Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction)

Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular magnetic resonance Vol. 18; no. 1; p. 83
Main Authors Piekarski, Eve, Chitiboi, Teodora, Ramb, Rebecca, Feng, Li, Axel, Leon
Format Journal Article
LanguageEnglish
Published London Elsevier Inc 25.11.2016
BioMed Central
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1097-6647
1532-429X
1532-429X
DOI10.1186/s12968-016-0306-6

Cover

Abstract Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10−9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
AbstractList Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP).BACKGROUNDArrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP).One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC.METHODSOne hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC.Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10-9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89.RESULTSBetween NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10-9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89.Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.CONCLUSIONSOur study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
Background Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). Methods One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. Results Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different ( p values = 0.00014, 0.0027, 0.000028, 5×10 −9 , 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different ( p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. Conclusions Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
Background Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). Methods One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincare plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. Results Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10-9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. Conclusions Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10−9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10 , 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
ArticleNumber 83
Audience Academic
Author Ramb, Rebecca
Chitiboi, Teodora
Feng, Li
Piekarski, Eve
Axel, Leon
Author_xml – sequence: 1
  givenname: Eve
  surname: Piekarski
  fullname: Piekarski, Eve
  organization: Department of Radiology, The Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Ave, New York, NY, USA
– sequence: 2
  givenname: Teodora
  surname: Chitiboi
  fullname: Chitiboi, Teodora
  organization: Department of Radiology, The Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Ave, New York, NY, USA
– sequence: 3
  givenname: Rebecca
  surname: Ramb
  fullname: Ramb, Rebecca
  organization: Department of Radiology, The Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Ave, New York, NY, USA
– sequence: 4
  givenname: Li
  surname: Feng
  fullname: Feng, Li
  organization: Department of Radiology, The Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Ave, New York, NY, USA
– sequence: 5
  givenname: Leon
  surname: Axel
  fullname: Axel, Leon
  email: leon.axel@nyumc.org
  organization: Department of Radiology, The Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Ave, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27884152$$D View this record in MEDLINE/PubMed
BookMark eNqNkstq3DAUhk1JaS7tA3RTBIWSLpxKvkj2JhBCbxDopoHuxBn5eEapLE0leco8St-2cmbazIQyFC8s7O__ZX86p9mRdRaz7CWjF4w1_F1gRcubnDKe05LynD_JTlhdFnlVtN-O0pq2Iue8EsfZaQh3lLJWUPEsOy5E01SsLk6yX7cBietJQNPnc4jYEQ-dBkMU-E67FQQ1GvBkgLnFqBXxGJwFq5BERzqMqCIB2xFlIATdrwl4v1jHxaAhkHOIfirr9cxrYyBqZ-_ppccB4uiRrNAmZrOJcmkNaqLePs-e9mACvtjez7LbD--_Xn_Kb758_Hx9dZMrzpqYCzVDhLZqqllZdYAlm7UldqKGnnHoStEJoVrOoeB1rwQ2PccWe9aUop0VtC7PsmLTO9olrH-CMXLp9QB-LRmVk2e58SyTZzl5ljyFLjeh5TgbsFPTP8BD0IGW-2-sXsi5W8maFWXZFqngfFvg3Y8RQ5SDDgqTIotuDJI1VUULLjhL6OtH6J0bvU1OJqoWtGGifaDmYFBq27vJ5FQqryrBqoIKUSbq4h9UujocdLKPvU7P9wJvdgILBBMXwZlxOqKwD77aNfJXxZ9RSwDbAMq7EDz2_6VZPMooHe-HKH22NgeT21MNaRc7R78j7UCo3YQwzdtKp5Ay2moF5juuZef0gexvaoEcCA
CitedBy_id crossref_primary_10_1002_mrm_26745
crossref_primary_10_1002_widm_1530
crossref_primary_10_1016_j_redii_2023_100035
crossref_primary_10_1002_mrm_28642
crossref_primary_10_3389_fneur_2020_00559
crossref_primary_10_1007_s10334_017_0655_7
crossref_primary_10_1186_s12968_017_0423_x
crossref_primary_10_1016_j_jocmr_2024_100997
crossref_primary_10_1007_s12350_019_01973_9
Cites_doi 10.1002/mrm.24633
10.1002/mrm.10664
10.1016/j.jcmg.2014.04.016
10.1109/TBME.2015.2493726
10.1002/mrm.22306
10.1007/BF02345439
10.1002/mrm.21075
10.1016/j.compbiomed.2016.02.006
10.1102/1470-7330.2013.0041
10.1016/j.medengphy.2014.08.007
10.3233/THC-140818
10.1088/0967-3334/36/9/1873
10.1016/j.jelectrocard.2015.08.013
10.1109/TBME.2007.903707
10.1111/pace.12261
10.1016/j.mric.2014.08.004
10.1016/j.artmed.2004.03.007
10.1002/mrm.25665
10.1088/0967-3334/36/2/283
10.1186/1475-925X-13-90
10.1109/MSP.2007.914728
10.1002/mrm.25738
10.1002/mrm.21391
10.1016/j.mri.2011.02.011
ContentType Journal Article
Copyright 2016 © 2016 THE AUTHORS. Published by Elsevier Inc on behalf of the Society for Cardiovascular Magnetic Resonance
The Author(s). 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: 2016 © 2016 THE AUTHORS. Published by Elsevier Inc on behalf of the Society for Cardiovascular Magnetic Resonance
– notice: The Author(s). 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SC
7SP
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7Z
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12968-016-0306-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Medical Database
Biological science database
Biochemistry Abstracts 1
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-429X
ExternalDocumentID 10.1186/s12968-016-0306-6
PMC5123392
4269397161
A471420773
27884152
10_1186_s12968_016_0306_6
S1097664723010244
Genre Evaluation Study
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Institutes of Health
  grantid: NIH R21-EB109595-01
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
– fundername: ;
  grantid: NIH R21-EB109595-01
GroupedDBID ---
.1-
.FO
0R~
29K
2WC
36B
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AALRI
AAWTL
AAXUO
AAYWO
ABDBF
ABUWG
ACGEJ
ACGFO
ACGFS
ACIWK
ACPRK
ACVFH
ADBBV
ADCNI
ADCVX
ADRAZ
ADUKV
ADVLN
ADXPE
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRAH
AFRHN
AHBYD
AHMBA
AHSBF
AHYZX
AIGII
AITUG
AJUYK
AJWEG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
D-I
DIK
DU5
E3Z
EAP
EBLON
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
FDB
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IHR
IHW
INR
KQ8
LK8
M1P
M41
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
P6G
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TDBHL
TFW
TR2
TUS
UKHRP
Z5R
ZCN
IAO
PUEGO
2VQ
4.4
AAYXX
ACUHS
AFFHD
APXCP
AQTUD
AWYRJ
CAG
CITATION
COF
EBC
EBD
HZ~
IPNFZ
O9-
RIG
-5E
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
AFCTW
ALIPV
C24
CGR
CUY
CVF
EAD
ECM
EIF
INH
M~E
NPM
7SC
7SP
7U5
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c618t-7cbeea9484b34dae31b93ed75af16ad37d77c966a265fc7e8f6e9ef18379b2053
IEDL.DBID M48
ISSN 1097-6647
1532-429X
IngestDate Sun Oct 26 03:54:35 EDT 2025
Tue Sep 30 16:49:20 EDT 2025
Mon Sep 29 04:39:06 EDT 2025
Tue Oct 07 06:06:14 EDT 2025
Mon Oct 20 21:59:36 EDT 2025
Mon Oct 20 16:45:04 EDT 2025
Thu May 22 21:11:31 EDT 2025
Wed Feb 19 02:08:54 EST 2025
Thu Apr 24 23:10:11 EDT 2025
Wed Oct 29 21:10:10 EDT 2025
Sat Sep 06 07:28:49 EDT 2025
Tue Oct 14 19:27:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Arrhythmia
AF
Atrial fibrillation
Premature ventricular contraction
XD-GRASP
Self-gated CMR
PVC
RR intervals
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-7cbeea9484b34dae31b93ed75af16ad37d77c966a265fc7e8f6e9ef18379b2053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12968-016-0306-6
PMID 27884152
PQID 1845708179
PQPubID 55371
ParticipantIDs unpaywall_primary_10_1186_s12968_016_0306_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123392
proquest_miscellaneous_1844026761
proquest_journals_1845708179
gale_infotracmisc_A471420773
gale_infotracacademiconefile_A471420773
gale_healthsolutions_A471420773
pubmed_primary_27884152
crossref_primary_10_1186_s12968_016_0306_6
crossref_citationtrail_10_1186_s12968_016_0306_6
springer_journals_10_1186_s12968_016_0306_6
elsevier_clinicalkey_doi_10_1186_s12968_016_0306_6
PublicationCentury 2000
PublicationDate 2016-11-25
PublicationDateYYYYMMDD 2016-11-25
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
PublicationTitle Journal of cardiovascular magnetic resonance
PublicationTitleAbbrev J Cardiovasc Magn Reson
PublicationTitleAlternate J Cardiovasc Magn Reson
PublicationYear 2016
Publisher Elsevier Inc
BioMed Central
BioMed Central Ltd
Publisher_xml – name: Elsevier Inc
– name: BioMed Central
– name: BioMed Central Ltd
References Lustig, Donoho, Santos, Pauly (bib10) 2008; 25
Cuesta, Lado, Vila, Alonso (bib21) 2014; 22
Moran, Brodsky, Bancroft, Reeder, Yu, Kijowski, Engel (bib7) 2014; 71
Liu, Spincemaille, Codella, Nguyen, Prince, Wang (bib2) 2010; 63
Lee, Ko, Yoon (bib23) 2013; 2013
Huang, Liu, Zhu, Wang, Hu (bib33) 2014; 13
Filos, Chouvarda, Dakos, Vassilikos, Maglaveras (bib25) 2013; 2013
Magtibay, Beheshti, Foomany, Massé, Lai, Zamiri (bib31) 2016; 72
Sarkar, Ritscher, Mehra (bib27) 2008; 55
Carrara, Carozzi, Moss (bib29) 2015; 36
Lustig, Donoho, Sparse, MRI (bib13) 2007; 58
Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman (bib4) 2016; 133
Larson, White, Laub, McVeigh, Li, Simonetti (bib1) 2004; 51
Thompson, McVeigh (bib3) 2006; 56
Spincemaille, Nguyen, Prince, Wang (bib17) 2007; 15
Wech, Pickl, Tran-Gia, Ritter, Beer, Hahn (bib9) 2014; 186
Da Poian, Bernardini, Rinaldo (bib32) 2016; 63
Smith, Li, Abramson, Quarles, Yankeelov, Welch (bib12) 2013; 13
Tsipouras, Fotiadis, Sideris (bib19) 2005; 33
Lustig, Santos, Donoho, Pauly (bib18) 2006
Oster, Clifford (bib22) 2015; 48
Saloner, Liu, Haraldsson (bib8) 2015; 23
Zhang, Guo, Xi, Fan, Wang, Bi, Wang (bib28) 2015; 36
Spincemaille, Liu, Nguyen, Prince, Wang (bib16) 2011; 29
Feng, Axel, Chandarana, Block, Sodickson, Otazo (bib5) 2016; 75
Feng, Salerno, Kramer, Meyer (bib6) 2016; 75
Zibetti, De Pierro (bib15) 2016
Karmakar, Udhayakumar, Palaniswami (bib24) 2015; 2015
Vincenti, Monney, Chaptinel, Rutz, Coppo, Zenge (bib11) 2014; 7
Babacan, Peng, Wang, Do, Liang (bib14) 2011; 2011
Ciaccio, Biviano, Gambhir, Einstein, Garan (bib20) 2014; 37
Tateno, Glass (bib26) 2001; 39
Kapidžić, Platiša, Bojić, Kalauzi (bib30) 2014; 36
Mozaffarian (10.1186/s12968-016-0306-6_bib4) 2016; 133
Vincenti (10.1186/s12968-016-0306-6_bib11) 2014; 7
Tsipouras (10.1186/s12968-016-0306-6_bib19) 2005; 33
Cuesta (10.1186/s12968-016-0306-6_bib21) 2014; 22
Ciaccio (10.1186/s12968-016-0306-6_bib20) 2014; 37
Tateno (10.1186/s12968-016-0306-6_bib26) 2001; 39
Kapidžić (10.1186/s12968-016-0306-6_bib30) 2014; 36
Saloner (10.1186/s12968-016-0306-6_bib8) 2015; 23
Carrara (10.1186/s12968-016-0306-6_bib29) 2015; 36
Lee (10.1186/s12968-016-0306-6_bib23) 2013; 2013
Feng (10.1186/s12968-016-0306-6_bib6) 2016; 75
Babacan (10.1186/s12968-016-0306-6_bib14) 2011; 2011
Huang (10.1186/s12968-016-0306-6_bib33) 2014; 13
Lustig (10.1186/s12968-016-0306-6_bib18) 2006
Lustig (10.1186/s12968-016-0306-6_bib13) 2007; 58
Lustig (10.1186/s12968-016-0306-6_bib10) 2008; 25
Thompson (10.1186/s12968-016-0306-6_bib3) 2006; 56
Sarkar (10.1186/s12968-016-0306-6_bib27) 2008; 55
Karmakar (10.1186/s12968-016-0306-6_bib24) 2015; 2015
Spincemaille (10.1186/s12968-016-0306-6_bib17) 2007; 15
Wech (10.1186/s12968-016-0306-6_bib9) 2014; 186
Filos (10.1186/s12968-016-0306-6_bib25) 2013; 2013
Magtibay (10.1186/s12968-016-0306-6_bib31) 2016; 72
Larson (10.1186/s12968-016-0306-6_bib1) 2004; 51
Spincemaille (10.1186/s12968-016-0306-6_bib16) 2011; 29
Feng (10.1186/s12968-016-0306-6_bib5) 2016; 75
Moran (10.1186/s12968-016-0306-6_bib7) 2014; 71
Zhang (10.1186/s12968-016-0306-6_bib28) 2015; 36
Liu (10.1186/s12968-016-0306-6_bib2) 2010; 63
Smith (10.1186/s12968-016-0306-6_bib12) 2013; 13
Zibetti (10.1186/s12968-016-0306-6_bib15) 2016
Oster (10.1186/s12968-016-0306-6_bib22) 2015; 48
Da Poian (10.1186/s12968-016-0306-6_bib32) 2016; 63
References_xml – volume: 23
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib8
  article-title: MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging
  publication-title: Magn Reson Imaging Clin N Am
– volume: 186
  start-page: 37
  year: 2014
  end-page: 41
  ident: bib9
  article-title: Whole-Heart Cine MRI in a Single Breath-Hold – A Compressed Sensing Accelerated 3D Acquisition Technique for Assessment of Cardiac Function
  publication-title: Rofo
– volume: 72
  start-page: 13
  year: 2016
  end-page: 21
  ident: bib31
  article-title: Feature-based MRI data fusion for cardiac arrhythmia studies
  publication-title: Comput Biol Med
– volume: 75
  start-page: 1546
  year: 2016
  end-page: 1555
  ident: bib6
  article-title: Non-Cartesian balanced steady-state free precession pulse sequences for real-time cardiac MRI
  publication-title: Magn Reson Med
– volume: 29
  start-page: 861
  year: 2011
  end-page: 868
  ident: bib16
  article-title: Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging
  publication-title: Magn Reson Imaging
– volume: 2013
  start-page: 3793
  year: 2013
  end-page: 3796
  ident: bib25
  article-title: Two dimensional wavelet energy analysis on a beat to beat basis: application to atrial fibrillation
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 13
  start-page: 90
  year: 2014
  ident: bib33
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed Eng Online
– volume: 63
  start-page: 1230
  year: 2010
  end-page: 1237
  ident: bib2
  article-title: Respiratory and Cardiac Self-Gated Free-Breathing Cardiac CINE Imaging With Multiecho 3D Hybrid Radial SSFP Acquisition
  publication-title: Magn Reson Med
– volume: 48
  start-page: 947
  year: 2015
  end-page: 951
  ident: bib22
  article-title: Impact of the presence of noise on RR interval-based atrial fibrillation detection
  publication-title: J Electrocardiol
– volume: 13
  start-page: 633
  year: 2013
  end-page: 644
  ident: bib12
  article-title: Potential of compressed sensing in quantitative MR imaging of cancer
  publication-title: Cancer Imaging
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  ident: bib26
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ARR intervals
  publication-title: Med Biol Eng Comput
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  ident: bib5
  article-title: XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing
  publication-title: Magn Reson Med
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  ident: bib10
  article-title: Compressed Sensing MRI
  publication-title: IEEE Signal Process Mag
– volume: 2011
  start-page: 5718
  year: 2011
  end-page: 5721
  ident: bib14
  article-title: Reference-guided sparsifying transform design for compressive sensing MRI
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 36
  start-page: 1873
  year: 2015
  end-page: 1888
  ident: bib29
  article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy
  publication-title: Physiol Meas
– year: 2006
  ident: bib18
  article-title: k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. Conference: 13th Annual Meeting of ISMRM, 06–12 May 2006
– volume: 22
  start-page: 651
  year: 2014
  end-page: 656
  ident: bib21
  article-title: Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices
  publication-title: Technol Health Care
– volume: 36
  start-page: 283
  year: 2015
  end-page: 301
  ident: bib28
  article-title: Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots
  publication-title: Physiol Meas
– volume: 2013
  start-page: 5785
  year: 2013
  end-page: 5788
  ident: bib23
  article-title: Classification of Ventricular Arrhythmia using a Support Vector Machine based on Morphological Features
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 71
  start-page: 95
  year: 2014
  end-page: 104
  ident: bib7
  article-title: High-resolution 3D radial bSSFP with IDEAL
  publication-title: Magn Reson Med
– volume: 2015
  start-page: 5207
  year: 2015
  end-page: 5210
  ident: bib24
  article-title: Distribution Entropy (DistEn): A Complexity Measure to Detect Arrhythmia from Short Length RR Interval Time Series
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 37
  start-page: 336
  year: 2014
  end-page: 344
  ident: bib20
  article-title: Ventricular Cycle Length Characteristics Estimative of Prolonged RR Interval during Atrial Fibrillation
  publication-title: Pacing Clin Electrophysiol
– volume: 56
  start-page: 1301
  year: 2006
  end-page: 1310
  ident: bib3
  article-title: Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function
  publication-title: Magn Reson Med
– volume: 7
  start-page: 882
  year: 2014
  end-page: 892
  ident: bib11
  article-title: Compressed Sensing Single–Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass
  publication-title: JACC Cardiovasc Imaging
– volume: 36
  start-page: 1577
  year: 2014
  end-page: 1584
  ident: bib30
  article-title: Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects
  publication-title: Med Eng Phys
– volume: 51
  start-page: 93
  year: 2004
  end-page: 102
  ident: bib1
  article-title: Self-Gated Cardiac Cine MRI
  publication-title: Magn Reson Med
– volume: 55
  start-page: 1219
  year: 2008
  end-page: 1224
  ident: bib27
  article-title: A Detector for a chronic implantable atrial tachyarrhythmia monitor
  publication-title: IEEE Trans Biomed Eng
– volume: 133
  start-page: e38
  year: 2016
  end-page: e60
  ident: bib4
  article-title: Heart Disease and Stroke Statistics—2016 Update. A Report from the American Heart Association
  publication-title: Circulation
– volume: 33
  start-page: 237
  year: 2005
  end-page: 250
  ident: bib19
  article-title: An arrhythmia classification system based on the RR-interval signal
  publication-title: Artif Intell Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bib13
  article-title: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– year: 2016
  ident: bib15
  article-title: Improving compressive sensing in MRI with separate magnitude and phase priors
  publication-title: Multidimens Syst Signal Process
– volume: 15
  start-page: 1826
  year: 2007
  ident: bib17
  article-title: Quantitative study of motion detection performance of center-of-kspace measurements
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 63
  start-page: 1269
  year: 2016
  end-page: 1279
  ident: bib32
  article-title: Separation and Analysis of Fetal-ECG Signals from Compressed Sensed Abdominal ECG Recordings
  publication-title: IEEE Trans Biomed Eng
– year: 2006
  ident: 10.1186/s12968-016-0306-6_bib18
– year: 2016
  ident: 10.1186/s12968-016-0306-6_bib15
  article-title: Improving compressive sensing in MRI with separate magnitude and phase priors
  publication-title: Multidimens Syst Signal Process
– volume: 186
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib9
  article-title: Whole-Heart Cine MRI in a Single Breath-Hold – A Compressed Sensing Accelerated 3D Acquisition Technique for Assessment of Cardiac Function
  publication-title: Rofo
– volume: 2011
  start-page: 5718
  year: 2011
  ident: 10.1186/s12968-016-0306-6_bib14
  article-title: Reference-guided sparsifying transform design for compressive sensing MRI
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 15
  start-page: 1826
  year: 2007
  ident: 10.1186/s12968-016-0306-6_bib17
  article-title: Quantitative study of motion detection performance of center-of-kspace measurements
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 71
  start-page: 95
  issue: 1
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib7
  article-title: High-resolution 3D radial bSSFP with IDEAL
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24633
– volume: 51
  start-page: 93
  year: 2004
  ident: 10.1186/s12968-016-0306-6_bib1
  article-title: Self-Gated Cardiac Cine MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10664
– volume: 7
  start-page: 882
  issue: 9
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib11
  article-title: Compressed Sensing Single–Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2014.04.016
– volume: 63
  start-page: 1269
  issue: 6
  year: 2016
  ident: 10.1186/s12968-016-0306-6_bib32
  article-title: Separation and Analysis of Fetal-ECG Signals from Compressed Sensed Abdominal ECG Recordings
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2493726
– volume: 63
  start-page: 1230
  year: 2010
  ident: 10.1186/s12968-016-0306-6_bib2
  article-title: Respiratory and Cardiac Self-Gated Free-Breathing Cardiac CINE Imaging With Multiecho 3D Hybrid Radial SSFP Acquisition
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22306
– volume: 39
  start-page: 664
  year: 2001
  ident: 10.1186/s12968-016-0306-6_bib26
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ARR intervals
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345439
– volume: 56
  start-page: 1301
  issue: 6
  year: 2006
  ident: 10.1186/s12968-016-0306-6_bib3
  article-title: Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21075
– volume: 2015
  start-page: 5207
  year: 2015
  ident: 10.1186/s12968-016-0306-6_bib24
  article-title: Distribution Entropy (DistEn): A Complexity Measure to Detect Arrhythmia from Short Length RR Interval Time Series
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 2013
  start-page: 3793
  year: 2013
  ident: 10.1186/s12968-016-0306-6_bib25
  article-title: Two dimensional wavelet energy analysis on a beat to beat basis: application to atrial fibrillation
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 72
  start-page: 13
  year: 2016
  ident: 10.1186/s12968-016-0306-6_bib31
  article-title: Feature-based MRI data fusion for cardiac arrhythmia studies
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.02.006
– volume: 13
  start-page: 633
  issue: 4
  year: 2013
  ident: 10.1186/s12968-016-0306-6_bib12
  article-title: Potential of compressed sensing in quantitative MR imaging of cancer
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2013.0041
– volume: 2013
  start-page: 5785
  year: 2013
  ident: 10.1186/s12968-016-0306-6_bib23
  article-title: Classification of Ventricular Arrhythmia using a Support Vector Machine based on Morphological Features
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 36
  start-page: 1577
  issue: 12
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib30
  article-title: Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2014.08.007
– volume: 22
  start-page: 651
  issue: 4
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib21
  article-title: Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices
  publication-title: Technol Health Care
  doi: 10.3233/THC-140818
– volume: 36
  start-page: 1873
  issue: 9
  year: 2015
  ident: 10.1186/s12968-016-0306-6_bib29
  article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/9/1873
– volume: 48
  start-page: 947
  issue: 6
  year: 2015
  ident: 10.1186/s12968-016-0306-6_bib22
  article-title: Impact of the presence of noise on RR interval-based atrial fibrillation detection
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2015.08.013
– volume: 55
  start-page: 1219
  issue: 3
  year: 2008
  ident: 10.1186/s12968-016-0306-6_bib27
  article-title: A Detector for a chronic implantable atrial tachyarrhythmia monitor
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.903707
– volume: 37
  start-page: 336
  issue: 3
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib20
  article-title: Ventricular Cycle Length Characteristics Estimative of Prolonged RR Interval during Atrial Fibrillation
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.12261
– volume: 23
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1186/s12968-016-0306-6_bib8
  article-title: MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2014.08.004
– volume: 33
  start-page: 237
  issue: 3
  year: 2005
  ident: 10.1186/s12968-016-0306-6_bib19
  article-title: An arrhythmia classification system based on the RR-interval signal
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.03.007
– volume: 75
  start-page: 775
  issue: 2
  year: 2016
  ident: 10.1186/s12968-016-0306-6_bib5
  article-title: XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25665
– volume: 36
  start-page: 283
  issue: 2
  year: 2015
  ident: 10.1186/s12968-016-0306-6_bib28
  article-title: Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/2/283
– volume: 13
  start-page: 90
  year: 2014
  ident: 10.1186/s12968-016-0306-6_bib33
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-13-90
– volume: 25
  start-page: 72
  issue: 2
  year: 2008
  ident: 10.1186/s12968-016-0306-6_bib10
  article-title: Compressed Sensing MRI
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.914728
– volume: 133
  start-page: e38
  issue: 4
  year: 2016
  ident: 10.1186/s12968-016-0306-6_bib4
  article-title: Heart Disease and Stroke Statistics—2016 Update. A Report from the American Heart Association
  publication-title: Circulation
– volume: 75
  start-page: 1546
  issue: 4
  year: 2016
  ident: 10.1186/s12968-016-0306-6_bib6
  article-title: Non-Cartesian balanced steady-state free precession pulse sequences for real-time cardiac MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25738
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1186/s12968-016-0306-6_bib13
  article-title: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 29
  start-page: 861
  year: 2011
  ident: 10.1186/s12968-016-0306-6_bib16
  article-title: Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2011.02.011
SSID ssj0019707
Score 2.191051
Snippet Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of...
Background Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most...
Background Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Angiology
Area Under Curve
Arrhythmia
Atrial fibrillation
Atrial Fibrillation - classification
Atrial Fibrillation - diagnostic imaging
Atrial Fibrillation - physiopathology
Cardiac-Gated Imaging Techniques
Cardiology
Care and treatment
Diagnosis
Electrocardiogram
Electrocardiography
Feasibility Studies
Female
Heart Rate
Humans
Image Interpretation, Computer-Assisted - methods
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine - methods
Male
Medicine
Medicine & Public Health
Middle Aged
Predictive Value of Tests
Premature ventricular contraction
PVC
Radiology
Respiratory Mechanics
Retrospective Studies
ROC Curve
RR intervals
Self-gated CMR
Ventricular Premature Complexes - classification
Ventricular Premature Complexes - diagnostic imaging
Ventricular Premature Complexes - physiopathology
XD-GRASP
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZixQxEA7rLHg8iLetq0YQPJZmp68k_SCyyi6LsIOIA_vWpHM4A73dY88MMj_Ff2tV-nB6YcfnVPpIKnWkqr4i5I1KpU0jdFNFovzY5sZPtVa-VlIpNQ6UtVicfD5hZ9P460VysUcmXS0MplV2MtEJal0pvCM_Ak8k4aC_ePpp8cvHrlEYXe1aaMi2tYL-6CDGbpD9EJGxRmT_88nk2_c-rpByV0CNYVefsZi3cc5AsKMlaD6GiV3gYYMd7bPrNNVV0b2lu67mVfbB1Tvk1rpcyM1vWRRb-uv0HrnbGp70uOGU-2TPlA_IzfM2tP6Q_JkuDa0sXZrCuks3TWvELSioGqSs0kv5s8TKRwqOeoVwHYauKqoNRiOoLDVVaJDP7YbKup5tVrPLuVzSd9L1B6EWSwyKJgHPUS9qRI1d14Zi5qW7joSXuAz6pubi_SMyPT358eXMb_s2-IoFYuVzlRsj01jEeRRraaIgTyOjeSJtwKSOuOZcgZslQ5ZYxY2wzKTGgnDhaR6CVHhMRmVVmqeEjscSu7UDqVBg6hkhJDiQQlnw6eGBzCPjbo8y1YKaY2-NInPOjWBZs60ZJrLhtmYw5UM_ZdEgeuwiDruNz7pSVRCuGeibXZNeIYtkTSVrL0KyYzAE4nDMeeSRt44ChQiupmxrIeCnEY5rQHkwoITDr4bDHRtmrfBZZv-Oikde98M4ExPqSlOtHU2MzcdY4JEnDdf2qxFyIdCu8wgf8HNPgJDkw5FyPnPQ5GA-RmBxe-Sw4_ytz7p-vQ77w_H_LXm2-5efk9shnuEg8MPkgIxW9dq8ALtxlb9shcFfnRlq4A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3batRAdNAKWh_Ee6NVRxC8lGCuM5PHUixFqE8u9G2YTGa6C2myJFlkP8W_9ZzJhU2xFZ_nnGR3zj3nRsgHnSmbxRimilT7ic2NnxWF9guttNZBqK3F5uTzH-xskXy_SC-GYdHYC7Obvw8F-9qCPWJYbgVxL3i3PrtL7oGNYi4vy06mhEHGAz4kLf-KdpPZua6HdwzR9SLJKVP6kDzYVGu1_aXKcscYnT4mjwYvkh73ZH9C7pjqKbl_PuTJn5Hfi9bQ2tLWlNZ9QStog0MISqpn9af0Sl1W2MZIIequcfaGoV1NC4OpBaqqgmr0rld2S1XTLLfd8mqlWvpJuWUf1GK_QNlX0znodYMjYDeNoVhG6b4twktcOXzfQPH5OVmcfvt5cuYPSxh8zULR-VznxqgsEUkeJ4UycZhnsSl4qmzIVBHzgnMNMZOKWGo1N8IykxkLmoJneQQi_oLsVXVlDggNAoWr1wFUaPDbjBAKokGhLQTo8EDmkWCkkdTDhHJclFFKF6kIJnuySqxKQ7JKQPkyoaz78Ry3AUcj4eXYdwqaUgLP3Yb0DllE9m2pkz6Qx2DVkyjgPPbIRweBGgFvUw2NDfCncbbWDPJwBgmSrOfHIxvKQZO0EiLwlIPfxjOPvJ-OEROr4ypTbxxMgpvEWOiRlz3XTrcRcSHQSfMIn_HzBIDzxecn1Wrp5oyDnMXgPnvkaOT8nZ91830dTcLxb5K8-q9nvyb7EYp0GPpRekj2umZj3oBP2OVvnTb4A1H5WuA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB60C14evF-qq44g6Lqkm-vM5HERl0XYxQcL9SlMJjO2bpqWNEXqP_Hfes7kQlPcFcG3Qs6kzek533wncy6EvFGxNHGAYaqIlBOaVDtxliknU1Ip5XrKGCxOPjtnp-Pw0ySaNC2FVrbn77x06iYRo-0C9NyiNnxQF0fLzNTOLtjRCvYrhulYEBcD-3XYdbLHIqDlA7I3Pv98_NWedsbcYcwOGwMH9x3A4ElzwvnHe1y2R-2C9tautZtR2R2r3iY318VSbn7IPN_auU7uku_tM9cJKxejdZWO1M-ddpD_RSn3yJ2G39Lj2iDvk2u6eEBunDUn-A_Jr_FK04WhK50b-24voyW2R8ip6mXG0rn8VmCBJS01Rgtgm7Ra0EzjoQeVRUYV8v6Z2VBZltNNNZ3P5Iq-k3YMCTVYyZDXeX5Wellic9p1qSkmeNq3nvAlNlG_Lu04eETGJx-_fDh1mvEQjmKeqByuUq1lHIowDcJM6sBL40BnPJLGYzILeMa5gmhO-iwyimthmI61AQzjceoD-Dwmg2JR6KeEuq7EofAgKhQwSi2EhDhVKBO7cJeIDYnbGkSimt7pOMIjT2wMJVhSqzzBfDlUeQJL3ndLlnXjkKuE_dbKkrYiFjA8gW3tqkWv0B6TumC2Q6rkGPhG6LucB0Py1kogVqE2ZVNyAQ-NXb96kvs9ScAY1b_c2nzSYNwq8UQYcWCUPB6S191lXIl5e4VerK1MiDPOmDckT2oX6bThcyGQPg4J7zlPJ4Cdz_tXitnUdkAHlhoAsR-Sw9bNtn7W5fo67Dzx73_Js3-Sfk5u-ehunuf40T4ZVOVavwC2WqUvGxz6DRmUjfw
  priority: 102
  providerName: Unpaywall
Title Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1097664723010244
https://link.springer.com/article/10.1186/s12968-016-0306-6
https://www.ncbi.nlm.nih.gov/pubmed/27884152
https://www.proquest.com/docview/1845708179
https://www.proquest.com/docview/1844026761
https://pubmed.ncbi.nlm.nih.gov/PMC5123392
https://jcmr-online.biomedcentral.com/track/pdf/10.1186/s12968-016-0306-6
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: AKRWK
  dateStart: 20081022
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: M48
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1532-429X
  dateEnd: 20230112
  omitProxy: true
  ssIdentifier: ssj0019707
  issn: 1532-429X
  databaseCode: C6C
  dateStart: 20080112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1pi9NAdNgDPD6It9G1jiB4LNGcM5MPIrVsXYSWRSysn8JkMmML2bSmLdqf4r_1vVw2y-6KXwpl3kvTmXfOuwh5oSJpIh_dVBEqOzCJtqM0VXaqpFLKcZUxWJw8GrPjSfD5NDzdIc14q3oDlxe6djhPalJkb3_92HwAhn9fMrxg75agsximZIFvDBawzXbJPiiqCCc5jIK_QYWIO7wObF6IdplqOi-rt5TV-UTKNpp6k1xf5wu5-SmzbEthDW-TW7WlSfsVadwhOzq_S66N6lj6PfJ7stR0buhSZ6a8ZUtpgY0KMqo6Oar0TH7PsdSRgmc-x_4cmq7mNNUYfqAyT6lCC3xmNlQWxXSzmp7N5JK-kuVAEGqwpiCrMu5K6EWBbWLXhaaYalneP8KPlCnzVZHF6_tkMjz6Oji260ENtmKuWNlcJVrLKBBB4gep1L6bRL5OeSiNy2Tq85RzBX6V9FhoFNfCMB1pA9KER4kHYuAB2cvnuX5EqONIHM8OoEKBbaeFkOAxCmXAiYcHMos4zRnFqu5ijsM0srj0ZgSLq2ONMXMNjzUGlDctyqJq4XEVsNccfNzUpoI0jYHerkJ6hiQSV6WrrcyI-6D5A8_h3LfIyxIC6Rh3U9bFD_Cnsf9WB_KgAwncrrrLDRnGDbPE4KWHHGw7HlnkebuMmJhBl-v5uoQJcNoYcy3ysKLadjc8LgQachbhHXpuAbAHeXcln03LXuRgL_pgYlvksKH8rde6fL8OW-b495E8_q9nPyE3PGRp17W98IDsrYq1fgp24yrpkV1-yuFTDD_1yP7Ho_HJF_g2YINeeRPTK6UFrEzGJ_1vfwB2fHBU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRaJwQLwxFLpIIB6VVT931weEKqBKadNTI-Vm1utdEsl1gp2oyk_hT_AbmfGLuFLDqWfPOvHO7DczOy9C3qhImshHN1WEyg5Mou0oTZWdKqmUclxlDBYnD8_YYBR8H4fjLfKnrYXBtMoWEyugTmcK78gPwBMJOegvHn2e_7JxahRGV9sRGrVYnOjVJbhs5afjr8Dft5539O38y8BupgrYirliYXOVaC2jQASJH6RS-24S-TrloTQuk6nPU84VOAHSY6FRXAvDdKQNiD6PEs_BKREA-bcCH7AEzg8fdw6eG_GqPBuDujZjAW-iqK5gByXoVYZpY-C_g5Vus-v04FXFsKYZr2ZtdqHbu2Rnmc_l6lJm2Zp2PLpP7jVmLT2s5fAB2dL5Q3J72ATuH5Hfo1LTmaGlzkx1pZfSArsiZFT1EmLphfyZY10lLTQ6CSCSdDGjqcZYB5V5ShWa-1OzorIoJqvF5GIqS_peVtNHqMEChqxO76uo5wX2pF0WmmJeZ3XZCT9S5efXFR0fHpPRjfDvCdnOZ7l-RqjjSJwFD6RCgSGphZDgngplIgfeEjKLOC2PYtW0TMfJHVlcuU6CxTVbY0yTQ7bGsORjt2Re9wvZROy1jI_bQliA7hi02aZFeygicV0n2wFUfAhmRuA5nPsWeVdRIEThbsqm0gI-Gpt99Sh3e5QALar_uBXDuIG2Mv53EC3yunuMKzFdL9ezZUUT4Ggz5lrkaS213W54XAi0Gi3Ce_LcEWDD8_6TfDqpGp-DceqDPW-R_Vby1_7W9fu13x2O_7Pk-eZP3iM7g_PhaXx6fHbygtzx8Dy7ru2Fu2R7USz1S7BQF8mrChYo-XHTOPQXaYSiXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZbtNAcAVFKuUBcddQ6CIhcVRWfe6uH6tAVI5WPBCpb6v1epdEcp3IdoTyKfwtM74UV7SI552xk53bcxHyRifKJiGGqSLWbmRT4yZZpt1MK62152trsTn57JydzqIvF_FFt-e06qvd-5Rk29OAU5qK-niV2VbEBTuuwEoxLMKCaBh8XpfdJnciMG64wmDCJkMaIeEe71KZf0W7zhhd1c5b5ulq6eSQP71H7q6Lldr8Unm-ZaKmD8j9zrekJy0zPCS3TPGI7J512fPH5PesMnRpaWVy23xXy2iJowlyqkdVqfRS_SywuZFCLL7EiRyG1kuaGUw4UFVkVKPPvbAbqspyvqnnlwtV0XeqWQFCLXYR5G2NXQO9KnEw7Lo0FIsrmy-O8JKmSL5tq3j_hMymn35MTt1uNYOrmS9ql-vUGJVEIkrDKFMm9NMkNBmPlfWZykKeca4hklIBi63mRlhmEmNBf_AkDUDwn5KdYlmYfUI9T-FCdgAVGrw5I4SCGFFoC2E7PJA5xOtpJHU3txzXZ-SyiV8Eky1ZJdaqIVkloHwYUFbt0I6bgIOe8LLvRgX9KcGk3IR0iCwi22bVQUvIE7D1UeBxHjrkbQOBegJvU3XtDvCnceLWCPJgBAnyrcfHPRvKTr9UEuLymAPD88Qhr4djxMSaucIs1w1MhPvFmO-QZy3XDrcRcCHQdXMIH_HzAIBTx8cnxWLeTB8HDzEEp9ohRz3nb_2s6-_raBCOf5Pk-X89-5Dsfv84ld8-n399QfYClG7fd4P4gOzU5dq8BKexTl81iuEPPyZmFg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB60C14evF-qq44g6Lqkm-vM5HERl0XYxQcL9SlMJjO2bpqWNEXqP_Hfes7kQlPcFcG3Qs6kzek533wncy6EvFGxNHGAYaqIlBOaVDtxliknU1Ip5XrKGCxOPjtnp-Pw0ySaNC2FVrbn77x06iYRo-0C9NyiNnxQF0fLzNTOLtjRCvYrhulYEBcD-3XYdbLHIqDlA7I3Pv98_NWedsbcYcwOGwMH9x3A4ElzwvnHe1y2R-2C9tautZtR2R2r3iY318VSbn7IPN_auU7uku_tM9cJKxejdZWO1M-ddpD_RSn3yJ2G39Lj2iDvk2u6eEBunDUn-A_Jr_FK04WhK50b-24voyW2R8ip6mXG0rn8VmCBJS01Rgtgm7Ra0EzjoQeVRUYV8v6Z2VBZltNNNZ3P5Iq-k3YMCTVYyZDXeX5Wellic9p1qSkmeNq3nvAlNlG_Lu04eETGJx-_fDh1mvEQjmKeqByuUq1lHIowDcJM6sBL40BnPJLGYzILeMa5gmhO-iwyimthmI61AQzjceoD-Dwmg2JR6KeEuq7EofAgKhQwSi2EhDhVKBO7cJeIDYnbGkSimt7pOMIjT2wMJVhSqzzBfDlUeQJL3ndLlnXjkKuE_dbKkrYiFjA8gW3tqkWv0B6TumC2Q6rkGPhG6LucB0Py1kogVqE2ZVNyAQ-NXb96kvs9ScAY1b_c2nzSYNwq8UQYcWCUPB6S191lXIl5e4VerK1MiDPOmDckT2oX6bThcyGQPg4J7zlPJ4Cdz_tXitnUdkAHlhoAsR-Sw9bNtn7W5fo67Dzx73_Js3-Sfk5u-ehunuf40T4ZVOVavwC2WqUvGxz6DRmUjfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+self-gated+radial+cardiovascular+magnetic+resonance+to+detect+and+classify+arrhythmias+%28atrial+fibrillation+and+premature+ventricular+contraction%29&rft.jtitle=Journal+of+cardiovascular+magnetic+resonance&rft.au=Piekarski%2C+Eve&rft.au=Chitiboi%2C+Teodora&rft.au=Ramb%2C+Rebecca&rft.au=Feng%2C+Li&rft.date=2016-11-25&rft.pub=BioMed+Central&rft.eissn=1532-429X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12968-016-0306-6&rft.externalDocID=10_1186_s12968_016_0306_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6647&client=summon