Two Phases of Mitogenic Signaling Unveil Roles for p53 and EGR1 in Elimination of Inconsistent Growth Signals

Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 42; no. 4; pp. 524 - 535
Main Authors Zwang, Yaara, Sas-Chen, Aldema, Drier, Yotam, Shay, Tal, Avraham, Roi, Lauriola, Mattia, Shema, Efrat, Lidor-Nili, Efrat, Jacob-Hirsch, Jasmine, Amariglio, Ninette, Lu, Yiling, Mills, Gordon B., Rechavi, Gideon, Oren, Moshe, Domany, Eytan, Yarden, Yosef
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.05.2011
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2011.04.017

Cover

Abstract Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals. [Display omitted] ► Two pulses of EGF are sufficient to induce entry of mammary cells into S phase ► Induction of metabolic processes during the G1 phase is essential for S phase entry ► Activation of an ERK-EGR1 module sets a threshold for proliferation ► A single pulse of EGF cannot induce proliferation due to early activation of p53.
AbstractList Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.
Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.
Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals. [Display omitted] ► Two pulses of EGF are sufficient to induce entry of mammary cells into S phase ► Induction of metabolic processes during the G1 phase is essential for S phase entry ► Activation of an ERK-EGR1 module sets a threshold for proliferation ► A single pulse of EGF cannot induce proliferation due to early activation of p53.
Normal cells require continuous exposure to growth factors, in order to cross a restriction point and commit to cell cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (i) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (ii) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (iii) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S-phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors, and undergo proliferation only in response to consistent mitogenic signals.
Author Shay, Tal
Lauriola, Mattia
Oren, Moshe
Lu, Yiling
Yarden, Yosef
Sas-Chen, Aldema
Zwang, Yaara
Amariglio, Ninette
Jacob-Hirsch, Jasmine
Mills, Gordon B.
Avraham, Roi
Lidor-Nili, Efrat
Shema, Efrat
Drier, Yotam
Rechavi, Gideon
Domany, Eytan
AuthorAffiliation 3 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
5 Department of System Biology, The University of Texas M.D. Anderson Cancer Center Box 950, Houston, Texas, USA
4 Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
1 Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
2 Department of Physics of complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
AuthorAffiliation_xml – name: 5 Department of System Biology, The University of Texas M.D. Anderson Cancer Center Box 950, Houston, Texas, USA
– name: 2 Department of Physics of complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 3 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 4 Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
– name: 1 Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
Author_xml – sequence: 1
  givenname: Yaara
  surname: Zwang
  fullname: Zwang, Yaara
  organization: Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Aldema
  surname: Sas-Chen
  fullname: Sas-Chen, Aldema
  organization: Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Yotam
  surname: Drier
  fullname: Drier, Yotam
  organization: Department of Physics of complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Tal
  surname: Shay
  fullname: Shay, Tal
  organization: Department of Physics of complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 5
  givenname: Roi
  surname: Avraham
  fullname: Avraham, Roi
  organization: Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 6
  givenname: Mattia
  surname: Lauriola
  fullname: Lauriola, Mattia
  organization: Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 7
  givenname: Efrat
  surname: Shema
  fullname: Shema, Efrat
  organization: Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 8
  givenname: Efrat
  surname: Lidor-Nili
  fullname: Lidor-Nili, Efrat
  organization: Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 9
  givenname: Jasmine
  surname: Jacob-Hirsch
  fullname: Jacob-Hirsch, Jasmine
  organization: Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
– sequence: 10
  givenname: Ninette
  surname: Amariglio
  fullname: Amariglio, Ninette
  organization: Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
– sequence: 11
  givenname: Yiling
  surname: Lu
  fullname: Lu, Yiling
  organization: Department of System Biology, The University of Texas M.D. Anderson Cancer Center, Box 950, Houston, TX 77030, USA
– sequence: 12
  givenname: Gordon B.
  surname: Mills
  fullname: Mills, Gordon B.
  organization: Department of System Biology, The University of Texas M.D. Anderson Cancer Center, Box 950, Houston, TX 77030, USA
– sequence: 13
  givenname: Gideon
  surname: Rechavi
  fullname: Rechavi, Gideon
  organization: Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
– sequence: 14
  givenname: Moshe
  surname: Oren
  fullname: Oren, Moshe
  organization: Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 15
  givenname: Eytan
  surname: Domany
  fullname: Domany, Eytan
  organization: Department of Physics of complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 16
  givenname: Yosef
  surname: Yarden
  fullname: Yarden, Yosef
  email: yosef.yarden@weizmann.ac.il
  organization: Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21596316$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1v0zAUtdAQ-4B_gMBv8NLg6zhOwgMSmroyaQi0rc-W4zjtrRK72Gkn_v1c2vH1sFmWbOmee3x8zzklR847S8hrYBkwkB9W2eB7Y_uMM4CMiYxB-YycAKvLiQApjg53XsrimJzGuGIMRFHVL8gxh6KWOcgTMtzeefp9qaON1Hf0K45-YR0aeoMLp3t0Czp3W4s9vfZ9wnQ-0HWRU-1aOp1dA0VHpz0O6PSI3u04Lp3xLmIcrRvpLPi7cXlgiy_J8y4d9tXhPCPzi-nt-ZfJ1bfZ5fnnq4mRUI6ThpWFlYUUHLgF3ulGmjYvRdqs1l2prWCyTpVacmFl29adFhI6IfKmKWSbn5FPe971phlsa5KSoHu1Djjo8FN5jerfisOlWvityoExUZWJ4N2BIPgfGxtHNWBMw-61s34TVc1KkJCzp5GVrBiXNa8S8v2jSM7S4iJZlKBv_tb_W_iDbwnwcQ8wwccYbKcMjr8cSN_BXgFTu5ColdqHRO1CophQKSSpWfzX_MD_RNvbfVunvdKLgFHNbxJAJtnAAao_Y7fJ2y3aoKJB64xtMVgzqtbj40_cA4qU4KQ
CitedBy_id crossref_primary_10_1074_mcp_M115_057257
crossref_primary_10_1016_j_molcel_2017_07_016
crossref_primary_10_7554_eLife_05178
crossref_primary_10_1038_s41598_017_02807_9
crossref_primary_10_1126_scisignal_aan0949
crossref_primary_10_1080_07357907_2018_1533965
crossref_primary_10_1186_s41241_020_00089_8
crossref_primary_10_1371_journal_pcbi_1011151
crossref_primary_10_1371_journal_pone_0198420
crossref_primary_10_1038_s41467_021_21884_z
crossref_primary_10_3390_cells10123327
crossref_primary_10_1042_AN20120032
crossref_primary_10_1096_fj_11_194654
crossref_primary_10_1111_apha_13661
crossref_primary_10_1101_gr_146399_112
crossref_primary_10_1111_febs_12058
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_4161_15384101_2014_949512
crossref_primary_10_1038_onc_2016_472
crossref_primary_10_1016_j_molcel_2011_05_001
crossref_primary_10_1080_21541248_2016_1171279
crossref_primary_10_1016_j_ceb_2013_07_010
crossref_primary_10_1016_j_molcel_2012_11_002
crossref_primary_10_1073_pnas_1508514112
crossref_primary_10_1016_j_cels_2020_02_005
crossref_primary_10_1016_j_molcel_2017_12_017
crossref_primary_10_1371_journal_pone_0144176
crossref_primary_10_1371_journal_pone_0096037
crossref_primary_10_1158_0008_5472_CAN_11_3382
crossref_primary_10_1016_j_bbamcr_2013_05_022
crossref_primary_10_1016_j_molcel_2013_09_015
crossref_primary_10_1016_j_semcdb_2015_11_004
crossref_primary_10_3892_or_2014_3665
crossref_primary_10_3390_genes6010001
crossref_primary_10_1038_onc_2017_179
crossref_primary_10_1038_s41598_022_23071_6
crossref_primary_10_1002_1873_3468_13867
crossref_primary_10_1038_onc_2014_284
crossref_primary_10_1016_j_cellsig_2018_12_007
crossref_primary_10_3389_fcell_2021_775312
crossref_primary_10_1371_journal_pone_0103593
crossref_primary_10_4049_jimmunol_1801407
crossref_primary_10_6000_1927_7229_2013_02_02_3
crossref_primary_10_1016_j_celrep_2020_03_078
crossref_primary_10_1074_jbc_M116_734194
crossref_primary_10_1016_j_canlet_2017_10_026
crossref_primary_10_1016_j_celrep_2020_01_074
crossref_primary_10_1080_15384101_2015_1006982
crossref_primary_10_1186_s12896_015_0218_9
crossref_primary_10_1038_cdd_2016_126
crossref_primary_10_1364_BOE_4_000559
crossref_primary_10_1038_nrm4007
crossref_primary_10_1074_jbc_M115_662247
crossref_primary_10_1016_j_ygcen_2017_01_020
crossref_primary_10_1042_BJ20130490
crossref_primary_10_1073_pnas_1719532115
crossref_primary_10_1073_pnas_1722446115
crossref_primary_10_1038_s41598_020_66236_x
crossref_primary_10_1158_0008_5472_CAN_11_0128
crossref_primary_10_1126_scisignal_abe6156
crossref_primary_10_1158_0008_5472_CAN_19_3717
crossref_primary_10_2337_db12_1035
crossref_primary_10_1073_pnas_1424012112
crossref_primary_10_1074_jbc_M112_428516
crossref_primary_10_7554_eLife_63265
crossref_primary_10_1016_j_celrep_2017_03_014
crossref_primary_10_1111_boc_201400077
crossref_primary_10_1093_nar_gkz166
crossref_primary_10_1016_j_cels_2020_10_002
crossref_primary_10_1186_s12943_017_0599_6
crossref_primary_10_1016_j_ceb_2022_01_011
crossref_primary_10_1093_jmcb_mjaa038
crossref_primary_10_1158_1078_0432_CCR_13_3328
crossref_primary_10_1016_j_ygeno_2013_02_007
crossref_primary_10_1007_s10911_012_9243_7
crossref_primary_10_1042_BCJ20230277
crossref_primary_10_1042_BST20200507
crossref_primary_10_1038_s41598_018_36753_x
Cites_doi 10.1016/S0960-9822(99)80235-8
10.1038/ncb1711
10.1126/science.2683075
10.1074/jbc.M008552200
10.1073/pnas.0906606106
10.1126/science.283.5398.83
10.1093/nar/gkn923
10.1073/pnas.86.4.1249
10.1126/science.1174294
10.1016/S0955-0674(97)80076-2
10.1006/excr.1993.1236
10.1023/B:JOMG.0000023585.95430.f4
10.1038/nrc2696
10.1074/jbc.M110897200
10.1080/08977190500096020
10.1002/jcp.1040990314
10.1186/gb-2003-4-5-p3
10.1038/nrc2231
10.1016/j.yexcr.2004.07.032
10.1016/j.bcp.2005.09.007
10.1016/j.ccr.2007.11.031
10.1073/pnas.81.17.5435
10.1016/j.cell.2010.05.031
10.1186/gb-2006-7-10-r100
10.1186/1471-2105-11-400
10.1016/j.cub.2006.04.044
10.1101/gad.12.15.2424
10.1038/onc.2008.55
10.1128/MCB.00783-06
10.1073/pnas.71.4.1286
10.1038/35055073
10.1073/pnas.74.10.4481
10.1093/bioinformatics/bth327
10.1038/ncb1166
10.1074/jbc.274.34.24263
10.1016/j.ccr.2010.01.022
10.1038/ng1987
10.1158/0008-5472.CAN-06-4229
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
2011 Elsevier Inc. All rights reserved. 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc. All rights reserved. 2011
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TO
H94
5PM
DOI 10.1016/j.molcel.2011.04.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitleList Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
MEDLINE
AGRICOLA



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 535
ExternalDocumentID PMC3100487
21596316
10_1016_j_molcel_2011_04_017
US201600012118
S1097276511003236
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32 CA096520
– fundername: NCI NIH HHS
  grantid: P50 CA098258
– fundername: NCI NIH HHS
  grantid: P30 CA16672
– fundername: NCI NIH HHS
  grantid: 4R37CA072981
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: R37 CA072981
– fundername: National Cancer Institute : NCI
  grantid: R37 CA072981-12 || CA
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1~5
29M
2WC
3O-
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
UHS
WQ6
X7M
ZA5
ZGI
ZXP
ABPTK
AEQTP
FBQ
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
7TO
H94
5PM
ID FETCH-LOGICAL-c617t-b075e6564212e12fab6cd37437409af7ae4069e129624e6dd9fa461f443bb56d3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 14:07:56 EDT 2025
Sat Sep 27 18:27:39 EDT 2025
Sun Sep 28 08:07:38 EDT 2025
Sun Aug 24 04:03:28 EDT 2025
Mon Jul 21 06:06:45 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 03:40:39 EDT 2025
Wed Dec 27 19:06:22 EST 2023
Fri Feb 23 02:19:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-b075e6564212e12fab6cd37437409af7ae4069e129624e6dd9fa461f443bb56d3
Notes http://dx.doi.org/10.1016/j.molcel.2011.04.017
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276511003236
PMID 21596316
PQID 2000024458
PQPubID 24069
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3100487
proquest_miscellaneous_907161307
proquest_miscellaneous_868026928
proquest_miscellaneous_2000024458
pubmed_primary_21596316
crossref_citationtrail_10_1016_j_molcel_2011_04_017
crossref_primary_10_1016_j_molcel_2011_04_017
fao_agris_US201600012118
elsevier_sciencedirect_doi_10_1016_j_molcel_2011_04_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-20
PublicationDateYYYYMMDD 2011-05-20
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chen, Tsai, Leone (bib5) 2009; 9
Amit, Citri, Shay, Lu, Katz, Zhang, Tarcic, Siwak, Lahad, Jacob-Hirsch (bib1) 2007; 39
Hirsch, Iliopoulos, Joshi, Zhang, Jaeger, Bulyk, Tsichlis, Shirley Liu, Struhl (bib11) 2010; 17
Stiles, Isberg, Pledger, Antoniades, Scher (bib33) 1979; 99
Sa, Stacey (bib29) 2004; 300
Tzur, Kafri, LeBleu, Lahav, Kirschner (bib35) 2009; 325
Hammond, Ham, Stampfer (bib10) 1984; 81
Huang da, Sherman, Lempicki (bib13) 2009; 37
Meloche, Seuwen, Pagès, Pouysségur (bib22) 1992; 6
Sah, Eckert, Chandraratna, Rorke (bib31) 2002; 277
Pledger, Stiles, Antoniades, Scher (bib28) 1977; 74
Loewer, Batchelor, Gaglia, Lahav (bib21) 2010; 142
Dennis, Sherman, Hosack, Yang, Gao, Lane, Lempicki (bib6) 2003; 4
Stampfer, Pan, Hosoda, Bartholomew, Mendelsohn, Yaswen (bib32) 1993; 208
Zindy, Eischen, Randle, Kamijo, Cleveland, Sherr, Roussel (bib40) 1998; 12
Huang, Kuo, Shew, Chou, Yang (bib12) 1996; 13
Pardee (bib25) 1974; 71
Leung, Ehmann, Giangrande, Nevins (bib20) 2008; 27
Band, Sager (bib3) 1989; 86
Zeisel, Amir, Köstler, Domany (bib39) 2010; 11
Yamaguchi, Tamatani, Matsuzaki, Namikawa, Kiyama, Vitek, Mitsuda, Tohyama (bib36) 2001; 276
Yao, Lee, Mori, Nevins, You (bib38) 2008; 10
Planas-Silva, Weinberg (bib27) 1997; 9
Ballman, Grill, Oberg, Therneau (bib2) 2004; 20
Kazlauskas (bib18) 2005; 23
Huether, Höpfner, Baradari, Schuppan, Scherübl (bib14) 2005; 70
Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib4) 2006; 7
Sabbatini, McCormick (bib30) 1999; 274
Iyer, Eisen, Ross, Schuler, Moore, Lee, Trent, Staudt, Hudson, Boguski (bib15) 1999; 283
Jones, Kazlauskas (bib16) 2001; 3
Dolznig, Grebien, Sauer, Beug, Müllner (bib7) 2004; 6
Hallstrom, Mori, Nevins (bib9) 2008; 13
Pardee (bib26) 1989; 246
Meyer, Penn (bib23) 2008; 8
Yamamoto, Ebisuya, Ashida, Okamoto, Yonehara, Nishida (bib37) 2006; 16
Stull, Rowzee, Loladze, Wood (bib34) 2004; 9
Mounawar, Mukeria, Le Calvez, Hung, Renard, Cortot, Bollart, Zaridze, Brennan, Boffetta (bib24) 2007; 67
Jones, Klinghoffer, Prestwich, Toker, Kazlauskas (bib17) 1999; 9
Kumar, Marqués, Carrera (bib19) 2006; 26
Guo, Hildebrandt, Prins, Soto, Mazzotta, Dang, Czernin, Shyy, Watson, Phelps (bib8) 2009; 106
Hirsch (10.1016/j.molcel.2011.04.017_bib11) 2010; 17
Tzur (10.1016/j.molcel.2011.04.017_bib35) 2009; 325
Mounawar (10.1016/j.molcel.2011.04.017_bib24) 2007; 67
Meloche (10.1016/j.molcel.2011.04.017_bib22) 1992; 6
Yao (10.1016/j.molcel.2011.04.017_bib38) 2008; 10
Band (10.1016/j.molcel.2011.04.017_bib3) 1989; 86
Leung (10.1016/j.molcel.2011.04.017_bib20) 2008; 27
Guo (10.1016/j.molcel.2011.04.017_bib8) 2009; 106
Hallstrom (10.1016/j.molcel.2011.04.017_bib9) 2008; 13
Ballman (10.1016/j.molcel.2011.04.017_bib2) 2004; 20
Dennis (10.1016/j.molcel.2011.04.017_bib6) 2003; 4
Dolznig (10.1016/j.molcel.2011.04.017_bib7) 2004; 6
Huang da (10.1016/j.molcel.2011.04.017_bib13) 2009; 37
Meyer (10.1016/j.molcel.2011.04.017_bib23) 2008; 8
Stampfer (10.1016/j.molcel.2011.04.017_bib32) 1993; 208
Pardee (10.1016/j.molcel.2011.04.017_bib26) 1989; 246
Stiles (10.1016/j.molcel.2011.04.017_bib33) 1979; 99
Sabbatini (10.1016/j.molcel.2011.04.017_bib30) 1999; 274
Yamamoto (10.1016/j.molcel.2011.04.017_bib37) 2006; 16
Zeisel (10.1016/j.molcel.2011.04.017_bib39) 2010; 11
Iyer (10.1016/j.molcel.2011.04.017_bib15) 1999; 283
Huang (10.1016/j.molcel.2011.04.017_bib12) 1996; 13
Huether (10.1016/j.molcel.2011.04.017_bib14) 2005; 70
Zindy (10.1016/j.molcel.2011.04.017_bib40) 1998; 12
Kazlauskas (10.1016/j.molcel.2011.04.017_bib18) 2005; 23
Kumar (10.1016/j.molcel.2011.04.017_bib19) 2006; 26
Yamaguchi (10.1016/j.molcel.2011.04.017_bib36) 2001; 276
Chen (10.1016/j.molcel.2011.04.017_bib5) 2009; 9
Sa (10.1016/j.molcel.2011.04.017_bib29) 2004; 300
Sah (10.1016/j.molcel.2011.04.017_bib31) 2002; 277
Pledger (10.1016/j.molcel.2011.04.017_bib28) 1977; 74
Jones (10.1016/j.molcel.2011.04.017_bib17) 1999; 9
Planas-Silva (10.1016/j.molcel.2011.04.017_bib27) 1997; 9
Hammond (10.1016/j.molcel.2011.04.017_bib10) 1984; 81
Jones (10.1016/j.molcel.2011.04.017_bib16) 2001; 3
Stull (10.1016/j.molcel.2011.04.017_bib34) 2004; 9
Carpenter (10.1016/j.molcel.2011.04.017_bib4) 2006; 7
Amit (10.1016/j.molcel.2011.04.017_bib1) 2007; 39
Loewer (10.1016/j.molcel.2011.04.017_bib21) 2010; 142
Pardee (10.1016/j.molcel.2011.04.017_bib25) 1974; 71
21596307 - Mol Cell. 2011 May 20;42(4):411-2. doi: 10.1016/j.molcel.2011.05.001.
References_xml – volume: 39
  start-page: 503
  year: 2007
  end-page: 512
  ident: bib1
  article-title: A module of negative feedback regulators defines growth factor signaling
  publication-title: Nat. Genet.
– volume: 70
  start-page: 1568
  year: 2005
  end-page: 1578
  ident: bib14
  article-title: EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer
  publication-title: Biochem. Pharmacol.
– volume: 13
  start-page: 625
  year: 1996
  end-page: 632
  ident: bib12
  article-title: Distinct p53-mediated G1/S checkpoint responses in two NIH3T3 subclone cells following treatment with DNA-damaging agents
  publication-title: Oncogene
– volume: 9
  start-page: 15
  year: 2004
  end-page: 26
  ident: bib34
  article-title: Growth factor regulation of cell cycle progression in mammary epithelial cells
  publication-title: J. Mammary Gland Biol. Neoplasia
– volume: 67
  start-page: 5667
  year: 2007
  end-page: 5672
  ident: bib24
  article-title: Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history
  publication-title: Cancer Res.
– volume: 99
  start-page: 395
  year: 1979
  end-page: 405
  ident: bib33
  article-title: Control of the Balb/c-3T3 cell cycle by nutrients and serum factors: analysis using platelet-derived growth factor and platelet-poor plasma
  publication-title: J. Cell. Physiol.
– volume: 6
  start-page: 899
  year: 2004
  end-page: 905
  ident: bib7
  article-title: Evidence for a size-sensing mechanism in animal cells
  publication-title: Nat. Cell Biol.
– volume: 37
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib13
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 768
  year: 1997
  end-page: 772
  ident: bib27
  article-title: The restriction point and control of cell proliferation
  publication-title: Curr. Opin. Cell Biol.
– volume: 81
  start-page: 5435
  year: 1984
  end-page: 5439
  ident: bib10
  article-title: Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 9116
  year: 2006
  end-page: 9125
  ident: bib19
  article-title: Phosphoinositide 3-kinase activation in late G1 is required for c-Myc stabilization and S phase entry
  publication-title: Mol. Cell. Biol.
– volume: 325
  start-page: 167
  year: 2009
  end-page: 171
  ident: bib35
  article-title: Cell growth and size homeostasis in proliferating animal cells
  publication-title: Science
– volume: 106
  start-page: 12932
  year: 2009
  end-page: 12937
  ident: bib8
  article-title: The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 785
  year: 2009
  end-page: 797
  ident: bib5
  article-title: Emerging roles of E2Fs in cancer: an exit from cell cycle control
  publication-title: Nat. Rev. Cancer
– volume: 276
  start-page: 5256
  year: 2001
  end-page: 5264
  ident: bib36
  article-title: Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 4172
  year: 2008
  end-page: 4179
  ident: bib20
  article-title: A role for Myc in facilitating transcription activation by E2F1
  publication-title: Oncogene
– volume: 20
  start-page: 2778
  year: 2004
  end-page: 2786
  ident: bib2
  article-title: Faster cyclic loess: normalizing RNA arrays via linear models
  publication-title: Bioinformatics
– volume: 11
  start-page: 400
  year: 2010
  ident: bib39
  article-title: Intensity dependent estimation of noise in microarrays improves detection of differentially expressed genes
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 476
  year: 2008
  end-page: 482
  ident: bib38
  article-title: A bistable Rb-E2F switch underlies the restriction point
  publication-title: Nat. Cell Biol.
– volume: 23
  start-page: 203
  year: 2005
  end-page: 210
  ident: bib18
  article-title: The priming/completion paradigm to explain growth factor-dependent cell cycle progression
  publication-title: Growth Factors
– volume: 246
  start-page: 603
  year: 1989
  end-page: 608
  ident: bib26
  article-title: G1 events and regulation of cell proliferation
  publication-title: Science
– volume: 8
  start-page: 976
  year: 2008
  end-page: 990
  ident: bib23
  article-title: Reflecting on 25 years with MYC
  publication-title: Nat. Rev. Cancer
– volume: 17
  start-page: 348
  year: 2010
  end-page: 361
  ident: bib11
  article-title: A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases
  publication-title: Cancer Cell
– volume: 7
  start-page: R100
  year: 2006
  ident: bib4
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
– volume: 300
  start-page: 427
  year: 2004
  end-page: 439
  ident: bib29
  article-title: P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase
  publication-title: Exp. Cell Res.
– volume: 74
  start-page: 4481
  year: 1977
  end-page: 4485
  ident: bib28
  article-title: Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 283
  start-page: 83
  year: 1999
  end-page: 87
  ident: bib15
  article-title: The transcriptional program in the response of human fibroblasts to serum
  publication-title: Science
– volume: 6
  start-page: 845
  year: 1992
  end-page: 854
  ident: bib22
  article-title: Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity
  publication-title: Mol. Endocrinol.
– volume: 142
  start-page: 89
  year: 2010
  end-page: 100
  ident: bib21
  article-title: Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells
  publication-title: Cell
– volume: 208
  start-page: 175
  year: 1993
  end-page: 188
  ident: bib32
  article-title: Blockage of EGF receptor signal transduction causes reversible arrest of normal and immortal human mammary epithelial cells with synchronous reentry into the cell cycle
  publication-title: Exp. Cell Res.
– volume: 71
  start-page: 1286
  year: 1974
  end-page: 1290
  ident: bib25
  article-title: A restriction point for control of normal animal cell proliferation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 1171
  year: 2006
  end-page: 1182
  ident: bib37
  article-title: Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression
  publication-title: Curr. Biol.
– volume: 86
  start-page: 1249
  year: 1989
  end-page: 1253
  ident: bib3
  article-title: Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 165
  year: 2001
  end-page: 172
  ident: bib16
  article-title: Growth-factor-dependent mitogenesis requires two distinct phases of signalling
  publication-title: Nat. Cell Biol.
– volume: 9
  start-page: 512
  year: 1999
  end-page: 521
  ident: bib17
  article-title: PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1
  publication-title: Curr. Biol.
– volume: 277
  start-page: 9728
  year: 2002
  end-page: 9735
  ident: bib31
  article-title: Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 24263
  year: 1999
  end-page: 24269
  ident: bib30
  article-title: Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 2424
  year: 1998
  end-page: 2433
  ident: bib40
  article-title: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization
  publication-title: Genes Dev.
– volume: 4
  start-page: 3
  year: 2003
  ident: bib6
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol.
– volume: 13
  start-page: 11
  year: 2008
  end-page: 22
  ident: bib9
  article-title: An E2F1-dependent gene expression program that determines the balance between proliferation and cell death
  publication-title: Cancer Cell
– volume: 9
  start-page: 512
  year: 1999
  ident: 10.1016/j.molcel.2011.04.017_bib17
  article-title: PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80235-8
– volume: 10
  start-page: 476
  year: 2008
  ident: 10.1016/j.molcel.2011.04.017_bib38
  article-title: A bistable Rb-E2F switch underlies the restriction point
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1711
– volume: 246
  start-page: 603
  year: 1989
  ident: 10.1016/j.molcel.2011.04.017_bib26
  article-title: G1 events and regulation of cell proliferation
  publication-title: Science
  doi: 10.1126/science.2683075
– volume: 276
  start-page: 5256
  year: 2001
  ident: 10.1016/j.molcel.2011.04.017_bib36
  article-title: Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M008552200
– volume: 106
  start-page: 12932
  year: 2009
  ident: 10.1016/j.molcel.2011.04.017_bib8
  article-title: The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906606106
– volume: 283
  start-page: 83
  year: 1999
  ident: 10.1016/j.molcel.2011.04.017_bib15
  article-title: The transcriptional program in the response of human fibroblasts to serum
  publication-title: Science
  doi: 10.1126/science.283.5398.83
– volume: 37
  start-page: 1
  year: 2009
  ident: 10.1016/j.molcel.2011.04.017_bib13
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn923
– volume: 86
  start-page: 1249
  year: 1989
  ident: 10.1016/j.molcel.2011.04.017_bib3
  article-title: Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.4.1249
– volume: 325
  start-page: 167
  year: 2009
  ident: 10.1016/j.molcel.2011.04.017_bib35
  article-title: Cell growth and size homeostasis in proliferating animal cells
  publication-title: Science
  doi: 10.1126/science.1174294
– volume: 9
  start-page: 768
  year: 1997
  ident: 10.1016/j.molcel.2011.04.017_bib27
  article-title: The restriction point and control of cell proliferation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(97)80076-2
– volume: 208
  start-page: 175
  year: 1993
  ident: 10.1016/j.molcel.2011.04.017_bib32
  article-title: Blockage of EGF receptor signal transduction causes reversible arrest of normal and immortal human mammary epithelial cells with synchronous reentry into the cell cycle
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1993.1236
– volume: 9
  start-page: 15
  year: 2004
  ident: 10.1016/j.molcel.2011.04.017_bib34
  article-title: Growth factor regulation of cell cycle progression in mammary epithelial cells
  publication-title: J. Mammary Gland Biol. Neoplasia
  doi: 10.1023/B:JOMG.0000023585.95430.f4
– volume: 9
  start-page: 785
  year: 2009
  ident: 10.1016/j.molcel.2011.04.017_bib5
  article-title: Emerging roles of E2Fs in cancer: an exit from cell cycle control
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2696
– volume: 277
  start-page: 9728
  year: 2002
  ident: 10.1016/j.molcel.2011.04.017_bib31
  article-title: Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110897200
– volume: 13
  start-page: 625
  year: 1996
  ident: 10.1016/j.molcel.2011.04.017_bib12
  article-title: Distinct p53-mediated G1/S checkpoint responses in two NIH3T3 subclone cells following treatment with DNA-damaging agents
  publication-title: Oncogene
– volume: 23
  start-page: 203
  year: 2005
  ident: 10.1016/j.molcel.2011.04.017_bib18
  article-title: The priming/completion paradigm to explain growth factor-dependent cell cycle progression
  publication-title: Growth Factors
  doi: 10.1080/08977190500096020
– volume: 99
  start-page: 395
  year: 1979
  ident: 10.1016/j.molcel.2011.04.017_bib33
  article-title: Control of the Balb/c-3T3 cell cycle by nutrients and serum factors: analysis using platelet-derived growth factor and platelet-poor plasma
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1040990314
– volume: 4
  start-page: 3
  year: 2003
  ident: 10.1016/j.molcel.2011.04.017_bib6
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-5-p3
– volume: 8
  start-page: 976
  year: 2008
  ident: 10.1016/j.molcel.2011.04.017_bib23
  article-title: Reflecting on 25 years with MYC
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2231
– volume: 300
  start-page: 427
  year: 2004
  ident: 10.1016/j.molcel.2011.04.017_bib29
  article-title: P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.07.032
– volume: 70
  start-page: 1568
  year: 2005
  ident: 10.1016/j.molcel.2011.04.017_bib14
  article-title: EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2005.09.007
– volume: 13
  start-page: 11
  year: 2008
  ident: 10.1016/j.molcel.2011.04.017_bib9
  article-title: An E2F1-dependent gene expression program that determines the balance between proliferation and cell death
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.11.031
– volume: 81
  start-page: 5435
  year: 1984
  ident: 10.1016/j.molcel.2011.04.017_bib10
  article-title: Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.17.5435
– volume: 142
  start-page: 89
  year: 2010
  ident: 10.1016/j.molcel.2011.04.017_bib21
  article-title: Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.031
– volume: 6
  start-page: 845
  year: 1992
  ident: 10.1016/j.molcel.2011.04.017_bib22
  article-title: Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity
  publication-title: Mol. Endocrinol.
– volume: 7
  start-page: R100
  year: 2006
  ident: 10.1016/j.molcel.2011.04.017_bib4
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-10-r100
– volume: 11
  start-page: 400
  year: 2010
  ident: 10.1016/j.molcel.2011.04.017_bib39
  article-title: Intensity dependent estimation of noise in microarrays improves detection of differentially expressed genes
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-400
– volume: 16
  start-page: 1171
  year: 2006
  ident: 10.1016/j.molcel.2011.04.017_bib37
  article-title: Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.04.044
– volume: 12
  start-page: 2424
  year: 1998
  ident: 10.1016/j.molcel.2011.04.017_bib40
  article-title: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.15.2424
– volume: 27
  start-page: 4172
  year: 2008
  ident: 10.1016/j.molcel.2011.04.017_bib20
  article-title: A role for Myc in facilitating transcription activation by E2F1
  publication-title: Oncogene
  doi: 10.1038/onc.2008.55
– volume: 26
  start-page: 9116
  year: 2006
  ident: 10.1016/j.molcel.2011.04.017_bib19
  article-title: Phosphoinositide 3-kinase activation in late G1 is required for c-Myc stabilization and S phase entry
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00783-06
– volume: 71
  start-page: 1286
  year: 1974
  ident: 10.1016/j.molcel.2011.04.017_bib25
  article-title: A restriction point for control of normal animal cell proliferation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.71.4.1286
– volume: 3
  start-page: 165
  year: 2001
  ident: 10.1016/j.molcel.2011.04.017_bib16
  article-title: Growth-factor-dependent mitogenesis requires two distinct phases of signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35055073
– volume: 74
  start-page: 4481
  year: 1977
  ident: 10.1016/j.molcel.2011.04.017_bib28
  article-title: Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.74.10.4481
– volume: 20
  start-page: 2778
  year: 2004
  ident: 10.1016/j.molcel.2011.04.017_bib2
  article-title: Faster cyclic loess: normalizing RNA arrays via linear models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth327
– volume: 6
  start-page: 899
  year: 2004
  ident: 10.1016/j.molcel.2011.04.017_bib7
  article-title: Evidence for a size-sensing mechanism in animal cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1166
– volume: 274
  start-page: 24263
  year: 1999
  ident: 10.1016/j.molcel.2011.04.017_bib30
  article-title: Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.34.24263
– volume: 17
  start-page: 348
  year: 2010
  ident: 10.1016/j.molcel.2011.04.017_bib11
  article-title: A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.01.022
– volume: 39
  start-page: 503
  year: 2007
  ident: 10.1016/j.molcel.2011.04.017_bib1
  article-title: A module of negative feedback regulators defines growth factor signaling
  publication-title: Nat. Genet.
  doi: 10.1038/ng1987
– volume: 67
  start-page: 5667
  year: 2007
  ident: 10.1016/j.molcel.2011.04.017_bib24
  article-title: Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4229
– reference: 21596307 - Mol Cell. 2011 May 20;42(4):411-2. doi: 10.1016/j.molcel.2011.05.001.
SSID ssj0014589
Score 2.3522038
Snippet Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by...
Normal cells require continuous exposure to growth factors, in order to cross a restriction point and commit to cell cycle progression. This can be replaced by...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 524
SubjectTerms 1-Phosphatidylinositol 3-kinase
Breast - cytology
Breast - drug effects
Cell Line
enzymes
Epidermal Growth Factor - pharmacology
Epidermal Growth Factor - physiology
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Female
Gene Expression Profiling
growth factors
Humans
interphase
Mitosis - genetics
Phosphatidylinositol 3-Kinases - metabolism
Proteomics
Proto-Oncogene Proteins c-akt - metabolism
Repressor Proteins - metabolism
Signal Transduction
Transcription, Genetic
transcriptomics
Tumor Suppressor Protein p53 - metabolism
Title Two Phases of Mitogenic Signaling Unveil Roles for p53 and EGR1 in Elimination of Inconsistent Growth Signals
URI https://dx.doi.org/10.1016/j.molcel.2011.04.017
https://www.ncbi.nlm.nih.gov/pubmed/21596316
https://www.proquest.com/docview/2000024458
https://www.proquest.com/docview/868026928
https://www.proquest.com/docview/907161307
https://pubmed.ncbi.nlm.nih.gov/PMC3100487
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZdYdCXsa1bm24rKuxVi23JsvW4lbRl0DGaBvImZFtKXFw5NO7G_vvd-UdYSrfCXuOzcXSn03e-u-8I-QiKLKSSEVNpIZgIc8WUzXKWChumqVG5akmSLr_Ji5n4Oo_nO-R06IXBssre93c-vfXW_S_jfjXHq7IcTzF3GiUyRtIzHnGk3cauUmzim3_ZZBJE3I7BQ2GG0kP7XFvjdVtXua16Ik_xKWjHlj16PD1zpn4MhD6spfzjcDp7SV70qJJ-7l78Fdmx_jV53s2Z_LVPbq9_1vT7Eg6sNa0dvYRdDHZT5nRaLhCI-wWd-R-2rOgV8jtRALJ0FXNqfEEn51chLT2dVO38L9QjPgP8CpbWgo34hp5DLN8s-6et35DZ2eT69IL1cxZYDvilYRnABgu4DpPDNoycyWRecIAWCQR_xiXGYnssXAGdCiuLQjkjZOiE4FkWy4K_Jbu-9vaQ0MBkNnQuCiw3ghfWpCawBmBH7JJYGTkifFhenfck5DgLo9JDtdmN7pSiUSk6EBqUMiJsc9eqI-F4Qj4ZNKe3jEnDOfHEnYegaG0W4GH1bBoh_15Hg5eOyMmgfQ1bEPMqxtv6fo2TPBHqgKWNCP2LTCpTiHZV9A8RBWgPozl4iYPOpjZ_FnAZOMoQli_ZsraNAJKEb1_x5bIlC8cEDgSlR_-9JO_IXvcdPQaP-p7sNnf39gMAsSY7bnfab911L0M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQviM-tfBqJ19Akdpz4EaZuHawTWlupb5aT2G1Q5lQ0A_Hfc5ePiqLBJF6Tc5T4zuff5c6_I-QdKDIXUoSeTHLu8SCTnjRp5iXcBEmiZSYbkqTJhRjP-adFtNgjx_1ZGCyr7Hx_69Mbb91dGXazOVwXxXCKudMwFhGSnrGQiX1yB9CAj6Z9tvi4TSXwqOmDh9Ieivfn55oir6uqzEzZMXny937Tt-zG_Wnf6uomFPpnMeVvu9PJQ_Kgg5X0Q_vmj8iecY_J3bbR5M8n5Gr2o6JfVrBjbWhl6QSWMRhOkdFpsUQk7pZ07r6boqSXSPBEAcnSdcSodjkdnV4GtHB0VDYNwFCR-AxwLFhbC0bianoKwXy96p62eUrmJ6PZ8djrGi14GQCY2ksBNxgAdpgdNkFodSqynAG2iCH60zbWBs_Hwh1QKjciz6XVXASWc5amkcjZM3LgKmeOCPV1agJrQ98wzVludKJ9owF3RDaOpBYDwvrpVVnHQo7NMErVl5t9Va1SFCpF-VyBUgbE245atywct8jHvebUjjUp2ChuGXkEilZ6CS5WzachEvC1PHjJgLztta9gDWJiRTtTXW-wlSdiHbC0AaF_kUlEAuGuDP8hIgHuYTgHL3HY2tT2YwGYgacMYPriHWvbCiBL-O4dV6watnDM4EBU-vy_p-QNuTeeTc7V-dnF5xfkfvtTPQL3-pIc1N-uzStAZXX6ull1vwAf9DJm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Phases+of+Mitogenic+Signaling+Unveil+Roles+for+p53+and+EGR1+in+Elimination+of+Inconsistent+Growth+Signals&rft.jtitle=Molecular+cell&rft.au=Zwang%2C+Yaara&rft.au=Sas-Chen%2C+Aldema&rft.au=Drier%2C+Yotam&rft.au=Shay%2C+Tal&rft.date=2011-05-20&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=42&rft.issue=4&rft.spage=524&rft.epage=535&rft_id=info:doi/10.1016%2Fj.molcel.2011.04.017&rft.externalDocID=S1097276511003236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon