gsIngYjmzU2O0jQFcCxPYtR3AzAZuAxYN1Pzvp1HbmDQE4Ix7zMVNtPQ1HH2OLsvr9-rjfnx3sSUDPbfTT9Xx9_N5-XBVvQ6rt8fx0235cjOLplSwb2T7L1uot7ba62xY3e31zc5K14o4FhYX3KOuYlJIrMBVilBFwRNKUcaEkCGDOHaVjFgQy0gQppyaDB0qZURCyUkLLU5mTwOtAp34WX5S6PrQz0yWRIO9s1874LVbzc5P2Kif6-QorenDIj0IioHPOcMcM8rID2MNYUs
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1007-130X.2015.06.019
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate A robust tracking algorithm based on improved Mean Shift
DocumentTitle_FL A robust tracking algorithm based on improved Mean Shift
EndPage 1167
ExternalDocumentID jsjgcykx201506019
665161545
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c619-696847f5e9e1f07ff34f4089ff45599eb50dd7fec5adec935f29e1b24eec3be63
ISSN 1007-130X
IngestDate Thu May 29 04:04:00 EDT 2025
Wed Feb 14 10:29:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fragment
Mean Shift
多级正方形匹配
object tracking
分块
目标跟踪
multi-level square matching
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c619-696847f5e9e1f07ff34f4089ff45599eb50dd7fec5adec935f29e1b24eec3be63
Notes Mean Shift ; object tracking ; multi-level square matching ;fragment
43-1258/TP
The Mean Shift algorithm has a defect in handling moving targets with large scale change or being obscured. In order to solve this problem, we propose a bandwidth-adaptive and anti-blocking tracking algorithm based on multi-level square matching and fragment. The proposed algorithm uses the centroid deviation of the target model and the bandwidth trials method to compute the possible scales. The motion trend of the target is predicted through the multi-level square matching method, and the scale of the largest Bhattacharyya distance of the candidate targets is selected as the new bandwidth of the Mean Shift kernel function. At the same time, we divide the target into several fragments, adaptively change their weights according to the degree of being obscured, and then fuse the results of effective fragments under certain rules. Experimental results show that this algorithm has good robustness performance on tracking targets.
XU Hai-m
PageCount 7
ParticipantIDs wanfang_journals_jsjgcykx201506019
chongqing_primary_665161545
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机工程与科学
PublicationTitleAlternate Computer Engineering & Science
PublicationTitle_FL Computer Engineering and Science
PublicationYear 2015
Publisher 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
四川大学计算机学院,四川成都610065
Publisher_xml – name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
– name: 四川大学计算机学院,四川成都610065
SSID ssib006568571
ssib017479296
ssib001050383
ssib015938883
ssib001102936
ssib051375740
ssib023646326
ssib036438059
ssib000459496
Score 2.004298
Snippet Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中...
TP391.41; Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷.针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分决抗遮挡的目标跟踪算法.该算法...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1161
SubjectTerms Mean
Shift
分块
多级正方形匹配
目标跟踪
Title 基于改进的Mean Shift鲁棒跟踪算法
URI http://lib.cqvip.com/qk/94293X/201506/665161545.html
https://d.wanfangdata.com.cn/periodical/jsjgcykx201506019
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-130X
  databaseCode: ADMLS
  dateStart: 20130501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib015938883
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxNBFB5iCuJFFBVrVYJ0TmFrdndmZ-a422woYrw0Qm5hf8wkVkjVpqC9CZ57EEXQQw_ePHjQg9qL_4ym8b_wvdk12UIpKoRhM_PNm3l5k5lvX_a9ELLKZIohoYGTai4dliSeo3LXd5TKtMl5HggfA4W794KN--xOn_drtf3KU0u7k3Qt2zsxruR_rAp1YFeMkv0Hy86FQgVcg32hBAtD-Vc2pjGnqkOjkMYMSxnTOKAKrhWNJY06VEU0FlRBE-uiz31z9AC23VjRyAMOiejQp8qzaIGy8ELSMMRuYUyVQEwEGF6lsQiD1tA9BlPrdiocRYXcNkkqIzs5aScHNTCKi5iwTcO5V9B2AjEtO5oVgPKwU9PONgIFLMiFV9M2tq1Eq3chMQKJrOrFKCI4yy0XnaVwkvare3KRCKZce9UN1nWL3O3lYY2_Ip10EPgqUPYgwCHW5kPgo3zc5mst9-njqbaDgCMBZvwMWfLQv1MnS2G7e3ezSoAVqyQodG06nWpkcgv406Id2LLkC8IN3NGXcoGH20EB_HSOx2z-QYVQw1tfVggwd33BRRHl-0ens2S1VPj2aepi7pDR9nj4GBiRDVAbm2Q8rHCp3gVyvrwJaoTFir5IanujS6T58-Dwx-H-9NW32fd3R29f4Hpt2PX669Pz6fuXsy8Hs68fjj6-mX5-fZn0OnFvfcMp_8rDyeBjdDADExOGa6Vd0xLG-MywllTGMMx4p1PeynNhdMaTXGfK58YDZOoxrTM_1YF_hdTH22N9lTQSIcBIAEiA_BpPyzRreYlnlEl4kIlsmazM9Rw8KjK2DOaGXSa3Ss0H5fd4Z7C1szXMnj186hXZNl117VQRK-QcIgs33HVSnzzZ1TeAmE7Sm-Vq-Q2lTmfW
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%9A%84Mean+Shift%E9%B2%81%E6%A3%92%E8%B7%9F%E8%B8%AA%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E5%BE%90%E6%B5%B7%E6%98%8E+%E9%BB%84%E5%B1%B1+%E6%9D%8E%E4%BA%91%E5%BD%A4&rft.date=2015&rft.issn=1007-130X&rft.volume=37&rft.issue=6&rft.spage=1161&rft.epage=1167&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2015.06.019&rft.externalDocID=665161545
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg