pyMeSHSim: an integrative python package for biomedical named entity recognition, normalization, and comparison of MeSH terms

Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become imp...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 21; no. 1; pp. 1 - 14
Main Authors Luo, Zhi-Hui, Shi, Meng-Wei, Yang, Zhuang, Zhang, Hong-Yu, Chen, Zhen-Xia
Format Journal Article
LanguageEnglish
Published London BioMed Central 18.06.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-020-03583-6

Cover

Abstract Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. Results The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall >  0.94, precision >  0.56, and F1  >  0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes , respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89–0.99. Conclusions The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
AbstractList Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. Results The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall > 0.94, precision > 0.56, and F1 > 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89–0.99. Conclusions The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis.BACKGROUNDMany disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis.The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall > 0.94, precision > 0.56, and F1 > 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89-0.99.RESULTSThe package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall > 0.94, precision > 0.56, and F1 > 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89-0.99.The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.CONCLUSIONSThe integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. Results The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall 0.94, precision 0.56, and F1 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89-0.99. Conclusions The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining. Keywords: MeSH, UMLS, Named entity recognition, Semantic similarity, Supplementary concept records, Disease
Abstract Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. Results The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall > 0.94, precision > 0.56, and F1 > 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89–0.99. Conclusions The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. Results The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall >  0.94, precision >  0.56, and F1  >  0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes , respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89–0.99. Conclusions The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic similarity comparison between two bio-NE annotations has become important for data integration or system genetics analysis. The package pyMeSHSim recognizes bio-NEs by using MetaMap which produces Unified Medical Language System (UMLS) concepts in natural language process. To map the UMLS concepts to Medical Subject Headings (MeSH), pyMeSHSim is embedded with a house-made dataset containing the main headings (MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on the dataset, pyMeSHSim implemented four information content (IC)-based algorithms and one graph-based algorithm to measure the semantic similarity between two MeSH terms. To evaluate its performance, we used pyMeSHSim to parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the curation strategy of non-MeSH-synonymous UMLS concepts, which improved the performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation of 461 GWAS phenotypes, pyMeSHSim showed recall 0.94, precision 0.56, and F1 0.70, demonstrating better performance than the state-of-the-art tools DNorm and TaggerOne in recognizing MeSH terms from short biomedical phrases. The semantic similarity in MeSH terms recognized by pyMeSHSim and the previous manual work was calculated by pyMeSHSim and another semantic analysis tool meshes, respectively. The result indicated that the correlation of semantic similarity analysed by two tools reached as high as 0.89-0.99. The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs and SCRs realized the bio-NE recognition, normalization, and comparison in biomedical text-mining.
ArticleNumber 252
Audience Academic
Author Shi, Meng-Wei
Yang, Zhuang
Chen, Zhen-Xia
Luo, Zhi-Hui
Zhang, Hong-Yu
Author_xml – sequence: 1
  givenname: Zhi-Hui
  surname: Luo
  fullname: Luo, Zhi-Hui
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, College of Biomedicine and Health, Huazhong Agricultural University
– sequence: 2
  givenname: Meng-Wei
  surname: Shi
  fullname: Shi, Meng-Wei
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, College of Biomedicine and Health, Huazhong Agricultural University
– sequence: 3
  givenname: Zhuang
  surname: Yang
  fullname: Yang, Zhuang
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, College of Biomedicine and Health, Huazhong Agricultural University
– sequence: 4
  givenname: Hong-Yu
  surname: Zhang
  fullname: Zhang, Hong-Yu
  email: zhy630@mail.hzau.edu.cn
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 5
  givenname: Zhen-Xia
  orcidid: 0000-0003-0474-902X
  surname: Chen
  fullname: Chen, Zhen-Xia
  email: zhen-xia.chen@mail.hzau.edu.cn
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, College of Biomedicine and Health, Huazhong Agricultural University
BookMark eNqNkt1r1TAYxotM3If-A14FvFGwMx9Nm3ohjKHuwERwuw9v06TLbJOa5EyP4P9uzjljeoYMyUXT5Pc-b_I8OSz2nHe6KJ4TfEyIqN9EQgVvS0xxiRkXrKwfFQekakhJCeZ7f833i8MYrzEmjcD8SbHPKOe0oeKg-DWvPumLsws7vUXgkHVJDwGSvdFoXqUr79AM6isMGhkfUGf9pHurYEQO8gxpl2xaoaCVH5xN1rvXyPkwwWh_wvYXXI-Un2YINmY5b9C6IUo6TPFp8djAGPWz2-9Rcfnh_eXpWXn--ePi9OS8VDURqaQGE9HmK1YMc9OajmDMKlWbjpsG89aIngjaA1e1NqqujTKsoarDLa76pmZHxWIr23u4lnOwE4SV9GDlZsGHQUJIVo1a4qYzFKpWYFZXojKge2iaGjfQYda3XdZiW62lm2H1HcbxTpBguc5FbnORORe5yUWuT_BuWzUvu-ybyr4FGHeOsrvj7JUc_I1sGCYct1ng5a1A8N-WOiY52aj0OILTfhklrQinosKUZfTFPfTaL4PL_q6pquYMZ-yOGiBf2zrjc1-1FpUnNW0q0tCNc8f_oPLo9WRVfo7G5vWdglc7BZlJ-kcaYBmjXFx82WXFllXBxxi0kcqmzavJTez4sJ_0Xul_hXAbXcywG3T4Y8wDVb8BpHkNTw
CitedBy_id crossref_primary_10_1093_database_baad022
crossref_primary_10_2196_39876
crossref_primary_10_1093_bib_bbac228
crossref_primary_10_1093_database_baac047
crossref_primary_10_1093_database_baae106
crossref_primary_10_1093_bib_bbac006
crossref_primary_10_1186_s12859_022_04883_9
crossref_primary_10_1016_j_jbi_2023_104321
crossref_primary_10_1016_j_csbj_2024_04_006
Cites_doi 10.1002/cpt.82
10.1093/nar/30.1.412
10.1093/bioinformatics/btm087
10.1038/ng.3314
10.1093/nar/gkj067
10.1186/1471-2105-7-302
10.1093/nar/gku1205
10.1093/nar/gkr972
10.1093/bioinformatics/btw343
10.1093/nar/gkh036
10.1038/ng0504-431
10.1136/jamia.2009.002733
10.1093/bioinformatics/btx228
10.1016/j.jbi.2015.07.010
10.1126/scitranslmed.3009262
10.1093/bioinformatics/btt474
10.1093/nar/gkr1182
10.1093/nar/gkw943
10.1142/S0219720015420020
10.1186/s12859-015-0453-z
10.1093/nar/gkh061
10.1093/bioinformatics/btu684
10.1093/nar/gku412
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-020-03583-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Science: Gale in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic





Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 14
ExternalDocumentID oai_doaj_org_article_07bf2a498036484faeda77607ab03d9b
10.1186/s12859-020-03583-6
PMC7301509
A627417276
10_1186_s12859_020_03583_6
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2662018PY021
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: 2662019PY003
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Huazhong Agricultural University Scientific & Technological Self-innovation Foundation
  grantid: 2016RC011
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: 2662017PY115
– fundername: National Natural Science Foundation of China
  grantid: 31701259; 31871305
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: 2662018PY021
– fundername: ;
  grantid: 2016RC011
– fundername: ;
  grantid: 31701259; 31871305
– fundername: ;
  grantid: 2662017PY115
– fundername: ;
  grantid: 2662019PY003
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c618t-2f01893584305f9fb10034c6fb5f7059f8d182da5c6efc66fcf372cb0904d763
IEDL.DBID M48
ISSN 1471-2105
IngestDate Tue Oct 14 19:09:11 EDT 2025
Sun Oct 26 04:11:39 EDT 2025
Tue Sep 30 16:54:31 EDT 2025
Fri Sep 05 11:29:20 EDT 2025
Mon Oct 06 18:28:34 EDT 2025
Mon Oct 20 22:15:18 EDT 2025
Mon Oct 20 16:28:17 EDT 2025
Thu Oct 16 14:47:40 EDT 2025
Wed Oct 01 04:15:35 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords UMLS
MeSH
Semantic similarity
Supplementary concept records
Disease
Named entity recognition
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-2f01893584305f9fb10034c6fb5f7059f8d182da5c6efc66fcf372cb0904d763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0474-902X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-020-03583-6
PMID 32552728
PQID 2414653002
PQPubID 44065
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_07bf2a498036484faeda77607ab03d9b
unpaywall_primary_10_1186_s12859_020_03583_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7301509
proquest_miscellaneous_2415284023
proquest_journals_2414653002
gale_infotracmisc_A627417276
gale_infotracacademiconefile_A627417276
gale_incontextgauss_ISR_A627417276
crossref_citationtrail_10_1186_s12859_020_03583_6
crossref_primary_10_1186_s12859_020_03583_6
springer_journals_10_1186_s12859_020_03583_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-18
PublicationDateYYYYMMDD 2020-06-18
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References R Leaman (3583_CR5) 2015; 57
KG Becker (3583_CR19) 2004; 36
3583_CR16
R Leaman (3583_CR33) 2013; 29
J Pinero (3583_CR9) 2017; 45
H Wang (3583_CR2) 2015; 97
3583_CR7
LM Schriml (3583_CR11) 2012; 40
JS Amberger (3583_CR18) 2014; 43
GO Consortium (3583_CR10) 2004; 32
C-C Liu (3583_CR30) 2014; 42
DS Wishart (3583_CR20) 2006; 34
AR Aronson (3583_CR15) 2010; 17
JJ Jiang (3583_CR27) 1997
K Tsuyuzaki (3583_CR3) 2015; 16
3583_CR23
3583_CR24
AT McCray (3583_CR29) 2001; 84
M Habibi (3583_CR32) 2017; 33
MR Nelson (3583_CR4) 2015; 47
O Bodenreider (3583_CR14) 2004; 32
3583_CR22
A Schlicker (3583_CR26) 2006; 7
G Yu (3583_CR31) 2014; 31
CE Lipscomb (3583_CR6) 2000; 88
X Chen (3583_CR21) 2002; 30
MJ Li (3583_CR17) 2011; 40
J Zhou (3583_CR13) 2015; 13
JZ Wang (3583_CR28) 2007; 23
G Yu (3583_CR12) 2018; 1
T Cui (3583_CR8) 2018; 46
R Leaman (3583_CR34) 2016; 32
T Zemojtel (3583_CR1) 2014; 6
P Resnik (3583_CR25) 1995
References_xml – ident: 3583_CR16
– volume: 97
  start-page: 451
  issue: 5
  year: 2015
  ident: 3583_CR2
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.82
– volume: 1
  start-page: 2
  year: 2018
  ident: 3583_CR12
  publication-title: Bioinformatics
– volume: 30
  start-page: 412
  issue: 1
  year: 2002
  ident: 3583_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.412
– volume: 23
  start-page: 1274
  issue: 10
  year: 2007
  ident: 3583_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm087
– volume: 47
  start-page: 856
  issue: 8
  year: 2015
  ident: 3583_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng.3314
– ident: 3583_CR24
– ident: 3583_CR22
– volume: 34
  start-page: D668
  issue: suppl_1
  year: 2006
  ident: 3583_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume: 7
  start-page: 302
  issue: 1
  year: 2006
  ident: 3583_CR26
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-302
– volume: 43
  start-page: D789
  issue: D1
  year: 2014
  ident: 3583_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1205
– volume: 40
  start-page: D940
  issue: Database issue
  year: 2012
  ident: 3583_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr972
– volume: 32
  start-page: 2839
  issue: 18
  year: 2016
  ident: 3583_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw343
– volume-title: Semantic similarity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008
  year: 1997
  ident: 3583_CR27
– volume: 32
  start-page: D258
  issue: suppl_1
  year: 2004
  ident: 3583_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh036
– volume: 84
  start-page: 216
  issue: 0 1
  year: 2001
  ident: 3583_CR29
  publication-title: Stud Health Technol Inform
– volume: 36
  start-page: 431
  issue: 5
  year: 2004
  ident: 3583_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng0504-431
– ident: 3583_CR7
– volume: 17
  start-page: 229
  issue: 3
  year: 2010
  ident: 3583_CR15
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.002733
– volume: 33
  start-page: i37
  issue: 14
  year: 2017
  ident: 3583_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx228
– volume: 57
  start-page: 28
  year: 2015
  ident: 3583_CR5
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.07.010
– volume: 6
  start-page: 252ra123
  issue: 252
  year: 2014
  ident: 3583_CR1
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3009262
– ident: 3583_CR23
– volume: 29
  start-page: 2909
  issue: 22
  year: 2013
  ident: 3583_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt474
– volume: 40
  start-page: D1047
  issue: D1
  year: 2011
  ident: 3583_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1182
– volume: 88
  start-page: 265
  issue: 3
  year: 2000
  ident: 3583_CR6
  publication-title: Bull Med Libr Assoc
– volume: 45
  start-page: D833
  issue: D1
  year: 2017
  ident: 3583_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw943
– volume: 13
  start-page: 1542002
  issue: 06
  year: 2015
  ident: 3583_CR13
  publication-title: J Bioinforma Comput Biol
  doi: 10.1142/S0219720015420020
– volume: 46
  start-page: D371
  issue: Database issue
  year: 2018
  ident: 3583_CR8
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 45
  issue: 1
  year: 2015
  ident: 3583_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0453-z
– volume-title: Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007
  year: 1995
  ident: 3583_CR25
– volume: 32
  start-page: D267
  issue: suppl_1
  year: 2004
  ident: 3583_CR14
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh061
– volume: 31
  start-page: 608
  issue: 4
  year: 2014
  ident: 3583_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu684
– volume: 42
  start-page: W137
  issue: W1
  year: 2014
  ident: 3583_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku412
SSID ssj0017805
Score 2.3862803
Snippet Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity...
Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity (bio-NE) of...
Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named entity...
Abstract Background Many disease causing genes have been identified through different methods, but there have been no uniform annotations of biomedical named...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Annotations
Batch processing
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Correlation analysis
Data integration
Data mining
Datasets
Disease
Genes
Genetics
Knowledge-based analysis
Language
Life Sciences
Machine learning
MeSH
Microarrays
Named entity recognition
Natural language processing
Ontology
Performance evaluation
Phenotypes
Recognition
Semantic similarity
Semantics
Similarity
Software
Supplementary concept records
UMLS
Vocabularies & taxonomies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIOpB_MTqKlEED76w6VeaelvF5SmsB98KewtJmqyLz_Rh30N68H93pl9uWVg9eCvNtCGZyeQ3JPMbQl4WmciK1BhmK-MZbAGGSaEzVuayKhPHeZ8-dvxJLL9kH0_z0wulvvBOWE8P3E_cAS-MT3RWSjwwk5nXrtJFIXihDU-r0qD35bIcg6nh_ACZ-scUGSkOmhh52hiGSjzNZcrEbBvq2Pov--TL9ySnw9Jb5MYubHT7U6_XF_ajozvk9gAk6WE_gLvkmgv3yPW-tGR7n_zatMdutVydf39DdaAjKwT4NrppkS-AQrD8DZwJBdRK-yR81BcNGp5ol73b0ul6UR0WNCC8XQ95mwv4a0XtVMWQ1p5ihxRdffOAnBy9P3m3ZEOpBWZFLLcs8TyWeCSKDGC-9CZG4horvMl9AQjMywoCkUrnVjhvhfDWp0ViDS95VoGLekj2Qh3cI0KLpEpEbhIrS5cBfJA-MRXsj5zbODfaRSQeJ17ZgYYcq2GsVReOSKF6ZSlQluqUpUREXk_fbHoSjiul36I-J0kk0O5egFmpwazU38wqIi_QGhRSZAS8g3Omd02jPqw-q8OuXBHgPujp1SDkaxiD1UNKA8wEsmrNJPdnkrCG7bx5NDo1-JBGAbZC8jvYsiLyfGrGL_FeXHD1rpPJAWAA8IpIMTPW2fDnLeH8a8cjjs4d8GJEFqNZ_-n8quldTKb_D9p4_D-08YTcTLrFK1gs98ne9sfOPQUwuDXPunX_GyWbWI0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFbE-iF_FaJVVBB-8pUku2WwEkVZaTqGH9Cr0bdmPbC09N2fvDrkH_3dn8lVD4fAt3E6y7M7Hzt7M_IaQt1nCk2ykNTNWOwZHgGaCq4TlqbB5XIRhXT52MuHj78nX8_R8i0zaWhhMq2xtYmWobWnwP_J9OGkQCgwU-NP8F8OuURhdbVtoqKa1gv1YQYzdIdsxImMNyPbh0eTbaRdXQAT_tnRG8P1FhPhtDK9Q4SgVI8Z7x1OF4n_bVt_On-yCqPfJvZWfq_VvNZv9c04dPyQPGgeTHtQS8YhsFf4xuVu3nFw_IX_m65NiOp5e_vxAlactWgTYPDpfI44AhUv0FRgZCt4srYvzkY_UK3iiVVXvmnZpR6UfUo9u76yp5xzCVy01XXdDWjqKE1I8AhZPydnx0dnnMWtaMDDDI7FksQsjgaFSRAZzudMRAtoY7nTqMvDMnLBwQbEqNbxwhnNn3CiLjQ7zMLFgunbJwJe-eEZoFtuYpzo2Ii8ScCuEi7UFJoWhiVKtioBE7cZL08CTY5eMmayuKYLLmlkSmCUrZkkekPfdO_ManGMj9SHys6NEYO3qh_L6QjZ6KsNMu1glucD4rEicKqzKMh5mSocjm-uAvEFpkAid4TE350KtFgv5ZXoqD6o2RuAPwkzvGiJXwhqMakodYCcQbatHudejBN02_eFW6GRjWxbyRhMC8robxjcxX84X5aqiScHxAIcsIFlPWHvL74_4yx8VvjgaffAjAzJsxfpm8k3bO-xE_z-48Xzz0l6QnbhSS84isUcGy-tV8RLcv6V-1ej0Xx9xVlo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxFMNFGQQEgc2qvNyHG6lolqQyoEtUm-WHzFUbJ0V2RXKgf_OjJMNjYoquEXxOFY845nPGs9nQl6VOc_LTOvYWO1iCAE6FlzlcVUIW6U1Y3352PEnPv-SfzwtTgeaHKyFuZi_TwTfbxNkWItxk8OyQmQxv05uQJDiITHLD8eMAXLzb4ti_tpvEngCP_9lL3z5ZOSYHr1Dbm38SnU_1XJ5IQId3SN3B-hID3pd3yfXav-A3Owvk-wekl-r7rhezBdn52-p8nTLAwHejK46ZAigsD3-Du6DAk6lfdk9aoh6BU801Ot2dDxQ1PgZ9Qhol0Ol5gy-aqkZ7y2kjaM4IEXn3j4iJ0fvTw7n8XC5Qmx4ItZx6lgiMAmKnF-ucjpBqhrDnS5cCZjLCQtbD6sKw2tnOHfGZWVqNKtYbsEpPSY7vvH1LqFlalNe6NSIqs4BMAiXagsRkTGTFFrVEUm2Ey_NQDyO918sZdiACC57ZUlQlgzKkjwib8Y-q55240rpd6jPURIps8MLsCQ5rEDJSu1SlVcCM68id6q2qiw5K5Vmma10RF6iNUgkxfB46uar2rSt_LD4LA_CBUWA9GCk14OQa-AfjBqKGGAmkEdrIrk3kYRVa6bNW6OTg9doJaAppLuDIBWRF2Mz9sSTcL5uNkGmAEgBUCsi5cRYJ78_bfFn3wJzOLpzQIgRmW3N-s_gV03vbDT9f9DGk__7-lNyOw3LlMeJ2CM76x-b-hkAvbV-Hlb4b3nPSNY
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DlEYCCDkHig7pI0cRzeCmIaSJsmuknjyfJHPKp2SVlboSLxv3OXLxaGJpB4i-pz7VzO9yHf_Y6Ql0nEo2SoNTNWOwYmQDPBVcTSWNg0zHy_Kh_bP-B7x9HHk_hkgxw2tTD6zOhJUYOGIlDx4GIZ-qzU3fBgpjtz66ojL_jOIkAcNoahkD-MxZDxa2STx-Cd98jm8cHh6HNZZJQEDCKcuKmd-ePEjn0qYfwvK-vLCZTtLeotcmOVz9X6m5rNLhiq3Tvka_OKVX7KdLBa6oH5_hv64__kwV1yu_Zq6agSw3tkI8vvk-tVn8v1A_Jjvt7PxnvjydkbqnLaQFSAoqXzNYIXUIjcp6DZKGyGVttA4aG5gidalhKvaZvrVOR9muOuZ3URaR_-1VLTtlSkhaO4IEW7s9giR7vvj97tsbrvAzM8EEsWOj8QeD-LcGQudTpAFB3DnY5dAu6gExaiIqtiwzNnOHfGDZPQaD_1Iwv68iHp5UWePSI0CW3IYx0akWYR-DLChdqCsfZ9E8RaZR4Jmo8tTY2Jjq05ZrKMjQSXFVclcFWWXJXcI6_bOfMKEeRK6rcoQy0lonmXPxTnp7JWDtJPtAtVlAq8FBaRU5lVScL9RGl_aFPtkRcogRLxOnJMCDpVq8VCfhh_kqOydxI4obDSq5rIFSgdqq6vAE4gxFeHcrtDCQrFdIcbQZe1QltIcPQQiQ_sp0eet8M4E5P08qxYlTQxeDvgBXok6RyQzut3R_LJlxLUHC0NOK8e6TdH6dfiV7G33x63v_gaj_-N_Am5GZbnibNAbJPe8nyVPQUfdKmf1WrlJ9V5f38
  priority: 102
  providerName: Unpaywall
Title pyMeSHSim: an integrative python package for biomedical named entity recognition, normalization, and comparison of MeSH terms
URI https://link.springer.com/article/10.1186/s12859-020-03583-6
https://www.proquest.com/docview/2414653002
https://www.proquest.com/docview/2415284023
https://pubmed.ncbi.nlm.nih.gov/PMC7301509
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03583-6
https://doaj.org/article/07bf2a498036484faeda77607ab03d9b
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2EQIeEFdRGJVBSDzQQJImtoOEUDetjEmrpnWVuifLduIxUdLSiyAP_HfOcZOMaNO0l7aKT2LF5177fIeQtzxiEe9q7ZlUWw9cgPYEU5GXxCJNwsz31-VjRwN2MIoOx_F4g1TtjsoFXFyb2mE_qdF88uHPr-ILKPxnp_CCfVwEiMLmYSLkd2PR9dgm2QZPlWArh6PoclcB8ftdtREPPEh14qqI5tpnNByVw_O_arWvnqSst1Pvk7urfKaK32oy-c9j9R-SB2WoSXtr2XhENrL8Mbmzbj5ZPCF_Z8VRNjwYXvz8RFVOK9wIsH50ViCiAIV0-geYGwpxLV2X6SNHaa7gF3X1vQWtDyBN8w7NMQCelJWdHXhqSk3d55BOLcUJKTqDxVNy2t8_3TvwymYMnmGBWHqh9QOBm6aIEWYTqwOEtjHM6thyiNGsSCFVSVVsWGYNY9bYLg-NBi5EKRixZ2Qrn-bZc0J5mIYs1qERSRZBgCFsqFPwoL5vglirrEWCauGlKYHKsV_GRLqERTC5ZpYEZknHLMla5H19z2wN03Ej9S7ys6ZEiG13YTo_l6XGSp9rG6ooEbhTKyKrslRxznyutN9NE90ib1AaJIJo5HhK51ytFgv5bXgie66hEUSGMNO7kshO4R2MKoseYCUQd6tBudOgBC03zeFK6GSlJBKiL4THA6fWIq_rYbwTT87l2XTlaGIIQSA0axHeENbG6zdH8ovvDmkczT9ElC3SqcT6cvKblrdTi_4tuPHi1mv0ktwLnYYyLxA7ZGs5X2WvICZc6jbZ5GMOn6L_tU22e73D4SF87-4Pjk_g6h7ba7t_W9rOIMDIaHDcO_sH3Tthig
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IK4iMMAgEA80WpImjoOE0LhMLVv3QDepb5bt2GOiJGVpNeWBn8R_5JzcRjSp4mVvVX0S1z732uc7hLyKQxbGQ6VcnSrrggtQLmcydJOIp0lgPK8uH5scstFx-HUWzTbIn7YWBq9VtjaxMtRprvE_8h3wNAgFBgr8YfHLxa5ReLrattCoxWLflOeQshXvx5-Bv6-DYO_L0aeR23QVcDXz-dINrOdzPP1DsCubWOUjRotmVkU2hmDD8hRi7lRGmhmrGbPaDuNAKy_xwhS0EV57jVwP8ZeA-sSzLr_zsT1AW5fD2U7hIzici_mZB9MNXdbzfVWLgMuO4PLlzO6E9hbZWmULWZ7L-fwfJ7h3h9xuole6W4vbXbJhsnvkRt3PsrxPfi_KiZmOpqc_31GZ0RaKAgwqXZQIUkAhQ_8BFoxCqEzryn8UEppJ-ESrkuGSdnea8mxAM4yp502x6ADemlLdtU6kuaU4IUX_UjwgR1fBiYdkM8sz84jQOEgDFqlA88SEELNwG6gUnLLnaT9S0jjEbzde6Ab7HFtwzEWVA3EmamYJYJaomCWYQ952zyxq5I-11B-Rnx0lonZXX-RnJ6IxAsKLlQ1kmHA8_OWhlSaVccy8WCpvmCbKIS9RGgTicmR48edEropCjKffxG7VIwmCTZjpTUNkc1iDlk0dBewEQnn1KLd7lGA4dH-4FTrRGK5CXKiZQ150w_gkXsbLTL6qaCKIaiDac0jcE9be8vsj2en3CrwcPQoEqQ4ZtGJ9Mfm67R10ov8f3Hi8fmnPydboaHIgDsaH-0_IzaBSUeb6fJtsLs9W5inEmUv1rNJuSsQVW5O_9rCLZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8RSBAgYhcWCjOtnEcbiVhdUWaIXYIvVm-RGXisVZNbtCe-C_M5MXjYoquEXxOFY845nPsucbQl5mCU-ysdahsdqFEAJ0KLhKwjwVNo8Lxpr0sf0DPvuafDhKj85k8de33bsjySanAVma_GpnaV2zxAXfqSLkXQtx68PGqRiH_DK5kkB0wxoGEz7pzxGQsb9Llflrv0E4qln7z_vm8_cl-0PTm-T62i_V5qdaLM7EpeltcqsFlHS3sYA75FLh75KrTYnJzT3ya7nZL-az-cmPN1R52rFDgI-jyw3yBlDYNH8Hp0IBvdImGR_1Rr2CJ1pn8W5of82o9CPqEeYu2vzNEXzVUtNXM6SlozggRZdf3SeH0_eHk1nYllwIDY_EKowdiwQejSITmMudjpDAxnCnU5cBEnPCwobEqtTwwhnOnXHjLDaa5Syx4KoekC1f-uIhoVlsY57q2Ii8SABGCBdrC3GSMROlWhUBibqJl6alI8eqGAtZb0sEl42yJChL1sqSPCCv-z7LhozjQum3qM9eEom06xfl6bFs16VkmXaxSnKB57EicaqwKss4y5RmY5vrgLxAa5BIleHxLs6xWleV3Jt_kbt12SLAfzDSq1bIlfAPRrWpDTATyK41kNweSMJaNsPmzuhk60sqCRgLSfAgdAXked-MPfF-nC_KdS2TAtAAABaQbGCsg98ftviTbzWfODp5wI0BGXVm_Wfwi6Z31Jv-P2jj0f99_Rm59vndVH7aO_j4mNyI6xXLw0hsk63V6bp4AkhwpZ_Wi_03CIVUDA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DlEYCCDkHig7pI0cRzeCmIaSJsmuknjyfJHPKp2SVlboSLxv3OXLxaGJpB4i-pz7VzO9yHf_Y6Ql0nEo2SoNTNWOwYmQDPBVcTSWNg0zHy_Kh_bP-B7x9HHk_hkgxw2tTD6zOhJUYOGIlDx4GIZ-qzU3fBgpjtz66ojL_jOIkAcNoahkD-MxZDxa2STx-Cd98jm8cHh6HNZZJQEDCKcuKmd-ePEjn0qYfwvK-vLCZTtLeotcmOVz9X6m5rNLhiq3Tvka_OKVX7KdLBa6oH5_hv64__kwV1yu_Zq6agSw3tkI8vvk-tVn8v1A_Jjvt7PxnvjydkbqnLaQFSAoqXzNYIXUIjcp6DZKGyGVttA4aG5gidalhKvaZvrVOR9muOuZ3URaR_-1VLTtlSkhaO4IEW7s9giR7vvj97tsbrvAzM8EEsWOj8QeD-LcGQudTpAFB3DnY5dAu6gExaiIqtiwzNnOHfGDZPQaD_1Iwv68iHp5UWePSI0CW3IYx0akWYR-DLChdqCsfZ9E8RaZR4Jmo8tTY2Jjq05ZrKMjQSXFVclcFWWXJXcI6_bOfMKEeRK6rcoQy0lonmXPxTnp7JWDtJPtAtVlAq8FBaRU5lVScL9RGl_aFPtkRcogRLxOnJMCDpVq8VCfhh_kqOydxI4obDSq5rIFSgdqq6vAE4gxFeHcrtDCQrFdIcbQZe1QltIcPQQiQ_sp0eet8M4E5P08qxYlTQxeDvgBXok6RyQzut3R_LJlxLUHC0NOK8e6TdH6dfiV7G33x63v_gaj_-N_Am5GZbnibNAbJPe8nyVPQUfdKmf1WrlJ9V5f38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyMeSHSim%3A+an+integrative+python+package+for+biomedical+named+entity+recognition%2C+normalization%2C+and+comparison+of+MeSH+terms&rft.jtitle=BMC+bioinformatics&rft.au=Luo%2C+Zhi-Hui&rft.au=Shi%2C+Meng-Wei&rft.au=Yang%2C+Zhuang&rft.au=Zhang%2C+Hong-Yu&rft.date=2020-06-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03583-6&rft.externalDocID=A627417276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon