基于改进的Mean Shift鲁棒跟踪算法
Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。...
Saved in:
| Published in | 计算机工程与科学 Vol. 37; no. 6; pp. 1161 - 1167 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
2015
四川大学计算机学院,四川成都610065 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-130X |
| DOI | 10.3969/j.issn.1007-130X.2015.06.019 |
Cover
| Abstract | Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。 |
|---|---|
| AbstractList | Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽。同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果。实验结果表明,该算法具有很好的鲁棒性。 TP391.41; Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷.针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分决抗遮挡的目标跟踪算法.该算法采用目标中心点的离散程度和增量试探法计算出可能的变化尺度,然后采用多级正方形匹配法预测目标的运动趋势,将巴氏系数最大者的尺度作为Mean Shift核函数新的带宽.同时,对前景目标进行分块,根据子块的遮挡程度自适应改变子块权重并按一定准则融合有效子块的跟踪结果.实验结果表明,该算法具有很好的鲁棒性. |
| Author | 徐海明 黄山 李云彤 |
| AuthorAffiliation | 四川大学电气信息学院,四川成都610065 四川大学计算机学院,四川成都610065 |
| AuthorAffiliation_xml | – name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065;四川大学计算机学院,四川成都610065 |
| Author_FL | HUANG Shan XU Hai-ming LI Yun-tong |
| Author_FL_xml | – sequence: 1 fullname: XU Hai-ming – sequence: 2 fullname: HUANG Shan – sequence: 3 fullname: LI Yun-tong |
| Author_xml | – sequence: 1 fullname: 徐海明 黄山 李云彤 |
| BookMark | eNo9j7tKxEAYhadYwXXddxCxEUn8J3NJppTFG6xYuIVdyGUmm6gTzSi6pWBtIYqgxRZ2FhZaqNv4MpqNb2FkxerA4eMcvhnU0LmWCC1gsIngYjmzU2O0jQFcCxPYtR3AzAZuAxYN1Pzvp1HbmDQE4Ix7zMVNtPQ1HH2OLsvr9-rjfnx3sSUDPbfTT9Xx9_N5-XBVvQ6rt8fx0235cjOLplSwb2T7L1uot7ba62xY3e31zc5K14o4FhYX3KOuYlJIrMBVilBFwRNKUcaEkCGDOHaVjFgQy0gQppyaDB0qZURCyUkLLU5mTwOtAp34WX5S6PrQz0yWRIO9s1874LVbzc5P2Kif6-QorenDIj0IioHPOcMcM8rID2MNYUs |
| ClassificationCodes | TP391.41 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1007-130X.2015.06.019 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | A robust tracking algorithm based on improved Mean Shift |
| DocumentTitle_FL | A robust tracking algorithm based on improved Mean Shift |
| EndPage | 1167 |
| ExternalDocumentID | jsjgcykx201506019 665161545 |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c619-696847f5e9e1f07ff34f4089ff45599eb50dd7fec5adec935f29e1b24eec3be63 |
| ISSN | 1007-130X |
| IngestDate | Thu May 29 04:04:00 EDT 2025 Wed Feb 14 10:29:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | fragment Mean Shift 多级正方形匹配 object tracking 分块 目标跟踪 multi-level square matching |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c619-696847f5e9e1f07ff34f4089ff45599eb50dd7fec5adec935f29e1b24eec3be63 |
| Notes | Mean Shift ; object tracking ; multi-level square matching ;fragment 43-1258/TP The Mean Shift algorithm has a defect in handling moving targets with large scale change or being obscured. In order to solve this problem, we propose a bandwidth-adaptive and anti-blocking tracking algorithm based on multi-level square matching and fragment. The proposed algorithm uses the centroid deviation of the target model and the bandwidth trials method to compute the possible scales. The motion trend of the target is predicted through the multi-level square matching method, and the scale of the largest Bhattacharyya distance of the candidate targets is selected as the new bandwidth of the Mean Shift kernel function. At the same time, we divide the target into several fragments, adaptively change their weights according to the degree of being obscured, and then fuse the results of effective fragments under certain rules. Experimental results show that this algorithm has good robustness performance on tracking targets. XU Hai-m |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_jsjgcykx201506019 chongqing_primary_665161545 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机工程与科学 |
| PublicationTitleAlternate | Computer Engineering & Science |
| PublicationTitle_FL | Computer Engineering and Science |
| PublicationYear | 2015 |
| Publisher | 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065 四川大学计算机学院,四川成都610065 |
| Publisher_xml | – name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065 – name: 四川大学计算机学院,四川成都610065 |
| SSID | ssib006568571 ssib017479296 ssib001050383 ssib015938883 ssib001102936 ssib051375740 ssib023646326 ssib036438059 ssib000459496 |
| Score | 2.004298 |
| Snippet | Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷。针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分块抗遮挡的目标跟踪算法。该算法采用目标中... TP391.41; Mean Shift跟踪算法在目标尺度变化大和被遮挡时存在较大的缺陷.针对这一问题,提出了一种基于多级正方形匹配的自适应带宽选择和分决抗遮挡的目标跟踪算法.该算法... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 1161 |
| SubjectTerms | Mean Shift 分块 多级正方形匹配 目标跟踪 |
| Title | 基于改进的Mean Shift鲁棒跟踪算法 |
| URI | http://lib.cqvip.com/qk/94293X/201506/665161545.html https://d.wanfangdata.com.cn/periodical/jsjgcykx201506019 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-130X databaseCode: ADMLS dateStart: 20130501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib015938883 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxNBFB5iCuJFFBVrVYJ0TmFrdndmZ-a422woYrw0Qm5hf8wkVkjVpqC9CZ57EEXQQw_ePHjQg9qL_4ym8b_wvdk12UIpKoRhM_PNm3l5k5lvX_a9ELLKZIohoYGTai4dliSeo3LXd5TKtMl5HggfA4W794KN--xOn_drtf3KU0u7k3Qt2zsxruR_rAp1YFeMkv0Hy86FQgVcg32hBAtD-Vc2pjGnqkOjkMYMSxnTOKAKrhWNJY06VEU0FlRBE-uiz31z9AC23VjRyAMOiejQp8qzaIGy8ELSMMRuYUyVQEwEGF6lsQiD1tA9BlPrdiocRYXcNkkqIzs5aScHNTCKi5iwTcO5V9B2AjEtO5oVgPKwU9PONgIFLMiFV9M2tq1Eq3chMQKJrOrFKCI4yy0XnaVwkvare3KRCKZce9UN1nWL3O3lYY2_Ip10EPgqUPYgwCHW5kPgo3zc5mst9-njqbaDgCMBZvwMWfLQv1MnS2G7e3ezSoAVqyQodG06nWpkcgv406Id2LLkC8IN3NGXcoGH20EB_HSOx2z-QYVQw1tfVggwd33BRRHl-0ens2S1VPj2aepi7pDR9nj4GBiRDVAbm2Q8rHCp3gVyvrwJaoTFir5IanujS6T58-Dwx-H-9NW32fd3R29f4Hpt2PX669Pz6fuXsy8Hs68fjj6-mX5-fZn0OnFvfcMp_8rDyeBjdDADExOGa6Vd0xLG-MywllTGMMx4p1PeynNhdMaTXGfK58YDZOoxrTM_1YF_hdTH22N9lTQSIcBIAEiA_BpPyzRreYlnlEl4kIlsmazM9Rw8KjK2DOaGXSa3Ss0H5fd4Z7C1szXMnj186hXZNl117VQRK-QcIgs33HVSnzzZ1TeAmE7Sm-Vq-Q2lTmfW |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%9A%84Mean+Shift%E9%B2%81%E6%A3%92%E8%B7%9F%E8%B8%AA%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E5%BE%90%E6%B5%B7%E6%98%8E+%E9%BB%84%E5%B1%B1+%E6%9D%8E%E4%BA%91%E5%BD%A4&rft.date=2015&rft.issn=1007-130X&rft.volume=37&rft.issue=6&rft.spage=1161&rft.epage=1167&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2015.06.019&rft.externalDocID=665161545 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg |