TSEBRA: transcript selector for BRAKER
Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences...
Saved in:
| Published in | BMC bioinformatics Vol. 22; no. 1; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
25.11.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-021-04482-0 |
Cover
| Abstract | Background
BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited.
Results
We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler.
Conclusion
TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. |
|---|---|
| AbstractList | Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited.BACKGROUNDBRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited.We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler.RESULTSWe present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler.TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence.CONCLUSIONTSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. Abstract Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. Keywords: Genome annotation, Gene prediction, Protein-coding genes, Evidence integration, RNA-seq, Protein homology BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence. |
| ArticleNumber | 566 |
| Audience | Academic |
| Author | Stanke, Mario Brůna, Tomáš Gabriel, Lars Borodovsky, Mark Hoff, Katharina J. |
| Author_xml | – sequence: 1 givenname: Lars surname: Gabriel fullname: Gabriel, Lars organization: Institute of Mathematics and Computer Science, University of Greifswald, Center for Functional Genomics of Microbes, University of Greifswald – sequence: 2 givenname: Katharina J. surname: Hoff fullname: Hoff, Katharina J. organization: Institute of Mathematics and Computer Science, University of Greifswald, Center for Functional Genomics of Microbes, University of Greifswald – sequence: 3 givenname: Tomáš surname: Brůna fullname: Brůna, Tomáš organization: School of Biological Sciences, Georgia Institute of Technology – sequence: 4 givenname: Mark surname: Borodovsky fullname: Borodovsky, Mark organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, School of Computational Science and Engineering, Georgia Institute of Technology – sequence: 5 givenname: Mario orcidid: 0000-0001-8696-0384 surname: Stanke fullname: Stanke, Mario email: mario.stanke@uni-greifswald.de organization: Institute of Mathematics and Computer Science, University of Greifswald, Center for Functional Genomics of Microbes, University of Greifswald |
| BookMark | eNqNkl2L1DAYRoOsuB_6B7waEEQvuua7qRfCuIw6uCDMrtchTd-OGTrNmKTq_nsz28G1iyxSSkNynqfpSU_RUe97QOg5weeEKPkmEqpEVWBKCsy5ogV-hE4IL0lBCRZHf42P0WmMG4xJqbB4go5Zphkv2Ql6eX21eL-av52lYPpog9ulWYQObPJh1uY7L35erJ6ix63pIjw7PM_Q1w-L64tPxeWXj8uL-WVhJVGpMLayUHKLBVa15KaSjFLW1k1bKotLwSommlpQASBxwxRntQFZGSs45lWt2Blajr2NNxu9C25rwo32xunbCR_W2oTkbAfallVbQttYToALpSoDlje521BDsITcxcauod-Zm5-m6_4UEqz3BvVoUGeD-tagxjn1bkzthnoLjYU-m-kmW5mu9O6bXvsfWkmKKSO54NWhIPjvA8Skty5a6DrTgx-iphJzTCShMqMv7qEbP4Q-C84UIZTRipM7am3yZ7u-9fm9dl-q51JJXirF9vs-_weVrwa2zuYfp3V5fhJ4PQlkJsGvtDZDjHp5tZqyamRt8DEGaLV1ySTn9wpc97BPei_6X4dwOLqY4X4N4U7MA6nfrHTsSg |
| CitedBy_id | crossref_primary_10_1016_j_aaf_2022_05_002 crossref_primary_10_2478_jofnem_2022_0059 crossref_primary_10_1371_journal_ppat_1011797 crossref_primary_10_1038_s41597_024_04097_z crossref_primary_10_46471_gigabyte_69 crossref_primary_10_1093_g3journal_jkae086 crossref_primary_10_1038_s41597_024_03549_w crossref_primary_10_1093_gbe_evae247 crossref_primary_10_1101_gr_278373_123 crossref_primary_10_1186_s12915_024_02002_z crossref_primary_10_1093_gigascience_giac099 crossref_primary_10_1093_gbe_evae121 crossref_primary_10_1093_gigascience_giad103 crossref_primary_10_1093_g3journal_jkad157 crossref_primary_10_3390_plants13111460 crossref_primary_10_1038_s41597_024_03622_4 crossref_primary_10_1093_molbev_msaf027 crossref_primary_10_1111_nph_20463 crossref_primary_10_1186_s12915_024_01962_6 crossref_primary_10_1093_dnares_dsad019 crossref_primary_10_1038_s41597_024_03043_3 crossref_primary_10_1093_gbe_evac106 crossref_primary_10_1093_gigascience_giac090 crossref_primary_10_3390_ijms24087311 crossref_primary_10_1186_s12859_023_05449_z crossref_primary_10_1093_g3journal_jkae195 crossref_primary_10_1038_s41467_023_43556_w crossref_primary_10_1038_s41597_025_04607_7 crossref_primary_10_1128_mra_00224_22 crossref_primary_10_1186_s12870_024_05446_1 crossref_primary_10_1038_s41597_023_02903_8 crossref_primary_10_1093_g3journal_jkad146 crossref_primary_10_1038_s41597_025_04813_3 crossref_primary_10_1002_ppp3_10517 crossref_primary_10_1038_s41597_025_04395_0 crossref_primary_10_48130_gcomm_0025_0006 crossref_primary_10_1186_s12915_023_01682_3 crossref_primary_10_1093_g3journal_jkae021 crossref_primary_10_1371_journal_pgen_1011116 crossref_primary_10_1073_pnas_2208116120 crossref_primary_10_1016_j_jhazmat_2024_136627 crossref_primary_10_1093_gbe_evad018 crossref_primary_10_7554_eLife_88456 crossref_primary_10_1093_g3journal_jkae267 crossref_primary_10_1038_s41597_024_03798_9 crossref_primary_10_1093_dnares_dsae005 crossref_primary_10_46471_gigabyte_105 crossref_primary_10_1093_molbev_msad029 crossref_primary_10_1038_s41597_025_04679_5 crossref_primary_10_1093_dnares_dsae001 crossref_primary_10_1016_j_ygeno_2024_110824 crossref_primary_10_1093_gigascience_giae085 crossref_primary_10_1093_g3journal_jkad284 crossref_primary_10_1093_g3journal_jkad282 crossref_primary_10_1093_gbe_evad146 crossref_primary_10_1093_gbe_evad021 crossref_primary_10_1093_molbev_msae087 crossref_primary_10_1111_nph_19736 crossref_primary_10_1002_aps3_11533 crossref_primary_10_1016_j_xplc_2024_101238 crossref_primary_10_1093_gbe_evae070 crossref_primary_10_3389_fpls_2024_1437132 crossref_primary_10_1186_s12864_024_10112_9 crossref_primary_10_1371_journal_pgen_1011615 crossref_primary_10_17660_ActaHortic_2023_1379_15 crossref_primary_10_1101_gr_278090_123 crossref_primary_10_1073_pnas_2211117120 crossref_primary_10_1038_s42003_024_06550_6 crossref_primary_10_1111_mec_16483 crossref_primary_10_1038_s41597_025_04631_7 crossref_primary_10_1093_gigascience_giae116 crossref_primary_10_1093_gbe_evad192 crossref_primary_10_1093_g3journal_jkad079 crossref_primary_10_1038_s41559_024_02490_w crossref_primary_10_1093_molbev_msad167 crossref_primary_10_1126_sciadv_ads6459 crossref_primary_10_1093_g3journal_jkad107 crossref_primary_10_7717_peerj_18771 crossref_primary_10_24072_pcjournal_381 crossref_primary_10_1038_s41597_024_03817_9 crossref_primary_10_1093_hr_uhad274 crossref_primary_10_1093_gbe_evad001 crossref_primary_10_1038_s41597_024_03232_0 crossref_primary_10_1093_jhered_esae049 crossref_primary_10_3389_fpls_2024_1409116 crossref_primary_10_1038_s41597_024_03300_5 crossref_primary_10_1093_g3journal_jkad189 crossref_primary_10_1038_s41597_025_04411_3 crossref_primary_10_1016_j_hpj_2024_01_001 crossref_primary_10_3390_genes14061196 crossref_primary_10_1093_gbe_evae148 crossref_primary_10_1038_s41598_023_41738_6 crossref_primary_10_1093_jhered_esad064 crossref_primary_10_1186_s12864_024_10829_7 crossref_primary_10_1093_g3journal_jkad090 crossref_primary_10_3389_fpls_2023_1284478 crossref_primary_10_1038_s41597_024_03870_4 crossref_primary_10_1093_g3journal_jkae104 crossref_primary_10_1093_g3journal_jkae222 crossref_primary_10_1093_hr_uhae119 crossref_primary_10_1038_s41467_022_35621_7 crossref_primary_10_7554_eLife_88456_3 crossref_primary_10_1038_s41597_024_03818_8 crossref_primary_10_3390_insects13121172 crossref_primary_10_1093_jhered_esae021 crossref_primary_10_1016_j_cub_2023_09_052 crossref_primary_10_1101_gr_279378_124 crossref_primary_10_1093_gbe_evae155 crossref_primary_10_1093_gbe_evae272 crossref_primary_10_1093_molbev_msae164 crossref_primary_10_1093_gbe_evae031 crossref_primary_10_1186_s12915_023_01639_6 crossref_primary_10_46471_gigabyte_150 crossref_primary_10_1093_g3journal_jkae211 crossref_primary_10_1093_gbe_evad060 |
| Cites_doi | 10.1101/gr.081612.108 10.1093/nar/gkh379 10.1093/nargab/lqaa026 10.1038/nature07723 10.1093/nar/gkaa1023 10.1186/gb-2008-9-1-r1 10.1186/s12859-019-3182-x 10.1038/s41467-018-07882-8 10.1093/bioinformatics/btv661 10.1093/nar/gkt418 10.1186/1471-2105-15-189 10.1186/s12864-015-1315-9 10.1186/1471-2105-12-491 10.1007/978-1-4939-9173-0_5 10.1186/s12870-018-1282-9 10.1093/nar/gkg770 10.1093/nar/gku557 10.1101/gr.1562804 10.1038/s41587-019-0201-4 10.1093/nar/gki937 10.1093/bioinformatics/bti609 10.1038/nbt.1883 10.1007/BF02295996 10.1186/s12859-018-2203-5 10.1186/1471-2105-7-62 10.1093/nar/gky1053 10.1080/14786440009463897 10.1093/nar/gkl200 10.1093/bioinformatics/btn013 10.1038/nbt.3207 10.1073/pnas.1721395115 10.1093/nar/gkq1019 10.1093/bioinformatics/btn004 10.1093/bioinformatics/bti1040 10.1111/1755-0998.13259 10.1038/nmeth.3176 10.1038/nrg2484 10.1101/2021.02.04.429837 10.1093/nargab/lqaa108 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-021-04482-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_c79f7efdc41e45889aec4d525a2a106e 10.1186/s12859-021-04482-0 PMC8620231 A686478830 10_1186_s12859_021_04482_0 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Universität Greifswald (1032) – fundername: National Institutes of Health grantid: GM128145 funderid: http://dx.doi.org/10.13039/100000002 – fundername: ; – fundername: ; grantid: GM128145 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c618t-ac9ce74c0508b64a963223fbdf78c0753935db525ee60d3843bae69ac54049b83 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:38:18 EDT 2025 Sun Oct 26 04:13:21 EDT 2025 Tue Sep 30 16:55:34 EDT 2025 Thu Oct 02 03:34:44 EDT 2025 Tue Oct 07 05:34:53 EDT 2025 Mon Oct 20 22:15:03 EDT 2025 Mon Oct 20 16:48:32 EDT 2025 Thu Oct 16 15:19:33 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Wed Oct 01 04:15:37 EDT 2025 Sat Sep 06 07:27:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gene prediction Protein-coding genes Genome annotation Protein homology RNA-seq Evidence integration |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c618t-ac9ce74c0508b64a963223fbdf78c0753935db525ee60d3843bae69ac54049b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8696-0384 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-021-04482-0 |
| PMID | 34823473 |
| PQID | 2611232941 |
| PQPubID | 44065 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c79f7efdc41e45889aec4d525a2a106e unpaywall_primary_10_1186_s12859_021_04482_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8620231 proquest_miscellaneous_2604016126 proquest_journals_2611232941 gale_infotracmisc_A686478830 gale_infotracacademiconefile_A686478830 gale_incontextgauss_ISR_A686478830 crossref_citationtrail_10_1186_s12859_021_04482_0 crossref_primary_10_1186_s12859_021_04482_0 springer_journals_10_1186_s12859_021_04482_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-25 |
| PublicationDateYYYYMMDD | 2021-11-25 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | KX Pearson (4482_CR36) 1900; 50 BJ Haas (4482_CR40) 2003; 31 Z Wang (4482_CR4) 2009; 10 KJ Hoff (4482_CR9) 2016; 32 D Kim (4482_CR34) 2019; 37 EW Sayers (4482_CR1) 2021; 49 J Lee (4482_CR44) 2021; 21 M Jayakodi (4482_CR45) 2018; 18 Q McNemar (4482_CR35) 1947; 12 4482_CR19 A Lomsadze (4482_CR10) 2005; 33 4482_CR15 4482_CR37 4482_CR18 4482_CR13 4482_CR5 4482_CR30 4482_CR7 Q Liu (4482_CR26) 2008; 24 4482_CR32 4482_CR6 4482_CR31 4482_CR3 C Holt (4482_CR20) 2011; 12 4482_CR2 A Lomsadze (4482_CR12) 2014; 42 JE Allen (4482_CR24) 2004; 14 L Hu (4482_CR42) 2019; 10 V Ter-Hovhannisyan (4482_CR11) 2008; 18 M Stanke (4482_CR14) 2006; 7 M Stanke (4482_CR17) 2008; 24 J Keilwagen (4482_CR21) 2018; 19 O Gotoh (4482_CR8) 2014; 15 B Buchfink (4482_CR38) 2015; 12 F Zickmann (4482_CR23) 2015; 16 R van Velzen (4482_CR41) 2018; 115 M Stanke (4482_CR33) 2019; 20 JE Allen (4482_CR25) 2005; 21 4482_CR27 4482_CR22 MG Grabherr (4482_CR39) 2011; 29 BJ Haas (4482_CR28) 2008; 9 AH Paterson (4482_CR29) 2009; 457 4482_CR43 KJ Hoff (4482_CR16) 2013; 41 |
| References_xml | – volume: 18 start-page: 1979 issue: 12 year: 2008 ident: 4482_CR11 publication-title: Genome Res. doi: 10.1101/gr.081612.108 – ident: 4482_CR13 doi: 10.1093/nar/gkh379 – ident: 4482_CR19 doi: 10.1093/nargab/lqaa026 – volume: 457 start-page: 551 issue: 7229 year: 2009 ident: 4482_CR29 publication-title: Nature doi: 10.1038/nature07723 – volume: 49 start-page: D92 issue: D1 year: 2021 ident: 4482_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1023 – volume: 9 start-page: 1 issue: 1 year: 2008 ident: 4482_CR28 publication-title: Genome Biol doi: 10.1186/gb-2008-9-1-r1 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 4482_CR33 publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3182-x – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 4482_CR42 publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 32 start-page: 767 issue: 5 year: 2016 ident: 4482_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv661 – ident: 4482_CR5 – ident: 4482_CR3 – volume: 41 start-page: W123 issue: W1 year: 2013 ident: 4482_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt418 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 4482_CR8 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-15-189 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 4482_CR23 publication-title: BMC Genom doi: 10.1186/s12864-015-1315-9 – volume: 12 start-page: 1 issue: 1 year: 2011 ident: 4482_CR20 publication-title: BMC Bioinform doi: 10.1186/1471-2105-12-491 – ident: 4482_CR32 doi: 10.1007/978-1-4939-9173-0_5 – volume: 18 start-page: 62 issue: 1 year: 2018 ident: 4482_CR45 publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1282-9 – ident: 4482_CR37 – volume: 31 start-page: 5654 issue: 19 year: 2003 ident: 4482_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg770 – volume: 42 start-page: e119 issue: 15 year: 2014 ident: 4482_CR12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku557 – volume: 14 start-page: 142 issue: 1 year: 2004 ident: 4482_CR24 publication-title: Genome Res doi: 10.1101/gr.1562804 – volume: 37 start-page: 907 issue: 8 year: 2019 ident: 4482_CR34 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0201-4 – volume: 33 start-page: 6494 issue: 20 year: 2005 ident: 4482_CR10 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki937 – volume: 21 start-page: 3596 issue: 18 year: 2005 ident: 4482_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti609 – volume: 29 start-page: 644 issue: 7 year: 2011 ident: 4482_CR39 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – ident: 4482_CR31 – volume: 12 start-page: 153 issue: 2 year: 1947 ident: 4482_CR35 publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 4482_CR21 publication-title: BMC Bioinform doi: 10.1186/s12859-018-2203-5 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 4482_CR14 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-7-62 – ident: 4482_CR7 doi: 10.1093/nar/gky1053 – volume: 50 start-page: 157 issue: 302 year: 1900 ident: 4482_CR36 publication-title: Lond Edinburgh Dublin Philos Mag J Sci doi: 10.1080/14786440009463897 – ident: 4482_CR15 doi: 10.1093/nar/gkl200 – volume: 24 start-page: 637 issue: 5 year: 2008 ident: 4482_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn013 – ident: 4482_CR30 doi: 10.1038/nbt.3207 – volume: 115 start-page: E4700 issue: 20 year: 2018 ident: 4482_CR41 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1721395115 – ident: 4482_CR43 – ident: 4482_CR2 – ident: 4482_CR6 doi: 10.1093/nar/gkq1019 – volume: 24 start-page: 597 issue: 5 year: 2008 ident: 4482_CR26 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btn004 – ident: 4482_CR27 doi: 10.1093/bioinformatics/bti1040 – volume: 21 start-page: 327 issue: 1 year: 2021 ident: 4482_CR44 publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13259 – volume: 12 start-page: 59 issue: 1 year: 2015 ident: 4482_CR38 publication-title: Nat Methods doi: 10.1038/nmeth.3176 – volume: 10 start-page: 57 issue: 1 year: 2009 ident: 4482_CR4 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2484 – ident: 4482_CR22 doi: 10.1101/2021.02.04.429837 – ident: 4482_CR18 doi: 10.1093/nargab/lqaa108 |
| SSID | ssj0017805 |
| Score | 2.692095 |
| Snippet | Background
BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each... BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains... Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each... Abstract Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes.... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Analysis Annotations Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer programs Evidence integration Gene prediction Genes Genetic code Genetic transcription Genome annotation Genomes Homology Homology (Biology) Identification and classification Life Sciences Mathematical models Methods Microarrays Pipelines Predictions Protein homology Protein-coding genes Proteins Ribonucleic acid RNA RNA sequencing RNA-seq Software Software development tools Software engineering Statistical analysis Statistical models Transcription |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4oPISKQUFhOBArebh-MFti7YqIDhsW6k3y3FsqLTKVmRXqP--M3nRqFLhwDWeKPLnGc9MPPMZ4G1QLohSeWa9TBgvdM5skaO5Y2zKcxmUtfRD_9t3cXTKv5wVZ9eu-qKasI4euANu30kdpA-V46mnrkptveNVkRU2s5jOeNp9E6WHZKo_PyCm_qFFRon9JiWeNkblCAnmIxlLJm6oZeu_uSffrJMcD0sfwL1NfWEvf9vl8po_OtyGh30gGc-6CTyCO75-DHe7qyUvn8C7k-P5wWL2MV6TM2q3hrjx3T_6GAPVGAe_zhdP4fRwfvLpiPV3IjAnUrVm1mnnJXcJBlal4BbtBx18KKsglUP3T522VYnweC-SKke8S-uFtg4jM65LlT-DrXpV--cQV8qj-UonKmW5c8GqUuaVzYl1zgWnI0gHiIzrCcPp3oqlaRMHJUwHq0FYTQurSSL4ML5z0dFl3Cp9QMiPkkR13T5ABTC9Api_KUAEb2jdDJFZ1FQt88NumsZ8Pl6YmVDUSqty_NL7XiiscA7O9s0HiATxX00kdyeSaG1uOjyoh-mtvTGYhVJkqnkawetxmN6kCrbarzYkg9slhteZiEBO1Goy_elIff6zZfzGtJN4-iLYGxTwz8dvg3dvVNJ_WI2d_7EaL-B-RmaWpiwrdmFr_WvjX2LYti5ftRZ6BXb0OTg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxK9itEoU0Qe7NB-bzUYQuZMrVfGQawt9Wzab3SocydncIf3vncklqaFw-JqdJezsfO3uzG8A3jhpnMilZdqmAeNJFjOdxKjuGJvyOHVSa7rQ_z4Tx2f863lyvgOzrhaG0io7m9gY6qIydEd-iJE-ef-Mh5-Wvxl1jaLX1a6Fhm5bKxQfG4ixW7AbETLWCHYn09mPef-uQAj-XemMFId1SPhtjNIUAjynRCwYuKcGxf-mrb6ZP9k_ot6DO-tyqa_-6MXiHz919ADutwGmP95IxEPYseUjuL1pOXn1GN6enkwn8_EHf0VOqjEZfm03d_c-BrA-Dn6bzp_A2dH09PMxa3slMCNCuWLaZMam3AQYcOWCa9QrdPwuL1wqDYYFVIFb5EmUWCuCIsZ9yLUVmTYYsfEsl_EejMqqtE_BL6RFtU6NKKTmxjgt8zQudExodMaZzIOwY5EyLZA49bNYqOZAIYXasFUhW1XDVhV48L6fs9zAaGylnhDne0qCwG4-VJcXqtUoZdLMpdYVhoeWym0zbQ0vcIU60njOtR68pn1TBHJRUhbNhV7XtfpyMldjIanEVsb4p3ctkatwDUa3RQnICcLFGlDuDyhRC81wuBMP1VqBWl3LrAev-mGaSZltpa3WRINmFMPuSHiQDsRqsPzhSPnrZ4MEjsdRwu_z4KATwOufb2PvQS-k_7Ebz7Yv7TncjUiBwpBFyT6MVpdr-wIDtVX-stW-v-BlNjk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NQwh4mPjUwgYKCMEDM-TDcRwkhDrUaYDGQ7dKe7Mcx96QqnQ0raD_PXf5GtGmCV7rcyOf73y_S3y_A3jlpHEil5ZpmwaMJ1nMdBKjuyM25XHqpNb0Qv_ouzic8q-nyekGdO2OWgVW16Z21E9qupi9-_1z_Qkd_mPt8FK8r0JiYWN02SDAbCNimMLfwkiVUSuHI375VYH4-7vCmWvnDYJTzeF_9aS-enuy_4R6D-6sygu9_qVns7-i1MF92GrhpT9q7OEBbNjyIdxuGk6uH8Hrk-Px_mT0wV9SiKoPDL-yzZt7H-Grj4PfxpPHMD0Yn3w-ZG2nBGZEKJdMm8zYlJsA4VYuuEavwrDv8sKl0iAooPrbIk-ixFoRFDHuQq6tyLRBvMazXMZPYLOcl3Yb_EJadOrUiEJqbozTMk_jQsfERWecyTwIOxUp09KIUzeLmarTCSlUo1aFalW1WlXgwdt-zkVDonGj9D5pvpckAuz6h_niTLX-pEyaudS6wvDQUrFtpq3hBa5QRxqzXOvBS9o3RRQXJd2hOdOrqlJfjidqJCQV2MoYn_SmFXJzXIPRbUkCaoJYsQaSuwNJ9EEzHO7MQ3UmrDA3Jbya8dCDF_0wzaR7baWdr0gGD1EE3ZHwIB2Y1WD5w5Hyx3nNA47JKLH3ebDXGeDlw29S715vpP-wG0__79934G5EDhWGLEp2YXO5WNlnCNuW-fPaF_8Ap3M3LA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfQEII9TONLlA1UEIIHFq0faZrydptuGiB4uG3S3iI3TQDp1JvWO6H999htr1s1NMFr7TSKE8d2Yv8C8M5r61WpnUCXR0JmRSowS0ndyTeVae41Ih_of_uujs_kl_PsvIfJ4VqYm_f3sVb7TcwIa4ITCSKKJBJB4fl9MlKqvZhVh8ONAWPzr4ti_tpuZHhafP7bu_DtzMjhenQTHq7qC7z6jfP5DQt0tA1bvesYTrq5fgz3XP0EHnSPSV49hfenJ9OD2eRTuGTz024GYeO6U_mQXNOQiF-ns2dwdjQ9PTwW_SsIwqpYLwXawrpc2ohcqVJJJI0hk-7LyufaksHn2tqqzJLMORVVKUm4RKcKtOSLyaLU6XPYqBe1ewFhpR0pbG5VpVFa61GXeVphyjhz1tsigHgtImN7iHB-qWJu2lBBK9OJ1ZBYTStWEwXwcWhz0QFk3Ml9wJIfOBncuv1Ac256XTE2L3zufGVl7LiQtkBnZUUjxAQpgnUBvOV5MwxfUXN-zA9cNY35fDIzE6W5eFan1NOHnskvaAwW-3IDkgQjXo04d0ecpF92TF4vD9Prd2Mo7mRftJBxAG8GMrfknLXaLVbMQxskOdSJCiAfLavR8MeU-tfPFuObAk1G5gtgb70Arzu_S7x7wyL9h9l4-X9_34FHCStUHIsk24WN5eXKvSKXbFm-bnXxDxAuKKE priority: 102 providerName: Springer Nature |
| Title | TSEBRA: transcript selector for BRAKER |
| URI | https://link.springer.com/article/10.1186/s12859-021-04482-0 https://www.proquest.com/docview/2611232941 https://www.proquest.com/docview/2604016126 https://pubmed.ncbi.nlm.nih.gov/PMC8620231 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-021-04482-0 https://doaj.org/article/c79f7efdc41e45889aec4d525a2a106e |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGKwQ88I0IjCogBA8sXdM4tsNbWrWMolVTu0rlyXIcZ0yUtGpaofHXc5ePsjA0gcRLKsVnpWffnX-X-H4m5HUidMIiYRxleMehfuA5yvfA3QGbUo8nQil8oX88ZkczOpr78z0yqWphom86Ol-WpKFIVNy-XIa-KKoc8BQFsz5cxUnh9IIdZi4ysTm44aADGUfXgTS-yXzA5w3SnI1Pws95mRF3Hchx_Kp65o8daytUTuR_NVxf3UK5-456h9zapit18V0tFpeWquE9klVKFjtUvra3m6itf_zG__h_R-E-uVsiWzssTPEB2TPpQ3KzOOvy4hF5czod9Cbhe3uDq2Meq-zMFB8NbPgHNjR-Gkwek9lwcNo_cspDGhzNXLFxlA604VR3AOlFjCpwaEAcSRQnXGjAI1j6G0d-1zeGdWIPDCBShgVKA1SkQSS8J6SRLlPzlNixMBBPuGaxUFTrRImIe7HykAZPJzqwiFtNjNQlgzkepLGQeSYjmCz0l6C_zPWXHYu82_VZFfwd10r3cL53ksi9nd9Yrs9k6cpS8yDhJok1dQ3W-QbKaBqDhqqrIME2FnmF1iKRXSPF7Ttnaptl8uN0IkMmsLZXePCkt6VQsgQdtCqrIWAkkJCrJrlfkwT31_XmyihlGX4yCWkxQuWAuhZ5uWvGnrilLjXLLcpA_Aa832UW4TVjrqlfb0nPv-QU5JAHI3GgRQ4qs__18OuG92DnGn8xG8_-Tfw5ud1Fy3fBx_190tist-YFIMZN1CI3-JzDVQw_tEgzDEfTEfz2BuOTCdzts34rfxcD12MqWmXA-An652i9 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFSKUOEBcQpDAYM4HlqrPtbrNRJCKaRKSNuHNpXytqzX64IUOaFOVOWn-EZmfBWrUsRLX72ztnd2zt05AN5lQmc8EcZRJnIdFsaBo8IA2R1tUxZEmVCKDvSPjvngjH2fhJMN-NPkwlBYZSMTS0GdzjSdke-hpU_aP2bel_lvh7pG0e1q00KjIouRWV2iy1Z8Hn7D_X3v-wf98deBU3cVcDT3xMJROtYmYtpF0yThTCEFoorMkjSLhEYFSrmqaRL6oTHcTQP840QZHiuNtg2LExHge2_BbRagLEH-iSatg-dRf4AmMUfwvcKj6nAOBUG46AX5jttRfmWPgOua4Hp0ZntFew-2lvlcrS7VdPqPFjx4APdr89XuVfT2EDZM_gjuVA0tV4_hw_i0v3_S-2QvSAWWAskuTHUzYKN5bOPgqH_yBM5uBGdPYTOf5eYZ2KkwKDQizVOhmNaZEkkUpCqgWnc607EFXoMiqesy5dQtYypLd0VwWaFVIlpliVbpWrDTzplXRTrWQu8T5ltIKrBdPphdnMuaX6WO4iwyWaqZZyiZN1ZGsxRXqHyFXrSx4C3tm6QSGjnF6JyrZVHI4emJ7HFBCbwiwC99rIGyGa5BqzrlATFBVbc6kNsdSORx3R1uyEPWMqaQVxxhwZt2mGZS3FxuZkuCQSGNRr3PLYg6ZNVZfnck__WzrDOOzi5VB7RgtyHAq4-vQ-9uS6T_sRvP1y_tNWwNxkeH8nB4PHoBd31iJs9z_HAbNhcXS_MSTcJF8qrkQxt-3DTj_wX7qWwE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hVjx6QDxFSgsBITjQqHk4jtPbdtlVS6FC21bqzXIcu1RaZVdNVqj_npm8aFRUwXU93siTGc838cxngA9WaMszYTxlEt9jcRp5Ko7Q3RGbsiixQin6oP_9mB-csa_n8fmNLv662r07kmx6Goilqah2l7ltXFzw3TIg3jWPygt8zC9CD5P2dYbRje4wGPNxf45AjP1dq8xf5w3CUc3af3tvvl0v2R-absDDVbFU17_UfH4jLk2fwOMWULqjxgKewj1TPIP7zRWT18_h4-nJZH822nMrCkr1FuGWpvlW7yJgdXHwaDJ7AWfTyen4wGvvRvA0D0TlKZ1qkzDtI8DKOFPoRxjobZbbRGiEAdRxm2dxGBvD_TxCvWfK8FRpRGgszUT0EtaKRWFegZsLg26caJ4LxbS2SmRJlKuI2Oe01akDQaciqVvicLq_Yi7rBEJw2ahVolplrVbpO_C5n7NsaDPulN4nzfeSRHld_7C4upCtB0mdpDYxNtcsMNRemyqjWY4rVKHCvNY48J7emyRSi4KqZi7Uqizl4clMjriglloR4ZM-tUJ2gWvQqm1CQE0QD9ZAcmsgiV6nh8OdecjW60uJ2Sgh1JQFDrzrh2kmVbIVZrEiGdw2EWaH3IFkYFaD5Q9HisufNfM3pp_E1-fATmeAfx5-l3p3eiP9h7ex-X___hYe_Pgyld8Oj49ew6OQfCsIvDDegrXqamW2EbNV2ZvaLX8DVIcz1w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NnRDwwPdEYKCAEDywdPl0HN461GmAmFC3SuPJsh17TJS0alqh8ddzly8WhiaQeK3PSs--O_8uufsZ4IXl2jLFjSdN6ntxkkWeTCJ0d8SmcZRaLiW90P94yA6m8fuT5GQDJm0vjPqm1dm8IQ0louLhxTb0Wd3lQLcomOXuIre103O2WwbExOZRwYGPGUfoYRq_yRLE5wPYnB5-Gn2u2ozSwMMcJ2m7Z_44sXdCVUT-l8P15RLK7jvqTbi-Lhby_LuczS4cVfu3oWyVrCtUvg7XKzXUP37jf_y_q3AHbjXI1h3VpngXNkxxD67Vd12e34eXx0fjvcnojbui07GKVW5p6o8GLv4DFwc_jCcPYLo_Pn574DWXNHiaBXzlSZ1pk8baR6SnWCzRoRFxWJXblGvEI9T6m6skTIxhfh6hAShpWCY1QsU4UzzagkExL8xDcHNuMJ6kmuVcxlpbyVUa5TIiGjxtdeZA0G6M0A2DOV2kMRNVJsOZqPUXqL-o9Be-A6-7OYuav-NK6T3a706SuLerH-bLU9G4stBpZlNjcx0Hhvp8M2l0nKOGMpSYYBsHnpO1CGLXKKh851Suy1K8O5qIEePU28sjfNKrRsjOUQctm24IXAki5OpJbvck0f11f7g1StGEn1JgWkxQOYsDB551wzSTSuoKM1-TDMZvxPshcyDtGXNP_f5IcfaloiDHPJiIAx3Yac3-18OvWt6dzjX-Yjce_Zv4Y7gRkuUH6OPJNgxWy7V5gohxpZ42IeAn6XVhHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSEBRA%3A+transcript+selector+for+BRAKER&rft.jtitle=BMC+bioinformatics&rft.au=Gabriel%2C+Lars&rft.au=Hoff%2C+Katharina+J.&rft.au=Br%C5%AFna%2C+Tom%C3%A1%C5%A1&rft.au=Borodovsky%2C+Mark&rft.date=2021-11-25&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04482-0&rft.externalDocID=10_1186_s12859_021_04482_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |