Efficient array design algorithm for wide-band application of the MUltiple SIgnal Classification algorithm

This paper analyzes the error in MUSIC results due to the effect of finite precision arithmetic. Thus, relation of this error to sources correlation level and array and sources configuration parameters is clearly identified. As a result efficient array design algorithm suitable for acoustic environm...

Full description

Saved in:
Bibliographic Details
Published inAcoustical Science and Technology Vol. 30; no. 3; pp. 187 - 198
Main Authors Takada, Jun-ichi, Desoki, Ahmed, Hagiwara, Ichiro
Format Journal Article
LanguageEnglish
Published Tokyo ACOUSTICAL SOCIETY OF JAPAN 01.01.2009
Acoustical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1346-3969
1347-5177
2186-859X
2432-2040
0369-4232
1347-5177
DOI10.1250/ast.30.187

Cover

Abstract This paper analyzes the error in MUSIC results due to the effect of finite precision arithmetic. Thus, relation of this error to sources correlation level and array and sources configuration parameters is clearly identified. As a result efficient array design algorithm suitable for acoustic environments is derived. This algorithm is efficient in the sense that it can determine minimum number of sensors. This algorithm is quite general as it includes the effect of all parameters such as number of sources, sources correlation level, maximum resolution, maximum source angle, number of sensors, sensor spacing and arithmetic precision. Also this algorithm is shown to be seamlessly applicable in realistic environments where many additional effects and sources of error often exist. During this paper it is shown that this algorithm is indispensable for DOA estimation in wide-band and reverberant environments.
AbstractList This paper analyzes the error in MUSIC results due to the effect of finite precision arithmetic. Thus, relation of this error to sources correlation level and array and sources configuration parameters is clearly identified. As a result efficient array design algorithm suitable for acoustic environments is derived. This algorithm is efficient in the sense that it can determine minimum number of sensors. This algorithm is quite general as it includes the effect of all parameters such as number of sources, sources correlation level, maximum resolution, maximum source angle, number of sensors, sensor spacing and arithmetic precision. Also this algorithm is shown to be seamlessly applicable in realistic environments where many additional effects and sources of error often exist. During this paper it is shown that this algorithm is indispensable for DOA estimation in wide-band and reverberant environments.
Author Hagiwara, Ichiro
Desoki, Ahmed
Takada, Jun-ichi
Author_xml – sequence: 1
  fullname: Takada, Jun-ichi
  organization: Department of International Development Engineering, Tokyo Institute of Technology
– sequence: 1
  fullname: Desoki, Ahmed
  organization: Graduate School of Science and Technology, Tokyo Institute of Technology
– sequence: 1
  fullname: Hagiwara, Ichiro
  organization: Graduate School of Science and Technology, Tokyo Institute of Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21545027$$DView record in Pascal Francis
BookMark eNp9kE9rGzEQxUVxIbHbSz6BoOTSsqm0Wu2fUyjGbQMpOaQ-L2NpZMso2o0kY_zts87GPpTQi_Rgfu8x86Zk4juPhFxxdsNzyb5DTDdi0HX1gVxyUVSZ5FU1edVlJpqyuSDTGLeM5UUjy0uyXRhjlUWfKIQAB6ox2rWn4NZdsGnzRE0X6N5qzFbgNYW-d1ZBsp2nnaFpg_TP0iXbO6SPd2sPjs4dxGjNiTonfSIfDbiIn9_-GVn-XPyd_87uH37dzX_cZ6rkdco0lhKkqLXCptHIaqZWDEBX0igmC-QaeW60YWYlG1aZAupKmKZWrORFUSsxI9_G3J3v4bAH59o-2CcIh5az9lhTO9TUikEPzhn5MtJ96J53OAy23S4Md8T2GJeXQub1QF2_URAVOBPAKxvPuTmXhWT5MY2NnApdjAFNq2x67SEFsO79Bb7-Y_nvtrcjvI0J1nhGISSrHJ5QMT6D4zxRGwgtevECAoetrg
CitedBy_id crossref_primary_10_1109_LGRS_2021_3086136
crossref_primary_10_1109_ACCESS_2020_3023187
crossref_primary_10_1250_ast_30_417
crossref_primary_10_1250_ast_39_343
crossref_primary_10_1250_ast_40_209
Cites_doi 10.1109/29.32276
10.1137/0707001
10.1109/7.32085
10.1007/978-1-4612-3632-0
10.1109/TASSP.1986.1164815
10.1109/78.91162
10.1250/ast.30.417
10.1109/TASSP.1985.1164667
10.1137/1015095
10.1109/TASSP.1983.1164233
10.1109/78.212735
10.1109/ICASSP.1987.1169373
10.1109/29.103073
10.1109/TSP.1993.193167
10.1109/ICASSP.1989.267050
10.1109/29.1617
10.1109/TAES.1983.309427
ContentType Journal Article
Copyright 2009 by The Acoustical Society of Japan
2009 INIST-CNRS
Copyright Japan Science and Technology Agency 2009
Copyright_xml – notice: 2009 by The Acoustical Society of Japan
– notice: 2009 INIST-CNRS
– notice: Copyright Japan Science and Technology Agency 2009
DBID AAYXX
CITATION
IQODW
7SP
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1250/ast.30.187
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Music
Physics
EISSN 1347-5177
EndPage 198
ExternalDocumentID 10.1250/ast.30.187
3116692931
21545027
10_1250_ast_30_187
article_ast_30_3_30_3_187_article_char_en
GroupedDBID 23M
2WC
5GY
6J9
6TJ
7.U
ACGFO
ACIWK
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
GX1
JSF
JSH
KQ8
OVT
RJT
RNS
RZJ
TR2
XSB
AAYXX
CITATION
TKC
IQODW
7SP
7U5
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c618t-de65a538dce99de080cb0aad75fc054e1de12fdf0fb5907f4a873f98c061448c3
IEDL.DBID UNPAY
ISSN 1346-3969
1347-5177
2186-859X
2432-2040
0369-4232
IngestDate Wed Oct 01 15:11:26 EDT 2025
Mon Jun 30 10:13:36 EDT 2025
Mon Jul 21 09:15:05 EDT 2025
Tue Jul 01 01:17:34 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Wed Sep 03 06:30:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Acoustic reverberation
MUSIC
Quantization: 43.60.Gk
Target tracking
Wide-band
Acoustics
Spacing
Sensor spacing
Array design
Wide band
Signal quantization
Precision
Arrival angle
Classification
Signal processing
System identification
Resolution
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-de65a538dce99de080cb0aad75fc054e1de12fdf0fb5907f4a873f98c061448c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/ast/30/3/30_3_187/_pdf
PQID 1448263528
PQPubID 1966373
PageCount 12
ParticipantIDs unpaywall_primary_10_1250_ast_30_187
proquest_journals_1448263528
pascalfrancis_primary_21545027
crossref_citationtrail_10_1250_ast_30_187
crossref_primary_10_1250_ast_30_187
jstage_primary_article_ast_30_3_30_3_187_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Acoustical Science and Technology
PublicationTitleAlternate Acoustical Science and Technology
PublicationYear 2009
Publisher ACOUSTICAL SOCIETY OF JAPAN
Acoustical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: ACOUSTICAL SOCIETY OF JAPAN
– name: Acoustical Society of Japan
– name: Japan Science and Technology Agency
References 6) G. Su and M. Morf, “Signal subspace approach for multiple wide-band emitter location,” IEEE Trans. Acoust. Speech Signal Process., 31, 1502–1522 (1983).
3) R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” Proc. RADC Spectral Est. Workshop 1979, pp. 243–258 (1979).
20) I. S. Dhillon and B. Parlett, “Orthogonal eigenvectors and relative gaps,” SIAM J. Matrix Anal. Appl., 25, 858–899 (2004).
9) B. Friedlander and A. J. Weiss, “Direction finding for wide-band signals using an interpolated array,” IEEE Trans. Signal Process., 41, 1618–1634 (1993).
12) A. Desoki, J. Takada and I. Hagiwara, “Improved finite samples resampling for unbiased wide-band direction of arrival estimation,” submitted to Acoust. Sci. & Tech.
22) S. Leach, “Singular value decomposition—A primer,” Unpublished Manuscript, Department of Computer science, Brown University, Providence, RI 02912.
17) C. Davis and W. Kahan, “The rotation of eigenvectors by a perturbation III,” SIAM J. Numer. Anal., 7, 1–46 (1970).
11) K. M. Buckley and L. J. Griffiths, “Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation,” IEEE Trans. Acoust. Speech Signal Process., 36, 953–964 (1988).
23) O. T. Anderson and N. J. Jacobsen, “New technology increases the dynamic ranges of data acquisition systems based on 24-bit technology,” Sound Vib., 39(4), pp. 8–14 (2005).
7) H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources,” IEEE Trans. Acoust. Speech Signal Process., 33, 823–831 (1985).
10) M. Doron, E. Doron and H. Weiss, “Coherent wide-band processing for arbitrary array geometry,” IEEE Trans. Signal Process., 41, 414–417 (1993).
26) H. Wang, C. C. Li and J. X. Zhu, “High–resolution direction finding in the presence of multipath: A frequency–domain smoothing approach,” Proc. ICASSP 87, pp. 2276–2279 (1987).
16) G. B. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall Inc., Englewood Cliffs, 1980).
8) J. Krolik and D. Swingler, “Focused wide-band array processing by spatial resampling,” IEEE Trans. Acoust. Speech Signal Process., 38, 356–360 (1990).
14) S. W. Smith, The Scientist’s and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, San Diego, Calif., 1999).
15) G. H. Gloub and C. F. Van Loan, Matrix Computations (The John Hopkins University Press, Baltimore, 1996).
19) E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, “Further details: Error bounds for the symmetric eigenproblem” in LAPACK Users’ Guide (SIAM, Philadelphia, 1999).
2) G. C. Carter, Coherence and Time Delay Estimation (IEEE Press, Piscataway, N.J., 1993).
18) G. W. Stewart, “Error and perturbation bounds for subspaces associated with certain eigenvalue problems,” SIAM Rev., 15, 727–764 (1973).
5) R. Kumaresan and D. W. Tufts, “Estimating the angles of arrival of multiple plane waves,” IEEE Trans. Aerosp. Electron. Syst., AES-19, 134–139 (1983).
21) A. S. Deif, Advanced Matrix Theory for Scientists and Engineers (Abacus/Gordon & Breach, London, 1991).
1) V. S. U. Pillai, Array Signal Processing (Springer Verlag, New York, 1989).
4) R. Roy and T. Kailath, “ESPRIT — Estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust. Speech Signal Proc., 37, 984–995 (1989).
24) IEEE, IEEE Standard for Binary Floating-Point Arithmetic. (ANSI/IEEE Std 754-1985) (Institute of Electrical and Electronics Engineers, New York, 1985).
28) J. Krolik and D. Swingler, “The performance of minimax spatial resampling filters for focusing wide-band arrays,” IEEE Trans. Acoust. Speech Signal Process., 39, 1899–1903 (1991).
25) G. Bienvenu, P. Fuerxer, G. Vezzosi, L. Kopp and F. Florin, “Coherent wide band high resolution processing for linear array,” Proc. Signal Proc., ICASSP 89, pp. 2799–2802 (1989).
27) J. X. Zhu and H. Wang, “A comparison of smoothing approaches for angle measurement,” IEEE Trans. Aerosp. Electron. Syst., 25, 529–535 (1989).
13) M. Kaveh and A. Barabell, “The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise,” IEEE Trans. Acoust. Speech Signal Process., 34, 331–341 (1986).
22
C. Davis and W. Kahan (17) 1970; 7
24
25
26
27
G. W. Stewart (18) 1973; 15
O. T. Anderson and N. J. Jacobsen (23) 2005; 39
10
12
14
G. Su and M. Morf (6) 1983; 31
15
16
19
K. M. Buckley and L. J. Griffiths (11) 1988; 36
J. Krolik and D. Swingler (28) 1991; 39
1
2
3
R. Kumaresan and D. W. Tufts (5) 1983; AES-19
J. Krolik and D. Swingler (8) 1990; 38
I. S. Dhillon and B. Parlett (20) 2004; 25
4
9
H. Wang and M. Kaveh (7) 1985; 33
M. Kaveh and A. Barabell (13) 1986; 34
21
References_xml – reference: 21) A. S. Deif, Advanced Matrix Theory for Scientists and Engineers (Abacus/Gordon & Breach, London, 1991).
– reference: 19) E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, “Further details: Error bounds for the symmetric eigenproblem” in LAPACK Users’ Guide (SIAM, Philadelphia, 1999).
– reference: 12) A. Desoki, J. Takada and I. Hagiwara, “Improved finite samples resampling for unbiased wide-band direction of arrival estimation,” submitted to Acoust. Sci. & Tech.
– reference: 27) J. X. Zhu and H. Wang, “A comparison of smoothing approaches for angle measurement,” IEEE Trans. Aerosp. Electron. Syst., 25, 529–535 (1989).
– reference: 17) C. Davis and W. Kahan, “The rotation of eigenvectors by a perturbation III,” SIAM J. Numer. Anal., 7, 1–46 (1970).
– reference: 11) K. M. Buckley and L. J. Griffiths, “Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation,” IEEE Trans. Acoust. Speech Signal Process., 36, 953–964 (1988).
– reference: 18) G. W. Stewart, “Error and perturbation bounds for subspaces associated with certain eigenvalue problems,” SIAM Rev., 15, 727–764 (1973).
– reference: 15) G. H. Gloub and C. F. Van Loan, Matrix Computations (The John Hopkins University Press, Baltimore, 1996).
– reference: 2) G. C. Carter, Coherence and Time Delay Estimation (IEEE Press, Piscataway, N.J., 1993).
– reference: 10) M. Doron, E. Doron and H. Weiss, “Coherent wide-band processing for arbitrary array geometry,” IEEE Trans. Signal Process., 41, 414–417 (1993).
– reference: 6) G. Su and M. Morf, “Signal subspace approach for multiple wide-band emitter location,” IEEE Trans. Acoust. Speech Signal Process., 31, 1502–1522 (1983).
– reference: 1) V. S. U. Pillai, Array Signal Processing (Springer Verlag, New York, 1989).
– reference: 16) G. B. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall Inc., Englewood Cliffs, 1980).
– reference: 13) M. Kaveh and A. Barabell, “The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise,” IEEE Trans. Acoust. Speech Signal Process., 34, 331–341 (1986).
– reference: 20) I. S. Dhillon and B. Parlett, “Orthogonal eigenvectors and relative gaps,” SIAM J. Matrix Anal. Appl., 25, 858–899 (2004).
– reference: 8) J. Krolik and D. Swingler, “Focused wide-band array processing by spatial resampling,” IEEE Trans. Acoust. Speech Signal Process., 38, 356–360 (1990).
– reference: 28) J. Krolik and D. Swingler, “The performance of minimax spatial resampling filters for focusing wide-band arrays,” IEEE Trans. Acoust. Speech Signal Process., 39, 1899–1903 (1991).
– reference: 4) R. Roy and T. Kailath, “ESPRIT — Estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust. Speech Signal Proc., 37, 984–995 (1989).
– reference: 23) O. T. Anderson and N. J. Jacobsen, “New technology increases the dynamic ranges of data acquisition systems based on 24-bit technology,” Sound Vib., 39(4), pp. 8–14 (2005).
– reference: 24) IEEE, IEEE Standard for Binary Floating-Point Arithmetic. (ANSI/IEEE Std 754-1985) (Institute of Electrical and Electronics Engineers, New York, 1985).
– reference: 26) H. Wang, C. C. Li and J. X. Zhu, “High–resolution direction finding in the presence of multipath: A frequency–domain smoothing approach,” Proc. ICASSP 87, pp. 2276–2279 (1987).
– reference: 5) R. Kumaresan and D. W. Tufts, “Estimating the angles of arrival of multiple plane waves,” IEEE Trans. Aerosp. Electron. Syst., AES-19, 134–139 (1983).
– reference: 7) H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources,” IEEE Trans. Acoust. Speech Signal Process., 33, 823–831 (1985).
– reference: 22) S. Leach, “Singular value decomposition—A primer,” Unpublished Manuscript, Department of Computer science, Brown University, Providence, RI 02912.
– reference: 9) B. Friedlander and A. J. Weiss, “Direction finding for wide-band signals using an interpolated array,” IEEE Trans. Signal Process., 41, 1618–1634 (1993).
– reference: 3) R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” Proc. RADC Spectral Est. Workshop 1979, pp. 243–258 (1979).
– reference: 25) G. Bienvenu, P. Fuerxer, G. Vezzosi, L. Kopp and F. Florin, “Coherent wide band high resolution processing for linear array,” Proc. Signal Proc., ICASSP 89, pp. 2799–2802 (1989).
– reference: 14) S. W. Smith, The Scientist’s and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, San Diego, Calif., 1999).
– ident: 2
– ident: 4
  doi: 10.1109/29.32276
– volume: 7
  start-page: 1
  issn: 0036-1429
  year: 1970
  ident: 17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0707001
– ident: 27
  doi: 10.1109/7.32085
– ident: 1
  doi: 10.1007/978-1-4612-3632-0
– volume: 34
  start-page: 331
  year: 1986
  ident: 13
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1986.1164815
– volume: 39
  start-page: 1899
  year: 1991
  ident: 28
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/78.91162
– ident: 12
  doi: 10.1250/ast.30.417
– volume: 39
  start-page: 8
  year: 2005
  ident: 23
  publication-title: Sound Vib.
– volume: 33
  start-page: 823
  year: 1985
  ident: 7
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1985.1164667
– ident: 16
– ident: 14
– volume: 15
  start-page: 727
  issn: 0036-1445
  year: 1973
  ident: 18
  publication-title: SIAM Rev.
  doi: 10.1137/1015095
– ident: 24
– ident: 22
– ident: 3
– volume: 31
  start-page: 1502
  year: 1983
  ident: 6
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1983.1164233
– ident: 9
  doi: 10.1109/78.212735
– ident: 26
  doi: 10.1109/ICASSP.1987.1169373
– volume: 38
  start-page: 356
  year: 1990
  ident: 8
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.103073
– ident: 10
  doi: 10.1109/TSP.1993.193167
– ident: 25
  doi: 10.1109/ICASSP.1989.267050
– ident: 19
– volume: 36
  start-page: 953
  year: 1988
  ident: 11
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.1617
– ident: 15
– volume: 25
  start-page: 858
  issn: 0895-4798
  year: 2004
  ident: 20
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: AES-19
  start-page: 134
  issn: 0018-9251
  year: 1983
  ident: 5
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.1983.309427
– ident: 21
SSID ssj0024956
Score 1.7952456
Snippet This paper analyzes the error in MUSIC results due to the effect of finite precision arithmetic. Thus, relation of this error to sources correlation level and...
SourceID unpaywall
proquest
pascalfrancis
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms Acoustic signal processing
Acoustics
Array design
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
MUSIC
Physics
Precision
Quantization
Resolution
Sensor spacing
Wide-band
Title Efficient array design algorithm for wide-band application of the MUltiple SIgnal Classification algorithm
URI https://www.jstage.jst.go.jp/article/ast/30/3/30_3_187/_article/-char/en
https://www.proquest.com/docview/1448263528
https://www.jstage.jst.go.jp/article/ast/30/3/30_3_187/_pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Acoustical Science and Technology, 2009/05/01, Vol.30(3), pp.187-198
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1347-5177
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024956
  issn: 1347-5177
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1347-5177
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024956
  issn: 1347-5177
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA93e4q--C2unkvAe_Eh3bZJ2wSfDrnzFO4QdGEFIaT5WG9du8tul-P86500bdkTEfGlDXRIk5k0-U0zmR9CRyw1NOPWenIXSljOKVFclcS5srBlkbOsOQtzfpGfTdiHaTbdQ2-6szA-rHIOuGhm_S2aLaP5atwqcaw29ZjGYwoXSWXCi7FcGbePDvIMgPgAHUwuPh5_CbuTgvgtyMbdYjmhoiG38-cmSZY0fIyejInwTEx9mdEUxguL2wSmgAv8yyIKZR9st7Nk3Qqt8zGUagNqdIH_4gZAvbOtVur6Si0WO2vV6X30tetlCFH5Hm3rMtI_f0sA-Z9qeIDutRgWHwfBh2jPVo_Q7SaWVG8eo_lJk5YCVjOs1mt1jU0TJYLVYrZcX9bffmAAyvjq0oDpVGXwzh46XjoMiBSfT0KYI_70fuZf1VB3-qCmINXX9ARNTk8-vz0jLaUD0XnCa2JsnimYY422QhgLcFWXsVKmyJwG8GgTY5PUGRe7MgO33THFC-oE143jyjV9igbVsrLPEBbCGiaYi41jrExTXupYN1TKFCCs0EP0urOa1G2-c0-7sZDe7wELS9CjBBWCAofoVS-7Clk-_ijFg016mdYinQyVnUX6J_7sHExAQzS6MVz6GlIPYeMU6j7sxo9sZ5GN9F32yYJSPkRH_Zj6Swuf_5vYC3Q3bIr5P0mHaFCvt_YlYKu6HKH9d9Nk1H5JvwDAGiC0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA51q-iLd3G1loB98SFzS2YmwaciLVVoEXRhBSFkclm7rrPL7iyl_npPMhe2IiK-zATmkEnOySTfmZycD6Ejlhmac2s9uQslrOCUKK4q4lxV2qosWB7OwpxfFGcT9mGaT_fQ2_4sjA-rnAMumll_i2bLaL6KOyXGatPENIkpXCSVKS9juTLuFtovcgDiI7Q_ufh4_KXdnRTEb0EGd4sVhIpAbufPTZI8DXyMnoyJ8FxMfZnRDMYLS7oEpoAL_MsiCmUfbLezZN1uW-djKNUG1Oha_osbAPXutl6p6yu1WOysVacP0Ne-l22Iyvdo21SR_vlbAsj_VMNDdL_DsPi4FXyE9mz9GN0JsaR68wTNT0JaCljNsFqv1TU2IUoEq8Vsub5svv3AAJTx1aUB06na4J09dLx0GBApPp-0YY740_uZf1Wg7vRBTa3UUNNTNDk9-fzujHSUDkQXKW-IsUWuYI412gphLMBVXSVKmTJ3GsCjTY1NM2dc4qoc3HbHFC-pE1wHx5Vr-gyN6mVtnyMshDVMMJcYx1iVZbzSiQ5UyhQgrNBj9Ka3mtRdvnNPu7GQ3u8BC0vQowQVggLH6PUgu2qzfPxRirc2GWQ6i_QyVPYWGZ74s3MwAY3R4Y3hMtSQeQibZFD3QT9-ZDeLbKTvsk8WlPExOhrG1F9a-OLfxF6ie-2mmP-TdIBGzXprXwG2aqrD7hv6BQGqH8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+array+design+algorithm+for+wide-band+application+of+the+MUltiple+SIgnal+Classification+algorithm&rft.jtitle=Acoustical+Science+and+Technology&rft.au=Takada%2C+Jun-ichi&rft.au=Desoki%2C+Ahmed&rft.au=Hagiwara%2C+Ichiro&rft.date=2009-01-01&rft.pub=ACOUSTICAL+SOCIETY+OF+JAPAN&rft.issn=1346-3969&rft.eissn=1347-5177&rft.volume=30&rft.issue=3&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1250%2Fast.30.187&rft.externalDocID=article_ast_30_3_30_3_187_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-3969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-3969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-3969&client=summon