MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data

Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the sta...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 23; no. 9; pp. 1106 - 1114
Main Authors Zhou, Xin, Tuck, David P.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btm036

Cover

Abstract Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
AbstractList Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.eduSupplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact:  david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
MOTIVATION: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. RESULTS: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. CONTACT: david.tuckatyale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online.
Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems.MOTIVATIONGiven the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems.In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.RESULTSIn the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.
Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.
Author Zhou, Xin
Tuck, David P.
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
– sequence: 2
  givenname: David P.
  surname: Tuck
  fullname: Tuck, David P.
  organization: To whom correspondence should be addressed
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19229400$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17494773$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtvFCEYhompsQf9CRpiYu_GcpiBQa-a2rpqVxNdD-kNYVjG0DLDCkza_feyzqSNvdkmBAh5Hj54v32w0_veAPAco9cYCXrUWG_71odOJavjUZM6RNkjsIcp40VZY7xzu0d0F-zHeIkQqlDFnoBdzEtRck73wGL-7ce8-Hp2-gaam2T6aH0foW_hdAxzCdgNLhdxKkb42_QGRuOMTpmEebz7fAw7q4NXIag1XKqknoLHrXLRPJvWA_D97HRxMivOv7z_cHJ8XmiG61RwYkTTtNwY07ZYV6KmtEFcY2FKhGuiOdOkQa3gyyUTS8LKhmvN6hqxMs-aHgA23jv0K7W-Vs7JVbCdCmuJkdzEJP-PSY4xZfFwFFfB_xlMTLKzURvnVG_8ECVHpeCckK0gpRTRMs_bQCxqhmpSZ_DlPfDSD6HPMf1jMkU273sxQUPTmeXdr6a-ZeDVBKiolWuD6rWNd5wgRJQIZa4audyfGINpHxzQ23uetkltWp6Csm6rjUbbD6sHFyxGxcZkbm4lFa4k45RXcvbrQn5czH5e1POF_ET_AsAN9D4
CODEN BOINFP
CitedBy_id crossref_primary_10_1016_j_rser_2016_11_155
crossref_primary_10_1182_blood_2009_04_218123
crossref_primary_10_1016_j_patrec_2011_09_031
crossref_primary_10_1186_s12885_020_06784_7
crossref_primary_10_1016_j_knosys_2013_10_004
crossref_primary_10_1016_j_jfoodeng_2013_05_024
crossref_primary_10_1016_j_ygeno_2017_01_004
crossref_primary_10_1093_bib_bbae482
crossref_primary_10_1007_s11042_013_1583_9
crossref_primary_10_1016_j_envadv_2023_100344
crossref_primary_10_1186_s13073_017_0493_2
crossref_primary_10_1016_j_bbrc_2025_151323
crossref_primary_10_1016_j_cmpb_2012_07_001
crossref_primary_10_3233_JPD_150729
crossref_primary_10_1016_j_compbiomed_2021_105145
crossref_primary_10_1016_j_neucom_2021_07_047
crossref_primary_10_1266_ggs_21_00073
crossref_primary_10_2147_IJGM_S354741
crossref_primary_10_1186_1471_2164_15_248
crossref_primary_10_1002_minf_201700050
crossref_primary_10_1016_j_ins_2013_12_029
crossref_primary_10_1109_TCBB_2018_2877755
crossref_primary_10_1016_j_neucom_2018_07_012
crossref_primary_10_3389_fendo_2023_1118886
crossref_primary_10_1109_TEVC_2021_3100056
crossref_primary_10_4061_2011_154325
crossref_primary_10_1371_journal_pone_0024259
crossref_primary_10_3390_app9204298
crossref_primary_10_1088_1741_2560_10_2_026008
crossref_primary_10_1016_j_compmedimag_2018_09_007
crossref_primary_10_1007_s10489_017_1056_3
crossref_primary_10_1080_15592294_2020_1827716
crossref_primary_10_1016_j_patrec_2013_05_011
crossref_primary_10_1186_1471_2105_13_178
crossref_primary_10_1016_j_ynirp_2024_100209
crossref_primary_10_1007_s00415_012_6631_2
crossref_primary_10_1016_j_ijinfomgt_2017_09_007
crossref_primary_10_1109_TKDE_2015_2455509
crossref_primary_10_1371_journal_pone_0157330
crossref_primary_10_3390_app10093211
crossref_primary_10_1016_j_jbi_2009_08_010
crossref_primary_10_1021_acsomega_9b01934
crossref_primary_10_1016_j_eswa_2017_06_043
crossref_primary_10_1371_journal_pone_0138213
crossref_primary_10_1093_bib_bbab278
crossref_primary_10_1109_TCBB_2010_13
crossref_primary_10_1016_j_patrec_2014_07_004
crossref_primary_10_1155_2013_387673
crossref_primary_10_1016_j_knosys_2018_01_025
crossref_primary_10_1093_bioinformatics_btac432
crossref_primary_10_3390_bioengineering10091027
crossref_primary_10_1002_jssc_201100408
crossref_primary_10_1057_s41274_016_0127_x
crossref_primary_10_1016_j_eswa_2013_08_043
crossref_primary_10_1186_1471_2105_13_41
crossref_primary_10_3233_AIC_160707
crossref_primary_10_1016_j_physa_2017_10_032
crossref_primary_10_1016_j_asoc_2011_11_013
crossref_primary_10_1049_iet_syb_2015_0031
crossref_primary_10_1016_j_engappai_2018_01_007
crossref_primary_10_3390_s18030869
crossref_primary_10_1371_journal_pone_0089851
crossref_primary_10_3846_20294913_2012_661205
crossref_primary_10_1007_s00521_022_07661_z
crossref_primary_10_1016_j_asoc_2024_111979
crossref_primary_10_1109_TNNLS_2014_2308902
crossref_primary_10_1007_s10489_017_0994_0
crossref_primary_10_3389_fimmu_2022_956027
crossref_primary_10_1080_22797254_2019_1686717
crossref_primary_10_1080_03081079_2010_530027
crossref_primary_10_9728_dcs_2016_17_6_565
crossref_primary_10_1371_journal_pone_0294984
crossref_primary_10_1371_journal_pone_0021750
crossref_primary_10_1109_THMS_2013_2288777
crossref_primary_10_1016_j_asoc_2009_11_010
crossref_primary_10_3389_fpsyt_2018_00092
crossref_primary_10_1089_big_2022_0086
crossref_primary_10_1088_1755_1315_299_1_012038
crossref_primary_10_1088_1742_6596_1490_1_012027
crossref_primary_10_4028_www_scientific_net_AMR_926_930_3100
crossref_primary_10_1155_2021_6490118
crossref_primary_10_1371_journal_pone_0117303
crossref_primary_10_1016_j_neunet_2022_03_004
crossref_primary_10_3892_etm_2022_11500
crossref_primary_10_1142_S012906571450021X
crossref_primary_10_1371_journal_pone_0106097
crossref_primary_10_3390_molecules23082008
crossref_primary_10_1002_minf_201200116
crossref_primary_10_1016_j_compbiomed_2011_04_005
crossref_primary_10_1016_j_jchromb_2012_05_020
crossref_primary_10_1007_s11517_017_1751_6
crossref_primary_10_1074_jbc_M113_515940
crossref_primary_10_1007_s10479_016_2333_y
crossref_primary_10_1007_s10489_017_1054_5
crossref_primary_10_1016_j_neuroimage_2015_07_054
crossref_primary_10_1111_1755_0998_13611
crossref_primary_10_1016_j_heliyon_2024_e30335
crossref_primary_10_1109_TCBB_2023_3314432
crossref_primary_10_3389_fonc_2023_1218056
crossref_primary_10_1016_j_asoc_2024_112009
crossref_primary_10_1097_JOM_0000000000001692
crossref_primary_10_1109_TKDE_2018_2847685
crossref_primary_10_3390_ijms21197271
crossref_primary_10_1016_j_neunet_2025_107136
crossref_primary_10_1186_1471_2105_12_S1_S7
crossref_primary_10_1145_2560365
crossref_primary_10_1186_s12859_020_3525_7
crossref_primary_10_1115_1_4038862
crossref_primary_10_1109_TCBB_2008_17
crossref_primary_10_1002_hbm_25890
crossref_primary_10_1016_j_jmva_2021_104800
crossref_primary_10_1016_j_gene_2019_04_060
crossref_primary_10_1142_S0218001410008408
crossref_primary_10_1016_j_jtbi_2016_03_034
crossref_primary_10_1038_s41398_017_0020_7
crossref_primary_10_1186_1471_2105_12_253
crossref_primary_10_1007_s00775_020_01822_y
crossref_primary_10_1016_j_patcog_2021_107988
crossref_primary_10_1109_ACCESS_2020_3000333
crossref_primary_10_3390_molecules23010052
crossref_primary_10_1016_j_heliyon_2024_e29587
crossref_primary_10_1016_j_asoc_2024_112634
crossref_primary_10_1016_j_csda_2007_12_011
crossref_primary_10_1155_2014_569501
crossref_primary_10_1109_TCBB_2021_3068846
crossref_primary_10_4236_jdaip_2020_84020
crossref_primary_10_3390_app13053071
crossref_primary_10_1016_j_ygeno_2017_07_010
crossref_primary_10_1186_s12864_015_2129_5
crossref_primary_10_1016_j_chemolab_2021_104284
crossref_primary_10_1080_03610926_2018_1463385
crossref_primary_10_1016_j_ins_2010_01_001
crossref_primary_10_1007_s10489_021_02298_2
crossref_primary_10_1089_cmb_2007_0211
crossref_primary_10_1109_TCBB_2010_44
crossref_primary_10_1016_j_compbiolchem_2016_12_010
crossref_primary_10_1016_j_knosys_2013_09_005
crossref_primary_10_1016_j_asoc_2023_110031
crossref_primary_10_1371_journal_pntd_0001887
crossref_primary_10_1007_s42600_020_00080_w
crossref_primary_10_1016_j_ijmedinf_2017_10_011
crossref_primary_10_1093_database_bau083
crossref_primary_10_1016_j_asoc_2018_02_009
crossref_primary_10_1016_j_patcog_2010_02_008
crossref_primary_10_1007_s10489_017_0992_2
crossref_primary_10_1016_j_eswa_2023_121582
crossref_primary_10_1016_S1673_8527_08_60130_7
crossref_primary_10_1186_s40709_016_0045_8
Cites_doi 10.1007/0-306-47815-3_9
10.1158/1078-0432.CCR-04-1935
10.1002/mas.20072
10.1074/jbc.M410362200
10.1073/pnas.102102699
10.1073/pnas.191368598
10.1093/bioinformatics/bti216
10.1073/pnas.0602949103
10.1093/bioinformatics/16.10.906
10.1073/pnas.211566398
10.1093/bioinformatics/19.1.90
10.1023/A:1012487302797
10.1073/pnas.96.12.6745
10.1073/pnas.082099299
10.1073/pnas.97.1.262
10.1109/72.991427
10.1073/pnas.201162998
10.1186/1471-2407-6-186
10.1073/pnas.191502998
10.1038/ng765
10.1038/sj.leu.2404270
10.1093/bioinformatics/17.suppl_1.S316
10.1093/bioinformatics/bti736
10.1016/0022-247X(68)90201-1
10.1126/science.286.5439.531
10.1200/JCO.2005.03.2755
10.1007/978-1-4615-0813-7_11
10.1093/bioinformatics/bti033
10.1198/016214504000000098
10.1093/bioinformatics/btl438
10.1137/S0036144502411986
10.1038/73432
10.1198/016214502753479248
10.1145/641876.641880
10.1093/bioinformatics/bth267
10.1038/sj.leu.2404227
ContentType Journal Article
Copyright The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
2008 INIST-CNRS
The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Copyright_xml – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
– notice: 2008 INIST-CNRS
– notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btm036
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
Genetics Abstracts

Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 1114
ExternalDocumentID 10.1093/bioinformatics/btm036
1317499321
17494773
19229400
10_1093_bioinformatics_btm036
ark_67375_HXZ_JTHWZ8MT_K
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK072442
– fundername: NCRR NIH HHS
  grantid: RR19895-02
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSCLL
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
AASNB
ABQTQ
ADRIX
AFXEN
BCRHZ
M49
RIG
ROX
AAYXX
CITATION
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
O~Y
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
482
ABJNI
RC3
ROZ
TN5
WH7
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c618t-72e9bbf7eeeff1c59833b07c19e40182c76c2b0f97dd69d264b7cc688064688c3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Tue Aug 19 15:39:16 EDT 2025
Fri Sep 05 08:55:36 EDT 2025
Thu Oct 02 05:50:24 EDT 2025
Tue Oct 07 09:09:14 EDT 2025
Fri Oct 03 11:21:09 EDT 2025
Wed Feb 19 02:08:55 EST 2025
Mon Jul 21 09:13:53 EDT 2025
Wed Oct 01 04:04:41 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Wed Aug 28 03:24:14 EDT 2024
Sat Sep 20 11:02:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Selection
DNA chip
Minimization
Support vector machine
Microarray
Optimization
Original document
Gene
Classification
Recursive method
Simultaneity
Bioinformatics
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-72e9bbf7eeeff1c59833b07c19e40182c76c2b0f97dd69d264b7cc688064688c3
Notes ark:/67375/HXZ-JTHWZ8MT-K
To whom correspondence should be addressed.
istex:29B7A62ACA3DF885FCBDB2462936D51DEE7B6B89
Associate Editor: David Rocke
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/23/9/1106/49859049/bioinformatics_23_9_1106.pdf
PMID 17494773
PQID 198686026
PQPubID 36124
PageCount 9
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btm036
proquest_miscellaneous_70497722
proquest_miscellaneous_33303433
proquest_miscellaneous_19860828
proquest_journals_198686026
pubmed_primary_17494773
pascalfrancis_primary_19229400
crossref_primary_10_1093_bioinformatics_btm036
crossref_citationtrail_10_1093_bioinformatics_btm036
oup_primary_10_1093_bioinformatics_btm036
istex_primary_ark_67375_HXZ_JTHWZ8MT_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Kohavi (2023041209122013800_) 1995
Weston (2023041209122013800_) 1999
Yeang (2023041209122013800_) 2001; 17
Armstrong (2023041209122013800_) 2002; 30
Ideo (2023041209122013800_) 2005; 280
Lee (2023041209122013800_) 2003; 19
Bhattacharjee (2023041209122013800_) 2001; 98
Hsu (2023041209122013800_) 2002; 13
Mukherjee (2023041209122013800_) 2003
Das (2023041209122013800_) 2006; 103
Vapnik (2023041209122013800_) 1998
Bottou (2023041209122013800_) 1994
Geoffrion (2023041209122013800_) 1968; 22
Guyon (2023041209122013800_) 2002; 46
Lee (2023041209122013800_) 2004; 99
Ramaswamy (2023041209122013800_) 2001; 98
Zheng (2023041209122013800_) 2006; 20
Crammer (2023041209122013800_) 2001; 2
West (2023041209122013800_) 2001; 98
Brown (2023041209122013800_) 2000; 97
Li (2023041209122013800_) 2004; 20
Staunton (2023041209122013800_) 2001; 98
Frank (2023041209122013800_) 2006; 20
Oh (2023041209122013800_) 2006; 24
Furey (2023041209122013800_) 2000; 16
Zhou (2023041209122013800_) 2005; 21
Rifkin (2023041209122013800_) 2003; 45
Su (2023041209122013800_) 2001; 61
Dudoit (2023041209122013800_) 2002; 97
Chai (2023041209122013800_) 2004
Chang (2023041209122013800_) 2001
Hewitt (2023041209122013800_) 2006; 6
Zhou (2023041209122013800_) 2006; 22
Ambroise (2023041209122013800_) 2002; 99
Breiman (2023041209122013800_) 1984
Gesierich (2023041209122013800_) 2005; 11
Kreßel (2023041209122013800_) 1999
Alon (2023041209122013800_) 1999; 96
LeCun (2023041209122013800_) 1990
Statnikov (2023041209122013800_) 2005; 21
Golub (2023041209122013800_) 1999
Hilario (2023041209122013800_) 2006; 25
Gertz (2023041209122013800_) 2003; 29
Zhou (2023041209122013800_) 2005
Tibshirani (2023041209122013800_) 2002; 99
Poggio (2023041209122013800_) 2002
Ross (2023041209122013800_) 2000; 24
Zhang (2023041209122013800_) 2006; 22
Bioinformatics. 2007 Aug;23(15):2029
References_xml – start-page: 166
  volume-title: A Practical Approach to Microarray Data Analysis
  year: 2003
  ident: 2023041209122013800_
  article-title: Classifying microarray data using support vector machines
  doi: 10.1007/0-306-47815-3_9
– volume: 11
  start-page: 2840
  year: 2005
  ident: 2023041209122013800_
  article-title: Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: Impact on cell motility
  publication-title: Clinical Cancer Res
  doi: 10.1158/1078-0432.CCR-04-1935
– volume: 25
  start-page: 0277
  year: 2006
  ident: 2023041209122013800_
  article-title: Processing and classification of protein mass spectra
  publication-title: Mass Spectrom. Rev
  doi: 10.1002/mas.20072
– volume: 2
  start-page: 265
  year: 2001
  ident: 2023041209122013800_
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: J. Mach. Learn. Res
– volume: 280
  start-page: 4730
  year: 2005
  ident: 2023041209122013800_
  article-title: Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells.
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M410362200
– volume: 99
  start-page: 6562
  year: 2002
  ident: 2023041209122013800_
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: Pro. Nat Acad. Sci
  doi: 10.1073/pnas.102102699
– volume: 98
  start-page: 10787
  year: 2001
  ident: 2023041209122013800_
  article-title: Chemosensitivity prediction by transcriptional profiling
  publication-title: Pro. Nat. Acad. Sci
  doi: 10.1073/pnas.191368598
– volume: 21
  start-page: 1559
  year: 2005
  ident: 2023041209122013800_
  article-title: LS Bound based gene selection for DNA microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti216
– volume: 103
  start-page: 10713
  year: 2006
  ident: 2023041209122013800_
  article-title: Computational prediction of methylation status in human genomic sequences
  publication-title: Pro. Nat Acad. Sci
  doi: 10.1073/pnas.0602949103
– volume: 16
  start-page: 906
  year: 2000
  ident: 2023041209122013800_
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– start-page: 414
  volume-title: IDEAL
  year: 2005
  ident: 2023041209122013800_
  article-title: Gene selection of DNA microarray data based on Regularization Networks
– start-page: 77
  year: 1994
  ident: 2023041209122013800_
  article-title: Comparison of classifier methods: A case study in handwriting digit recognition
– start-page: 598
  volume-title: Advances in Neural Information Processing Systems II
  year: 1990
  ident: 2023041209122013800_
  article-title: Optimal brain damage
– volume: 98
  start-page: 15149
  year: 2001
  ident: 2023041209122013800_
  article-title: Multiclass cancer diagnosis using tumor gene expression signatures
  publication-title: Pro. Nat. Acad. Sci
  doi: 10.1073/pnas.211566398
– year: 1999
  ident: 2023041209122013800_
  article-title: Support vector machines for multiclass pattern recognition
– volume: 19
  start-page: 90
  year: 2003
  ident: 2023041209122013800_
  article-title: Gene selection: a Bayesian variable selection approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.1.90
– volume: 46
  start-page: 389
  year: 2002
  ident: 2023041209122013800_
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn
  doi: 10.1023/A:1012487302797
– volume: 96
  start-page: 6745
  year: 1999
  ident: 2023041209122013800_
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Pro. Nat Acad. Sci
  doi: 10.1073/pnas.96.12.6745
– volume: 99
  start-page: 6567
  year: 2002
  ident: 2023041209122013800_
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: Proc. Nat. Acad. Sci
  doi: 10.1073/pnas.082099299
– volume: 97
  start-page: 262
  year: 2000
  ident: 2023041209122013800_
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Pro. Nat Acad. Sci
  doi: 10.1073/pnas.97.1.262
– volume: 13
  start-page: 415
  year: 2002
  ident: 2023041209122013800_
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE T. Neural Networ
  doi: 10.1109/72.991427
– year: 2001
  ident: 2023041209122013800_
  publication-title: LIBSVM: a library for support vector machines
– start-page: 1137
  year: 1995
  ident: 2023041209122013800_
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 98
  start-page: 11462
  year: 2001
  ident: 2023041209122013800_
  article-title: Predicting the clinical status of human breast cancer by using gene expression profiles
  publication-title: Proc. Nat. Acad. Sci
  doi: 10.1073/pnas.201162998
– volume: 6
  start-page: 186
  year: 2006
  ident: 2023041209122013800_
  article-title: The claudin gene family: expression in normal and neoplastic tissues
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-6-186
– volume: 98
  start-page: 13790
  year: 2001
  ident: 2023041209122013800_
  article-title: Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses
  publication-title: Pro. Nat Acad. Sci
  doi: 10.1073/pnas.191502998
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 2023041209122013800_
– volume: 30
  start-page: 41
  year: 2002
  ident: 2023041209122013800_
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet
  doi: 10.1038/ng765
– volume: 20
  start-page: 1400
  year: 2006
  ident: 2023041209122013800_
  article-title: Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404270
– volume: 17
  start-page: S316
  year: 2001
  ident: 2023041209122013800_
  article-title: Molecular classification of multiple tumor types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S316
– volume: 22
  start-page: 88
  year: 2006
  ident: 2023041209122013800_
  article-title: Gene selection using support vector machines with non-convex penalty
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti736
– volume: 22
  start-page: 618
  year: 1968
  ident: 2023041209122013800_
  article-title: Proper efficiency and the theory of vector maximization
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/0022-247X(68)90201-1
– start-page: 531
  year: 1999
  ident: 2023041209122013800_
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science, 286
  doi: 10.1126/science.286.5439.531
– volume: 24
  start-page: 1656
  year: 2006
  ident: 2023041209122013800_
  article-title: Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers
  publication-title: J. Clin. Oncol
  doi: 10.1200/JCO.2005.03.2755
– volume-title: Statistical Learning Theory\/
  year: 1998
  ident: 2023041209122013800_
– volume: 61
  start-page: 7388
  year: 2001
  ident: 2023041209122013800_
  article-title: Molecular classification of human carcinomas by use of gene expression signatures
  publication-title: Cancer Res
– start-page: 131
  volume-title: Uncertainty in Geometric Computations
  year: 2002
  ident: 2023041209122013800_
  doi: 10.1007/978-1-4615-0813-7_11
– volume: 21
  start-page: 631
  year: 2005
  ident: 2023041209122013800_
  article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti033
– start-page: 3
  year: 2004
  ident: 2023041209122013800_
  article-title: An evaluation of gene selection methods for multi-class microarray data classification
– volume: 99
  start-page: 67
  year: 2004
  ident: 2023041209122013800_
  article-title: Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214504000000098
– volume: 22
  start-page: 2507
  year: 2006
  ident: 2023041209122013800_
  article-title: The ties problem resulting from counting-based error estimators and its impact on gene selection algorithms.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl438
– volume: 45
  start-page: 706
  year: 2003
  ident: 2023041209122013800_
  article-title: An analytical method for multiclass molecular cancer classification
  publication-title: SIAM Review
  doi: 10.1137/S0036144502411986
– volume: 24
  start-page: 227
  year: 2000
  ident: 2023041209122013800_
  article-title: Systematic variation in gene expression patterns in human cancer cell
  publication-title: Nat. Genet
  doi: 10.1038/73432
– volume: 97
  start-page: 77
  year: 2002
  ident: 2023041209122013800_
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214502753479248
– start-page: 255
  volume-title: Advances in Kernel Methods: Support Vector Learning
  year: 1999
  ident: 2023041209122013800_
  article-title: Pairwise classification and support vector machines
– volume: 29
  start-page: 58
  year: 2003
  ident: 2023041209122013800_
  article-title: Object-oriented software for quadratic programming
  publication-title: ACM T. Math. Software
  doi: 10.1145/641876.641880
– volume: 20
  start-page: 2429
  year: 2004
  ident: 2023041209122013800_
  article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth267
– volume: 20
  start-page: 1028
  year: 2006
  ident: 2023041209122013800_
  article-title: Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404227
– reference: - Bioinformatics. 2007 Aug;23(15):2029
SSID ssj0005056
ssj0051444
Score 2.3597271
Snippet Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data...
Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support...
MOTIVATION: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1106
SubjectTerms Algorithms
Artificial Intelligence
Bioinformatics
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated - methods
Software
Title MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
URI https://api.istex.fr/ark:/67375/HXZ-JTHWZ8MT-K/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17494773
https://www.proquest.com/docview/198686026
https://www.proquest.com/docview/19860828
https://www.proquest.com/docview/33303433
https://www.proquest.com/docview/70497722
https://academic.oup.com/bioinformatics/article-pdf/23/9/1106/49859049/bioinformatics_23_9_1106.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Academic Journals (Open Access)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Academic Journals (Open Access)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7ttkKAEO9HWFh8QEgc0jzsxjG3CraqFrUgaKG7l8hxbQltt636EJQzP5xxnLRQsWI5IFVVlcw46Xg8_mzPA-B5JC2oj4RvlIp9ZpT0U5lQX4YjVmRY0oUTTbeXdAbseNgc7oGqYmFk6RXeqEIa8i_TMoWoTVsclPL0ZyMTxDQQAU5fScBE2hSIdXeos5hmIrMUDaTfh3rSRMBeg_qg97514iKyuM_Son5y-TuKqjgfQXcfni_PwyKX83YGq9vO-FZFx92YyQWK1riaGH8Crdfh6moyk-uvcjz-ZSJr34IflQic_8pZY7XMG-r7TnbI_yyj23CzBMKk5Vq5A3t6cheuuNKY63vQ73781PU_tI9ekWKf3m7qLcjUkPIywaZJ4Q2pLP4nOA40WRRFfZCS4OdNr0XOrbuhnM_lmlhX2PswaB_1X3f8sgKEr5IoXfo81iLPDddaGxOppkgpzUOuIqFxXZjGiicqzkMj-GiUiBGCu5wrlaBNShh-K_oAapPpRD8CokORhnmq41BpxoSSYagNoi2DK06bsMcDVvVqpsr06LZKxzhzx_Q025GbUwYPGhu2mcsP8jeGF4XKbKjl_Mw61_Fm1hmeZsf9zufTtNvP3nrwEvv3so0e_qZ5Wy4RxwLNtAcHlSpmpZFa4M00KUqQefBscxetiz0ykhM9XTkSm-TwYgpKEQQxSi-m4Kh0uIaLPXjoxsD27TgTjHPkDTaD4nJ_-PE_cxzANbctb31Vn0BtOV_pp4gnl_kh7PffDQ9Lq_AT1Xd6sw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4nsjDIYfEBIPaT7sxjFvFayqhlohaKHbS-S4toTWtVU_BOWZP5xznLRQMTEekKqqSu6c9Hw-_2zfB8CLSFpQHwnfKBX7zCjppzKhvgxHrMiwpAsnmm4v6QzYybA53ANVxcLI0iu8UYU05F-mZQpRm7Y4KOXpz0YmiGkgApy-koCJtCkQ6-5QZzHNRGYpGkh_DepJEwF7DeqD3vvWqYvI4j5Li_rJ5e8oquJ8BN19eL68CItcztsZrG4741sVHXd7JhcoWuNqYvwJtN6CG6vJTK6_yvH4l4msfRd-VCJw_ivnjdUyb6jvO9kh_7OM7sGdEgiTlmvlPuzpyQO47kpjrh9Cv_vxU9f_0D5-TYp9eruptyBTQ8rLBJsmhTeksvif4DjQZFEU9UFKgp-3vRa5sO6Gcj6Xa2JdYR_BoH3cf9PxywoQvkqidOnzWIs8N1xrbUykmiKlNA-5ioTGdWEaK56oOA-N4KNRIkYI7nKuVII2KWH4reg-1CbTiX4MRIciDfNUx6HSjAklw1AbRFsGV5w2YY8HrOrVTJXp0W2VjnHmjulptiM3pwweNDZsM5cf5G8MLwuV2VDL-bl1ruPNrDM8y076nc9nabefvfPgFfbvVRs9-k3ztlwijgWaaQ8OK1XMSiO1wJtpUpQg8-D55i5aF3tkJCd6unIkNsnh5RSUIghilF5OwVHpcA0Xe3DgxsD27TgTjHPkDTaD4mp_-Mk_cxzCTbctb31Vn0JtOV_pZ4gnl_lRaQ9-AvpOeZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSVM-RFE+%3A+extensions+of+SVM-RFE+for+multiclass+gene+selection+on+DNA+microarray+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=XIN+ZHOU&rft.au=TUCK%2C+David+P&rft.date=2007-05-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.volume=23&rft.issue=9&rft.spage=1106&rft.epage=1114&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtm036&rft.externalDBID=n%2Fa&rft.externalDocID=19229400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon