OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 22; no. 1; pp. 1 - 18 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        13.08.2021
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-021-04317-y | 
Cover
| Abstract | Background
The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time.
Results
A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.
Conclusions
The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. | 
    
|---|---|
| AbstractList | Abstract Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time.BACKGROUNDThe advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time.A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.RESULTSA workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.CONCLUSIONSThe demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. Keywords: Variant calling, SNP, indel, GATK, Next generation sequencing, Reproducibility, Data parallelization, Benchmarking, Java The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.  | 
    
| ArticleNumber | 402 | 
    
| Audience | Academic | 
    
| Author | Bathke, Jochen Lühken, Gesine  | 
    
| Author_xml | – sequence: 1 givenname: Jochen surname: Bathke fullname: Bathke, Jochen email: jochen.bathke@agrar.uni-giessen.de organization: Institute of Animal Breeding and Genetics, Justus Liebig University Gießen – sequence: 2 givenname: Gesine surname: Lühken fullname: Lühken, Gesine organization: Institute of Animal Breeding and Genetics, Justus Liebig University Gießen  | 
    
| BookMark | eNqNkstuEzEYhUeoiF7gBViNxAYWU3y3hwVSVNESUSkCClvL47EHh4md2jOE8DQ8C0-G00SUVKhCXvj2nfPbxz4uDnzwpiieQnAKoWAvE0SC1hVAsAIEQ16tHxRHkHBYIQjowV_jw-I4pTkAkAtAHxWHmGAhaoaPivezzyqe92H1qlRlNCmMUZsyLAe3cD9MW15Mrt79-knKRqU8my2NL3dM1jnlh1Krvne-K1chft0YPS4eWtUn82TXnxSfzt9cnb2tLmcX07PJZaUZFEPVYAhZ3VquOeDYoJaABkAKGLVC1VZY3FhKIG0gt0i3SpBaAMIUNg1AXBF8Uky3vm1Qc7mMbqHiWgbl5M1CiJ1UcXC6N9KolrecY2uZIZrZmghEgcppmAZzy7MX3nqNfqnWq3yjP4YQyE3Ychu2zGHLm7DlOqteb1XLsVmYVhs_RNXvHWV_x7svsgvfpMAs166zwfOdQQzXo0mDXLikTd8rb8KYJKIMEsFrQjP67A46z8_gc8AbChEMIOO3VKfytZ23IdfVG1M5YRzhfHKKMnX6Dyq31iyczn_Mury-J3ixJ8jMYL4PnRpTktOPH_ZZtGV1DClFY_8vSXFHpN2gBhc2ubn-funu6VKu4zsTb4O5R_Ub_ET-ZA | 
    
| CitedBy_id | crossref_primary_10_1186_s12859_023_05548_x crossref_primary_10_1007_s00335_023_10011_6 crossref_primary_10_1016_j_csbj_2024_01_014 crossref_primary_10_1016_j_ctrv_2022_102498 crossref_primary_10_3389_fmolb_2023_1169109 crossref_primary_10_3390_genes15060661 crossref_primary_10_1016_j_imu_2022_100965 crossref_primary_10_1038_s41598_023_27429_2 crossref_primary_10_3390_curroncol29080451 crossref_primary_10_1371_journal_ppat_1012382 crossref_primary_10_1080_22221751_2024_2440489 crossref_primary_10_3389_fmicb_2023_1134755 crossref_primary_10_3390_genes15050626 crossref_primary_10_3390_vetsci12030198 crossref_primary_10_1093_nargab_lqae031 crossref_primary_10_1093_genetics_iyad186 crossref_primary_10_1016_j_jmoldx_2024_04_002 crossref_primary_10_1038_s41467_023_37004_y crossref_primary_10_1016_j_plaphy_2024_108456 crossref_primary_10_1186_s12870_023_04166_2 crossref_primary_10_1007_s10681_025_03469_9 crossref_primary_10_3390_genes16020163 crossref_primary_10_1016_j_neuroscience_2024_09_027  | 
    
| Cites_doi | 10.1101/gr.107524.110 10.1038/d41586-018-06008-w 10.1038/s41598-018-36177-7 10.1186/s12864-019-5621-5 10.1016/j.cell.2013.09.006 10.3389/fgene.2019.00300 10.3168/jds.2015-10697 10.1093/bioinformatics/bty350 10.1093/bfgp/elp013 10.1016/j.jgg.2011.02.003 10.1038/s41598-020-59026-y 10.4161/fly.19695 10.1016/j.cub.2017.12.041 10.1002/0471250953.bi1110s43 10.1038/srep17875 10.1371/journal.pone.0097507 10.4137/CIN.S13779 10.1093/bioinformatics/btu356 10.1093/bib/bbaa148 10.1093/gigascience/giab008 10.1093/bib/bbs086 10.1371/journal.pgen.0010049 10.1186/s12859-019-3169-7 10.1371/journal.pbio.3000333 10.1093/bioinformatics/btp324 10.1038/nrg1346 10.1038/ng.806 10.1371/journal.pone.0168910 10.1038/s41592-018-0046-7 10.1155/2020/7231205 10.1186/s12918-016-0288-x 10.1073/pnas.1418631112 10.3389/fgene.2018.00193 10.1038/ng.3596 10.1007/978-1-60327-411-1_1 10.1186/s12859-017-1537-8 10.1371/journal.pcbi.1002822 10.1038/s41598-017-09089-1 10.1371/journal.pone.0177459  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s).  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s).  | 
    
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12859-021-04317-y | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Science (Gale in Context) ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 18 | 
    
| ExternalDocumentID | oai_doaj_org_article_ead7d773ff6e4c6f948250a178eb37f7 10.1186/s12859-021-04317-y PMC8361789 A672304352 10_1186_s12859_021_04317_y  | 
    
| GeographicLocations | Germany | 
    
| GeographicLocations_xml | – name: Germany | 
    
| GrantInformation_xml | – fundername: Justus-Liebig-Universität Gießen (3114) – fundername: ;  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c618t-b31169df7c7073e2d40b015065f8a9f8f3bf5415b17f2cda8498046a3eb027a43 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:32:46 EDT 2025 Sun Oct 26 03:31:13 EDT 2025 Tue Sep 30 16:56:31 EDT 2025 Thu Oct 02 10:07:19 EDT 2025 Mon Oct 06 18:33:07 EDT 2025 Mon Oct 20 22:22:28 EDT 2025 Mon Oct 20 16:32:49 EDT 2025 Thu Oct 16 14:11:49 EDT 2025 Wed Oct 01 04:15:37 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Sat Sep 06 07:27:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | GATK Java SNP Reproducibility Data parallelization Benchmarking indel Next generation sequencing Variant calling  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c618t-b31169df7c7073e2d40b015065f8a9f8f3bf5415b17f2cda8498046a3eb027a43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-04317-y | 
    
| PMID | 34388963 | 
    
| PQID | 2562430167 | 
    
| PQPubID | 44065 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ead7d773ff6e4c6f948250a178eb37f7 unpaywall_primary_10_1186_s12859_021_04317_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361789 proquest_miscellaneous_2561487945 proquest_journals_2562430167 gale_infotracmisc_A672304352 gale_infotracacademiconefile_A672304352 gale_incontextgauss_ISR_A672304352 crossref_primary_10_1186_s12859_021_04317_y crossref_citationtrail_10_1186_s12859_021_04317_y springer_journals_10_1186_s12859_021_04317_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-08-13 | 
    
| PublicationDateYYYYMMDD | 2021-08-13 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationYear | 2021 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | D Koboldt (4317_CR5) 2013; 155 4317_CR23 S De Summa (4317_CR39) 2017; 18 A Belkadi (4317_CR8) 2015; 112 H Li (4317_CR36) 2009; 25 B Grüning (4317_CR30) 2018; 15 J Köster (4317_CR31) 2018; 34 R Bao (4317_CR14) 2014; 13 A McKenna (4317_CR16) 2010; 20 GA Van der Auwera (4317_CR13) 2013; 43 4317_CR29 PJ Hurd (4317_CR7) 2009; 8 P Danecek (4317_CR49) 2021; 10 4317_CR32 PJ Huang (4317_CR19) 2020; 2020 4317_CR37 4317_CR6 4317_CR38 MA DePristo (4317_CR17) 2011; 43 TM Jamann (4317_CR24) 2017; 12 JR Lupski (4317_CR2) 2005; 1 J Lewis (4317_CR27) 2016; 10 4317_CR43 BS Shastry (4317_CR1) 2009; 578 J Luan (4317_CR20) 2018; 28 4317_CR47 YA Barbitoff (4317_CR9) 2020; 10 S Pei (4317_CR15) 2020 W Wang (4317_CR25) 2019; 10 I Bassano (4317_CR22) 2019; 20 K Yano (4317_CR12) 2016; 48 4317_CR40 WS Bush (4317_CR10) 2012; 8 4317_CR41 P Cingolani (4317_CR34) 2012; 6 J Zhang (4317_CR4) 2011; 38 A Supernat (4317_CR18) 2018; 8 GM Kurtzer (4317_CR33) 2017; 12 Z Wu (4317_CR44) 2018; 9 L Kauppi (4317_CR3) 2004; 5 P Zhu (4317_CR21) 2014; 9 S Pabinger (4317_CR45) 2014; 15 H Li (4317_CR35) 2014; 30 Q Zhang (4317_CR11) 2016; 99 L Teytelman (4317_CR26) 2018; 560 JR Heldenbrand (4317_CR42) 2019; 20 S Mangul (4317_CR28) 2019; 17 S Hwang (4317_CR46) 2015; 5 N Kathiresan (4317_CR48) 2017; 7  | 
    
| References_xml | – volume: 20 start-page: 1297 year: 2010 ident: 4317_CR16 publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 560 start-page: 411 year: 2018 ident: 4317_CR26 publication-title: Nature doi: 10.1038/d41586-018-06008-w – volume: 8 start-page: 17851 year: 2018 ident: 4317_CR18 publication-title: Sci Rep doi: 10.1038/s41598-018-36177-7 – volume: 20 start-page: 272 year: 2019 ident: 4317_CR22 publication-title: BMC Genomics doi: 10.1186/s12864-019-5621-5 – volume: 155 start-page: 27 year: 2013 ident: 4317_CR5 publication-title: Cell doi: 10.1016/j.cell.2013.09.006 – ident: 4317_CR47 – ident: 4317_CR40 – volume: 10 start-page: 300 year: 2019 ident: 4317_CR25 publication-title: Front Genet doi: 10.3389/fgene.2019.00300 – volume: 99 start-page: 7289 year: 2016 ident: 4317_CR11 publication-title: J Dairy Sci doi: 10.3168/jds.2015-10697 – volume: 34 start-page: 3600 year: 2018 ident: 4317_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty350 – ident: 4317_CR38 – volume: 8 start-page: 174 year: 2009 ident: 4317_CR7 publication-title: Brief Funct Genomic Proteomic doi: 10.1093/bfgp/elp013 – volume: 38 start-page: 95 year: 2011 ident: 4317_CR4 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2011.02.003 – volume: 10 start-page: 2057 year: 2020 ident: 4317_CR9 publication-title: Sci Rep doi: 10.1038/s41598-020-59026-y – volume: 6 start-page: 80 year: 2012 ident: 4317_CR34 publication-title: Fly (Austin) doi: 10.4161/fly.19695 – volume: 28 start-page: 459 year: 2018 ident: 4317_CR20 publication-title: Curr Biol doi: 10.1016/j.cub.2017.12.041 – volume: 43 start-page: 11.10.1 year: 2013 ident: 4317_CR13 publication-title: Curr Protoc Bioinform doi: 10.1002/0471250953.bi1110s43 – volume: 5 start-page: 17875 year: 2015 ident: 4317_CR46 publication-title: Sci Rep doi: 10.1038/srep17875 – volume: 9 start-page: e97507 year: 2014 ident: 4317_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0097507 – ident: 4317_CR23 – volume: 13 start-page: 67 year: 2014 ident: 4317_CR14 publication-title: Cancer Inform doi: 10.4137/CIN.S13779 – volume: 30 start-page: 2843 year: 2014 ident: 4317_CR35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu356 – year: 2020 ident: 4317_CR15 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa148 – volume: 10 start-page: giab008 year: 2021 ident: 4317_CR49 publication-title: Gigascience doi: 10.1093/gigascience/giab008 – ident: 4317_CR43 – ident: 4317_CR37 – volume: 15 start-page: 256 year: 2014 ident: 4317_CR45 publication-title: Brief Bioinform doi: 10.1093/bib/bbs086 – volume: 1 year: 2005 ident: 4317_CR2 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0010049 – volume: 20 start-page: 557 year: 2019 ident: 4317_CR42 publication-title: BMC Bioinform doi: 10.1186/s12859-019-3169-7 – volume: 17 start-page: e3000333 year: 2019 ident: 4317_CR28 publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000333 – volume: 25 start-page: 1754 year: 2009 ident: 4317_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 5 start-page: 413 year: 2004 ident: 4317_CR3 publication-title: Net Rev Genet doi: 10.1038/nrg1346 – volume: 43 start-page: 491 year: 2011 ident: 4317_CR17 publication-title: Nat Genet doi: 10.1038/ng.806 – ident: 4317_CR32 – volume: 12 year: 2017 ident: 4317_CR24 publication-title: PLoS ONE doi: 10.1371/journal.pone.0168910 – ident: 4317_CR29 – volume: 15 start-page: 475 year: 2018 ident: 4317_CR30 publication-title: Nat Methods doi: 10.1038/s41592-018-0046-7 – volume: 2020 start-page: 7231205 year: 2020 ident: 4317_CR19 publication-title: Comput Math Methods Med doi: 10.1155/2020/7231205 – volume: 10 start-page: 52 year: 2016 ident: 4317_CR27 publication-title: BMC Syst Biol doi: 10.1186/s12918-016-0288-x – ident: 4317_CR41 – volume: 112 start-page: 5473 year: 2015 ident: 4317_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1418631112 – volume: 9 start-page: 193 year: 2018 ident: 4317_CR44 publication-title: Front Genet doi: 10.3389/fgene.2018.00193 – volume: 48 start-page: 927 year: 2016 ident: 4317_CR12 publication-title: Nat Genet doi: 10.1038/ng.3596 – volume: 578 start-page: 3 year: 2009 ident: 4317_CR1 publication-title: Methods Mol Biol doi: 10.1007/978-1-60327-411-1_1 – volume: 18 start-page: 119 year: 2017 ident: 4317_CR39 publication-title: BMC Bioinform doi: 10.1186/s12859-017-1537-8 – volume: 8 start-page: e1002822 year: 2012 ident: 4317_CR10 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1002822 – ident: 4317_CR6 – volume: 7 start-page: 9058 year: 2017 ident: 4317_CR48 publication-title: Sci Rep doi: 10.1038/s41598-017-09089-1 – volume: 12 year: 2017 ident: 4317_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0177459  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.5279996 | 
    
| Snippet | Background
The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence... The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative... Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence... Abstract Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Annotations Automation Best practice Bioinformatics Biomedical and Life Sciences Chromosomes Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer programs Data processing Documentation Garbage collection GATK Genomes Genomics indel Information management Innovations Life Sciences Microarrays Next generation sequencing Nucleotide sequence Nucleotides Parallel processing Reproducibility Sequence analysis Single-nucleotide polymorphism SNP Software Software development tools Software utilities Usability Variant calling Workflow  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJQQcEL8iUJBBSBxo1HXs2A63BbEUECCgRb1ZjmNDpSWp9kfV8jQ8C0_GTOKERpUKB67xOJFnxuOZycxnQh7nNihQE5VWGaZutAc76JVLC1tUTDiWWY69w-_ey70D8eYwPzx11RfWhHXwwB3jdmGlqlKKhyC9cDIUAmKaiWVKQxioQttHPtFFH0zF_weI1N-3yGi5u2SI05ZiOQKCyah0MzqGWrT-szb5bJ3k8LP0Crm0ro_t5sTO56fOo9k1cjU6knTaLeA6ueDrG-Rid7Xk5ib5-OGLXczmzckzauki5uhpAwbi-9EPX9FX0_23v34KiqdYRbGshEYamAcqs6IgPGxVp1i5hS-6RQ5mL_df7KXx-oTUSaZXackZk0UVlFOwj31WCUx65uBzBG2LoAMvQw7nd8lUyFxltSg0RMuW-xJiVSv4bbJVN7W_QyjPhQV-K699EGzirNcShK9ywaXnyiWE9dw0LmKL4xUXc9PGGFqaTgIGJGBaCZhNQp4Oc447ZI1zqZ-jkAZKRMVuH4CumKgr5m-6kpBHKGKDuBc1FtZ8tevl0rz-_MlMpcL0OLijCXkSiUIDa3A29ikAJxAqa0S5PaKEjenGw70mmWgYlgY8zExw7P1IyMNhGGdisVvtm3VLA0EqGMo8IWqkgaPlj0fqo28tOLjm2PRZJGSn19U_Hz-PvTuDPv-DNO7-D2ncI5ezdkfqlPFtsrVarP198PBW5YN2M_8GzjpK5A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHyKwEAGIfHAoi2xEztICHVoZYAo09imvVmOY49JJSn90FT-eu7SpCOaVPFan1PZ92Wf734H8DoxXqKYyLCIKXSjHNpBJ22YmayIhI1iw6l2-NswPTgRX86Ssw0YtrUwlFbZ2sTaUBeVpRj5DrrmWHBKmv8w_h1S1yh6XW1baJimtULxvoYYuwGbMSFj9WBzb394eLR6VyAE_7Z0RqU704jw20JKUyCQGRkuOu6pRvG_bquv50-uHlHvwK15OTaLSzMa_eOnBvfgbnPAZP2lRNyHDVc-gJvLlpOLh3D4_dRMBqPq8h0zbNLE7lmFhuPXxR9XsE_9469MMHJuBaNsE9aQ4DSUpBlDnlIFO6OELvrOIzgZ7B9_PAibrgqhTSM1C3MeRWlWeGklqreLC0Gx0ASPIl6ZzCvPc5-gW88j6WNbGCUyhZdow12OV1gj-GPolVXpngDjiTDK5dIp50W0a41TKcqETARPHZc2gKjdTG0byHHqfDHS9dVDpXrJAI0M0DUD9CKAt6s54yXgxlrqPeLRipLAsusfqsm5bnRPo7LIQkrufeqETX0m8Fq8a1AYXM6llwG8Ig5rgsMoKd_m3MynU_35x5Hup5Ki5nhKDeBNQ-QrXIM1TfkC7gQhaHUotzqUqK-2O9wKkm7sxVRfSXcAL1fDNJNy4EpXzWsavLui_UwCkB0B7Cy_O1Je_KwxwxWnWtAsgO1WVK_-fN32bq_E-T-48XT90p7B7bhWNRVGfAt6s8ncPccj3Sx_0ejpX-u_Ruw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEQIOiKcIFGQQEgcaUceO7XBbKpYCAgS0qDfLcWyotCTVPlQtv4bfwi9jJpsNjYoquMbjRPG87ZnPAI9zFzWKiU6rjLZuTEA7GLRPC1dUXHqeOUG9w-_eq919-eYgP-hgcqgX5uT5PTfq2YwTwlpKhQQEA6PT5Xm4gE5KtQezaqc_MSBs_nVTzF_nDRxPi89_2gqfrozsj0evwKVFfeSWx24yOeGBxtfgahc6stGK19fhXKhvwMXVZZLLm_Dxwxc3HU-a4-fMsWm3K88aNAnfD3-Eir0a7b399VMy8lsVo0IS1tHgPBSSOUN2UXM6o1otetEt2B-_3NvZTbsLE1KvuJmnpeBcFVXUXqPmhqyStM2ZY5QRjSuiiaKMOXrskuuY-coZWRjMj50IJWanTorbsFE3dbgDTOTSmVDqYEKUfNu7YBSyW-dSqCC0T4CvV9P6Dk2cLrWY2DarMMquOGCRA7blgF0m8LSfc7TC0jiT-gUxqackHOz2AYqH7dTKoh7oSmsRowrSq1hIzHi3HUpDKIWOOoFHxGJLSBc1ldJ8dYvZzL7-_MmOlKYNcQxAE3jSEcUG_8G7rjMBV4LAsQaUmwNKVEU_HF5Lku1MwcxiTJlJQd0eCTzsh2kmlbfVoVm0NJiWomnME9ADCRz8_nCkPvzWwoEbQW2eRQJba1n98_Gzlnerl-d_4Mbd_3v7PbictbpnUi42YWM-XYT7GL3Nywet2v4GNus7GQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgg48EYECgoIiQPNto6d2OG2IJYCohToVuVkOY5dVt0myz5UbX8Nv4VfxkweS0NRBRK3KB7nMZ4Zz9gznwl5EmknQExEkIW4dCMt2EErTJDoJKPc0FAzrB1-vx1vDfjb_Wh_hew0tTDpkUmHRQ0aikDF3dNl6KPSdsOFOdwYZ65SeRlvTCnisAWYboBgMSJYXCCrcQTeeYesDrZ3el_KIiNBA4hwoqZ25o8dW_NTCeN_1lifTaBc7qJeIZfm-VgvjvVodGqi6l8j35pfrPJTDrvzWdo1J7-hP_5PHlwnV2uv1u9VYniDrNj8JrlYnXO5uEU-ftjTk_6oOH7ua39Sbxj4BViro-GJzfzXvd13P75zH6fUzMccF7-mgX4gvzMfJAnr5n1MI8MH3SaD_qvdl1tBfZZDYGIqZ0HKKI2TzAkjwKjYMOO4AhuBA-SkTpx0LHUROBMpFS40mZY8kRC6a2ZTCJw1Z3dIJy9ye5f4LOJa2lRYaR2nm0ZbGYMkioiz2DJhPEKbEVSmBjrH8zZGqgx4ZKwqVilglSpZpRYeebbsM65gPs6lfoGCsaREiO7yRjE5ULXGK1BRkQnBnIstN7FLOATjm5oK-HYmnPDIYxQrhSAcOWb5HOj5dKrefP6kerHAtXrwjT3ytCZyBQ65rosmgBOI29WiXGtRgpUw7eZGelVtpaYK3N2QMyxE8cijZTP2xMy73BbzkgYiZrDakUdES-pbv99uyYdfS6RyybACNfHIeqMfv15-HnvXlzr0F6Nx79_I75PLYakkMqBsjXRmk7l9AI7lLH1Y24qfdaxyAg priority: 102 providerName: Unpaywall  | 
    
| Title | OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow | 
    
| URI | https://link.springer.com/article/10.1186/s12859-021-04317-y https://www.proquest.com/docview/2562430167 https://www.proquest.com/docview/2561487945 https://pubmed.ncbi.nlm.nih.gov/PMC8361789 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-021-04317-y https://doaj.org/article/ead7d773ff6e4c6f948250a178eb37f7  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwED7tRQj4gHgVgVEFhMQHFlhiJ3aQEMqqdWNoZWwrKp8sJ7HHpJKMvmiUX8Nv4Zdxl6Yd0aYJvrRSfE4U3519d7l7DuB5qK1AMRFeHlDoRhrcB43IvFjHuc8zP9CMaof3utFOj-_2w_4SzNsd1Qs4utS1o35SveHg1Y_v03eo8G8rhZfR65FPKGweJRsQVIzwpsuwiidVTK0c9vj5VwXC758Xzlw6r3E4VRj-F3fqi9mTi0-oN-H6pDjV0zM9GPx1SnVuw63avHSTmTzcgSVT3IVrs4aT03vw6eNnPewMyrM3rnaHdeTeLXHb-Hby0-TudnL04fcv7tLZlruUbOLWNDgPBWnsIkupgN2lfC660X3odbaO2jte3VTByyJfjr2U-X4U51ZkArXbBDmnUGiIloiVOrbSstSGeKqnvrBBlmvJY4k-tGYmRQ9Wc_YAVoqyMA_BZSHX0qTCSGO5v5FpIyMUCRFyFhkmMgf8-WqqrEYcp8YXA1V5HjJSMw4o5ICqOKCmDrxczDmd4W1cSb1JTFpQElZ2daEcHqta9RTqisiFYNZGhmeRjTl6xRsapcGkTFjhwDNisSI0jILSbY71ZDRS7w8PVBIJCpqjkerAi5rIlvgOma6rF3AlCECrQbnWoER1zZrDc0lSc2lXaHcGnFFFiANPF8M0k1LgClNOKhp0XXH7DB0QDQlsvH5zpDj5WkGGS0aloLED63NZPX_4Vcu7vpDnf-DGo_-7-2O4EVS6Jz2frcHKeDgxT9DCG6ctWBZ9gb-ys92C1STZPdzF_82t7v4BXm1H7VYVO2lV6o0jve5-8uUP1EhSGQ | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBo8ID5FYIBBIB5YtCZ2YgcJofJRWroNNDrUN-M49phUktIPVeWP4m_kLk06okkTL3uNz0ns-_nOZ98HIc8i7QTARPhZiEc30oIctML4iU6ygJsg1Axjh_cP4u4R_zSMhhvkTx0Lg26VtUwsBXVWGDwj3wXVHHKGTvNvxr98rBqFt6t1CY0VLPp2uQCTbfq69x74-zwMOx8G77p-VVXAN3EgZ37KgiBOMieMAHjbMON4FhiBKnZSJ046lroI1FoaCBeaTEueSDAiNbMpmHCaM3jvJXIZ_qWFFRPEcG3gBVgfoA7MkfHuNMDscD46QWAKG-EvG8qvrBFwVhOc9c5cX9FeI1vzfKyXCz0a_aMFOzfI9Wr7StsrvN0kGza_Ra6sCloub5Mvn7_pSWdULF5RTSfVzQAtQCz9PPltM_qxPehTTlF1ZhR9WWhFAt0ApzMKiMH4eIruYvieO-ToQmb3LtnMi9zeI5RFXEubCiut40HLaCtjQJyIOIstE8YjQT2ZylQJzbGuxkiVho2M1YoBChigSgaopUdervuMV-k8zqV-izxaU2Iq7vJBMTlW1cpWsBRFJgRzLrbcxC7hYHS3NIDBpkw44ZGnyGGFyTZy9OY51vPpVPW-Hqp2LPBMHvbAHnlREbkCxmB0FRwBM4H5uRqU2w1KkAam2VwDSVXSaKpO145HnqybsSd62OW2mJc0YBmDdI48IhoAbAy_2ZKf_CgzkkuGkaaJR3ZqqJ5-_Lzp3VnD-T-4cf_8oT0mW93B_p7a6x30H5CrYbnspB-wbbI5m8ztQ9g8ztJH5Yql5PtFi4i_N_98Nw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCCgHxFMEChiExIFGbWLHdrgtC0tLobxa1JvlOHZbaUlWu1lVy6_ht_DLmEmyoVFRBdd4nCietz3zmZBnifESxESGeYxbN8qBHXTShqlJ84jbKDYMe4c_7Iqtff7uIDk41cVfV7svjySbngZEaSqqjUnuGxVXYmMWIe5aiOUFCA4jw8VFcomDd8M7DIZi2J0jIGL_slXmr_N67qhG7T9rm8_WS3aHptfI1XkxMYsTMx6f8kujG-R6G1DSQSMBN8kFV9wil5srJhe3yeeP38x0NC5PXlJDp-1ePS3BUHw__uFy-nawt_PrJ6fozXKK5SW0pYF5IDoVBSZiyzrFCi580R2yP3qzN9wK22sUQisiVYUZiyKR5l5aCfrs4pzj5mcCsYdXJvXKs8wn4MezSPrY5kbxVEHWbJjLIGc1nN0lK0VZuHuEsoQb5TLplPM82rTGKQFCIBPOhGPSBiRarqa2LcY4XnUx1nWuoYRuOKCBA7rmgF4E5EU3Z9IgbJxL_QqZ1FEiOnb9oJwe6lbZNGiHzKVk3gvHrfAphzx404A0uIxJLwPyFFmsEf-iwAKbQzOfzfT21y96ICRuk0NYGpDnLZEv4R-safsVYCUQMqtHudajBAW1_eGlJOnWQMw0RJoxZ9gDEpAn3TDOxKK3wpXzmgaSVTCYSUBkTwJ7v98fKY6PapBwxbD5Mw3I-lJW_3z8vOVd7-T5H7hx___e_phc-fR6pN9v7-48IKtxrYYqjNgaWammc_cQwrsqe1Rr8G-6M0ZP | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgg48EYECgoIiQPNto6d2OG2IJYCohToVuVkOY5dVt0myz5UbX8Nv4VfxkweS0NRBRK3KB7nMZ4Zz9gznwl5EmknQExEkIW4dCMt2EErTJDoJKPc0FAzrB1-vx1vDfjb_Wh_hew0tTDpkUmHRQ0aikDF3dNl6KPSdsOFOdwYZ65SeRlvTCnisAWYboBgMSJYXCCrcQTeeYesDrZ3el_KIiNBA4hwoqZ25o8dW_NTCeN_1lifTaBc7qJeIZfm-VgvjvVodGqi6l8j35pfrPJTDrvzWdo1J7-hP_5PHlwnV2uv1u9VYniDrNj8JrlYnXO5uEU-ftjTk_6oOH7ua39Sbxj4BViro-GJzfzXvd13P75zH6fUzMccF7-mgX4gvzMfJAnr5n1MI8MH3SaD_qvdl1tBfZZDYGIqZ0HKKI2TzAkjwKjYMOO4AhuBA-SkTpx0LHUROBMpFS40mZY8kRC6a2ZTCJw1Z3dIJy9ye5f4LOJa2lRYaR2nm0ZbGYMkioiz2DJhPEKbEVSmBjrH8zZGqgx4ZKwqVilglSpZpRYeebbsM65gPs6lfoGCsaREiO7yRjE5ULXGK1BRkQnBnIstN7FLOATjm5oK-HYmnPDIYxQrhSAcOWb5HOj5dKrefP6kerHAtXrwjT3ytCZyBQ65rosmgBOI29WiXGtRgpUw7eZGelVtpaYK3N2QMyxE8cijZTP2xMy73BbzkgYiZrDakUdES-pbv99uyYdfS6RyybACNfHIeqMfv15-HnvXlzr0F6Nx79_I75PLYakkMqBsjXRmk7l9AI7lLH1Y24qfdaxyAg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OVarFlow%3A+a+resource+optimized+GATK%C2%A04+based+Open+source+Variant+calling+workFlow&rft.jtitle=BMC+bioinformatics&rft.au=Bathke%2C+Jochen&rft.au=L%C3%BChken%2C+Gesine&rft.date=2021-08-13&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04317-y&rft.externalDocID=10_1186_s12859_021_04317_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |