Analyzing gene expression data in terms of gene sets: methodological issues

Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against di...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 23; no. 8; pp. 980 - 987
Main Authors Goeman, Jelle J., Bühlmann, Peter
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.04.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btm051

Cover

Abstract Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl
AbstractList Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl
Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl
MOTIVATION: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. RESULTS: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. CONTACT: j.j.goemanatlumc.nl
Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact:  j.j.goeman@lumc.nl
Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing.MOTIVATIONMany statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing.We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing.RESULTSWe identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing.
Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. Results: We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing. Contact: j.j.goeman@lumc.nl.
Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods are based on widely different methodological assumptions. Some approaches test differential expression of each gene set against differential expression of the rest of the genes, whereas others test each gene set on its own. Also, some methods are based on a model in which the genes are the sampling units, whereas others treat the subjects as the sampling units. This article aims to clarify the assumptions behind different approaches and to indicate a preferential methodology of gene set testing. We identify some crucial assumptions which are needed by the majority of methods. P-values derived from methods that use a model which takes the genes as the sampling unit are easily misinterpreted, as they are based on a statistical model that does not resemble the biological experiment actually performed. Furthermore, because these models are based on a crucial and unrealistic independence assumption between genes, the P-values derived from such methods can be wildly anti-conservative, as a simulation experiment shows. We also argue that methods that competitively test each gene set against the rest of the genes create an unnecessary rift between single gene testing and gene set testing.
Author Goeman, Jelle J.
Bühlmann, Peter
Author_xml – sequence: 1
  givenname: Jelle J.
  surname: Goeman
  fullname: Goeman, Jelle J.
  organization: Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands and Seminar für Statistik, ETH Zurich, CH-8092 Zürich, Switzerland
– sequence: 2
  givenname: Peter
  surname: Bühlmann
  fullname: Bühlmann, Peter
  organization: Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands and Seminar für Statistik, ETH Zurich, CH-8092 Zürich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19229379$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17303618$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFTEQhoNU7If-BGUR9G5tstl8rF6Voq20IoKieBOyyewxdTc5Jlns8dcb2UOLvTm9yhCeZyZ55xDt-eABoacEvyK4o8e9C84PIU46O5OO-zxhRh6gA0K5qFtJyN5Njek-OkzpCmPMMOOP0D4RFFNO5AG6OPF63PxxflWtwEMF1-sIKbngK6uzrpyvMsQpVWFYgAQ5va4myD-CDWNYOaPHyqU0Q3qMHg56TPBkex6hL-_efj49ry8_nr0_PbmsTRmZ6wZET9rO2q7rJcWN1iCHvtGClgsm9QCGWCpFawhYwNRgwm3fCKutkb0AeoT40nf2a735rcdRraObdNwogtW_dNT_6aglnSK-XMR1DL_Kg7OaXDIwjtpDmJMSuGUtI2wnSCltW053d2wwpljytoDP74BXYY4l-6RIJ7nkVIgCPdtCcz-Bvf3Vdl0FeLEFdCq5D1F749It1zVNR0VXOLZwJoaUIgz3DujNHc-4XIjgc9Ru3GnjxQ7z-t4D60VxKcP1jaTjT8UFFUydf_uuztpP7KvgF-oD_Qs1hvN-
CODEN BOINFP
CitedBy_id crossref_primary_10_1007_s00204_019_02585_5
crossref_primary_10_1097_TP_0b013e31824491aa
crossref_primary_10_1039_C7FO00684E
crossref_primary_10_1198_sbr_2009_09029
crossref_primary_10_1186_s12859_015_0763_1
crossref_primary_10_1186_1755_8794_4_37
crossref_primary_10_1038_nrg2884
crossref_primary_10_1002_bimj_201100178
crossref_primary_10_1002_wics_1643
crossref_primary_10_1515_sagmb_2017_0053
crossref_primary_10_1016_j_neuroimage_2024_120622
crossref_primary_10_1186_1753_6561_3_S4_S8
crossref_primary_10_1186_1753_6561_3_S4_S5
crossref_primary_10_3390_cancers5020372
crossref_primary_10_3390_e22040427
crossref_primary_10_1186_1471_2105_15_S5_S3
crossref_primary_10_1371_journal_pcbi_1010091
crossref_primary_10_1080_15592294_2016_1146853
crossref_primary_10_1186_s12918_015_0211_x
crossref_primary_10_1093_bib_bbz090
crossref_primary_10_1093_g3journal_jkab365
crossref_primary_10_1214_14_AOAS777
crossref_primary_10_1186_1471_2105_13_177
crossref_primary_10_12688_f1000research_18490_2
crossref_primary_10_12688_f1000research_18490_1
crossref_primary_10_1093_bioinformatics_btaa658
crossref_primary_10_1186_1471_2105_12_459
crossref_primary_10_12688_f1000research_18490_3
crossref_primary_10_1093_ije_dyr225
crossref_primary_10_1021_acs_est_7b06540
crossref_primary_10_3389_fgene_2018_00603
crossref_primary_10_1214_11_AOAS528
crossref_primary_10_4137_BII_S3846
crossref_primary_10_1186_gb_2009_10_4_r44
crossref_primary_10_4137_CIN_S867
crossref_primary_10_1186_s12859_023_05510_x
crossref_primary_10_1016_j_ygeno_2011_04_006
crossref_primary_10_1093_bioinformatics_btu374
crossref_primary_10_1093_bioinformatics_btv588
crossref_primary_10_1371_journal_pone_0110451
crossref_primary_10_3390_cells10061326
crossref_primary_10_1002_sam_11549
crossref_primary_10_1038_ejhg_2011_236
crossref_primary_10_1371_journal_pcbi_1003578
crossref_primary_10_1093_bib_bbz074
crossref_primary_10_4137_CIN_S40043
crossref_primary_10_1371_journal_pcbi_1004310
crossref_primary_10_1093_bioinformatics_btm531
crossref_primary_10_1371_journal_pcbi_1002375
crossref_primary_10_1089_omi_2012_0083
crossref_primary_10_1074_jbc_M115_679068
crossref_primary_10_1016_j_jgg_2021_01_007
crossref_primary_10_1186_1471_2105_13_197
crossref_primary_10_1371_journal_pone_0076666
crossref_primary_10_1016_j_atherosclerosis_2022_10_005
crossref_primary_10_1093_bioinformatics_btac735
crossref_primary_10_3390_biochem4020005
crossref_primary_10_1093_bioinformatics_btw349
crossref_primary_10_1093_nar_gks866
crossref_primary_10_1016_j_csda_2021_107284
crossref_primary_10_1186_1755_8794_3_25
crossref_primary_10_1038_ejcn_2013_53
crossref_primary_10_1038_jhg_2012_86
crossref_primary_10_3389_fphys_2015_00383
crossref_primary_10_1186_s12864_017_4265_6
crossref_primary_10_1093_bioinformatics_btn655
crossref_primary_10_1186_1471_2105_11_510
crossref_primary_10_1002_tpg2_20503
crossref_primary_10_1097_MD_0000000000019120
crossref_primary_10_1158_1078_0432_CCR_13_2429
crossref_primary_10_1146_annurev_statistics_010814_020335
crossref_primary_10_1152_physiolgenomics_00167_2007
crossref_primary_10_1093_bioinformatics_btt068
crossref_primary_10_1186_1471_2105_12_306
crossref_primary_10_1038_ejhg_2011_46
crossref_primary_10_1093_hmg_ddad144
crossref_primary_10_3389_fams_2019_00017
crossref_primary_10_1093_nar_gkp481
crossref_primary_10_1371_journal_pbio_3000481
crossref_primary_10_7717_peerj_8144
crossref_primary_10_1093_nar_gky175
crossref_primary_10_1093_nar_gkaa582
crossref_primary_10_1007_s00180_015_0605_7
crossref_primary_10_1089_ten_tec_2019_0309
crossref_primary_10_1093_nargab_lqaa006
crossref_primary_10_1016_j_ymeth_2018_05_011
crossref_primary_10_1038_ejhg_2011_57
crossref_primary_10_1093_nar_gkq428
crossref_primary_10_1016_j_envres_2018_10_001
crossref_primary_10_1371_journal_pcbi_1005601
crossref_primary_10_1371_journal_pgen_1004345
crossref_primary_10_3389_fphar_2021_715394
crossref_primary_10_1093_bioinformatics_btu060
crossref_primary_10_1089_adt_2015_656
crossref_primary_10_1093_bib_bbac561
crossref_primary_10_2174_1574893615999200629124444
crossref_primary_10_1016_j_ymeth_2014_02_001
crossref_primary_10_1517_17460441_2011_557659
crossref_primary_10_3389_fimmu_2019_00976
crossref_primary_10_1093_bioinformatics_btm583
crossref_primary_10_1016_j_ajhg_2015_05_018
crossref_primary_10_1007_s00439_012_1198_7
crossref_primary_10_1186_s13058_017_0901_y
crossref_primary_10_1038_s41598_018_31396_4
crossref_primary_10_1093_nar_gkx291
crossref_primary_10_1111_acel_13578
crossref_primary_10_1073_pnas_2013374118
crossref_primary_10_1093_bib_bbac553
crossref_primary_10_1093_bioinformatics_btv021
crossref_primary_10_1142_S021972002050002X
crossref_primary_10_1002_sim_8442
crossref_primary_10_1016_j_cmet_2020_04_008
crossref_primary_10_1186_s12859_015_0751_5
crossref_primary_10_1093_hmg_ddm133
crossref_primary_10_1186_1471_2164_11_574
crossref_primary_10_1038_s41598_021_86465_y
crossref_primary_10_1093_bib_bbz158
crossref_primary_10_1016_j_csda_2013_12_003
crossref_primary_10_1089_omi_2013_0099
crossref_primary_10_1186_s12859_016_1403_0
crossref_primary_10_1038_s41598_017_02281_3
crossref_primary_10_1186_1756_0381_5_18
crossref_primary_10_1186_1471_2105_9_502
crossref_primary_10_1093_nar_gku722
crossref_primary_10_1002_sim_5986
crossref_primary_10_1371_journal_pcbi_1010020
crossref_primary_10_1016_j_bbapap_2009_05_002
crossref_primary_10_1016_j_tig_2012_03_004
crossref_primary_10_1038_cr_2011_149
crossref_primary_10_1038_s43587_023_00455_5
crossref_primary_10_3390_genes15081030
crossref_primary_10_1111_ahg_12035
crossref_primary_10_1016_j_cpb_2017_12_003
crossref_primary_10_3389_fimmu_2023_1103392
crossref_primary_10_1093_bioinformatics_btu090
crossref_primary_10_2215_CJN_10010818
crossref_primary_10_1093_bib_bbz028
crossref_primary_10_1186_1471_2105_11_277
crossref_primary_10_1186_s12859_016_0884_1
crossref_primary_10_1016_j_bbi_2018_04_004
crossref_primary_10_1186_s12859_015_0729_3
crossref_primary_10_21105_joss_01255
crossref_primary_10_1038_ejhg_2012_218
crossref_primary_10_1186_s13040_018_0166_8
crossref_primary_10_1093_nar_gkp1015
crossref_primary_10_1186_1752_0509_6_56
crossref_primary_10_1186_s12859_015_0707_9
crossref_primary_10_1371_journal_pone_0003337
crossref_primary_10_1534_genetics_116_189498
crossref_primary_10_1016_j_placenta_2010_04_003
crossref_primary_10_1038_s41598_018_19736_w
crossref_primary_10_1093_nar_gkt525
crossref_primary_10_1186_2049_3002_2_13
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1093_bib_bby040
crossref_primary_10_1016_j_gene_2012_11_034
crossref_primary_10_18311_jnr_2024_41950
crossref_primary_10_1038_srep23002
crossref_primary_10_3390_genes10070492
crossref_primary_10_1371_journal_pone_0221444
crossref_primary_10_1002_sta4_518
crossref_primary_10_1093_bib_bbn042
crossref_primary_10_18632_oncotarget_9788
crossref_primary_10_1038_s42003_022_03816_9
crossref_primary_10_1038_s42255_019_0076_1
crossref_primary_10_1186_1471_2105_14_267
crossref_primary_10_1186_1471_2105_10_S11_S9
crossref_primary_10_2217_pgs_12_170
crossref_primary_10_1016_j_semcancer_2019_08_021
crossref_primary_10_1371_journal_pcbi_1010278
crossref_primary_10_1093_bioinformatics_btq503
crossref_primary_10_1038_s41467_020_17312_3
crossref_primary_10_1016_j_envres_2020_109535
crossref_primary_10_1073_pnas_2019789118
crossref_primary_10_1089_cmb_2008_0081
crossref_primary_10_1002_gepi_22110
crossref_primary_10_4137_CIN_S14066
crossref_primary_10_1038_srep02898
crossref_primary_10_1093_bioinformatics_bty217
crossref_primary_10_1093_bioinformatics_btw030
crossref_primary_10_1371_journal_pone_0177852
crossref_primary_10_1371_journal_pcbi_1003851
crossref_primary_10_1371_journal_pone_0194445
crossref_primary_10_3389_fgene_2019_00414
crossref_primary_10_1186_s12711_015_0132_6
crossref_primary_10_1186_s12859_017_1737_2
crossref_primary_10_1093_bioinformatics_btad776
crossref_primary_10_1093_bioinformatics_btp406
crossref_primary_10_1007_s11682_013_9259_7
crossref_primary_10_1016_j_ymeth_2017_07_024
crossref_primary_10_1371_journal_pone_0012497
crossref_primary_10_1371_journal_pcbi_1009283
crossref_primary_10_1186_s13395_017_0144_8
crossref_primary_10_1016_j_gene_2014_09_007
crossref_primary_10_1038_s41587_023_01872_y
crossref_primary_10_1186_1471_2105_10_429
crossref_primary_10_1371_journal_pone_0079217
crossref_primary_10_1016_j_trac_2013_04_011
crossref_primary_10_1186_1471_2105_10_307
crossref_primary_10_1093_nar_gkq045
crossref_primary_10_1186_1471_2105_10_300
crossref_primary_10_1186_1471_2105_10_422
crossref_primary_10_1093_biostatistics_kxx005
crossref_primary_10_1038_s42003_023_04756_8
crossref_primary_10_1016_j_csda_2021_107318
crossref_primary_10_1002_pmic_201400296
crossref_primary_10_1093_nar_gks461
crossref_primary_10_1111_cas_14443
crossref_primary_10_1093_bioinformatics_btq401
crossref_primary_10_1186_1477_5956_9_67
crossref_primary_10_1186_1752_0509_6_S3_S13
crossref_primary_10_1021_acs_chemrestox_2c00245
crossref_primary_10_1016_j_cell_2020_05_002
crossref_primary_10_1186_1471_2164_10_26
crossref_primary_10_4161_sysb_25897
crossref_primary_10_1053_j_seminhematol_2008_04_008
crossref_primary_10_1371_journal_pone_0149373
crossref_primary_10_1186_1471_2105_10_319
crossref_primary_10_1093_bioinformatics_btz447
crossref_primary_10_1177_0962280209351925
crossref_primary_10_1093_nar_gkw957
crossref_primary_10_1186_s12859_016_1299_8
crossref_primary_10_1016_j_cca_2014_12_028
crossref_primary_10_1093_bib_bbv091
crossref_primary_10_1186_1471_2105_13_136
crossref_primary_10_1186_s12859_021_04110_x
crossref_primary_10_1038_ejhg_2013_299
crossref_primary_10_1093_bioinformatics_btq511
crossref_primary_10_1214_07_AOAS146
crossref_primary_10_1097_TP_0b013e3182a95d04
crossref_primary_10_1016_j_dcn_2025_101534
crossref_primary_10_1007_s11357_011_9340_3
crossref_primary_10_1073_pnas_1818532116
crossref_primary_10_1371_journal_pcbi_1002858
crossref_primary_10_1186_1471_2105_12_377
crossref_primary_10_3390_e23080945
crossref_primary_10_1136_amiajnl_2012_000972
crossref_primary_10_1080_01621459_2021_1920958
crossref_primary_10_1093_bib_bbx149
crossref_primary_10_3389_fgene_2022_992328
crossref_primary_10_1038_nn_4399
crossref_primary_10_7717_peerj_10764
crossref_primary_10_1371_journal_pone_0103159
crossref_primary_10_1093_bioinformatics_btad567
crossref_primary_10_29220_CSAM_2017_24_6_627
crossref_primary_10_1002_sim_4235
crossref_primary_10_1371_journal_pone_0200652
crossref_primary_10_3389_fimmu_2021_691304
crossref_primary_10_1371_journal_pone_0032394
crossref_primary_10_1681_ASN_0000000000000403
crossref_primary_10_1371_journal_pcbi_1002967
crossref_primary_10_1016_j_gene_2013_08_063
crossref_primary_10_1093_nar_gks699
crossref_primary_10_1016_j_csbj_2021_08_009
crossref_primary_10_1016_j_freeradbiomed_2017_10_011
crossref_primary_10_1093_nar_gkt660
crossref_primary_10_1371_journal_pone_0012693
crossref_primary_10_1155_2019_2497509
crossref_primary_10_1016_j_csda_2012_07_026
crossref_primary_10_1186_s12864_016_2578_5
crossref_primary_10_5691_jjb_36_63
crossref_primary_10_1186_s12859_014_0397_8
crossref_primary_10_1186_s12859_016_0928_6
crossref_primary_10_1021_pr300038b
crossref_primary_10_1186_1471_2105_9_469
crossref_primary_10_1186_s12859_015_0571_7
crossref_primary_10_1093_bib_bbv069
crossref_primary_10_1002_gepi_20476
crossref_primary_10_1002_cpbi_24
crossref_primary_10_1586_14737159_8_2_125
crossref_primary_10_1158_1055_9965_EPI_20_0472
crossref_primary_10_1093_nar_gkt111
crossref_primary_10_1261_rna_063438_117
crossref_primary_10_1038_s41588_024_01771_1
crossref_primary_10_1109_ACCESS_2020_3000432
crossref_primary_10_1186_1471_2105_14_7
crossref_primary_10_1093_biostatistics_kxt004
crossref_primary_10_7554_eLife_32111
crossref_primary_10_1016_j_tjog_2016_04_038
crossref_primary_10_12659_MSM_899623
crossref_primary_10_1186_s12859_015_0582_4
crossref_primary_10_1038_s41596_018_0103_9
crossref_primary_10_1177_0962280215574014
crossref_primary_10_1186_s12864_024_10459_z
crossref_primary_10_1016_j_bej_2015_11_013
crossref_primary_10_1002_bit_22210
crossref_primary_10_1093_bioinformatics_bty271
crossref_primary_10_1038_s41598_019_38587_7
crossref_primary_10_1074_jbc_RA118_006074
crossref_primary_10_1186_1471_2164_9_124
crossref_primary_10_1158_1078_0432_CCR_17_0853
crossref_primary_10_1093_nargab_lqae180
crossref_primary_10_1016_j_artmed_2008_08_003
crossref_primary_10_1016_j_ygeno_2012_03_004
crossref_primary_10_1515_sagmb_2015_0037
crossref_primary_10_1186_1471_2105_13_S2_S4
crossref_primary_10_1371_journal_pone_0092111
crossref_primary_10_1002_hipo_20905
crossref_primary_10_1371_journal_pone_0037510
crossref_primary_10_1186_1471_2164_11_23
crossref_primary_10_1002_gepi_20452
crossref_primary_10_1097_FPC_0b013e32834a48a9
crossref_primary_10_3390_ijms25052704
crossref_primary_10_1186_1471_2105_11_19
crossref_primary_10_1186_s12916_023_02858_y
crossref_primary_10_1002_jrsm_1337
crossref_primary_10_1016_j_jtho_2020_10_128
crossref_primary_10_1093_bioinformatics_bts643
crossref_primary_10_1186_1471_2105_10_47
crossref_primary_10_1186_1471_2105_9_481
crossref_primary_10_1186_1471_2105_9_362
crossref_primary_10_1371_journal_pone_0165919
crossref_primary_10_1186_1471_2105_10_161
crossref_primary_10_1093_bioinformatics_btp019
crossref_primary_10_1016_j_placenta_2011_08_005
crossref_primary_10_1089_cmb_2008_0002
crossref_primary_10_1186_1471_2105_9_87
crossref_primary_10_1093_bioinformatics_btt616
crossref_primary_10_1534_genetics_115_185009
crossref_primary_10_1371_journal_pone_0214061
crossref_primary_10_1093_nar_gkn923
crossref_primary_10_3390_biology2041411
crossref_primary_10_1002_ece3_5074
crossref_primary_10_1016_j_neuroscience_2015_11_019
crossref_primary_10_1042_BSR20200596
crossref_primary_10_1155_2008_893941
crossref_primary_10_1093_bioinformatics_btae584
crossref_primary_10_1534_genetics_116_189191
crossref_primary_10_1109_TCBB_2012_23
crossref_primary_10_1093_nar_gks012
crossref_primary_10_1016_j_bbi_2018_03_016
crossref_primary_10_1016_j_jbi_2016_12_009
crossref_primary_10_1186_1471_2164_15_234
crossref_primary_10_4137_CIN_S13305
crossref_primary_10_1038_s41586_021_04075_0
crossref_primary_10_1089_cmb_2008_0226
crossref_primary_10_1002_chir_23254
crossref_primary_10_1186_1471_2164_10_197
crossref_primary_10_1186_s12920_017_0263_4
crossref_primary_10_1038_s41380_022_01855_6
crossref_primary_10_1016_j_neuroimage_2016_12_068
crossref_primary_10_1038_gene_2013_14
crossref_primary_10_1016_j_ygeno_2011_09_001
crossref_primary_10_1016_j_cels_2021_03_001
crossref_primary_10_1007_s10552_014_0354_x
crossref_primary_10_1016_j_bdq_2015_04_001
crossref_primary_10_3389_fneur_2015_00100
crossref_primary_10_1111_j_1530_0277_2010_01152_x
crossref_primary_10_1007_s12035_016_9998_8
crossref_primary_10_1016_j_jbi_2017_07_019
crossref_primary_10_1186_1471_2105_14_212
crossref_primary_10_1517_17530059_2012_718329
crossref_primary_10_1186_1471_2105_14_210
crossref_primary_10_1586_epr_09_103
crossref_primary_10_3389_fgene_2020_00654
crossref_primary_10_3390_genes6020238
crossref_primary_10_1186_s13148_023_01553_2
crossref_primary_10_1096_fj_202100163RR
crossref_primary_10_1371_journal_pone_0022426
crossref_primary_10_1093_bioinformatics_btt625
crossref_primary_10_1158_1078_0432_CCR_23_2760
crossref_primary_10_1038_mt_2014_86
crossref_primary_10_1016_j_envexpbot_2024_106048
crossref_primary_10_1002_ajmg_b_32328
crossref_primary_10_1093_bioinformatics_btq380
crossref_primary_10_4161_epi_6_12_18296
crossref_primary_10_1016_j_isci_2023_107542
crossref_primary_10_1534_g3_120_401270
crossref_primary_10_1186_1471_2105_12_29
crossref_primary_10_1198_jasa_2010_br1009
crossref_primary_10_1182_blood_2009_10_247122
crossref_primary_10_7717_peerj_4571
crossref_primary_10_1038_mp_2016_192
crossref_primary_10_1093_bioinformatics_btq148
crossref_primary_10_1186_1471_2105_8_431
crossref_primary_10_1186_gb_2010_11_2_r23
crossref_primary_10_1093_bioinformatics_btw803
crossref_primary_10_1093_bioinformatics_btv719
crossref_primary_10_1371_journal_pgen_1003939
crossref_primary_10_1101_gr_153551_112
crossref_primary_10_1038_srep34949
crossref_primary_10_1016_j_compbiolchem_2019_06_008
crossref_primary_10_29220_CSAM_2022_29_5_591
crossref_primary_10_1186_1471_2164_9_302
crossref_primary_10_1186_gb_2010_11_2_r13
crossref_primary_10_1093_nar_gkt386
crossref_primary_10_1038_pr_2012_200
crossref_primary_10_1186_1471_2105_15_260
crossref_primary_10_1021_jf800881y
crossref_primary_10_1371_journal_pcbi_1008550
crossref_primary_10_1214_19_AOS1935
crossref_primary_10_1093_bioinformatics_btr469
crossref_primary_10_1371_journal_pcbi_1011717
crossref_primary_10_1093_bioinformatics_btr228
crossref_primary_10_1093_bioinformatics_bts438
crossref_primary_10_1186_1745_6150_7_44
crossref_primary_10_1002_gepi_20632
crossref_primary_10_1016_j_copbio_2008_07_011
crossref_primary_10_1186_1752_0509_1_56
crossref_primary_10_1371_journal_pone_0163918
crossref_primary_10_1177_11779322251321071
crossref_primary_10_1186_s12864_015_1675_1
crossref_primary_10_1093_bioinformatics_btp076
crossref_primary_10_1186_1471_2164_12_563
crossref_primary_10_1371_journal_pcbi_1008986
crossref_primary_10_1093_bioadv_vbae136
crossref_primary_10_1186_s12859_014_0349_3
crossref_primary_10_3390_math12203284
crossref_primary_10_1093_nar_gkz1208
crossref_primary_10_1186_1471_2105_9_26
crossref_primary_10_1093_nar_gkr901
crossref_primary_10_1093_nar_gkn303
crossref_primary_10_1093_bioinformatics_btr362
crossref_primary_10_1016_j_gene_2012_09_101
crossref_primary_10_1016_j_ajog_2018_10_003
crossref_primary_10_1186_1471_2288_14_138
crossref_primary_10_1002_gepi_21950
crossref_primary_10_1093_bib_bbae116
crossref_primary_10_1101_gr_124370_111
crossref_primary_10_1186_1751_0473_7_10
crossref_primary_10_1007_s40200_024_01417_3
crossref_primary_10_1186_1755_8794_2_25
crossref_primary_10_1371_journal_pcbi_1009935
crossref_primary_10_3390_biom12010112
crossref_primary_10_1371_journal_pone_0201293
crossref_primary_10_1186_gb_2010_11_11_r112
crossref_primary_10_1186_1471_2105_8_242
crossref_primary_10_1093_bioinformatics_bts579
crossref_primary_10_1038_s41598_019_42178_x
crossref_primary_10_1039_c1an15590c
crossref_primary_10_1371_journal_pone_0206864
crossref_primary_10_1093_bib_bbac084
crossref_primary_10_1080_01621459_2022_2061354
crossref_primary_10_1093_bioinformatics_btr152
crossref_primary_10_1007_s10067_025_07373_4
crossref_primary_10_1093_bioinformatics_btp098
crossref_primary_10_15252_msb_20199247
crossref_primary_10_1186_1753_6561_3_S7_S96
crossref_primary_10_1186_s12859_020_3444_7
crossref_primary_10_1093_nar_gkt054
crossref_primary_10_1016_j_compbiomed_2016_09_017
crossref_primary_10_1021_np500667z
crossref_primary_10_1080_10618600_2015_1062771
crossref_primary_10_1111_biom_12372
crossref_primary_10_1093_gbe_evab110
crossref_primary_10_1007_s11682_012_9196_x
crossref_primary_10_1016_j_jgg_2018_08_002
crossref_primary_10_1371_journal_pone_0159643
crossref_primary_10_1371_journal_pone_0162910
crossref_primary_10_1093_bioinformatics_btt687
crossref_primary_10_1038_s41598_020_63361_5
crossref_primary_10_1093_bioinformatics_btp085
crossref_primary_10_1093_nar_gkx302
crossref_primary_10_1002_bimj_201400073
crossref_primary_10_1111_biom_12122
crossref_primary_10_1111_biom_13693
crossref_primary_10_18632_oncotarget_10002
crossref_primary_10_1177_0333102416686769
crossref_primary_10_1038_s41416_024_02731_6
crossref_primary_10_3390_ijms21020567
crossref_primary_10_4137_BBI_S9954
crossref_primary_10_7314_APJCP_2013_14_3_1629
crossref_primary_10_1016_j_spl_2020_108903
crossref_primary_10_1016_j_plaphy_2020_12_009
crossref_primary_10_1038_srep28999
crossref_primary_10_1093_bib_bbt002
crossref_primary_10_3389_fmolb_2021_708052
crossref_primary_10_1186_s12918_014_0121_3
crossref_primary_10_1093_bioinformatics_btw623
crossref_primary_10_1186_s12859_019_3221_7
crossref_primary_10_1142_S0219720007003041
crossref_primary_10_1093_bib_bbac143
crossref_primary_10_1371_journal_pcbi_1012084
crossref_primary_10_3389_fphys_2018_00139
crossref_primary_10_1177_0962280217712271
crossref_primary_10_1038_s41598_023_28593_1
crossref_primary_10_7717_peerj_2575
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_1186_1471_2105_12_92
crossref_primary_10_1214_13_BJPS233
crossref_primary_10_1371_journal_pgen_1000605
crossref_primary_10_3390_jpm12111932
crossref_primary_10_1177_0962280212460441
crossref_primary_10_1093_bioinformatics_btt583
crossref_primary_10_1093_bioinformatics_btu672
crossref_primary_10_1007_s00180_014_0519_9
crossref_primary_10_1186_s13058_022_01529_9
crossref_primary_10_1002_gepi_21875
crossref_primary_10_1002_gepi_21874
crossref_primary_10_1002_ijc_27776
crossref_primary_10_1016_j_compbiomed_2019_103389
crossref_primary_10_1080_10618600_2012_738614
crossref_primary_10_1080_01621459_2018_1497501
crossref_primary_10_1093_biostatistics_kxq042
crossref_primary_10_1186_s12864_018_5409_z
crossref_primary_10_1155_2019_3491852
crossref_primary_10_1371_journal_pone_0038365
crossref_primary_10_1371_journal_pone_0124620
crossref_primary_10_1016_j_stem_2020_04_012
crossref_primary_10_1111_biom_12060
crossref_primary_10_1093_bioinformatics_btv406
crossref_primary_10_1186_1471_2164_12_507
crossref_primary_10_1016_j_ijbiomac_2022_09_012
crossref_primary_10_1093_bib_bbq082
crossref_primary_10_1016_j_vaccine_2015_04_088
crossref_primary_10_1093_bioinformatics_bts164
crossref_primary_10_1093_nar_gkn318
crossref_primary_10_1016_j_compbiolchem_2021_107455
crossref_primary_10_1002_gepi_20532
crossref_primary_10_1093_bioinformatics_btu589
crossref_primary_10_1089_cmb_2008_08TT
crossref_primary_10_1186_s12859_022_04884_8
crossref_primary_10_1371_journal_pcbi_1006899
crossref_primary_10_1186_1471_2105_13_86
crossref_primary_10_4161_epi_28153
crossref_primary_10_1103_PhysRevResearch_2_033130
crossref_primary_10_1371_journal_pgen_1006122
crossref_primary_10_1016_j_compbiolchem_2018_07_008
crossref_primary_10_1093_bioinformatics_btm628
crossref_primary_10_1155_2020_1353516
crossref_primary_10_1186_s12859_017_1645_5
crossref_primary_10_1371_journal_pone_0017474
crossref_primary_10_1016_j_cels_2018_05_019
crossref_primary_10_1038_s41398_020_01082_z
crossref_primary_10_1016_j_vaccine_2015_04_096
crossref_primary_10_1371_journal_pone_0031505
crossref_primary_10_1111_jcpp_12457
crossref_primary_10_1093_gigascience_giaa122
crossref_primary_10_1007_s00414_024_03210_6
crossref_primary_10_1038_ncomms8686
crossref_primary_10_1155_2010_947564
crossref_primary_10_1186_1471_2105_9_292
crossref_primary_10_1016_j_gene_2018_02_044
crossref_primary_10_1016_j_mcn_2019_05_003
crossref_primary_10_1186_s12859_019_3146_1
crossref_primary_10_1016_j_fertnstert_2021_04_009
crossref_primary_10_1186_s12859_015_0490_7
crossref_primary_10_1371_journal_pcbi_1002053
crossref_primary_10_1186_1753_6561_5_S9_S90
crossref_primary_10_1186_1471_2105_8_383
crossref_primary_10_1186_s12859_018_2411_z
crossref_primary_10_1186_s12863_015_0322_9
crossref_primary_10_1016_j_drudis_2019_12_009
crossref_primary_10_1198_jasa_2010_tm10195
crossref_primary_10_1093_jpp_rgae058
Cites_doi 10.1093/bioinformatics/bth088
10.1073/pnas.0506580102
10.1002/0470094419.ch12
10.1093/bioinformatics/bti565
10.1186/gb-2003-4-4-r28
10.1093/bioinformatics/btl424
10.1093/bioinformatics/btg382
10.1186/1471-2105-5-193
10.1093/bioinformatics/bti260
10.1055/s-0038-1633992
10.1038/nrg1749
10.1093/bioinformatics/bti457
10.1186/1471-2105-5-16
10.1038/ng1180
10.1093/nar/27.1.29
10.1111/j.2517-6161.1995.tb02031.x
10.1038/ng0704-663a
10.1186/1471-2105-7-30
10.1038/75556
10.1214/009053604000000265
10.1186/gb-2003-4-10-r70
10.2202/1544-6115.1185
10.1007/978-1-4899-3242-6
10.1093/bioinformatics/btg455
10.1186/1471-2105-6-162
10.1023/B:NERE.0000023608.29741.45
10.1186/1471-2105-6-269
10.1186/1471-2105-6-225
10.1186/1471-2105-5-34
10.1093/bioinformatics/bti267
10.1111/j.1467-9868.2006.00551.x
ContentType Journal Article
Copyright The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
2008 INIST-CNRS
Copyright Oxford University Press(England) Apr 2007
Copyright_xml – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
– notice: 2008 INIST-CNRS
– notice: Copyright Oxford University Press(England) Apr 2007
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btm051
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
Genetics Abstracts

CrossRef
MEDLINE - Academic
Computer and Information Systems Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 987
ExternalDocumentID 10.1093/bioinformatics/btm051
1264670131
17303618
19229379
10_1093_bioinformatics_btm051
ark_67375_HXZ_G4Q5W76K_M
Genre Evaluation Studies
Journal Article
Comparative Study
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSCLL
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
AASNB
ABQTQ
ADRIX
AFXEN
BCRHZ
M49
RIG
ROX
AAYXX
CITATION
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
O~Y
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
482
ABJNI
RC3
ROZ
TN5
WH7
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c618t-2e7b149dd99b8302aae8fb2a7399b58afec1d3874c1ede03c016db27dadc8b7e3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 03:59:42 EDT 2025
Thu Sep 04 19:41:25 EDT 2025
Thu Oct 02 11:12:08 EDT 2025
Tue Oct 07 09:18:41 EDT 2025
Mon Oct 06 17:33:43 EDT 2025
Wed Feb 19 01:43:44 EST 2025
Mon Jul 21 09:16:20 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Oct 01 04:04:41 EDT 2025
Wed Aug 28 03:24:14 EDT 2024
Sat Sep 20 11:02:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Original document
Ontology
Permutation
Frequency
Unsupervised classification
Method
Gene expression
Bioinformatics
Supervised classification
Comparative study
Clusterin
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-2e7b149dd99b8302aae8fb2a7399b58afec1d3874c1ede03c016db27dadc8b7e3
Notes istex:79B785CB5B754E99BEA61404BD23BC87E97C29E5
To whom correspondence should be addressed.
Associate Editor: Trey Ideker
ark:/67375/HXZ-G4Q5W76K-M
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/23/8/980/49821572/bioinformatics_23_8_980.pdf
PMID 17303618
PQID 198686377
PQPubID 36124
PageCount 8
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btm051
proquest_miscellaneous_70454515
proquest_miscellaneous_33344631
proquest_miscellaneous_20030864
proquest_journals_198686377
pubmed_primary_17303618
pascalfrancis_primary_19229379
crossref_primary_10_1093_bioinformatics_btm051
crossref_citationtrail_10_1093_bioinformatics_btm051
oup_primary_10_1093_bioinformatics_btm051
istex_primary_ark_67375_HXZ_G4Q5W76K_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-15
PublicationDateYYYYMMDD 2007-04-15
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Goeman (2023041107552070200_) 2005; 21
Mootha (2023041107552070200_) 2003; 34
Pavlidis (2023041107552070200_) 2004; 29
Khatri (2023041107552070200_) 2005; 21
Tomfohr (2023041107552070200_) 2005; 6
Damian (2023041107552070200_) 2004; 36
Goeman (2023041107552070200_) 2004; 20
Beissbarth (2023041107552070200_) 2004; 20
Lee (2023041107552070200_) 2005; 6
Al-Shahrour (2023041107552070200_) 2004; 20
Klebanov (2023041107552070200_) 2006; 5
Subramanian (2023041107552070200_) 2005; 102
Benjamini (2023041107552070200_) 1995; 57
Mansmann (2023041107552070200_) 2005; 44
Manoli (2023041107552070200_) 2006; 22
Al-Shahrour (2023041107552070200_) 2005; 21
Breitling (2023041107552070200_) 2004; 5
Yi (2023041107552070200_) 2006; 7
McCullagh (2023041107552070200_) 1989
Pehkonen (2023041107552070200_) 2005; 6
Ogata (2023041107552070200_) 1999; 27
Díaz-Uriarte (2023041107552070200_) 2005
Ashburner (2023041107552070200_) 2000; 25
Barry (2023041107552070200_) 2005; 21
Hosack (2023041107552070200_) 2003; 4
Zhang (2023041107552070200_) 2004; 5
Boyle (2023041107552070200_) 2004
Donoho (2023041107552070200_) 2004; 32
Breslin (2023041107552070200_) 2004; 5
Goeman (2023041107552070200_) 2006; 68
Zeeberg (2023041107552070200_) 2003; 4
Allison (2023041107552070200_) 2006; 7
References_xml – volume: 20
  start-page: 1464
  year: 2004
  ident: 2023041107552070200_
  article-title: GOstat: find statistically overrepresented gene ontologies within a group of genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth088
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023041107552070200_
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– start-page: 193
  year: 2005
  ident: 2023041107552070200_
  article-title: Supervised methods with genomic data: a review and cautionary review
  publication-title: Data Analysis and Visualization in Genomics and Proteomics
  doi: 10.1002/0470094419.ch12
– volume: 21
  start-page: 3587
  year: 2005
  ident: 2023041107552070200_
  article-title: Ontological analysis of gene expression data: current tools, limitations, and open problems
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti565
– volume: 4
  start-page: R28
  year: 2003
  ident: 2023041107552070200_
  article-title: GoMiner: a resource for biological interpretation of genomic and proteomic data
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-4-r28
– volume: 22
  start-page: 2500
  year: 2006
  ident: 2023041107552070200_
  article-title: Group testing for pathway analysis improves comparability of different microarray datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl424
– volume: 20
  start-page: 93
  year: 2004
  ident: 2023041107552070200_
  article-title: A global test for groups of genes: testing association with a clinical outcome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg382
– volume: 5
  start-page: 193
  year: 2004
  ident: 2023041107552070200_
  article-title: Comparing functional annotation analyses with catmap
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-193
– volume: 21
  start-page: 1943
  year: 2005
  ident: 2023041107552070200_
  article-title: Significance analysis of functional categories in gene expression studies: a structured permutation approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti260
– volume: 44
  start-page: 449
  year: 2005
  ident: 2023041107552070200_
  article-title: Testing differential gene expression in functional groups: Goemanós global test versus an ANCOVA approach
  publication-title: Methods of Inf. Med
  doi: 10.1055/s-0038-1633992
– volume: 7
  start-page: 55
  year: 2006
  ident: 2023041107552070200_
  article-title: Microarray data analysis: from disarray to consolidation and consensus
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg1749
– volume: 21
  start-page: 2988
  year: 2005
  ident: 2023041107552070200_
  article-title: Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti457
– volume: 5
  start-page: 16
  year: 2004
  ident: 2023041107552070200_
  article-title: GO Tree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-16
– volume: 34
  start-page: 267
  year: 2003
  ident: 2023041107552070200_
  article-title: PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet
  doi: 10.1038/ng1180
– volume: 27
  start-page: 29
  year: 1999
  ident: 2023041107552070200_
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.29
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023041107552070200_
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B-Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 36
  start-page: 663
  year: 2004
  ident: 2023041107552070200_
  article-title: Statistical concerns about the GSEA procedure
  publication-title: Nat. Genet
  doi: 10.1038/ng0704-663a
– volume: 7
  start-page: 30
  year: 2006
  ident: 2023041107552070200_
  article-title: Wholepathwayscope: a comprehensive pathway-based analysis tool for high-throughput data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-30
– volume: 25
  start-page: 25
  year: 2000
  ident: 2023041107552070200_
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nat. Genet
  doi: 10.1038/75556
– volume: 32
  start-page: 962
  year: 2004
  ident: 2023041107552070200_
  article-title: Higher criticism for detecting sparse heterogeneous mixtures
  publication-title: Ann. Stat
  doi: 10.1214/009053604000000265
– volume: 4
  start-page: R70
  year: 2003
  ident: 2023041107552070200_
  article-title: Identifying biological themes within lists of genes with EASE
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-10-r70
– volume: 5
  year: 2006
  ident: 2023041107552070200_
  article-title: Treating expression levels of different genes as a sample in microarray data analysis: is it worth a risk?
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.2202/1544-6115.1185
– year: 1989
  ident: 2023041107552070200_
  publication-title: Generalized Linear Models
  doi: 10.1007/978-1-4899-3242-6
– volume: 20
  start-page: 578
  year: 2004
  ident: 2023041107552070200_
  article-title: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg455
– volume: 6
  start-page: 162
  year: 2005
  ident: 2023041107552070200_
  article-title: Theme discovery from gene lists for identification and viewing of multiple functional groups
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-162
– volume: 29
  start-page: 1213
  year: 2004
  ident: 2023041107552070200_
  article-title: Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex
  publication-title: Neurochem. Res
  doi: 10.1023/B:NERE.0000023608.29741.45
– volume: 6
  start-page: 269
  year: 2005
  ident: 2023041107552070200_
  article-title: ErmineJ: tool for functional analysis of gene expression data sets
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-269
– volume: 6
  start-page: 225
  year: 2005
  ident: 2023041107552070200_
  article-title: Pathway level analysis of gene expression using singular value decomposition
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-225
– volume: 5
  start-page: 34
  year: 2004
  ident: 2023041107552070200_
  article-title: Iterative group analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-34
– volume: 21
  start-page: 1950
  year: 2005
  ident: 2023041107552070200_
  article-title: Testing association of a pathway with survival using gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti267
– start-page: 3710
  volume-title: Bioinformatics.
  year: 2004
  ident: 2023041107552070200_
  article-title: GO-TermFinder: open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes
– volume: 68
  start-page: 477
  year: 2006
  ident: 2023041107552070200_
  article-title: Testing against a high-dimensional alternative
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol
  doi: 10.1111/j.1467-9868.2006.00551.x
SSID ssj0005056
ssj0051444
Score 2.4645314
Snippet Motivation: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology....
Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology. These methods...
MOTIVATION: Many statistical tests have been proposed in recent years for analyzing gene expression data in terms of gene sets, usually from Gene Ontology....
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 980
SubjectTerms Algorithms
Biological and medical sciences
Data Interpretation, Statistical
Databases, Genetic
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Genetic screening
Information Storage and Retrieval - methods
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Reproducibility of Results
Sensitivity and Specificity
Statistical models
Title Analyzing gene expression data in terms of gene sets: methodological issues
URI https://api.istex.fr/ark:/67375/HXZ-G4Q5W76K-M/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17303618
https://www.proquest.com/docview/198686377
https://www.proquest.com/docview/20030864
https://www.proquest.com/docview/33344631
https://www.proquest.com/docview/70454515
https://academic.oup.com/bioinformatics/article-pdf/23/8/980/49821572/bioinformatics_23_8_980.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4psRBiUPCImHNE3sxA5vE2IUqg2QVlF4iezYlqZ1abWkYtsjfznnOulYxcR44CWK5DsnOZ99P8f3AfDSJBKNDqUB6kMaUG2SgKvCBDIxjEghmClsvPPuXjoc04-TZLIBoo2FEY1XeL8NaZAHsyaFqE1bHDbyDObKhDEJeZjxQUgzjpaLxWvEeUxyniNBH6mvQTdNEK53oDve-7z9zcVjsYDyZfXk5j6K2iifjKw_WtZHgyS6YL-6dihO2ti423NRoWCNq4jxJ8h6C24syrk4_SGm09_M2M5d-NkKwHmvHPYXtewXZ2u5If-rhO7BnQYE-9uuj_uwocsHcN2VxTx9CKNlppQzNKo-qrf29UnjrVv61qHVPyh9a1Aqf2YcQaXr6o3vimG3i7m_1KjqEYx33u2_HQZN0YegSCNeB7FmEndtSmWZtLnJhNDcyFgwRFIy4cLoIlKEM1pEWukBKRCzKhkzJVTBJdPkMXTKWamfgC9TLblIiUl1QTPJpBGUKx1lRimBfXpA26HMiyYjui3MMc3dyTzJ16TlNMCD_opt7lKC_I3h1VJPVtTi-ND607EkH06-5-_pl-QrS0f5rgevcVCv2mnvgrqdc2UxQjiWebDV6l_erEsVNvKUp4QxD16sWnFBsadEotSzRWXrkhLc59LLKQjByZ2S6HIKZhM7IlL2YNMp_vnbMYuZIu5BuJoJV_vgp__MsQU33Z94GkTJM-jUxwv9HCFkLXu4efowwuv-p0mvWRB-AbuyfLo
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVggQ4mt8hMHIA0LiIU0TO7bD24QYFdMmkKgovER2bEvTSlotqdj2yF_OuU46VjExHniL5DsnOV_ufo7vA-ClzRQ6HUoj1AcWUWOzSOjSRiqznCgpuS1dvvP-ARuN6YdJNtkA2eXCyDYqfNClNKjDWVtC1JUtjlt5RnNt45TEIs7FMKa5QM_F0zXiIiWFKJBggNTXoM8yhOs96I8PPu589flYPKJi2T25vU6SLssnJ-u3Vs33YZZc8F99txQnXW7c7bmsUbDWd8T4E2S9BTcW1Vye_pDT6W9ubPcu_OwE4KNXjgaLRg3Ks7XakP9VQvfgTguCwx0_x33YMNUDuO7bYp5uwt6yUsoZOtUQ1duE5qSN1q1CF9AaHlahcyh1OLOeoDZN_Sb0zbA7Yx4uNap-COPdd5_fjqK26UNUskQ0UWq4wl2b1nmuXG0yKY2wKpUckZTKhLSmTDQRnJaJ0WZISsSsWqVcS10KxQ15BL1qVpknECpmlJCMWGZKmiuurKRCmyS3WkucMwDaLWVRthXRXWOOaeFP5kmxJi2vAQEMVmxzXxLkbwyvlnqyopbHRy6ejmfFaPKteE8_ZV842yv2A3iNi3rVSbcvqNs5V54ihON5AFud_hWtXapxUDDBCOcBvFiNokFxp0SyMrNF7fqSEtzn0sspCMGPm5HkcgruCjsiUg7gsVf886fjDjMlIoB49SVc7YWf_jPHFtz0f-JplGTPoNccL8xzhJCN2m6NwC_0Q3ql
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+gene+expression+data+in+terms+of+gene+sets%3A+methodological+issues&rft.jtitle=Bioinformatics&rft.au=Goeman%2C+Jelle+J&rft.au=Buehlmann%2C+Peter&rft.date=2007-04-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=23&rft.issue=8&rft.spage=980&rft.epage=987&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtm051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon