Multi-sensor information fusion localization of rare-earth suspended permanent magnet maglev trains based on adaptive Kalman algorithm

Since the positioning accuracy of sensors degrades due to noise and environmental interference when a single sensor is used to localize a suspended rare-earth permanent magnetically levitated train, a multi-sensor information fusion method using multiple sensors and self-correcting weighting is prop...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 11; p. e0292269
Main Authors Xu, Yiwei, Fan, Kuangang, Hu, Qian, Guo, Haoqi
Format Journal Article
LanguageEnglish
Published San Francisco, CA USA Public Library of Science 28.11.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0292269

Cover

More Information
Summary:Since the positioning accuracy of sensors degrades due to noise and environmental interference when a single sensor is used to localize a suspended rare-earth permanent magnetically levitated train, a multi-sensor information fusion method using multiple sensors and self-correcting weighting is proposed for permanent magnetic levitated train localization. A decay memory factor is introduced to reduce the weight of the influence of historical measurement data on the fusion estimation, thus enhancing the robustness of the fusion algorithm. The Kalman filtering results suffer from inaccuracy when process noise is present in the system. In this paper, we use a covariance adaptive scheme that replaces the prediction step of the Kalman filter with covariance. It uses the covariance adaptive scheme to search the posterior sequence online and reconstruct the prior error covariance. Since the process noise covariance is not used in the new adaptive scheme, the negative impact of the mismatch noise statistics is greatly reduced. Simulation and experimental results show that the use of multi-sensor information fusion and covariance adaptive Kalman algorithm has significant advantages in terms of adaptability, accuracy and simplicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0292269