OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow

Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 22; no. 1; pp. 1 - 18
Main Authors Bathke, Jochen, Lühken, Gesine
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.08.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-021-04317-y

Cover

Abstract Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
AbstractList Abstract Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time.BACKGROUNDThe advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time.A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.RESULTSA workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.CONCLUSIONSThe demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling. Keywords: Variant calling, SNP, indel, GATK, Next generation sequencing, Reproducibility, Data parallelization, Benchmarking, Java
The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
ArticleNumber 402
Audience Academic
Author Bathke, Jochen
Lühken, Gesine
Author_xml – sequence: 1
  givenname: Jochen
  surname: Bathke
  fullname: Bathke, Jochen
  email: jochen.bathke@agrar.uni-giessen.de
  organization: Institute of Animal Breeding and Genetics, Justus Liebig University Gießen
– sequence: 2
  givenname: Gesine
  surname: Lühken
  fullname: Lühken, Gesine
  organization: Institute of Animal Breeding and Genetics, Justus Liebig University Gießen
BookMark eNqNkstuEzEYhUeoiF7gBViNxAYWU3y3hwVSVNESUSkCClvL47EHh4md2jOE8DQ8C0-G00SUVKhCXvj2nfPbxz4uDnzwpiieQnAKoWAvE0SC1hVAsAIEQ16tHxRHkHBYIQjowV_jw-I4pTkAkAtAHxWHmGAhaoaPivezzyqe92H1qlRlNCmMUZsyLAe3cD9MW15Mrt79-knKRqU8my2NL3dM1jnlh1Krvne-K1chft0YPS4eWtUn82TXnxSfzt9cnb2tLmcX07PJZaUZFEPVYAhZ3VquOeDYoJaABkAKGLVC1VZY3FhKIG0gt0i3SpBaAMIUNg1AXBF8Uky3vm1Qc7mMbqHiWgbl5M1CiJ1UcXC6N9KolrecY2uZIZrZmghEgcppmAZzy7MX3nqNfqnWq3yjP4YQyE3Ychu2zGHLm7DlOqteb1XLsVmYVhs_RNXvHWV_x7svsgvfpMAs166zwfOdQQzXo0mDXLikTd8rb8KYJKIMEsFrQjP67A46z8_gc8AbChEMIOO3VKfytZ23IdfVG1M5YRzhfHKKMnX6Dyq31iyczn_Mury-J3ixJ8jMYL4PnRpTktOPH_ZZtGV1DClFY_8vSXFHpN2gBhc2ubn-funu6VKu4zsTb4O5R_Ub_ET-ZA
CitedBy_id crossref_primary_10_1186_s12859_023_05548_x
crossref_primary_10_1007_s00335_023_10011_6
crossref_primary_10_1016_j_csbj_2024_01_014
crossref_primary_10_1016_j_ctrv_2022_102498
crossref_primary_10_3389_fmolb_2023_1169109
crossref_primary_10_3390_genes15060661
crossref_primary_10_1016_j_imu_2022_100965
crossref_primary_10_1038_s41598_023_27429_2
crossref_primary_10_3390_curroncol29080451
crossref_primary_10_1371_journal_ppat_1012382
crossref_primary_10_1080_22221751_2024_2440489
crossref_primary_10_3389_fmicb_2023_1134755
crossref_primary_10_3390_genes15050626
crossref_primary_10_3390_vetsci12030198
crossref_primary_10_1093_nargab_lqae031
crossref_primary_10_1093_genetics_iyad186
crossref_primary_10_1016_j_jmoldx_2024_04_002
crossref_primary_10_1038_s41467_023_37004_y
crossref_primary_10_1016_j_plaphy_2024_108456
crossref_primary_10_1186_s12870_023_04166_2
crossref_primary_10_1007_s10681_025_03469_9
crossref_primary_10_3390_genes16020163
crossref_primary_10_1016_j_neuroscience_2024_09_027
Cites_doi 10.1101/gr.107524.110
10.1038/d41586-018-06008-w
10.1038/s41598-018-36177-7
10.1186/s12864-019-5621-5
10.1016/j.cell.2013.09.006
10.3389/fgene.2019.00300
10.3168/jds.2015-10697
10.1093/bioinformatics/bty350
10.1093/bfgp/elp013
10.1016/j.jgg.2011.02.003
10.1038/s41598-020-59026-y
10.4161/fly.19695
10.1016/j.cub.2017.12.041
10.1002/0471250953.bi1110s43
10.1038/srep17875
10.1371/journal.pone.0097507
10.4137/CIN.S13779
10.1093/bioinformatics/btu356
10.1093/bib/bbaa148
10.1093/gigascience/giab008
10.1093/bib/bbs086
10.1371/journal.pgen.0010049
10.1186/s12859-019-3169-7
10.1371/journal.pbio.3000333
10.1093/bioinformatics/btp324
10.1038/nrg1346
10.1038/ng.806
10.1371/journal.pone.0168910
10.1038/s41592-018-0046-7
10.1155/2020/7231205
10.1186/s12918-016-0288-x
10.1073/pnas.1418631112
10.3389/fgene.2018.00193
10.1038/ng.3596
10.1007/978-1-60327-411-1_1
10.1186/s12859-017-1537-8
10.1371/journal.pcbi.1002822
10.1038/s41598-017-09089-1
10.1371/journal.pone.0177459
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-021-04317-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Science (Gale in Context)
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 18
ExternalDocumentID oai_doaj_org_article_ead7d773ff6e4c6f948250a178eb37f7
10.1186/s12859-021-04317-y
PMC8361789
A672304352
10_1186_s12859_021_04317_y
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Justus-Liebig-Universität Gießen (3114)
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c618t-b31169df7c7073e2d40b015065f8a9f8f3bf5415b17f2cda8498046a3eb027a43
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:32:46 EDT 2025
Sun Oct 26 03:31:13 EDT 2025
Tue Sep 30 16:56:31 EDT 2025
Thu Oct 02 10:07:19 EDT 2025
Mon Oct 06 18:33:07 EDT 2025
Mon Oct 20 22:22:28 EDT 2025
Mon Oct 20 16:32:49 EDT 2025
Thu Oct 16 14:11:49 EDT 2025
Wed Oct 01 04:15:37 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Sat Sep 06 07:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GATK
Java
SNP
Reproducibility
Data parallelization
Benchmarking
indel
Next generation sequencing
Variant calling
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-b31169df7c7073e2d40b015065f8a9f8f3bf5415b17f2cda8498046a3eb027a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-04317-y
PMID 34388963
PQID 2562430167
PQPubID 44065
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ead7d773ff6e4c6f948250a178eb37f7
unpaywall_primary_10_1186_s12859_021_04317_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361789
proquest_miscellaneous_2561487945
proquest_journals_2562430167
gale_infotracmisc_A672304352
gale_infotracacademiconefile_A672304352
gale_incontextgauss_ISR_A672304352
crossref_primary_10_1186_s12859_021_04317_y
crossref_citationtrail_10_1186_s12859_021_04317_y
springer_journals_10_1186_s12859_021_04317_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-13
PublicationDateYYYYMMDD 2021-08-13
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References D Koboldt (4317_CR5) 2013; 155
4317_CR23
S De Summa (4317_CR39) 2017; 18
A Belkadi (4317_CR8) 2015; 112
H Li (4317_CR36) 2009; 25
B Grüning (4317_CR30) 2018; 15
J Köster (4317_CR31) 2018; 34
R Bao (4317_CR14) 2014; 13
A McKenna (4317_CR16) 2010; 20
GA Van der Auwera (4317_CR13) 2013; 43
4317_CR29
PJ Hurd (4317_CR7) 2009; 8
P Danecek (4317_CR49) 2021; 10
4317_CR32
PJ Huang (4317_CR19) 2020; 2020
4317_CR37
4317_CR6
4317_CR38
MA DePristo (4317_CR17) 2011; 43
TM Jamann (4317_CR24) 2017; 12
JR Lupski (4317_CR2) 2005; 1
J Lewis (4317_CR27) 2016; 10
4317_CR43
BS Shastry (4317_CR1) 2009; 578
J Luan (4317_CR20) 2018; 28
4317_CR47
YA Barbitoff (4317_CR9) 2020; 10
S Pei (4317_CR15) 2020
W Wang (4317_CR25) 2019; 10
I Bassano (4317_CR22) 2019; 20
K Yano (4317_CR12) 2016; 48
4317_CR40
WS Bush (4317_CR10) 2012; 8
4317_CR41
P Cingolani (4317_CR34) 2012; 6
J Zhang (4317_CR4) 2011; 38
A Supernat (4317_CR18) 2018; 8
GM Kurtzer (4317_CR33) 2017; 12
Z Wu (4317_CR44) 2018; 9
L Kauppi (4317_CR3) 2004; 5
P Zhu (4317_CR21) 2014; 9
S Pabinger (4317_CR45) 2014; 15
H Li (4317_CR35) 2014; 30
Q Zhang (4317_CR11) 2016; 99
L Teytelman (4317_CR26) 2018; 560
JR Heldenbrand (4317_CR42) 2019; 20
S Mangul (4317_CR28) 2019; 17
S Hwang (4317_CR46) 2015; 5
N Kathiresan (4317_CR48) 2017; 7
References_xml – volume: 20
  start-page: 1297
  year: 2010
  ident: 4317_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 560
  start-page: 411
  year: 2018
  ident: 4317_CR26
  publication-title: Nature
  doi: 10.1038/d41586-018-06008-w
– volume: 8
  start-page: 17851
  year: 2018
  ident: 4317_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36177-7
– volume: 20
  start-page: 272
  year: 2019
  ident: 4317_CR22
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5621-5
– volume: 155
  start-page: 27
  year: 2013
  ident: 4317_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.006
– ident: 4317_CR47
– ident: 4317_CR40
– volume: 10
  start-page: 300
  year: 2019
  ident: 4317_CR25
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00300
– volume: 99
  start-page: 7289
  year: 2016
  ident: 4317_CR11
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2015-10697
– volume: 34
  start-page: 3600
  year: 2018
  ident: 4317_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty350
– ident: 4317_CR38
– volume: 8
  start-page: 174
  year: 2009
  ident: 4317_CR7
  publication-title: Brief Funct Genomic Proteomic
  doi: 10.1093/bfgp/elp013
– volume: 38
  start-page: 95
  year: 2011
  ident: 4317_CR4
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2011.02.003
– volume: 10
  start-page: 2057
  year: 2020
  ident: 4317_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59026-y
– volume: 6
  start-page: 80
  year: 2012
  ident: 4317_CR34
  publication-title: Fly (Austin)
  doi: 10.4161/fly.19695
– volume: 28
  start-page: 459
  year: 2018
  ident: 4317_CR20
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.12.041
– volume: 43
  start-page: 11.10.1
  year: 2013
  ident: 4317_CR13
  publication-title: Curr Protoc Bioinform
  doi: 10.1002/0471250953.bi1110s43
– volume: 5
  start-page: 17875
  year: 2015
  ident: 4317_CR46
  publication-title: Sci Rep
  doi: 10.1038/srep17875
– volume: 9
  start-page: e97507
  year: 2014
  ident: 4317_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097507
– ident: 4317_CR23
– volume: 13
  start-page: 67
  year: 2014
  ident: 4317_CR14
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S13779
– volume: 30
  start-page: 2843
  year: 2014
  ident: 4317_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu356
– year: 2020
  ident: 4317_CR15
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa148
– volume: 10
  start-page: giab008
  year: 2021
  ident: 4317_CR49
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– ident: 4317_CR43
– ident: 4317_CR37
– volume: 15
  start-page: 256
  year: 2014
  ident: 4317_CR45
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs086
– volume: 1
  year: 2005
  ident: 4317_CR2
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0010049
– volume: 20
  start-page: 557
  year: 2019
  ident: 4317_CR42
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3169-7
– volume: 17
  start-page: e3000333
  year: 2019
  ident: 4317_CR28
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3000333
– volume: 25
  start-page: 1754
  year: 2009
  ident: 4317_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 5
  start-page: 413
  year: 2004
  ident: 4317_CR3
  publication-title: Net Rev Genet
  doi: 10.1038/nrg1346
– volume: 43
  start-page: 491
  year: 2011
  ident: 4317_CR17
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– ident: 4317_CR32
– volume: 12
  year: 2017
  ident: 4317_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0168910
– ident: 4317_CR29
– volume: 15
  start-page: 475
  year: 2018
  ident: 4317_CR30
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0046-7
– volume: 2020
  start-page: 7231205
  year: 2020
  ident: 4317_CR19
  publication-title: Comput Math Methods Med
  doi: 10.1155/2020/7231205
– volume: 10
  start-page: 52
  year: 2016
  ident: 4317_CR27
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0288-x
– ident: 4317_CR41
– volume: 112
  start-page: 5473
  year: 2015
  ident: 4317_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1418631112
– volume: 9
  start-page: 193
  year: 2018
  ident: 4317_CR44
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00193
– volume: 48
  start-page: 927
  year: 2016
  ident: 4317_CR12
  publication-title: Nat Genet
  doi: 10.1038/ng.3596
– volume: 578
  start-page: 3
  year: 2009
  ident: 4317_CR1
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60327-411-1_1
– volume: 18
  start-page: 119
  year: 2017
  ident: 4317_CR39
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1537-8
– volume: 8
  start-page: e1002822
  year: 2012
  ident: 4317_CR10
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1002822
– ident: 4317_CR6
– volume: 7
  start-page: 9058
  year: 2017
  ident: 4317_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09089-1
– volume: 12
  year: 2017
  ident: 4317_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177459
SSID ssj0017805
Score 2.5279996
Snippet Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence...
The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative...
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence...
Abstract Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Annotations
Automation
Best practice
Bioinformatics
Biomedical and Life Sciences
Chromosomes
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer programs
Data processing
Documentation
Garbage collection
GATK
Genomes
Genomics
indel
Information management
Innovations
Life Sciences
Microarrays
Next generation sequencing
Nucleotide sequence
Nucleotides
Parallel processing
Reproducibility
Sequence analysis
Single-nucleotide polymorphism
SNP
Software
Software development tools
Software utilities
Usability
Variant calling
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJQQcEL8iUJBBSBxo1HXs2A63BbEUECCgRb1ZjmNDpSWp9kfV8jQ8C0_GTOKERpUKB67xOJFnxuOZycxnQh7nNihQE5VWGaZutAc76JVLC1tUTDiWWY69w-_ey70D8eYwPzx11RfWhHXwwB3jdmGlqlKKhyC9cDIUAmKaiWVKQxioQttHPtFFH0zF_weI1N-3yGi5u2SI05ZiOQKCyah0MzqGWrT-szb5bJ3k8LP0Crm0ro_t5sTO56fOo9k1cjU6knTaLeA6ueDrG-Rid7Xk5ib5-OGLXczmzckzauki5uhpAwbi-9EPX9FX0_23v34KiqdYRbGshEYamAcqs6IgPGxVp1i5hS-6RQ5mL_df7KXx-oTUSaZXackZk0UVlFOwj31WCUx65uBzBG2LoAMvQw7nd8lUyFxltSg0RMuW-xJiVSv4bbJVN7W_QyjPhQV-K699EGzirNcShK9ywaXnyiWE9dw0LmKL4xUXc9PGGFqaTgIGJGBaCZhNQp4Oc447ZI1zqZ-jkAZKRMVuH4CumKgr5m-6kpBHKGKDuBc1FtZ8tevl0rz-_MlMpcL0OLijCXkSiUIDa3A29ikAJxAqa0S5PaKEjenGw70mmWgYlgY8zExw7P1IyMNhGGdisVvtm3VLA0EqGMo8IWqkgaPlj0fqo28tOLjm2PRZJGSn19U_Hz-PvTuDPv-DNO7-D2ncI5ezdkfqlPFtsrVarP198PBW5YN2M_8GzjpK5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHyKwEAGIfHAoi2xEztICHVoZYAo09imvVmOY49JJSn90FT-eu7SpCOaVPFan1PZ92Wf734H8DoxXqKYyLCIKXSjHNpBJ22YmayIhI1iw6l2-NswPTgRX86Ssw0YtrUwlFbZ2sTaUBeVpRj5DrrmWHBKmv8w_h1S1yh6XW1baJimtULxvoYYuwGbMSFj9WBzb394eLR6VyAE_7Z0RqU704jw20JKUyCQGRkuOu6pRvG_bquv50-uHlHvwK15OTaLSzMa_eOnBvfgbnPAZP2lRNyHDVc-gJvLlpOLh3D4_dRMBqPq8h0zbNLE7lmFhuPXxR9XsE_9469MMHJuBaNsE9aQ4DSUpBlDnlIFO6OELvrOIzgZ7B9_PAibrgqhTSM1C3MeRWlWeGklqreLC0Gx0ASPIl6ZzCvPc5-gW88j6WNbGCUyhZdow12OV1gj-GPolVXpngDjiTDK5dIp50W0a41TKcqETARPHZc2gKjdTG0byHHqfDHS9dVDpXrJAI0M0DUD9CKAt6s54yXgxlrqPeLRipLAsusfqsm5bnRPo7LIQkrufeqETX0m8Fq8a1AYXM6llwG8Ig5rgsMoKd_m3MynU_35x5Hup5Ki5nhKDeBNQ-QrXIM1TfkC7gQhaHUotzqUqK-2O9wKkm7sxVRfSXcAL1fDNJNy4EpXzWsavLui_UwCkB0B7Cy_O1Je_KwxwxWnWtAsgO1WVK_-fN32bq_E-T-48XT90p7B7bhWNRVGfAt6s8ncPccj3Sx_0ejpX-u_Ruw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEQIOiKcIFGQQEgcaUceO7XBbKpYCAgS0qDfLcWyotCTVPlQtv4bfwi9jJpsNjYoquMbjRPG87ZnPAI9zFzWKiU6rjLZuTEA7GLRPC1dUXHqeOUG9w-_eq919-eYgP-hgcqgX5uT5PTfq2YwTwlpKhQQEA6PT5Xm4gE5KtQezaqc_MSBs_nVTzF_nDRxPi89_2gqfrozsj0evwKVFfeSWx24yOeGBxtfgahc6stGK19fhXKhvwMXVZZLLm_Dxwxc3HU-a4-fMsWm3K88aNAnfD3-Eir0a7b399VMy8lsVo0IS1tHgPBSSOUN2UXM6o1otetEt2B-_3NvZTbsLE1KvuJmnpeBcFVXUXqPmhqyStM2ZY5QRjSuiiaKMOXrskuuY-coZWRjMj50IJWanTorbsFE3dbgDTOTSmVDqYEKUfNu7YBSyW-dSqCC0T4CvV9P6Dk2cLrWY2DarMMquOGCRA7blgF0m8LSfc7TC0jiT-gUxqackHOz2AYqH7dTKoh7oSmsRowrSq1hIzHi3HUpDKIWOOoFHxGJLSBc1ldJ8dYvZzL7-_MmOlKYNcQxAE3jSEcUG_8G7rjMBV4LAsQaUmwNKVEU_HF5Lku1MwcxiTJlJQd0eCTzsh2kmlbfVoVm0NJiWomnME9ADCRz8_nCkPvzWwoEbQW2eRQJba1n98_Gzlnerl-d_4Mbd_3v7PbictbpnUi42YWM-XYT7GL3Nywet2v4GNus7GQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgg48EYECgoIiQPNto6d2OG2IJYCohToVuVkOY5dVt0myz5UbX8Nv4VfxkweS0NRBRK3KB7nMZ4Zz9gznwl5EmknQExEkIW4dCMt2EErTJDoJKPc0FAzrB1-vx1vDfjb_Wh_hew0tTDpkUmHRQ0aikDF3dNl6KPSdsOFOdwYZ65SeRlvTCnisAWYboBgMSJYXCCrcQTeeYesDrZ3el_KIiNBA4hwoqZ25o8dW_NTCeN_1lifTaBc7qJeIZfm-VgvjvVodGqi6l8j35pfrPJTDrvzWdo1J7-hP_5PHlwnV2uv1u9VYniDrNj8JrlYnXO5uEU-ftjTk_6oOH7ua39Sbxj4BViro-GJzfzXvd13P75zH6fUzMccF7-mgX4gvzMfJAnr5n1MI8MH3SaD_qvdl1tBfZZDYGIqZ0HKKI2TzAkjwKjYMOO4AhuBA-SkTpx0LHUROBMpFS40mZY8kRC6a2ZTCJw1Z3dIJy9ye5f4LOJa2lRYaR2nm0ZbGYMkioiz2DJhPEKbEVSmBjrH8zZGqgx4ZKwqVilglSpZpRYeebbsM65gPs6lfoGCsaREiO7yRjE5ULXGK1BRkQnBnIstN7FLOATjm5oK-HYmnPDIYxQrhSAcOWb5HOj5dKrefP6kerHAtXrwjT3ytCZyBQ65rosmgBOI29WiXGtRgpUw7eZGelVtpaYK3N2QMyxE8cijZTP2xMy73BbzkgYiZrDakUdES-pbv99uyYdfS6RyybACNfHIeqMfv15-HnvXlzr0F6Nx79_I75PLYakkMqBsjXRmk7l9AI7lLH1Y24qfdaxyAg
  priority: 102
  providerName: Unpaywall
Title OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow
URI https://link.springer.com/article/10.1186/s12859-021-04317-y
https://www.proquest.com/docview/2562430167
https://www.proquest.com/docview/2561487945
https://pubmed.ncbi.nlm.nih.gov/PMC8361789
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-021-04317-y
https://doaj.org/article/ead7d773ff6e4c6f948250a178eb37f7
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwED7tRQj4gHgVgVEFhMQHFlhiJ3aQEMqqdWNoZWwrKp8sJ7HHpJKMvmiUX8Nv4Zdxl6Yd0aYJvrRSfE4U3519d7l7DuB5qK1AMRFeHlDoRhrcB43IvFjHuc8zP9CMaof3utFOj-_2w_4SzNsd1Qs4utS1o35SveHg1Y_v03eo8G8rhZfR65FPKGweJRsQVIzwpsuwiidVTK0c9vj5VwXC758Xzlw6r3E4VRj-F3fqi9mTi0-oN-H6pDjV0zM9GPx1SnVuw63avHSTmTzcgSVT3IVrs4aT03vw6eNnPewMyrM3rnaHdeTeLXHb-Hby0-TudnL04fcv7tLZlruUbOLWNDgPBWnsIkupgN2lfC660X3odbaO2jte3VTByyJfjr2U-X4U51ZkArXbBDmnUGiIloiVOrbSstSGeKqnvrBBlmvJY4k-tGYmRQ9Wc_YAVoqyMA_BZSHX0qTCSGO5v5FpIyMUCRFyFhkmMgf8-WqqrEYcp8YXA1V5HjJSMw4o5ICqOKCmDrxczDmd4W1cSb1JTFpQElZ2daEcHqta9RTqisiFYNZGhmeRjTl6xRsapcGkTFjhwDNisSI0jILSbY71ZDRS7w8PVBIJCpqjkerAi5rIlvgOma6rF3AlCECrQbnWoER1zZrDc0lSc2lXaHcGnFFFiANPF8M0k1LgClNOKhp0XXH7DB0QDQlsvH5zpDj5WkGGS0aloLED63NZPX_4Vcu7vpDnf-DGo_-7-2O4EVS6Jz2frcHKeDgxT9DCG6ctWBZ9gb-ys92C1STZPdzF_82t7v4BXm1H7VYVO2lV6o0jve5-8uUP1EhSGQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBo8ID5FYIBBIB5YtCZ2YgcJofJRWroNNDrUN-M49phUktIPVeWP4m_kLk06okkTL3uNz0ns-_nOZ98HIc8i7QTARPhZiEc30oIctML4iU6ygJsg1Axjh_cP4u4R_zSMhhvkTx0Lg26VtUwsBXVWGDwj3wXVHHKGTvNvxr98rBqFt6t1CY0VLPp2uQCTbfq69x74-zwMOx8G77p-VVXAN3EgZ37KgiBOMieMAHjbMON4FhiBKnZSJ046lroI1FoaCBeaTEueSDAiNbMpmHCaM3jvJXIZ_qWFFRPEcG3gBVgfoA7MkfHuNMDscD46QWAKG-EvG8qvrBFwVhOc9c5cX9FeI1vzfKyXCz0a_aMFOzfI9Wr7StsrvN0kGza_Ra6sCloub5Mvn7_pSWdULF5RTSfVzQAtQCz9PPltM_qxPehTTlF1ZhR9WWhFAt0ApzMKiMH4eIruYvieO-ToQmb3LtnMi9zeI5RFXEubCiut40HLaCtjQJyIOIstE8YjQT2ZylQJzbGuxkiVho2M1YoBChigSgaopUdervuMV-k8zqV-izxaU2Iq7vJBMTlW1cpWsBRFJgRzLrbcxC7hYHS3NIDBpkw44ZGnyGGFyTZy9OY51vPpVPW-Hqp2LPBMHvbAHnlREbkCxmB0FRwBM4H5uRqU2w1KkAam2VwDSVXSaKpO145HnqybsSd62OW2mJc0YBmDdI48IhoAbAy_2ZKf_CgzkkuGkaaJR3ZqqJ5-_Lzp3VnD-T-4cf_8oT0mW93B_p7a6x30H5CrYbnspB-wbbI5m8ztQ9g8ztJH5Yql5PtFi4i_N_98Nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCCgHxFMEChiExIFGbWLHdrgtC0tLobxa1JvlOHZbaUlWu1lVy6_ht_DLmEmyoVFRBdd4nCietz3zmZBnifESxESGeYxbN8qBHXTShqlJ84jbKDYMe4c_7Iqtff7uIDk41cVfV7svjySbngZEaSqqjUnuGxVXYmMWIe5aiOUFCA4jw8VFcomDd8M7DIZi2J0jIGL_slXmr_N67qhG7T9rm8_WS3aHptfI1XkxMYsTMx6f8kujG-R6G1DSQSMBN8kFV9wil5srJhe3yeeP38x0NC5PXlJDp-1ePS3BUHw__uFy-nawt_PrJ6fozXKK5SW0pYF5IDoVBSZiyzrFCi580R2yP3qzN9wK22sUQisiVYUZiyKR5l5aCfrs4pzj5mcCsYdXJvXKs8wn4MezSPrY5kbxVEHWbJjLIGc1nN0lK0VZuHuEsoQb5TLplPM82rTGKQFCIBPOhGPSBiRarqa2LcY4XnUx1nWuoYRuOKCBA7rmgF4E5EU3Z9IgbJxL_QqZ1FEiOnb9oJwe6lbZNGiHzKVk3gvHrfAphzx404A0uIxJLwPyFFmsEf-iwAKbQzOfzfT21y96ICRuk0NYGpDnLZEv4R-safsVYCUQMqtHudajBAW1_eGlJOnWQMw0RJoxZ9gDEpAn3TDOxKK3wpXzmgaSVTCYSUBkTwJ7v98fKY6PapBwxbD5Mw3I-lJW_3z8vOVd7-T5H7hx___e_phc-fR6pN9v7-48IKtxrYYqjNgaWammc_cQwrsqe1Rr8G-6M0ZP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgg48EYECgoIiQPNto6d2OG2IJYCohToVuVkOY5dVt0myz5UbX8Nv4VfxkweS0NRBRK3KB7nMZ4Zz9gznwl5EmknQExEkIW4dCMt2EErTJDoJKPc0FAzrB1-vx1vDfjb_Wh_hew0tTDpkUmHRQ0aikDF3dNl6KPSdsOFOdwYZ65SeRlvTCnisAWYboBgMSJYXCCrcQTeeYesDrZ3el_KIiNBA4hwoqZ25o8dW_NTCeN_1lifTaBc7qJeIZfm-VgvjvVodGqi6l8j35pfrPJTDrvzWdo1J7-hP_5PHlwnV2uv1u9VYniDrNj8JrlYnXO5uEU-ftjTk_6oOH7ua39Sbxj4BViro-GJzfzXvd13P75zH6fUzMccF7-mgX4gvzMfJAnr5n1MI8MH3SaD_qvdl1tBfZZDYGIqZ0HKKI2TzAkjwKjYMOO4AhuBA-SkTpx0LHUROBMpFS40mZY8kRC6a2ZTCJw1Z3dIJy9ye5f4LOJa2lRYaR2nm0ZbGYMkioiz2DJhPEKbEVSmBjrH8zZGqgx4ZKwqVilglSpZpRYeebbsM65gPs6lfoGCsaREiO7yRjE5ULXGK1BRkQnBnIstN7FLOATjm5oK-HYmnPDIYxQrhSAcOWb5HOj5dKrefP6kerHAtXrwjT3ytCZyBQ65rosmgBOI29WiXGtRgpUw7eZGelVtpaYK3N2QMyxE8cijZTP2xMy73BbzkgYiZrDakUdES-pbv99uyYdfS6RyybACNfHIeqMfv15-HnvXlzr0F6Nx79_I75PLYakkMqBsjXRmk7l9AI7lLH1Y24qfdaxyAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OVarFlow%3A+a+resource+optimized+GATK%C2%A04+based+Open+source+Variant+calling+workFlow&rft.jtitle=BMC+bioinformatics&rft.au=Bathke%2C+Jochen&rft.au=L%C3%BChken%2C+Gesine&rft.date=2021-08-13&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04317-y&rft.externalDocID=10_1186_s12859_021_04317_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon