MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the sta...
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 23; no. 9; pp. 1106 - 1114 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        01.05.2007
     Oxford Publishing Limited (England)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059  | 
| DOI | 10.1093/bioinformatics/btm036 | 
Cover
| Abstract | Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems.
Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.
Contact:
david.tuck@yale.edu
Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.eduSupplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. MOTIVATION: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. RESULTS: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. CONTACT: david.tuckatyale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine—Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. Results: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Contact: david.tuck@yale.edu Supplementary information: Supplementary materials, including a detailed review of both binary and multiclass SVMs, and complete experimental results, are available at Bioinformatics online. Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems.MOTIVATIONGiven the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems.In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.RESULTSIn the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification. Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.  | 
    
| Author | Zhou, Xin Tuck, David P.  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA – sequence: 2 givenname: David P. surname: Tuck fullname: Tuck, David P. organization: To whom correspondence should be addressed  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19229400$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17494773$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNkVtvFCEYhompsQf9CRpiYu_GcpiBQa-a2rpqVxNdD-kNYVjG0DLDCkza_feyzqSNvdkmBAh5Hj54v32w0_veAPAco9cYCXrUWG_71odOJavjUZM6RNkjsIcp40VZY7xzu0d0F-zHeIkQqlDFnoBdzEtRck73wGL-7ce8-Hp2-gaam2T6aH0foW_hdAxzCdgNLhdxKkb42_QGRuOMTpmEebz7fAw7q4NXIag1XKqknoLHrXLRPJvWA_D97HRxMivOv7z_cHJ8XmiG61RwYkTTtNwY07ZYV6KmtEFcY2FKhGuiOdOkQa3gyyUTS8LKhmvN6hqxMs-aHgA23jv0K7W-Vs7JVbCdCmuJkdzEJP-PSY4xZfFwFFfB_xlMTLKzURvnVG_8ECVHpeCckK0gpRTRMs_bQCxqhmpSZ_DlPfDSD6HPMf1jMkU273sxQUPTmeXdr6a-ZeDVBKiolWuD6rWNd5wgRJQIZa4audyfGINpHxzQ23uetkltWp6Csm6rjUbbD6sHFyxGxcZkbm4lFa4k45RXcvbrQn5czH5e1POF_ET_AsAN9D4 | 
    
| CODEN | BOINFP | 
    
| CitedBy_id | crossref_primary_10_1016_j_rser_2016_11_155 crossref_primary_10_1182_blood_2009_04_218123 crossref_primary_10_1016_j_patrec_2011_09_031 crossref_primary_10_1186_s12885_020_06784_7 crossref_primary_10_1016_j_knosys_2013_10_004 crossref_primary_10_1016_j_jfoodeng_2013_05_024 crossref_primary_10_1016_j_ygeno_2017_01_004 crossref_primary_10_1093_bib_bbae482 crossref_primary_10_1007_s11042_013_1583_9 crossref_primary_10_1016_j_envadv_2023_100344 crossref_primary_10_1186_s13073_017_0493_2 crossref_primary_10_1016_j_bbrc_2025_151323 crossref_primary_10_1016_j_cmpb_2012_07_001 crossref_primary_10_3233_JPD_150729 crossref_primary_10_1016_j_compbiomed_2021_105145 crossref_primary_10_1016_j_neucom_2021_07_047 crossref_primary_10_1266_ggs_21_00073 crossref_primary_10_2147_IJGM_S354741 crossref_primary_10_1186_1471_2164_15_248 crossref_primary_10_1002_minf_201700050 crossref_primary_10_1016_j_ins_2013_12_029 crossref_primary_10_1109_TCBB_2018_2877755 crossref_primary_10_1016_j_neucom_2018_07_012 crossref_primary_10_3389_fendo_2023_1118886 crossref_primary_10_1109_TEVC_2021_3100056 crossref_primary_10_4061_2011_154325 crossref_primary_10_1371_journal_pone_0024259 crossref_primary_10_3390_app9204298 crossref_primary_10_1088_1741_2560_10_2_026008 crossref_primary_10_1016_j_compmedimag_2018_09_007 crossref_primary_10_1007_s10489_017_1056_3 crossref_primary_10_1080_15592294_2020_1827716 crossref_primary_10_1016_j_patrec_2013_05_011 crossref_primary_10_1186_1471_2105_13_178 crossref_primary_10_1016_j_ynirp_2024_100209 crossref_primary_10_1007_s00415_012_6631_2 crossref_primary_10_1016_j_ijinfomgt_2017_09_007 crossref_primary_10_1109_TKDE_2015_2455509 crossref_primary_10_1371_journal_pone_0157330 crossref_primary_10_3390_app10093211 crossref_primary_10_1016_j_jbi_2009_08_010 crossref_primary_10_1021_acsomega_9b01934 crossref_primary_10_1016_j_eswa_2017_06_043 crossref_primary_10_1371_journal_pone_0138213 crossref_primary_10_1093_bib_bbab278 crossref_primary_10_1109_TCBB_2010_13 crossref_primary_10_1016_j_patrec_2014_07_004 crossref_primary_10_1155_2013_387673 crossref_primary_10_1016_j_knosys_2018_01_025 crossref_primary_10_1093_bioinformatics_btac432 crossref_primary_10_3390_bioengineering10091027 crossref_primary_10_1002_jssc_201100408 crossref_primary_10_1057_s41274_016_0127_x crossref_primary_10_1016_j_eswa_2013_08_043 crossref_primary_10_1186_1471_2105_13_41 crossref_primary_10_3233_AIC_160707 crossref_primary_10_1016_j_physa_2017_10_032 crossref_primary_10_1016_j_asoc_2011_11_013 crossref_primary_10_1049_iet_syb_2015_0031 crossref_primary_10_1016_j_engappai_2018_01_007 crossref_primary_10_3390_s18030869 crossref_primary_10_1371_journal_pone_0089851 crossref_primary_10_3846_20294913_2012_661205 crossref_primary_10_1007_s00521_022_07661_z crossref_primary_10_1016_j_asoc_2024_111979 crossref_primary_10_1109_TNNLS_2014_2308902 crossref_primary_10_1007_s10489_017_0994_0 crossref_primary_10_3389_fimmu_2022_956027 crossref_primary_10_1080_22797254_2019_1686717 crossref_primary_10_1080_03081079_2010_530027 crossref_primary_10_9728_dcs_2016_17_6_565 crossref_primary_10_1371_journal_pone_0294984 crossref_primary_10_1371_journal_pone_0021750 crossref_primary_10_1109_THMS_2013_2288777 crossref_primary_10_1016_j_asoc_2009_11_010 crossref_primary_10_3389_fpsyt_2018_00092 crossref_primary_10_1089_big_2022_0086 crossref_primary_10_1088_1755_1315_299_1_012038 crossref_primary_10_1088_1742_6596_1490_1_012027 crossref_primary_10_4028_www_scientific_net_AMR_926_930_3100 crossref_primary_10_1155_2021_6490118 crossref_primary_10_1371_journal_pone_0117303 crossref_primary_10_1016_j_neunet_2022_03_004 crossref_primary_10_3892_etm_2022_11500 crossref_primary_10_1142_S012906571450021X crossref_primary_10_1371_journal_pone_0106097 crossref_primary_10_3390_molecules23082008 crossref_primary_10_1002_minf_201200116 crossref_primary_10_1016_j_compbiomed_2011_04_005 crossref_primary_10_1016_j_jchromb_2012_05_020 crossref_primary_10_1007_s11517_017_1751_6 crossref_primary_10_1074_jbc_M113_515940 crossref_primary_10_1007_s10479_016_2333_y crossref_primary_10_1007_s10489_017_1054_5 crossref_primary_10_1016_j_neuroimage_2015_07_054 crossref_primary_10_1111_1755_0998_13611 crossref_primary_10_1016_j_heliyon_2024_e30335 crossref_primary_10_1109_TCBB_2023_3314432 crossref_primary_10_3389_fonc_2023_1218056 crossref_primary_10_1016_j_asoc_2024_112009 crossref_primary_10_1097_JOM_0000000000001692 crossref_primary_10_1109_TKDE_2018_2847685 crossref_primary_10_3390_ijms21197271 crossref_primary_10_1016_j_neunet_2025_107136 crossref_primary_10_1186_1471_2105_12_S1_S7 crossref_primary_10_1145_2560365 crossref_primary_10_1186_s12859_020_3525_7 crossref_primary_10_1115_1_4038862 crossref_primary_10_1109_TCBB_2008_17 crossref_primary_10_1002_hbm_25890 crossref_primary_10_1016_j_jmva_2021_104800 crossref_primary_10_1016_j_gene_2019_04_060 crossref_primary_10_1142_S0218001410008408 crossref_primary_10_1016_j_jtbi_2016_03_034 crossref_primary_10_1038_s41398_017_0020_7 crossref_primary_10_1186_1471_2105_12_253 crossref_primary_10_1007_s00775_020_01822_y crossref_primary_10_1016_j_patcog_2021_107988 crossref_primary_10_1109_ACCESS_2020_3000333 crossref_primary_10_3390_molecules23010052 crossref_primary_10_1016_j_heliyon_2024_e29587 crossref_primary_10_1016_j_asoc_2024_112634 crossref_primary_10_1016_j_csda_2007_12_011 crossref_primary_10_1155_2014_569501 crossref_primary_10_1109_TCBB_2021_3068846 crossref_primary_10_4236_jdaip_2020_84020 crossref_primary_10_3390_app13053071 crossref_primary_10_1016_j_ygeno_2017_07_010 crossref_primary_10_1186_s12864_015_2129_5 crossref_primary_10_1016_j_chemolab_2021_104284 crossref_primary_10_1080_03610926_2018_1463385 crossref_primary_10_1016_j_ins_2010_01_001 crossref_primary_10_1007_s10489_021_02298_2 crossref_primary_10_1089_cmb_2007_0211 crossref_primary_10_1109_TCBB_2010_44 crossref_primary_10_1016_j_compbiolchem_2016_12_010 crossref_primary_10_1016_j_knosys_2013_09_005 crossref_primary_10_1016_j_asoc_2023_110031 crossref_primary_10_1371_journal_pntd_0001887 crossref_primary_10_1007_s42600_020_00080_w crossref_primary_10_1016_j_ijmedinf_2017_10_011 crossref_primary_10_1093_database_bau083 crossref_primary_10_1016_j_asoc_2018_02_009 crossref_primary_10_1016_j_patcog_2010_02_008 crossref_primary_10_1007_s10489_017_0992_2 crossref_primary_10_1016_j_eswa_2023_121582 crossref_primary_10_1016_S1673_8527_08_60130_7 crossref_primary_10_1186_s40709_016_0045_8  | 
    
| Cites_doi | 10.1007/0-306-47815-3_9 10.1158/1078-0432.CCR-04-1935 10.1002/mas.20072 10.1074/jbc.M410362200 10.1073/pnas.102102699 10.1073/pnas.191368598 10.1093/bioinformatics/bti216 10.1073/pnas.0602949103 10.1093/bioinformatics/16.10.906 10.1073/pnas.211566398 10.1093/bioinformatics/19.1.90 10.1023/A:1012487302797 10.1073/pnas.96.12.6745 10.1073/pnas.082099299 10.1073/pnas.97.1.262 10.1109/72.991427 10.1073/pnas.201162998 10.1186/1471-2407-6-186 10.1073/pnas.191502998 10.1038/ng765 10.1038/sj.leu.2404270 10.1093/bioinformatics/17.suppl_1.S316 10.1093/bioinformatics/bti736 10.1016/0022-247X(68)90201-1 10.1126/science.286.5439.531 10.1200/JCO.2005.03.2755 10.1007/978-1-4615-0813-7_11 10.1093/bioinformatics/bti033 10.1198/016214504000000098 10.1093/bioinformatics/btl438 10.1137/S0036144502411986 10.1038/73432 10.1198/016214502753479248 10.1145/641876.641880 10.1093/bioinformatics/bth267 10.1038/sj.leu.2404227  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007 2008 INIST-CNRS The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org  | 
    
| Copyright_xml | – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007 – notice: 2008 INIST-CNRS – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org  | 
    
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 RC3 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btm036 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Genetics Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Genetics Abstracts Materials Research Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 1460-2059  | 
    
| EndPage | 1114 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btm036 1317499321 17494773 19229400 10_1093_bioinformatics_btm036 ark_67375_HXZ_JTHWZ8MT_K  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK072442 – fundername: NCRR NIH HHS grantid: RR19895-02  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSCLL BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM AASNB ABQTQ ADRIX AFXEN BCRHZ M49 RIG ROX AAYXX CITATION .-4 .GJ ABEFU AI. AQDSO ATTQO ELUNK IQODW O~Y RNI RZF RZO VH1 ZGI CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 482 ABJNI RC3 ROZ TN5 WH7 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c618t-72e9bbf7eeeff1c59833b07c19e40182c76c2b0f97dd69d264b7cc688064688c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Tue Aug 19 15:39:16 EDT 2025 Fri Sep 05 08:55:36 EDT 2025 Thu Oct 02 05:50:24 EDT 2025 Tue Oct 07 09:09:14 EDT 2025 Fri Oct 03 11:21:09 EDT 2025 Wed Feb 19 02:08:55 EST 2025 Mon Jul 21 09:13:53 EDT 2025 Wed Oct 01 04:04:41 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Wed Aug 28 03:24:14 EDT 2024 Sat Sep 20 11:02:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | Selection DNA chip Minimization Support vector machine Microarray Optimization Original document Gene Classification Recursive method Simultaneity Bioinformatics Comparative study  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c618t-72e9bbf7eeeff1c59833b07c19e40182c76c2b0f97dd69d264b7cc688064688c3 | 
    
| Notes | ark:/67375/HXZ-JTHWZ8MT-K To whom correspondence should be addressed. istex:29B7A62ACA3DF885FCBDB2462936D51DEE7B6B89 Associate Editor: David Rocke ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/23/9/1106/49859049/bioinformatics_23_9_1106.pdf | 
    
| PMID | 17494773 | 
    
| PQID | 198686026 | 
    
| PQPubID | 36124 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btm036 proquest_miscellaneous_70497722 proquest_miscellaneous_33303433 proquest_miscellaneous_19860828 proquest_journals_198686026 pubmed_primary_17494773 pascalfrancis_primary_19229400 crossref_primary_10_1093_bioinformatics_btm036 crossref_citationtrail_10_1093_bioinformatics_btm036 oup_primary_10_1093_bioinformatics_btm036 istex_primary_ark_67375_HXZ_JTHWZ8MT_K  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-05-01 | 
    
| PublicationDateYYYYMMDD | 2007-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford – name: England  | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2007 | 
    
| Publisher | Oxford University Press Oxford Publishing Limited (England)  | 
    
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England)  | 
    
| References | Kohavi (2023041209122013800_) 1995 Weston (2023041209122013800_) 1999 Yeang (2023041209122013800_) 2001; 17 Armstrong (2023041209122013800_) 2002; 30 Ideo (2023041209122013800_) 2005; 280 Lee (2023041209122013800_) 2003; 19 Bhattacharjee (2023041209122013800_) 2001; 98 Hsu (2023041209122013800_) 2002; 13 Mukherjee (2023041209122013800_) 2003 Das (2023041209122013800_) 2006; 103 Vapnik (2023041209122013800_) 1998 Bottou (2023041209122013800_) 1994 Geoffrion (2023041209122013800_) 1968; 22 Guyon (2023041209122013800_) 2002; 46 Lee (2023041209122013800_) 2004; 99 Ramaswamy (2023041209122013800_) 2001; 98 Zheng (2023041209122013800_) 2006; 20 Crammer (2023041209122013800_) 2001; 2 West (2023041209122013800_) 2001; 98 Brown (2023041209122013800_) 2000; 97 Li (2023041209122013800_) 2004; 20 Staunton (2023041209122013800_) 2001; 98 Frank (2023041209122013800_) 2006; 20 Oh (2023041209122013800_) 2006; 24 Furey (2023041209122013800_) 2000; 16 Zhou (2023041209122013800_) 2005; 21 Rifkin (2023041209122013800_) 2003; 45 Su (2023041209122013800_) 2001; 61 Dudoit (2023041209122013800_) 2002; 97 Chai (2023041209122013800_) 2004 Chang (2023041209122013800_) 2001 Hewitt (2023041209122013800_) 2006; 6 Zhou (2023041209122013800_) 2006; 22 Ambroise (2023041209122013800_) 2002; 99 Breiman (2023041209122013800_) 1984 Gesierich (2023041209122013800_) 2005; 11 Kreßel (2023041209122013800_) 1999 Alon (2023041209122013800_) 1999; 96 LeCun (2023041209122013800_) 1990 Statnikov (2023041209122013800_) 2005; 21 Golub (2023041209122013800_) 1999 Hilario (2023041209122013800_) 2006; 25 Gertz (2023041209122013800_) 2003; 29 Zhou (2023041209122013800_) 2005 Tibshirani (2023041209122013800_) 2002; 99 Poggio (2023041209122013800_) 2002 Ross (2023041209122013800_) 2000; 24 Zhang (2023041209122013800_) 2006; 22 Bioinformatics. 2007 Aug;23(15):2029  | 
    
| References_xml | – start-page: 166 volume-title: A Practical Approach to Microarray Data Analysis year: 2003 ident: 2023041209122013800_ article-title: Classifying microarray data using support vector machines doi: 10.1007/0-306-47815-3_9 – volume: 11 start-page: 2840 year: 2005 ident: 2023041209122013800_ article-title: Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: Impact on cell motility publication-title: Clinical Cancer Res doi: 10.1158/1078-0432.CCR-04-1935 – volume: 25 start-page: 0277 year: 2006 ident: 2023041209122013800_ article-title: Processing and classification of protein mass spectra publication-title: Mass Spectrom. Rev doi: 10.1002/mas.20072 – volume: 2 start-page: 265 year: 2001 ident: 2023041209122013800_ article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: J. Mach. Learn. Res – volume: 280 start-page: 4730 year: 2005 ident: 2023041209122013800_ article-title: Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. publication-title: J. Biol. Chem doi: 10.1074/jbc.M410362200 – volume: 99 start-page: 6562 year: 2002 ident: 2023041209122013800_ article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: Pro. Nat Acad. Sci doi: 10.1073/pnas.102102699 – volume: 98 start-page: 10787 year: 2001 ident: 2023041209122013800_ article-title: Chemosensitivity prediction by transcriptional profiling publication-title: Pro. Nat. Acad. Sci doi: 10.1073/pnas.191368598 – volume: 21 start-page: 1559 year: 2005 ident: 2023041209122013800_ article-title: LS Bound based gene selection for DNA microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti216 – volume: 103 start-page: 10713 year: 2006 ident: 2023041209122013800_ article-title: Computational prediction of methylation status in human genomic sequences publication-title: Pro. Nat Acad. Sci doi: 10.1073/pnas.0602949103 – volume: 16 start-page: 906 year: 2000 ident: 2023041209122013800_ article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – start-page: 414 volume-title: IDEAL year: 2005 ident: 2023041209122013800_ article-title: Gene selection of DNA microarray data based on Regularization Networks – start-page: 77 year: 1994 ident: 2023041209122013800_ article-title: Comparison of classifier methods: A case study in handwriting digit recognition – start-page: 598 volume-title: Advances in Neural Information Processing Systems II year: 1990 ident: 2023041209122013800_ article-title: Optimal brain damage – volume: 98 start-page: 15149 year: 2001 ident: 2023041209122013800_ article-title: Multiclass cancer diagnosis using tumor gene expression signatures publication-title: Pro. Nat. Acad. Sci doi: 10.1073/pnas.211566398 – year: 1999 ident: 2023041209122013800_ article-title: Support vector machines for multiclass pattern recognition – volume: 19 start-page: 90 year: 2003 ident: 2023041209122013800_ article-title: Gene selection: a Bayesian variable selection approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.1.90 – volume: 46 start-page: 389 year: 2002 ident: 2023041209122013800_ article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn doi: 10.1023/A:1012487302797 – volume: 96 start-page: 6745 year: 1999 ident: 2023041209122013800_ article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Pro. Nat Acad. Sci doi: 10.1073/pnas.96.12.6745 – volume: 99 start-page: 6567 year: 2002 ident: 2023041209122013800_ article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Nat. Acad. Sci doi: 10.1073/pnas.082099299 – volume: 97 start-page: 262 year: 2000 ident: 2023041209122013800_ article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines publication-title: Pro. Nat Acad. Sci doi: 10.1073/pnas.97.1.262 – volume: 13 start-page: 415 year: 2002 ident: 2023041209122013800_ article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE T. Neural Networ doi: 10.1109/72.991427 – year: 2001 ident: 2023041209122013800_ publication-title: LIBSVM: a library for support vector machines – start-page: 1137 year: 1995 ident: 2023041209122013800_ article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 98 start-page: 11462 year: 2001 ident: 2023041209122013800_ article-title: Predicting the clinical status of human breast cancer by using gene expression profiles publication-title: Proc. Nat. Acad. Sci doi: 10.1073/pnas.201162998 – volume: 6 start-page: 186 year: 2006 ident: 2023041209122013800_ article-title: The claudin gene family: expression in normal and neoplastic tissues publication-title: BMC Cancer doi: 10.1186/1471-2407-6-186 – volume: 98 start-page: 13790 year: 2001 ident: 2023041209122013800_ article-title: Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses publication-title: Pro. Nat Acad. Sci doi: 10.1073/pnas.191502998 – volume-title: Classification and Regression Trees year: 1984 ident: 2023041209122013800_ – volume: 30 start-page: 41 year: 2002 ident: 2023041209122013800_ article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet doi: 10.1038/ng765 – volume: 20 start-page: 1400 year: 2006 ident: 2023041209122013800_ article-title: Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients publication-title: Leukemia doi: 10.1038/sj.leu.2404270 – volume: 17 start-page: S316 year: 2001 ident: 2023041209122013800_ article-title: Molecular classification of multiple tumor types publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S316 – volume: 22 start-page: 88 year: 2006 ident: 2023041209122013800_ article-title: Gene selection using support vector machines with non-convex penalty publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti736 – volume: 22 start-page: 618 year: 1968 ident: 2023041209122013800_ article-title: Proper efficiency and the theory of vector maximization publication-title: J. Math. Anal. Appl doi: 10.1016/0022-247X(68)90201-1 – start-page: 531 year: 1999 ident: 2023041209122013800_ article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science, 286 doi: 10.1126/science.286.5439.531 – volume: 24 start-page: 1656 year: 2006 ident: 2023041209122013800_ article-title: Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers publication-title: J. Clin. Oncol doi: 10.1200/JCO.2005.03.2755 – volume-title: Statistical Learning Theory\/ year: 1998 ident: 2023041209122013800_ – volume: 61 start-page: 7388 year: 2001 ident: 2023041209122013800_ article-title: Molecular classification of human carcinomas by use of gene expression signatures publication-title: Cancer Res – start-page: 131 volume-title: Uncertainty in Geometric Computations year: 2002 ident: 2023041209122013800_ doi: 10.1007/978-1-4615-0813-7_11 – volume: 21 start-page: 631 year: 2005 ident: 2023041209122013800_ article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti033 – start-page: 3 year: 2004 ident: 2023041209122013800_ article-title: An evaluation of gene selection methods for multi-class microarray data classification – volume: 99 start-page: 67 year: 2004 ident: 2023041209122013800_ article-title: Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data publication-title: J. Am. Stat. Assoc doi: 10.1198/016214504000000098 – volume: 22 start-page: 2507 year: 2006 ident: 2023041209122013800_ article-title: The ties problem resulting from counting-based error estimators and its impact on gene selection algorithms. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl438 – volume: 45 start-page: 706 year: 2003 ident: 2023041209122013800_ article-title: An analytical method for multiclass molecular cancer classification publication-title: SIAM Review doi: 10.1137/S0036144502411986 – volume: 24 start-page: 227 year: 2000 ident: 2023041209122013800_ article-title: Systematic variation in gene expression patterns in human cancer cell publication-title: Nat. Genet doi: 10.1038/73432 – volume: 97 start-page: 77 year: 2002 ident: 2023041209122013800_ article-title: Comparison of discrimination methods for the classification of tumors using gene expression data publication-title: J. Am. Stat. Assoc doi: 10.1198/016214502753479248 – start-page: 255 volume-title: Advances in Kernel Methods: Support Vector Learning year: 1999 ident: 2023041209122013800_ article-title: Pairwise classification and support vector machines – volume: 29 start-page: 58 year: 2003 ident: 2023041209122013800_ article-title: Object-oriented software for quadratic programming publication-title: ACM T. Math. Software doi: 10.1145/641876.641880 – volume: 20 start-page: 2429 year: 2004 ident: 2023041209122013800_ article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth267 – volume: 20 start-page: 1028 year: 2006 ident: 2023041209122013800_ article-title: Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis publication-title: Leukemia doi: 10.1038/sj.leu.2404227 – reference: - Bioinformatics. 2007 Aug;23(15):2029  | 
    
| SSID | ssj0005056 ssj0051444  | 
    
| Score | 2.3597271 | 
    
| Snippet | Motivation: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data... Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support... MOTIVATION: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data...  | 
    
| SourceID | unpaywall proquest pubmed pascalfrancis crossref oup istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1106 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Bioinformatics Biological and medical sciences Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated - methods Software  | 
    
| Title | MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data | 
    
| URI | https://api.istex.fr/ark:/67375/HXZ-JTHWZ8MT-K/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17494773 https://www.proquest.com/docview/198686026 https://www.proquest.com/docview/19860828 https://www.proquest.com/docview/33303433 https://www.proquest.com/docview/70497722 https://academic.oup.com/bioinformatics/article-pdf/23/9/1106/49859049/bioinformatics_23_9_1106.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Academic Journals (Open Access) customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Academic Journals (Open Access) customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7ttkKAEO9HWFh8QEgc0jzsxjG3CraqFrUgaKG7l8hxbQltt636EJQzP5xxnLRQsWI5IFVVlcw46Xg8_mzPA-B5JC2oj4RvlIp9ZpT0U5lQX4YjVmRY0oUTTbeXdAbseNgc7oGqYmFk6RXeqEIa8i_TMoWoTVsclPL0ZyMTxDQQAU5fScBE2hSIdXeos5hmIrMUDaTfh3rSRMBeg_qg97514iKyuM_Son5y-TuKqjgfQXcfni_PwyKX83YGq9vO-FZFx92YyQWK1riaGH8Crdfh6moyk-uvcjz-ZSJr34IflQic_8pZY7XMG-r7TnbI_yyj23CzBMKk5Vq5A3t6cheuuNKY63vQ73781PU_tI9ekWKf3m7qLcjUkPIywaZJ4Q2pLP4nOA40WRRFfZCS4OdNr0XOrbuhnM_lmlhX2PswaB_1X3f8sgKEr5IoXfo81iLPDddaGxOppkgpzUOuIqFxXZjGiicqzkMj-GiUiBGCu5wrlaBNShh-K_oAapPpRD8CokORhnmq41BpxoSSYagNoi2DK06bsMcDVvVqpsr06LZKxzhzx_Q025GbUwYPGhu2mcsP8jeGF4XKbKjl_Mw61_Fm1hmeZsf9zufTtNvP3nrwEvv3so0e_qZ5Wy4RxwLNtAcHlSpmpZFa4M00KUqQefBscxetiz0ykhM9XTkSm-TwYgpKEQQxSi-m4Kh0uIaLPXjoxsD27TgTjHPkDTaD4nJ_-PE_cxzANbctb31Vn0BtOV_pp4gnl_kh7PffDQ9Lq_AT1Xd6sw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4nsjDIYfEBIPaT7sxjFvFayqhlohaKHbS-S4toTWtVU_BOWZP5xznLRQMTEekKqqSu6c9Hw-_2zfB8CLSFpQHwnfKBX7zCjppzKhvgxHrMiwpAsnmm4v6QzYybA53ANVxcLI0iu8UYU05F-mZQpRm7Y4KOXpz0YmiGkgApy-koCJtCkQ6-5QZzHNRGYpGkh_DepJEwF7DeqD3vvWqYvI4j5Li_rJ5e8oquJ8BN19eL68CItcztsZrG4741sVHXd7JhcoWuNqYvwJtN6CG6vJTK6_yvH4l4msfRd-VCJw_ivnjdUyb6jvO9kh_7OM7sGdEgiTlmvlPuzpyQO47kpjrh9Cv_vxU9f_0D5-TYp9eruptyBTQ8rLBJsmhTeksvif4DjQZFEU9UFKgp-3vRa5sO6Gcj6Xa2JdYR_BoH3cf9PxywoQvkqidOnzWIs8N1xrbUykmiKlNA-5ioTGdWEaK56oOA-N4KNRIkYI7nKuVII2KWH4reg-1CbTiX4MRIciDfNUx6HSjAklw1AbRFsGV5w2YY8HrOrVTJXp0W2VjnHmjulptiM3pwweNDZsM5cf5G8MLwuV2VDL-bl1ruPNrDM8y076nc9nabefvfPgFfbvVRs9-k3ztlwijgWaaQ8OK1XMSiO1wJtpUpQg8-D55i5aF3tkJCd6unIkNsnh5RSUIghilF5OwVHpcA0Xe3DgxsD27TgTjHPkDTaD4mp_-Mk_cxzCTbctb31Vn0JtOV_pZ4gnl_lRaQ9-AvpOeZc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSVM-RFE+%3A+extensions+of+SVM-RFE+for+multiclass+gene+selection+on+DNA+microarray+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=XIN+ZHOU&rft.au=TUCK%2C+David+P&rft.date=2007-05-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.volume=23&rft.issue=9&rft.spage=1106&rft.epage=1114&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtm036&rft.externalDBID=n%2Fa&rft.externalDocID=19229400 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |