Analyzing gene expression data in terms of gene sets: methodological issues
Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against di...
Saved in:
| Published in | Bioinformatics Vol. 23; no. 8; pp. 980 - 987 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press
15.04.2007
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059 |
| DOI | 10.1093/bioinformatics/btm051 |
Cover
| Abstract | Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl |
|---|---|
| AbstractList | Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing.
Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing.
Contact:
j.j.goeman@lumc.nl Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl MOTIVATION: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. RESULTS: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. CONTACT: j.j.goemanatlumc.nl Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing.MOTIVATIONMany statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing.We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing.RESULTSWe identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl. Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. |
| Author | Goeman, Jelle J. Bühlmann, Peter |
| Author_xml | – sequence: 1 givenname: Jelle J. surname: Goeman fullname: Goeman, Jelle J. organization: Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands and Seminar für Statistik, ETH Zurich, CH-8092 Zürich, Switzerland – sequence: 2 givenname: Peter surname: Bühlmann fullname: Bühlmann, Peter organization: Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands and Seminar für Statistik, ETH Zurich, CH-8092 Zürich, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19229379$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17303618$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV1rFTEQhoNU7If-BGUR9G5tstl8rF6Voq20IoKieBOyyewxdTc5Jlns8dcb2UOLvTm9yhCeZyZ55xDt-eABoacEvyK4o8e9C84PIU46O5OO-zxhRh6gA0K5qFtJyN5Njek-OkzpCmPMMOOP0D4RFFNO5AG6OPF63PxxflWtwEMF1-sIKbngK6uzrpyvMsQpVWFYgAQ5va4myD-CDWNYOaPHyqU0Q3qMHg56TPBkex6hL-_efj49ry8_nr0_PbmsTRmZ6wZET9rO2q7rJcWN1iCHvtGClgsm9QCGWCpFawhYwNRgwm3fCKutkb0AeoT40nf2a735rcdRraObdNwogtW_dNT_6aglnSK-XMR1DL_Kg7OaXDIwjtpDmJMSuGUtI2wnSCltW053d2wwpljytoDP74BXYY4l-6RIJ7nkVIgCPdtCcz-Bvf3Vdl0FeLEFdCq5D1F749It1zVNR0VXOLZwJoaUIgz3DujNHc-4XIjgc9Ru3GnjxQ7z-t4D60VxKcP1jaTjT8UFFUydf_uuztpP7KvgF-oD_Qs1hvN- |
| CODEN | BOINFP |
| CitedBy_id | crossref_primary_10_1007_s00204_019_02585_5 crossref_primary_10_1097_TP_0b013e31824491aa crossref_primary_10_1039_C7FO00684E crossref_primary_10_1198_sbr_2009_09029 crossref_primary_10_1186_s12859_015_0763_1 crossref_primary_10_1186_1755_8794_4_37 crossref_primary_10_1038_nrg2884 crossref_primary_10_1002_bimj_201100178 crossref_primary_10_1002_wics_1643 crossref_primary_10_1515_sagmb_2017_0053 crossref_primary_10_1016_j_neuroimage_2024_120622 crossref_primary_10_1186_1753_6561_3_S4_S8 crossref_primary_10_1186_1753_6561_3_S4_S5 crossref_primary_10_3390_cancers5020372 crossref_primary_10_3390_e22040427 crossref_primary_10_1186_1471_2105_15_S5_S3 crossref_primary_10_1371_journal_pcbi_1010091 crossref_primary_10_1080_15592294_2016_1146853 crossref_primary_10_1186_s12918_015_0211_x crossref_primary_10_1093_bib_bbz090 crossref_primary_10_1093_g3journal_jkab365 crossref_primary_10_1214_14_AOAS777 crossref_primary_10_1186_1471_2105_13_177 crossref_primary_10_12688_f1000research_18490_2 crossref_primary_10_12688_f1000research_18490_1 crossref_primary_10_1093_bioinformatics_btaa658 crossref_primary_10_1186_1471_2105_12_459 crossref_primary_10_12688_f1000research_18490_3 crossref_primary_10_1093_ije_dyr225 crossref_primary_10_1021_acs_est_7b06540 crossref_primary_10_3389_fgene_2018_00603 crossref_primary_10_1214_11_AOAS528 crossref_primary_10_4137_BII_S3846 crossref_primary_10_1186_gb_2009_10_4_r44 crossref_primary_10_4137_CIN_S867 crossref_primary_10_1186_s12859_023_05510_x crossref_primary_10_1016_j_ygeno_2011_04_006 crossref_primary_10_1093_bioinformatics_btu374 crossref_primary_10_1093_bioinformatics_btv588 crossref_primary_10_1371_journal_pone_0110451 crossref_primary_10_3390_cells10061326 crossref_primary_10_1002_sam_11549 crossref_primary_10_1038_ejhg_2011_236 crossref_primary_10_1371_journal_pcbi_1003578 crossref_primary_10_1093_bib_bbz074 crossref_primary_10_4137_CIN_S40043 crossref_primary_10_1371_journal_pcbi_1004310 crossref_primary_10_1093_bioinformatics_btm531 crossref_primary_10_1371_journal_pcbi_1002375 crossref_primary_10_1089_omi_2012_0083 crossref_primary_10_1074_jbc_M115_679068 crossref_primary_10_1016_j_jgg_2021_01_007 crossref_primary_10_1186_1471_2105_13_197 crossref_primary_10_1371_journal_pone_0076666 crossref_primary_10_1016_j_atherosclerosis_2022_10_005 crossref_primary_10_1093_bioinformatics_btac735 crossref_primary_10_3390_biochem4020005 crossref_primary_10_1093_bioinformatics_btw349 crossref_primary_10_1093_nar_gks866 crossref_primary_10_1016_j_csda_2021_107284 crossref_primary_10_1186_1755_8794_3_25 crossref_primary_10_1038_ejcn_2013_53 crossref_primary_10_1038_jhg_2012_86 crossref_primary_10_3389_fphys_2015_00383 crossref_primary_10_1186_s12864_017_4265_6 crossref_primary_10_1093_bioinformatics_btn655 crossref_primary_10_1186_1471_2105_11_510 crossref_primary_10_1002_tpg2_20503 crossref_primary_10_1097_MD_0000000000019120 crossref_primary_10_1158_1078_0432_CCR_13_2429 crossref_primary_10_1146_annurev_statistics_010814_020335 crossref_primary_10_1152_physiolgenomics_00167_2007 crossref_primary_10_1093_bioinformatics_btt068 crossref_primary_10_1186_1471_2105_12_306 crossref_primary_10_1038_ejhg_2011_46 crossref_primary_10_1093_hmg_ddad144 crossref_primary_10_3389_fams_2019_00017 crossref_primary_10_1093_nar_gkp481 crossref_primary_10_1371_journal_pbio_3000481 crossref_primary_10_7717_peerj_8144 crossref_primary_10_1093_nar_gky175 crossref_primary_10_1093_nar_gkaa582 crossref_primary_10_1007_s00180_015_0605_7 crossref_primary_10_1089_ten_tec_2019_0309 crossref_primary_10_1093_nargab_lqaa006 crossref_primary_10_1016_j_ymeth_2018_05_011 crossref_primary_10_1038_ejhg_2011_57 crossref_primary_10_1093_nar_gkq428 crossref_primary_10_1016_j_envres_2018_10_001 crossref_primary_10_1371_journal_pcbi_1005601 crossref_primary_10_1371_journal_pgen_1004345 crossref_primary_10_3389_fphar_2021_715394 crossref_primary_10_1093_bioinformatics_btu060 crossref_primary_10_1089_adt_2015_656 crossref_primary_10_1093_bib_bbac561 crossref_primary_10_2174_1574893615999200629124444 crossref_primary_10_1016_j_ymeth_2014_02_001 crossref_primary_10_1517_17460441_2011_557659 crossref_primary_10_3389_fimmu_2019_00976 crossref_primary_10_1093_bioinformatics_btm583 crossref_primary_10_1016_j_ajhg_2015_05_018 crossref_primary_10_1007_s00439_012_1198_7 crossref_primary_10_1186_s13058_017_0901_y crossref_primary_10_1038_s41598_018_31396_4 crossref_primary_10_1093_nar_gkx291 crossref_primary_10_1111_acel_13578 crossref_primary_10_1073_pnas_2013374118 crossref_primary_10_1093_bib_bbac553 crossref_primary_10_1093_bioinformatics_btv021 crossref_primary_10_1142_S021972002050002X crossref_primary_10_1002_sim_8442 crossref_primary_10_1016_j_cmet_2020_04_008 crossref_primary_10_1186_s12859_015_0751_5 crossref_primary_10_1093_hmg_ddm133 crossref_primary_10_1186_1471_2164_11_574 crossref_primary_10_1038_s41598_021_86465_y crossref_primary_10_1093_bib_bbz158 crossref_primary_10_1016_j_csda_2013_12_003 crossref_primary_10_1089_omi_2013_0099 crossref_primary_10_1186_s12859_016_1403_0 crossref_primary_10_1038_s41598_017_02281_3 crossref_primary_10_1186_1756_0381_5_18 crossref_primary_10_1186_1471_2105_9_502 crossref_primary_10_1093_nar_gku722 crossref_primary_10_1002_sim_5986 crossref_primary_10_1371_journal_pcbi_1010020 crossref_primary_10_1016_j_bbapap_2009_05_002 crossref_primary_10_1016_j_tig_2012_03_004 crossref_primary_10_1038_cr_2011_149 crossref_primary_10_1038_s43587_023_00455_5 crossref_primary_10_3390_genes15081030 crossref_primary_10_1111_ahg_12035 crossref_primary_10_1016_j_cpb_2017_12_003 crossref_primary_10_3389_fimmu_2023_1103392 crossref_primary_10_1093_bioinformatics_btu090 crossref_primary_10_2215_CJN_10010818 crossref_primary_10_1093_bib_bbz028 crossref_primary_10_1186_1471_2105_11_277 crossref_primary_10_1186_s12859_016_0884_1 crossref_primary_10_1016_j_bbi_2018_04_004 crossref_primary_10_1186_s12859_015_0729_3 crossref_primary_10_21105_joss_01255 crossref_primary_10_1038_ejhg_2012_218 crossref_primary_10_1186_s13040_018_0166_8 crossref_primary_10_1093_nar_gkp1015 crossref_primary_10_1186_1752_0509_6_56 crossref_primary_10_1186_s12859_015_0707_9 crossref_primary_10_1371_journal_pone_0003337 crossref_primary_10_1534_genetics_116_189498 crossref_primary_10_1016_j_placenta_2010_04_003 crossref_primary_10_1038_s41598_018_19736_w crossref_primary_10_1093_nar_gkt525 crossref_primary_10_1186_2049_3002_2_13 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1093_bib_bby040 crossref_primary_10_1016_j_gene_2012_11_034 crossref_primary_10_18311_jnr_2024_41950 crossref_primary_10_1038_srep23002 crossref_primary_10_3390_genes10070492 crossref_primary_10_1371_journal_pone_0221444 crossref_primary_10_1002_sta4_518 crossref_primary_10_1093_bib_bbn042 crossref_primary_10_18632_oncotarget_9788 crossref_primary_10_1038_s42003_022_03816_9 crossref_primary_10_1038_s42255_019_0076_1 crossref_primary_10_1186_1471_2105_14_267 crossref_primary_10_1186_1471_2105_10_S11_S9 crossref_primary_10_2217_pgs_12_170 crossref_primary_10_1016_j_semcancer_2019_08_021 crossref_primary_10_1371_journal_pcbi_1010278 crossref_primary_10_1093_bioinformatics_btq503 crossref_primary_10_1038_s41467_020_17312_3 crossref_primary_10_1016_j_envres_2020_109535 crossref_primary_10_1073_pnas_2019789118 crossref_primary_10_1089_cmb_2008_0081 crossref_primary_10_1002_gepi_22110 crossref_primary_10_4137_CIN_S14066 crossref_primary_10_1038_srep02898 crossref_primary_10_1093_bioinformatics_bty217 crossref_primary_10_1093_bioinformatics_btw030 crossref_primary_10_1371_journal_pone_0177852 crossref_primary_10_1371_journal_pcbi_1003851 crossref_primary_10_1371_journal_pone_0194445 crossref_primary_10_3389_fgene_2019_00414 crossref_primary_10_1186_s12711_015_0132_6 crossref_primary_10_1186_s12859_017_1737_2 crossref_primary_10_1093_bioinformatics_btad776 crossref_primary_10_1093_bioinformatics_btp406 crossref_primary_10_1007_s11682_013_9259_7 crossref_primary_10_1016_j_ymeth_2017_07_024 crossref_primary_10_1371_journal_pone_0012497 crossref_primary_10_1371_journal_pcbi_1009283 crossref_primary_10_1186_s13395_017_0144_8 crossref_primary_10_1016_j_gene_2014_09_007 crossref_primary_10_1038_s41587_023_01872_y crossref_primary_10_1186_1471_2105_10_429 crossref_primary_10_1371_journal_pone_0079217 crossref_primary_10_1016_j_trac_2013_04_011 crossref_primary_10_1186_1471_2105_10_307 crossref_primary_10_1093_nar_gkq045 crossref_primary_10_1186_1471_2105_10_300 crossref_primary_10_1186_1471_2105_10_422 crossref_primary_10_1093_biostatistics_kxx005 crossref_primary_10_1038_s42003_023_04756_8 crossref_primary_10_1016_j_csda_2021_107318 crossref_primary_10_1002_pmic_201400296 crossref_primary_10_1093_nar_gks461 crossref_primary_10_1111_cas_14443 crossref_primary_10_1093_bioinformatics_btq401 crossref_primary_10_1186_1477_5956_9_67 crossref_primary_10_1186_1752_0509_6_S3_S13 crossref_primary_10_1021_acs_chemrestox_2c00245 crossref_primary_10_1016_j_cell_2020_05_002 crossref_primary_10_1186_1471_2164_10_26 crossref_primary_10_4161_sysb_25897 crossref_primary_10_1053_j_seminhematol_2008_04_008 crossref_primary_10_1371_journal_pone_0149373 crossref_primary_10_1186_1471_2105_10_319 crossref_primary_10_1093_bioinformatics_btz447 crossref_primary_10_1177_0962280209351925 crossref_primary_10_1093_nar_gkw957 crossref_primary_10_1186_s12859_016_1299_8 crossref_primary_10_1016_j_cca_2014_12_028 crossref_primary_10_1093_bib_bbv091 crossref_primary_10_1186_1471_2105_13_136 crossref_primary_10_1186_s12859_021_04110_x crossref_primary_10_1038_ejhg_2013_299 crossref_primary_10_1093_bioinformatics_btq511 crossref_primary_10_1214_07_AOAS146 crossref_primary_10_1097_TP_0b013e3182a95d04 crossref_primary_10_1016_j_dcn_2025_101534 crossref_primary_10_1007_s11357_011_9340_3 crossref_primary_10_1073_pnas_1818532116 crossref_primary_10_1371_journal_pcbi_1002858 crossref_primary_10_1186_1471_2105_12_377 crossref_primary_10_3390_e23080945 crossref_primary_10_1136_amiajnl_2012_000972 crossref_primary_10_1080_01621459_2021_1920958 crossref_primary_10_1093_bib_bbx149 crossref_primary_10_3389_fgene_2022_992328 crossref_primary_10_1038_nn_4399 crossref_primary_10_7717_peerj_10764 crossref_primary_10_1371_journal_pone_0103159 crossref_primary_10_1093_bioinformatics_btad567 crossref_primary_10_29220_CSAM_2017_24_6_627 crossref_primary_10_1002_sim_4235 crossref_primary_10_1371_journal_pone_0200652 crossref_primary_10_3389_fimmu_2021_691304 crossref_primary_10_1371_journal_pone_0032394 crossref_primary_10_1681_ASN_0000000000000403 crossref_primary_10_1371_journal_pcbi_1002967 crossref_primary_10_1016_j_gene_2013_08_063 crossref_primary_10_1093_nar_gks699 crossref_primary_10_1016_j_csbj_2021_08_009 crossref_primary_10_1016_j_freeradbiomed_2017_10_011 crossref_primary_10_1093_nar_gkt660 crossref_primary_10_1371_journal_pone_0012693 crossref_primary_10_1155_2019_2497509 crossref_primary_10_1016_j_csda_2012_07_026 crossref_primary_10_1186_s12864_016_2578_5 crossref_primary_10_5691_jjb_36_63 crossref_primary_10_1186_s12859_014_0397_8 crossref_primary_10_1186_s12859_016_0928_6 crossref_primary_10_1021_pr300038b crossref_primary_10_1186_1471_2105_9_469 crossref_primary_10_1186_s12859_015_0571_7 crossref_primary_10_1093_bib_bbv069 crossref_primary_10_1002_gepi_20476 crossref_primary_10_1002_cpbi_24 crossref_primary_10_1586_14737159_8_2_125 crossref_primary_10_1158_1055_9965_EPI_20_0472 crossref_primary_10_1093_nar_gkt111 crossref_primary_10_1261_rna_063438_117 crossref_primary_10_1038_s41588_024_01771_1 crossref_primary_10_1109_ACCESS_2020_3000432 crossref_primary_10_1186_1471_2105_14_7 crossref_primary_10_1093_biostatistics_kxt004 crossref_primary_10_7554_eLife_32111 crossref_primary_10_1016_j_tjog_2016_04_038 crossref_primary_10_12659_MSM_899623 crossref_primary_10_1186_s12859_015_0582_4 crossref_primary_10_1038_s41596_018_0103_9 crossref_primary_10_1177_0962280215574014 crossref_primary_10_1186_s12864_024_10459_z crossref_primary_10_1016_j_bej_2015_11_013 crossref_primary_10_1002_bit_22210 crossref_primary_10_1093_bioinformatics_bty271 crossref_primary_10_1038_s41598_019_38587_7 crossref_primary_10_1074_jbc_RA118_006074 crossref_primary_10_1186_1471_2164_9_124 crossref_primary_10_1158_1078_0432_CCR_17_0853 crossref_primary_10_1093_nargab_lqae180 crossref_primary_10_1016_j_artmed_2008_08_003 crossref_primary_10_1016_j_ygeno_2012_03_004 crossref_primary_10_1515_sagmb_2015_0037 crossref_primary_10_1186_1471_2105_13_S2_S4 crossref_primary_10_1371_journal_pone_0092111 crossref_primary_10_1002_hipo_20905 crossref_primary_10_1371_journal_pone_0037510 crossref_primary_10_1186_1471_2164_11_23 crossref_primary_10_1002_gepi_20452 crossref_primary_10_1097_FPC_0b013e32834a48a9 crossref_primary_10_3390_ijms25052704 crossref_primary_10_1186_1471_2105_11_19 crossref_primary_10_1186_s12916_023_02858_y crossref_primary_10_1002_jrsm_1337 crossref_primary_10_1016_j_jtho_2020_10_128 crossref_primary_10_1093_bioinformatics_bts643 crossref_primary_10_1186_1471_2105_10_47 crossref_primary_10_1186_1471_2105_9_481 crossref_primary_10_1186_1471_2105_9_362 crossref_primary_10_1371_journal_pone_0165919 crossref_primary_10_1186_1471_2105_10_161 crossref_primary_10_1093_bioinformatics_btp019 crossref_primary_10_1016_j_placenta_2011_08_005 crossref_primary_10_1089_cmb_2008_0002 crossref_primary_10_1186_1471_2105_9_87 crossref_primary_10_1093_bioinformatics_btt616 crossref_primary_10_1534_genetics_115_185009 crossref_primary_10_1371_journal_pone_0214061 crossref_primary_10_1093_nar_gkn923 crossref_primary_10_3390_biology2041411 crossref_primary_10_1002_ece3_5074 crossref_primary_10_1016_j_neuroscience_2015_11_019 crossref_primary_10_1042_BSR20200596 crossref_primary_10_1155_2008_893941 crossref_primary_10_1093_bioinformatics_btae584 crossref_primary_10_1534_genetics_116_189191 crossref_primary_10_1109_TCBB_2012_23 crossref_primary_10_1093_nar_gks012 crossref_primary_10_1016_j_bbi_2018_03_016 crossref_primary_10_1016_j_jbi_2016_12_009 crossref_primary_10_1186_1471_2164_15_234 crossref_primary_10_4137_CIN_S13305 crossref_primary_10_1038_s41586_021_04075_0 crossref_primary_10_1089_cmb_2008_0226 crossref_primary_10_1002_chir_23254 crossref_primary_10_1186_1471_2164_10_197 crossref_primary_10_1186_s12920_017_0263_4 crossref_primary_10_1038_s41380_022_01855_6 crossref_primary_10_1016_j_neuroimage_2016_12_068 crossref_primary_10_1038_gene_2013_14 crossref_primary_10_1016_j_ygeno_2011_09_001 crossref_primary_10_1016_j_cels_2021_03_001 crossref_primary_10_1007_s10552_014_0354_x crossref_primary_10_1016_j_bdq_2015_04_001 crossref_primary_10_3389_fneur_2015_00100 crossref_primary_10_1111_j_1530_0277_2010_01152_x crossref_primary_10_1007_s12035_016_9998_8 crossref_primary_10_1016_j_jbi_2017_07_019 crossref_primary_10_1186_1471_2105_14_212 crossref_primary_10_1517_17530059_2012_718329 crossref_primary_10_1186_1471_2105_14_210 crossref_primary_10_1586_epr_09_103 crossref_primary_10_3389_fgene_2020_00654 crossref_primary_10_3390_genes6020238 crossref_primary_10_1186_s13148_023_01553_2 crossref_primary_10_1096_fj_202100163RR crossref_primary_10_1371_journal_pone_0022426 crossref_primary_10_1093_bioinformatics_btt625 crossref_primary_10_1158_1078_0432_CCR_23_2760 crossref_primary_10_1038_mt_2014_86 crossref_primary_10_1016_j_envexpbot_2024_106048 crossref_primary_10_1002_ajmg_b_32328 crossref_primary_10_1093_bioinformatics_btq380 crossref_primary_10_4161_epi_6_12_18296 crossref_primary_10_1016_j_isci_2023_107542 crossref_primary_10_1534_g3_120_401270 crossref_primary_10_1186_1471_2105_12_29 crossref_primary_10_1198_jasa_2010_br1009 crossref_primary_10_1182_blood_2009_10_247122 crossref_primary_10_7717_peerj_4571 crossref_primary_10_1038_mp_2016_192 crossref_primary_10_1093_bioinformatics_btq148 crossref_primary_10_1186_1471_2105_8_431 crossref_primary_10_1186_gb_2010_11_2_r23 crossref_primary_10_1093_bioinformatics_btw803 crossref_primary_10_1093_bioinformatics_btv719 crossref_primary_10_1371_journal_pgen_1003939 crossref_primary_10_1101_gr_153551_112 crossref_primary_10_1038_srep34949 crossref_primary_10_1016_j_compbiolchem_2019_06_008 crossref_primary_10_29220_CSAM_2022_29_5_591 crossref_primary_10_1186_1471_2164_9_302 crossref_primary_10_1186_gb_2010_11_2_r13 crossref_primary_10_1093_nar_gkt386 crossref_primary_10_1038_pr_2012_200 crossref_primary_10_1186_1471_2105_15_260 crossref_primary_10_1021_jf800881y crossref_primary_10_1371_journal_pcbi_1008550 crossref_primary_10_1214_19_AOS1935 crossref_primary_10_1093_bioinformatics_btr469 crossref_primary_10_1371_journal_pcbi_1011717 crossref_primary_10_1093_bioinformatics_btr228 crossref_primary_10_1093_bioinformatics_bts438 crossref_primary_10_1186_1745_6150_7_44 crossref_primary_10_1002_gepi_20632 crossref_primary_10_1016_j_copbio_2008_07_011 crossref_primary_10_1186_1752_0509_1_56 crossref_primary_10_1371_journal_pone_0163918 crossref_primary_10_1177_11779322251321071 crossref_primary_10_1186_s12864_015_1675_1 crossref_primary_10_1093_bioinformatics_btp076 crossref_primary_10_1186_1471_2164_12_563 crossref_primary_10_1371_journal_pcbi_1008986 crossref_primary_10_1093_bioadv_vbae136 crossref_primary_10_1186_s12859_014_0349_3 crossref_primary_10_3390_math12203284 crossref_primary_10_1093_nar_gkz1208 crossref_primary_10_1186_1471_2105_9_26 crossref_primary_10_1093_nar_gkr901 crossref_primary_10_1093_nar_gkn303 crossref_primary_10_1093_bioinformatics_btr362 crossref_primary_10_1016_j_gene_2012_09_101 crossref_primary_10_1016_j_ajog_2018_10_003 crossref_primary_10_1186_1471_2288_14_138 crossref_primary_10_1002_gepi_21950 crossref_primary_10_1093_bib_bbae116 crossref_primary_10_1101_gr_124370_111 crossref_primary_10_1186_1751_0473_7_10 crossref_primary_10_1007_s40200_024_01417_3 crossref_primary_10_1186_1755_8794_2_25 crossref_primary_10_1371_journal_pcbi_1009935 crossref_primary_10_3390_biom12010112 crossref_primary_10_1371_journal_pone_0201293 crossref_primary_10_1186_gb_2010_11_11_r112 crossref_primary_10_1186_1471_2105_8_242 crossref_primary_10_1093_bioinformatics_bts579 crossref_primary_10_1038_s41598_019_42178_x crossref_primary_10_1039_c1an15590c crossref_primary_10_1371_journal_pone_0206864 crossref_primary_10_1093_bib_bbac084 crossref_primary_10_1080_01621459_2022_2061354 crossref_primary_10_1093_bioinformatics_btr152 crossref_primary_10_1007_s10067_025_07373_4 crossref_primary_10_1093_bioinformatics_btp098 crossref_primary_10_15252_msb_20199247 crossref_primary_10_1186_1753_6561_3_S7_S96 crossref_primary_10_1186_s12859_020_3444_7 crossref_primary_10_1093_nar_gkt054 crossref_primary_10_1016_j_compbiomed_2016_09_017 crossref_primary_10_1021_np500667z crossref_primary_10_1080_10618600_2015_1062771 crossref_primary_10_1111_biom_12372 crossref_primary_10_1093_gbe_evab110 crossref_primary_10_1007_s11682_012_9196_x crossref_primary_10_1016_j_jgg_2018_08_002 crossref_primary_10_1371_journal_pone_0159643 crossref_primary_10_1371_journal_pone_0162910 crossref_primary_10_1093_bioinformatics_btt687 crossref_primary_10_1038_s41598_020_63361_5 crossref_primary_10_1093_bioinformatics_btp085 crossref_primary_10_1093_nar_gkx302 crossref_primary_10_1002_bimj_201400073 crossref_primary_10_1111_biom_12122 crossref_primary_10_1111_biom_13693 crossref_primary_10_18632_oncotarget_10002 crossref_primary_10_1177_0333102416686769 crossref_primary_10_1038_s41416_024_02731_6 crossref_primary_10_3390_ijms21020567 crossref_primary_10_4137_BBI_S9954 crossref_primary_10_7314_APJCP_2013_14_3_1629 crossref_primary_10_1016_j_spl_2020_108903 crossref_primary_10_1016_j_plaphy_2020_12_009 crossref_primary_10_1038_srep28999 crossref_primary_10_1093_bib_bbt002 crossref_primary_10_3389_fmolb_2021_708052 crossref_primary_10_1186_s12918_014_0121_3 crossref_primary_10_1093_bioinformatics_btw623 crossref_primary_10_1186_s12859_019_3221_7 crossref_primary_10_1142_S0219720007003041 crossref_primary_10_1093_bib_bbac143 crossref_primary_10_1371_journal_pcbi_1012084 crossref_primary_10_3389_fphys_2018_00139 crossref_primary_10_1177_0962280217712271 crossref_primary_10_1038_s41598_023_28593_1 crossref_primary_10_7717_peerj_2575 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_1186_1471_2105_12_92 crossref_primary_10_1214_13_BJPS233 crossref_primary_10_1371_journal_pgen_1000605 crossref_primary_10_3390_jpm12111932 crossref_primary_10_1177_0962280212460441 crossref_primary_10_1093_bioinformatics_btt583 crossref_primary_10_1093_bioinformatics_btu672 crossref_primary_10_1007_s00180_014_0519_9 crossref_primary_10_1186_s13058_022_01529_9 crossref_primary_10_1002_gepi_21875 crossref_primary_10_1002_gepi_21874 crossref_primary_10_1002_ijc_27776 crossref_primary_10_1016_j_compbiomed_2019_103389 crossref_primary_10_1080_10618600_2012_738614 crossref_primary_10_1080_01621459_2018_1497501 crossref_primary_10_1093_biostatistics_kxq042 crossref_primary_10_1186_s12864_018_5409_z crossref_primary_10_1155_2019_3491852 crossref_primary_10_1371_journal_pone_0038365 crossref_primary_10_1371_journal_pone_0124620 crossref_primary_10_1016_j_stem_2020_04_012 crossref_primary_10_1111_biom_12060 crossref_primary_10_1093_bioinformatics_btv406 crossref_primary_10_1186_1471_2164_12_507 crossref_primary_10_1016_j_ijbiomac_2022_09_012 crossref_primary_10_1093_bib_bbq082 crossref_primary_10_1016_j_vaccine_2015_04_088 crossref_primary_10_1093_bioinformatics_bts164 crossref_primary_10_1093_nar_gkn318 crossref_primary_10_1016_j_compbiolchem_2021_107455 crossref_primary_10_1002_gepi_20532 crossref_primary_10_1093_bioinformatics_btu589 crossref_primary_10_1089_cmb_2008_08TT crossref_primary_10_1186_s12859_022_04884_8 crossref_primary_10_1371_journal_pcbi_1006899 crossref_primary_10_1186_1471_2105_13_86 crossref_primary_10_4161_epi_28153 crossref_primary_10_1103_PhysRevResearch_2_033130 crossref_primary_10_1371_journal_pgen_1006122 crossref_primary_10_1016_j_compbiolchem_2018_07_008 crossref_primary_10_1093_bioinformatics_btm628 crossref_primary_10_1155_2020_1353516 crossref_primary_10_1186_s12859_017_1645_5 crossref_primary_10_1371_journal_pone_0017474 crossref_primary_10_1016_j_cels_2018_05_019 crossref_primary_10_1038_s41398_020_01082_z crossref_primary_10_1016_j_vaccine_2015_04_096 crossref_primary_10_1371_journal_pone_0031505 crossref_primary_10_1111_jcpp_12457 crossref_primary_10_1093_gigascience_giaa122 crossref_primary_10_1007_s00414_024_03210_6 crossref_primary_10_1038_ncomms8686 crossref_primary_10_1155_2010_947564 crossref_primary_10_1186_1471_2105_9_292 crossref_primary_10_1016_j_gene_2018_02_044 crossref_primary_10_1016_j_mcn_2019_05_003 crossref_primary_10_1186_s12859_019_3146_1 crossref_primary_10_1016_j_fertnstert_2021_04_009 crossref_primary_10_1186_s12859_015_0490_7 crossref_primary_10_1371_journal_pcbi_1002053 crossref_primary_10_1186_1753_6561_5_S9_S90 crossref_primary_10_1186_1471_2105_8_383 crossref_primary_10_1186_s12859_018_2411_z crossref_primary_10_1186_s12863_015_0322_9 crossref_primary_10_1016_j_drudis_2019_12_009 crossref_primary_10_1198_jasa_2010_tm10195 crossref_primary_10_1093_jpp_rgae058 |
| Cites_doi | 10.1093/bioinformatics/bth088 10.1073/pnas.0506580102 10.1002/0470094419.ch12 10.1093/bioinformatics/bti565 10.1186/gb-2003-4-4-r28 10.1093/bioinformatics/btl424 10.1093/bioinformatics/btg382 10.1186/1471-2105-5-193 10.1093/bioinformatics/bti260 10.1055/s-0038-1633992 10.1038/nrg1749 10.1093/bioinformatics/bti457 10.1186/1471-2105-5-16 10.1038/ng1180 10.1093/nar/27.1.29 10.1111/j.2517-6161.1995.tb02031.x 10.1038/ng0704-663a 10.1186/1471-2105-7-30 10.1038/75556 10.1214/009053604000000265 10.1186/gb-2003-4-10-r70 10.2202/1544-6115.1185 10.1007/978-1-4899-3242-6 10.1093/bioinformatics/btg455 10.1186/1471-2105-6-162 10.1023/B:NERE.0000023608.29741.45 10.1186/1471-2105-6-269 10.1186/1471-2105-6-225 10.1186/1471-2105-5-34 10.1093/bioinformatics/bti267 10.1111/j.1467-9868.2006.00551.x |
| ContentType | Journal Article |
| Copyright | The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007 2008 INIST-CNRS Copyright Oxford University Press(England) Apr 2007 |
| Copyright_xml | – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007 – notice: 2008 INIST-CNRS – notice: Copyright Oxford University Press(England) Apr 2007 |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 RC3 7X8 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btm051 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database Genetics Abstracts CrossRef MEDLINE - Academic Computer and Information Systems Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 1460-2059 |
| EndPage | 987 |
| ExternalDocumentID | 10.1093/bioinformatics/btm051 1264670131 17303618 19229379 10_1093_bioinformatics_btm051 ark_67375_HXZ_G4Q5W76K_M |
| Genre | Evaluation Studies Journal Article Comparative Study |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSCLL BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM AASNB ABQTQ ADRIX AFXEN BCRHZ M49 RIG ROX AAYXX CITATION .-4 .GJ ABEFU AI. AQDSO ATTQO ELUNK IQODW O~Y RNI RZF RZO VH1 ZGI CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 482 ABJNI RC3 ROZ TN5 WH7 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c618t-2e7b149dd99b8302aae8fb2a7399b58afec1d3874c1ede03c016db27dadc8b7e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Sun Oct 26 03:59:42 EDT 2025 Thu Sep 04 19:41:25 EDT 2025 Thu Oct 02 11:12:08 EDT 2025 Tue Oct 07 09:18:41 EDT 2025 Mon Oct 06 17:33:43 EDT 2025 Wed Feb 19 01:43:44 EST 2025 Mon Jul 21 09:16:20 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Oct 01 04:04:41 EDT 2025 Wed Aug 28 03:24:14 EDT 2024 Sat Sep 20 11:02:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Original document Ontology Permutation Frequency Unsupervised classification Method Gene expression Bioinformatics Supervised classification Comparative study Clusterin |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c618t-2e7b149dd99b8302aae8fb2a7399b58afec1d3874c1ede03c016db27dadc8b7e3 |
| Notes | istex:79B785CB5B754E99BEA61404BD23BC87E97C29E5 To whom correspondence should be addressed. Associate Editor: Trey Ideker ark:/67375/HXZ-G4Q5W76K-M ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/23/8/980/49821572/bioinformatics_23_8_980.pdf |
| PMID | 17303618 |
| PQID | 198686377 |
| PQPubID | 36124 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btm051 proquest_miscellaneous_70454515 proquest_miscellaneous_33344631 proquest_miscellaneous_20030864 proquest_journals_198686377 pubmed_primary_17303618 pascalfrancis_primary_19229379 crossref_primary_10_1093_bioinformatics_btm051 crossref_citationtrail_10_1093_bioinformatics_btm051 oup_primary_10_1093_bioinformatics_btm051 istex_primary_ark_67375_HXZ_G4Q5W76K_M |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-04-15 |
| PublicationDateYYYYMMDD | 2007-04-15 |
| PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2007 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Goeman (2023041107552070200_) 2005; 21 Mootha (2023041107552070200_) 2003; 34 Pavlidis (2023041107552070200_) 2004; 29 Khatri (2023041107552070200_) 2005; 21 Tomfohr (2023041107552070200_) 2005; 6 Damian (2023041107552070200_) 2004; 36 Goeman (2023041107552070200_) 2004; 20 Beissbarth (2023041107552070200_) 2004; 20 Lee (2023041107552070200_) 2005; 6 Al-Shahrour (2023041107552070200_) 2004; 20 Klebanov (2023041107552070200_) 2006; 5 Subramanian (2023041107552070200_) 2005; 102 Benjamini (2023041107552070200_) 1995; 57 Mansmann (2023041107552070200_) 2005; 44 Manoli (2023041107552070200_) 2006; 22 Al-Shahrour (2023041107552070200_) 2005; 21 Breitling (2023041107552070200_) 2004; 5 Yi (2023041107552070200_) 2006; 7 McCullagh (2023041107552070200_) 1989 Pehkonen (2023041107552070200_) 2005; 6 Ogata (2023041107552070200_) 1999; 27 Díaz-Uriarte (2023041107552070200_) 2005 Ashburner (2023041107552070200_) 2000; 25 Barry (2023041107552070200_) 2005; 21 Hosack (2023041107552070200_) 2003; 4 Zhang (2023041107552070200_) 2004; 5 Boyle (2023041107552070200_) 2004 Donoho (2023041107552070200_) 2004; 32 Breslin (2023041107552070200_) 2004; 5 Goeman (2023041107552070200_) 2006; 68 Zeeberg (2023041107552070200_) 2003; 4 Allison (2023041107552070200_) 2006; 7 |
| References_xml | – volume: 20 start-page: 1464 year: 2004 ident: 2023041107552070200_ article-title: GOstat: find statistically overrepresented gene ontologies within a group of genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth088 – volume: 102 start-page: 15545 year: 2005 ident: 2023041107552070200_ article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – start-page: 193 year: 2005 ident: 2023041107552070200_ article-title: Supervised methods with genomic data: a review and cautionary review publication-title: Data Analysis and Visualization in Genomics and Proteomics doi: 10.1002/0470094419.ch12 – volume: 21 start-page: 3587 year: 2005 ident: 2023041107552070200_ article-title: Ontological analysis of gene expression data: current tools, limitations, and open problems publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti565 – volume: 4 start-page: R28 year: 2003 ident: 2023041107552070200_ article-title: GoMiner: a resource for biological interpretation of genomic and proteomic data publication-title: Genome Biol doi: 10.1186/gb-2003-4-4-r28 – volume: 22 start-page: 2500 year: 2006 ident: 2023041107552070200_ article-title: Group testing for pathway analysis improves comparability of different microarray datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl424 – volume: 20 start-page: 93 year: 2004 ident: 2023041107552070200_ article-title: A global test for groups of genes: testing association with a clinical outcome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg382 – volume: 5 start-page: 193 year: 2004 ident: 2023041107552070200_ article-title: Comparing functional annotation analyses with catmap publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-193 – volume: 21 start-page: 1943 year: 2005 ident: 2023041107552070200_ article-title: Significance analysis of functional categories in gene expression studies: a structured permutation approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti260 – volume: 44 start-page: 449 year: 2005 ident: 2023041107552070200_ article-title: Testing differential gene expression in functional groups: Goemanós global test versus an ANCOVA approach publication-title: Methods of Inf. Med doi: 10.1055/s-0038-1633992 – volume: 7 start-page: 55 year: 2006 ident: 2023041107552070200_ article-title: Microarray data analysis: from disarray to consolidation and consensus publication-title: Nat. Rev. Genet doi: 10.1038/nrg1749 – volume: 21 start-page: 2988 year: 2005 ident: 2023041107552070200_ article-title: Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti457 – volume: 5 start-page: 16 year: 2004 ident: 2023041107552070200_ article-title: GO Tree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-16 – volume: 34 start-page: 267 year: 2003 ident: 2023041107552070200_ article-title: PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet doi: 10.1038/ng1180 – volume: 27 start-page: 29 year: 1999 ident: 2023041107552070200_ article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.29 – volume: 57 start-page: 289 year: 1995 ident: 2023041107552070200_ article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B-Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 36 start-page: 663 year: 2004 ident: 2023041107552070200_ article-title: Statistical concerns about the GSEA procedure publication-title: Nat. Genet doi: 10.1038/ng0704-663a – volume: 7 start-page: 30 year: 2006 ident: 2023041107552070200_ article-title: Wholepathwayscope: a comprehensive pathway-based analysis tool for high-throughput data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-30 – volume: 25 start-page: 25 year: 2000 ident: 2023041107552070200_ article-title: Gene Ontology: tool for the unification of biology publication-title: Nat. Genet doi: 10.1038/75556 – volume: 32 start-page: 962 year: 2004 ident: 2023041107552070200_ article-title: Higher criticism for detecting sparse heterogeneous mixtures publication-title: Ann. Stat doi: 10.1214/009053604000000265 – volume: 4 start-page: R70 year: 2003 ident: 2023041107552070200_ article-title: Identifying biological themes within lists of genes with EASE publication-title: Genome Biol doi: 10.1186/gb-2003-4-10-r70 – volume: 5 year: 2006 ident: 2023041107552070200_ article-title: Treating expression levels of different genes as a sample in microarray data analysis: is it worth a risk? publication-title: Stat. Appl. Genet. Mol. Biol doi: 10.2202/1544-6115.1185 – year: 1989 ident: 2023041107552070200_ publication-title: Generalized Linear Models doi: 10.1007/978-1-4899-3242-6 – volume: 20 start-page: 578 year: 2004 ident: 2023041107552070200_ article-title: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg455 – volume: 6 start-page: 162 year: 2005 ident: 2023041107552070200_ article-title: Theme discovery from gene lists for identification and viewing of multiple functional groups publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-162 – volume: 29 start-page: 1213 year: 2004 ident: 2023041107552070200_ article-title: Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex publication-title: Neurochem. Res doi: 10.1023/B:NERE.0000023608.29741.45 – volume: 6 start-page: 269 year: 2005 ident: 2023041107552070200_ article-title: ErmineJ: tool for functional analysis of gene expression data sets publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-269 – volume: 6 start-page: 225 year: 2005 ident: 2023041107552070200_ article-title: Pathway level analysis of gene expression using singular value decomposition publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-225 – volume: 5 start-page: 34 year: 2004 ident: 2023041107552070200_ article-title: Iterative group analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-34 – volume: 21 start-page: 1950 year: 2005 ident: 2023041107552070200_ article-title: Testing association of a pathway with survival using gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti267 – start-page: 3710 volume-title: Bioinformatics. year: 2004 ident: 2023041107552070200_ article-title: GO-TermFinder: open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes – volume: 68 start-page: 477 year: 2006 ident: 2023041107552070200_ article-title: Testing against a high-dimensional alternative publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol doi: 10.1111/j.1467-9868.2006.00551.x |
| SSID | ssj0005056 ssj0051444 |
| Score | 2.4645314 |
| Snippet | Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology.... Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods... MOTIVATION: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology.... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref oup istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 980 |
| SubjectTerms | Algorithms Biological and medical sciences Data Interpretation, Statistical Databases, Genetic Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Genetic screening Information Storage and Retrieval - methods Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Reproducibility of Results Sensitivity and Specificity Statistical models |
| Title | Analyzing gene expression data in terms of gene sets: methodological issues |
| URI | https://api.istex.fr/ark:/67375/HXZ-G4Q5W76K-M/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17303618 https://www.proquest.com/docview/198686377 https://www.proquest.com/docview/20030864 https://www.proquest.com/docview/33344631 https://www.proquest.com/docview/70454515 https://academic.oup.com/bioinformatics/article-pdf/23/8/980/49821572/bioinformatics_23_8_980.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4psRBiUPCImHNE3sxA5vE2IUqg2QVlF4iezYlqZ1abWkYtsjfznnOulYxcR44CWK5DsnOZ99P8f3AfDSJBKNDqUB6kMaUG2SgKvCBDIxjEghmClsvPPuXjoc04-TZLIBoo2FEY1XeL8NaZAHsyaFqE1bHDbyDObKhDEJeZjxQUgzjpaLxWvEeUxyniNBH6mvQTdNEK53oDve-7z9zcVjsYDyZfXk5j6K2iifjKw_WtZHgyS6YL-6dihO2ti423NRoWCNq4jxJ8h6C24syrk4_SGm09_M2M5d-NkKwHmvHPYXtewXZ2u5If-rhO7BnQYE-9uuj_uwocsHcN2VxTx9CKNlppQzNKo-qrf29UnjrVv61qHVPyh9a1Aqf2YcQaXr6o3vimG3i7m_1KjqEYx33u2_HQZN0YegSCNeB7FmEndtSmWZtLnJhNDcyFgwRFIy4cLoIlKEM1pEWukBKRCzKhkzJVTBJdPkMXTKWamfgC9TLblIiUl1QTPJpBGUKx1lRimBfXpA26HMiyYjui3MMc3dyTzJ16TlNMCD_opt7lKC_I3h1VJPVtTi-ND607EkH06-5-_pl-QrS0f5rgevcVCv2mnvgrqdc2UxQjiWebDV6l_erEsVNvKUp4QxD16sWnFBsadEotSzRWXrkhLc59LLKQjByZ2S6HIKZhM7IlL2YNMp_vnbMYuZIu5BuJoJV_vgp__MsQU33Z94GkTJM-jUxwv9HCFkLXu4efowwuv-p0mvWRB-AbuyfLo |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4mt8hMHIA0LiIU0TO7bD24QYFdMmkKgovER2bEvTSlotqdj2yF_OuU46VjExHniL5DsnOV_ufo7vA-ClzRQ6HUoj1AcWUWOzSOjSRiqznCgpuS1dvvP-ARuN6YdJNtkA2eXCyDYqfNClNKjDWVtC1JUtjlt5RnNt45TEIs7FMKa5QM_F0zXiIiWFKJBggNTXoM8yhOs96I8PPu589flYPKJi2T25vU6SLssnJ-u3Vs33YZZc8F99txQnXW7c7bmsUbDWd8T4E2S9BTcW1Vye_pDT6W9ubPcu_OwE4KNXjgaLRg3Ks7XakP9VQvfgTguCwx0_x33YMNUDuO7bYp5uwt6yUsoZOtUQ1duE5qSN1q1CF9AaHlahcyh1OLOeoDZN_Sb0zbA7Yx4uNap-COPdd5_fjqK26UNUskQ0UWq4wl2b1nmuXG0yKY2wKpUckZTKhLSmTDQRnJaJ0WZISsSsWqVcS10KxQ15BL1qVpknECpmlJCMWGZKmiuurKRCmyS3WkucMwDaLWVRthXRXWOOaeFP5kmxJi2vAQEMVmxzXxLkbwyvlnqyopbHRy6ejmfFaPKteE8_ZV842yv2A3iNi3rVSbcvqNs5V54ihON5AFud_hWtXapxUDDBCOcBvFiNokFxp0SyMrNF7fqSEtzn0sspCMGPm5HkcgruCjsiUg7gsVf886fjDjMlIoB49SVc7YWf_jPHFtz0f-JplGTPoNccL8xzhJCN2m6NwC_0Q3ql |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+gene+expression+data+in+terms+of+gene+sets%3A+methodological+issues&rft.jtitle=Bioinformatics&rft.au=Goeman%2C+Jelle+J&rft.au=Buehlmann%2C+Peter&rft.date=2007-04-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=23&rft.issue=8&rft.spage=980&rft.epage=987&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtm051&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |