Erosion of Dosage Compensation Impacts Human iPSC Disease Modeling

Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the so...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 10; no. 5; pp. 595 - 609
Main Authors Mekhoubad, Shila, Bock, Christoph, de Boer, A. Sophie, Kiskinis, Evangelos, Meissner, Alexander, Eggan, Kevin
Format Journal Article
LanguageEnglish
Published Cambridge, MA Elsevier Inc 04.05.2012
Cell Press
Subjects
Online AccessGet full text
ISSN1934-5909
1875-9777
1875-9777
DOI10.1016/j.stem.2012.02.014

Cover

Abstract Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an “erosion” of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease. [Display omitted] ► hiPSCs can produce a robust model for the study of Lesch-Nyhan syndrome (LNS) ► Female hiPSCs undergo transcriptional derepression of the inactive X (Xi) ► As derepression of Xi occurs, the LNS phenotype in female carrier lines is lost ► Erosion of dosage compensation effects most X-linked loci in female hiPSC and hESC lines
AbstractList Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear if such variability impacts their utility for disease modeling. Here, we show that although low passage female hiPSCs retain the inactive X-chromosome of the somatic cell they are derived from, over time in culture they undergo an “erosion” of X-chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional de-repression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are de-repressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease.
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an "erosion" of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease.
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an aerosiona of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease.
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an “erosion” of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease. [Display omitted] ► hiPSCs can produce a robust model for the study of Lesch-Nyhan syndrome (LNS) ► Female hiPSCs undergo transcriptional derepression of the inactive X (Xi) ► As derepression of Xi occurs, the LNS phenotype in female carrier lines is lost ► Erosion of dosage compensation effects most X-linked loci in female hiPSC and hESC lines
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an "erosion" of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease.Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability impacts their utility for disease modeling. Here, we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from, over time in culture they undergo an "erosion" of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation, as well as transcriptional derepression of genes on the inactive X that cannot be reversed by either differentiation or further reprogramming. We specifically demonstrate that erosion of XCI has a significant impact on the use of female hiPSCs for modeling Lesch-Nyhan syndrome. However, our finding that most genes subject to XCI are derepressed by this erosion of XCI suggests that it should be a significant consideration when selecting hiPSC lines for modeling any disease.
Author Mekhoubad, Shila
Kiskinis, Evangelos
de Boer, A. Sophie
Bock, Christoph
Meissner, Alexander
Eggan, Kevin
AuthorAffiliation 6 Department of Anatomy & Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
5 Max Planck Institute for Informatics, 66123 Saarbrucken, Germany
3 Department of Molecular and Cellular Biology Harvard University, Cambridge, MA 02138, USA
4 The Broad Institute, Cambridge, MA 02142, USA
1 The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology
2 The Howard Hughes Medical Institute
AuthorAffiliation_xml – name: 3 Department of Molecular and Cellular Biology Harvard University, Cambridge, MA 02138, USA
– name: 4 The Broad Institute, Cambridge, MA 02142, USA
– name: 5 Max Planck Institute for Informatics, 66123 Saarbrucken, Germany
– name: 1 The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology
– name: 6 Department of Anatomy & Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
– name: 2 The Howard Hughes Medical Institute
Author_xml – sequence: 1
  givenname: Shila
  surname: Mekhoubad
  fullname: Mekhoubad, Shila
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: Christoph
  surname: Bock
  fullname: Bock, Christoph
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 3
  givenname: A. Sophie
  surname: de Boer
  fullname: de Boer, A. Sophie
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Evangelos
  surname: Kiskinis
  fullname: Kiskinis, Evangelos
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 5
  givenname: Alexander
  surname: Meissner
  fullname: Meissner, Alexander
  email: alexander_meissner@harvard.edu
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 6
  givenname: Kevin
  surname: Eggan
  fullname: Eggan, Kevin
  email: keggan@scrb.harvard.edu
  organization: The Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25913721$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22560080$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2LFDEQDbLifugf8CB9Ebz0WJV0km4QQWdXd2FFQT2HdLp6zNCdjJ2eBf-9GWfWr8MqFKSovPcqlVen7CjEQIw9RlggoHq-XqSZxgUH5AvIgdU9doK1lmWjtT7KeSOqUjbQHLPTlNYAUiPoB-yYc6kAajhhry-mmHwMReyL85jsioplHDcUkp135atxY92cisvtaEPhP3xcFuc-kU1UvIsdDT6sHrL7vR0SPTqcZ-zzm4tPy8vy-v3bq-Wr69Ip1HPZoOs73va6E5WTSoHkrURd98q1Lqey66wgqPpO1wpUXXMOwNE6IRHalsQZe7nX3WzbkTpHYZ7sYDaTH-30zUTrzZ83wX8xq3hjhAKRB88Czw4CU_y6pTSb0SdHw2ADxW0yqIWQVa2k-jcURFVD_t7_gSLKCgVihj75fYKfT7-1IwOeHgA2OTv0kw3Op1842aDQfCdU73Euu5cm6o3z8w_D8uB-yD13bZVZm92GmN2GGMiBVabyv6i36neSXuxJlP298TSZ5DwFR52fyM2mi_4u-nd1otKv
CitedBy_id crossref_primary_10_1038_ncomms8095
crossref_primary_10_1073_pnas_1520113113
crossref_primary_10_1080_21678707_2019_1652597
crossref_primary_10_1002_bies_201700239
crossref_primary_10_1093_hmg_ddz218
crossref_primary_10_1111_cpr_13468
crossref_primary_10_1016_j_celrep_2014_08_014
crossref_primary_10_3389_fcell_2021_801597
crossref_primary_10_1016_j_molmed_2012_06_002
crossref_primary_10_1016_j_stemcr_2018_03_019
crossref_primary_10_1038_s41467_020_15271_3
crossref_primary_10_1016_j_smim_2022_101651
crossref_primary_10_1016_j_stem_2013_09_001
crossref_primary_10_1016_j_bbagen_2012_10_014
crossref_primary_10_1038_s41467_017_02107_w
crossref_primary_10_1016_j_stemcr_2017_01_010
crossref_primary_10_1038_nature12745
crossref_primary_10_1016_j_celrep_2023_112379
crossref_primary_10_1093_pnasnexus_pgae060
crossref_primary_10_1016_j_semcdb_2016_03_009
crossref_primary_10_1016_j_stemcr_2022_12_005
crossref_primary_10_1126_sciadv_adg1936
crossref_primary_10_1016_j_neuron_2013_05_029
crossref_primary_10_1073_pnas_2218478120
crossref_primary_10_3389_fnmol_2016_00078
crossref_primary_10_1038_s41380_018_0029_1
crossref_primary_10_1089_scd_2018_0081
crossref_primary_10_1016_j_phrs_2017_04_027
crossref_primary_10_1016_j_cell_2013_02_043
crossref_primary_10_1089_scd_2013_0576
crossref_primary_10_1016_j_gde_2017_07_006
crossref_primary_10_1016_j_gde_2014_09_010
crossref_primary_10_1016_j_gde_2023_102096
crossref_primary_10_1016_j_stemcr_2017_05_029
crossref_primary_10_1007_s11910_015_0588_3
crossref_primary_10_1007_s12015_014_9505_4
crossref_primary_10_1371_journal_pgen_1006979
crossref_primary_10_1016_j_gde_2017_07_004
crossref_primary_10_1038_ncomms12354
crossref_primary_10_1016_j_ddstr_2012_08_001
crossref_primary_10_1182_blood_2018_07_861427
crossref_primary_10_1016_j_nbd_2018_03_009
crossref_primary_10_1186_s12929_019_0578_x
crossref_primary_10_1016_j_nbd_2018_03_008
crossref_primary_10_1016_j_celrep_2019_03_019
crossref_primary_10_1111_jcmm_14124
crossref_primary_10_1186_s11689_016_9155_8
crossref_primary_10_1177_1535370214538588
crossref_primary_10_1038_labinvest_2017_87
crossref_primary_10_1016_j_semcdb_2016_01_044
crossref_primary_10_1172_JCI75714
crossref_primary_10_1016_j_tins_2022_05_001
crossref_primary_10_1089_scd_2015_0342
crossref_primary_10_1016_j_jacbts_2022_11_007
crossref_primary_10_1016_j_actbio_2016_08_043
crossref_primary_10_1016_j_neuron_2017_01_033
crossref_primary_10_2492_inflammregen_32_171
crossref_primary_10_1016_j_stemcr_2021_07_015
crossref_primary_10_3390_genes10020176
crossref_primary_10_1016_j_yjmcc_2017_11_019
crossref_primary_10_1016_j_stemcr_2020_01_012
crossref_primary_10_1177_1535370215577585
crossref_primary_10_1016_j_ydbio_2012_08_009
crossref_primary_10_1089_cell_2012_0093
crossref_primary_10_1242_dev_086165
crossref_primary_10_1016_j_yexcr_2019_111645
crossref_primary_10_1002_bies_201200088
crossref_primary_10_1016_j_stem_2015_03_016
crossref_primary_10_1038_nrneurol_2017_45
crossref_primary_10_1016_j_nsa_2023_101125
crossref_primary_10_1089_scd_2019_0217
crossref_primary_10_1098_rstb_2016_0358
crossref_primary_10_4137_BMI_S20066
crossref_primary_10_1016_j_preteyeres_2024_101248
crossref_primary_10_1186_s41702_017_0004_5
crossref_primary_10_1126_sciadv_adj8862
crossref_primary_10_1002_term_2435
crossref_primary_10_1038_s41568_018_0095_3
crossref_primary_10_1016_j_stemcr_2014_04_003
crossref_primary_10_18632_oncotarget_25353
crossref_primary_10_3390_jcm8030288
crossref_primary_10_3389_fncel_2024_1339345
crossref_primary_10_1016_j_nbd_2015_01_001
crossref_primary_10_1242_dev_183095
crossref_primary_10_3390_genes11070765
crossref_primary_10_1262_jrd_2019_137
crossref_primary_10_1186_1471_2164_14_773
crossref_primary_10_3390_biomedicines11051261
crossref_primary_10_1016_j_ydbio_2016_04_001
crossref_primary_10_1002_jcb_24597
crossref_primary_10_1016_j_bbrc_2023_01_077
crossref_primary_10_1038_ncomms3174
crossref_primary_10_1126_scitranslmed_add4666
crossref_primary_10_1186_s13059_024_03286_8
crossref_primary_10_1186_s13229_020_00322_9
crossref_primary_10_1016_j_stem_2020_06_002
crossref_primary_10_1242_dev_146811
crossref_primary_10_1016_j_biopsych_2015_03_012
crossref_primary_10_1038_s41467_022_33013_5
crossref_primary_10_4161_rna_29779
crossref_primary_10_1159_000449296
crossref_primary_10_1016_j_ceb_2015_10_006
crossref_primary_10_1186_scrt154
crossref_primary_10_1038_nmeth_3507
crossref_primary_10_1186_s13059_016_1136_4
crossref_primary_10_5966_sctm_2012_0149
crossref_primary_10_1002_dneu_22150
crossref_primary_10_3390_cells12040538
crossref_primary_10_1016_j_stem_2012_06_012
crossref_primary_10_1126_science_abd8887
crossref_primary_10_1371_journal_pgen_1007050
crossref_primary_10_1016_j_molcel_2020_05_016
crossref_primary_10_1016_j_mcn_2015_11_009
crossref_primary_10_1016_j_stem_2014_05_014
crossref_primary_10_15252_embj_2022112962
crossref_primary_10_1038_srep37540
crossref_primary_10_7554_eLife_57390
crossref_primary_10_1016_j_stem_2016_10_006
crossref_primary_10_3390_ijms160920873
crossref_primary_10_1186_s13069_015_0026_9
crossref_primary_10_1007_s00417_013_2326_3
crossref_primary_10_15252_embj_2018101033
crossref_primary_10_1016_j_omtn_2024_102382
crossref_primary_10_1016_j_cell_2013_01_034
crossref_primary_10_1016_j_celrep_2016_11_054
crossref_primary_10_3390_cells10092400
crossref_primary_10_1093_brain_aww357
crossref_primary_10_5966_sctm_2014_0133
crossref_primary_10_1016_j_semcdb_2016_05_003
crossref_primary_10_3389_fcell_2020_00328
crossref_primary_10_1242_dev_110767
crossref_primary_10_1016_j_preteyeres_2013_09_002
crossref_primary_10_1002_stem_1180
crossref_primary_10_1038_s41586_024_08487_6
crossref_primary_10_1016_j_nbt_2014_05_001
crossref_primary_10_1016_j_stem_2012_02_013
crossref_primary_10_1371_journal_pone_0123467
crossref_primary_10_1016_j_stemcr_2013_03_005
crossref_primary_10_1016_j_stem_2016_10_014
crossref_primary_10_1002_advs_202410533
crossref_primary_10_1038_s44222_024_00219_9
crossref_primary_10_1242_dev_189217
crossref_primary_10_1093_humupd_dmx015
crossref_primary_10_1016_j_jmb_2017_03_013
crossref_primary_10_1186_s13229_019_0306_0
crossref_primary_10_3390_cells11030535
crossref_primary_10_1093_hmg_ddt500
crossref_primary_10_1016_j_stem_2013_07_001
crossref_primary_10_1016_j_stem_2022_11_004
crossref_primary_10_1016_j_semcancer_2018_09_009
crossref_primary_10_1038_nrm_2015_28
crossref_primary_10_1089_scd_2013_0611
crossref_primary_10_1016_j_stemcr_2016_05_006
crossref_primary_10_1097_APO_0b013e318290e20c
crossref_primary_10_5966_sctm_2016_0037
crossref_primary_10_1038_s41598_017_07514_z
crossref_primary_10_1016_j_bpsgos_2024_100343
crossref_primary_10_1523_ENEURO_0129_22_2022
crossref_primary_10_3389_fcell_2021_748576
crossref_primary_10_1016_j_celrep_2021_109032
crossref_primary_10_1093_biolre_iox038
crossref_primary_10_1016_j_biotechadv_2018_08_002
crossref_primary_10_1038_nn_3425
crossref_primary_10_23868_gc120579
crossref_primary_10_1002_bies_201600121
crossref_primary_10_3390_cells11213511
crossref_primary_10_1038_nbt_2602
crossref_primary_10_1038_s41596_023_00898_5
crossref_primary_10_1007_s00018_020_03469_z
crossref_primary_10_1126_sciadv_adf2245
crossref_primary_10_1007_s13238_020_00773_z
crossref_primary_10_1007_s12015_019_9871_z
crossref_primary_10_1038_s41598_021_87955_9
crossref_primary_10_1002_wrna_1359
crossref_primary_10_1038_s41467_022_30259_x
crossref_primary_10_1038_s41598_019_42246_2
crossref_primary_10_1146_annurev_genom_091212_153530
crossref_primary_10_3390_cells9122706
crossref_primary_10_1016_j_gde_2012_07_004
crossref_primary_10_1002_stem_1992
crossref_primary_10_1098_rstb_2016_0363
crossref_primary_10_1016_j_expneurol_2012_09_017
crossref_primary_10_1089_scd_2014_0011
crossref_primary_10_1126_science_aaz6830
crossref_primary_10_1016_j_gde_2012_07_003
crossref_primary_10_1007_s11434_015_0919_4
crossref_primary_10_1212_WNL_0000000000001128
crossref_primary_10_1002_term_2158
crossref_primary_10_1093_molehr_gaw004
crossref_primary_10_1038_nrm3448
crossref_primary_10_1016_j_celrep_2014_07_013
crossref_primary_10_1038_srep09834
crossref_primary_10_1093_hmg_ddu008
crossref_primary_10_1093_humupd_dms048
crossref_primary_10_1016_j_stemcr_2014_12_012
crossref_primary_10_1242_dmm_042317
crossref_primary_10_1016_j_celrep_2021_109215
crossref_primary_10_1016_j_yjmcc_2018_07_246
crossref_primary_10_1089_scd_2016_0323
crossref_primary_10_1016_j_cell_2013_02_016
crossref_primary_10_2302_kjm_2016_0015_OA
crossref_primary_10_1016_j_stem_2012_05_019
crossref_primary_10_3389_fcell_2019_00076
crossref_primary_10_1007_s00018_016_2171_8
crossref_primary_10_3390_ijms25063214
crossref_primary_10_15252_embj_201591267
crossref_primary_10_1007_s00018_017_2703_x
crossref_primary_10_1038_ng_2530
crossref_primary_10_1016_j_crmeth_2022_100352
crossref_primary_10_1038_s41467_024_47758_8
crossref_primary_10_1089_scd_2015_0044
crossref_primary_10_3892_mmr_2017_6264
crossref_primary_10_1002_1873_3468_14709
crossref_primary_10_1016_j_gde_2017_06_009
crossref_primary_10_1016_j_stemcr_2017_06_012
crossref_primary_10_1126_scitranslmed_aaz2253
crossref_primary_10_1016_j_stem_2013_05_016
crossref_primary_10_1016_j_tcb_2018_05_005
crossref_primary_10_1038_nn_3944
crossref_primary_10_1016_j_nbd_2016_11_007
crossref_primary_10_1016_j_stemcr_2018_04_001
crossref_primary_10_1007_s12015_014_9507_2
crossref_primary_10_1016_j_celrep_2022_111942
crossref_primary_10_1016_j_stem_2013_06_006
crossref_primary_10_1152_physrev_00039_2017
crossref_primary_10_1038_s41398_022_02216_1
crossref_primary_10_12688_f1000research_12596_1
crossref_primary_10_15252_embj_2022110815
crossref_primary_10_1073_pnas_2211073119
crossref_primary_10_4161_cc_22575
crossref_primary_10_1002_cpsc_15
crossref_primary_10_1016_j_celrep_2013_06_026
crossref_primary_10_1016_j_neuron_2018_10_033
crossref_primary_10_2217_epi_13_80
crossref_primary_10_1038_s12276_022_00824_x
crossref_primary_10_1002_jcb_30164
crossref_primary_10_1155_2016_9451492
crossref_primary_10_1038_srep06432
crossref_primary_10_3390_jcm3041357
crossref_primary_10_1080_15384101_2015_1093712
crossref_primary_10_1016_j_celrep_2021_109222
crossref_primary_10_1126_scitranslmed_3009351
crossref_primary_10_1016_j_stem_2014_07_002
crossref_primary_10_1161_CIRCRESAHA_115_301517
crossref_primary_10_5966_sctm_2015_0030
crossref_primary_10_3390_ijms161226119
crossref_primary_10_1007_s00412_013_0433_x
crossref_primary_10_1093_cvr_cvaa125
crossref_primary_10_1016_j_celrep_2021_109909
crossref_primary_10_26508_lsa_202402842
crossref_primary_10_1089_cell_2020_0012
crossref_primary_10_1126_science_1227682
Cites_doi 10.1016/j.stem.2012.02.013
10.1083/jcb.153.4.773
10.1073/pnas.1004584107
10.1016/j.cell.2007.11.019
10.1016/j.stem.2009.06.008
10.1242/dmm.002543
10.1016/S0165-0173(99)00094-6
10.1016/j.stem.2010.06.024
10.1073/pnas.0712136105
10.1038/nature03479
10.1093/hmg/ddq072
10.1038/nbt1285
10.1002/9780470151808.sc01b06s12
10.1038/368154a0
10.1038/nature09805
10.1016/0022-510X(88)90099-8
10.1126/science.171.3972.689
10.1016/j.cell.2010.12.032
10.1038/mt.2009.178
10.1093/hmg/ddr093
10.1093/hmg/ddi345
10.1016/j.cell.2010.10.016
10.1016/j.stem.2011.06.004
10.1371/journal.pone.0011330
10.1038/sj.ejhg.5201994
10.1126/science.1158799
10.1093/hmg/5.10.1607
10.1073/pnas.1018979108
10.1016/j.cell.2010.04.010
10.1073/pnas.0712018105
10.1016/0149-7634(85)90043-0
10.1038/nbt.1783
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
8FD
FR3
H94
P64
7S9
L.6
5PM
DOI 10.1016/j.stem.2012.02.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AIDS and Cancer Research Abstracts
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 609
ExternalDocumentID PMC3603710
22560080
25913721
10_1016_j_stem_2012_02_014
S1934590912000732
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P01 GM099117
– fundername: NIEHS NIH HHS
  grantid: U01ES017155
– fundername: NICHD NIH HHS
  grantid: R01 HD046732
– fundername: NIEHS NIH HHS
  grantid: U01 ES017155
– fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: HD045732-03
– fundername: NIGMS NIH HHS
  grantid: P01GM099117
– fundername: National Institute of Child Health & Human Development : NICHD
  grantid: R01 HD046732 || HD
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: P01 GM099117 || GM
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
OZT
AGCQF
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
8FD
FR3
H94
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-c617t-91cfd2bf7d34c566052b5178f6cbc2b55dda3e04fd7860688220021ac3510bbe3
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Tue Sep 30 16:04:06 EDT 2025
Sat Sep 27 23:24:32 EDT 2025
Mon Sep 29 04:10:56 EDT 2025
Sat Sep 27 22:39:02 EDT 2025
Mon Jul 21 05:54:14 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Wed Oct 01 01:50:45 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
Fri Feb 23 02:30:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
Gene dosage
Dosage compensation
Modeling
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-91cfd2bf7d34c566052b5178f6cbc2b55dda3e04fd7860688220021ac3510bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590912000732
PMID 22560080
PQID 1011541311
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3603710
proquest_miscellaneous_1733548656
proquest_miscellaneous_1034809346
proquest_miscellaneous_1011541311
pubmed_primary_22560080
pascalfrancis_primary_25913721
crossref_citationtrail_10_1016_j_stem_2012_02_014
crossref_primary_10_1016_j_stem_2012_02_014
elsevier_sciencedirect_doi_10_1016_j_stem_2012_02_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-04
PublicationDateYYYYMMDD 2012-05-04
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-04
  day: 04
PublicationDecade 2010
PublicationPlace Cambridge, MA
PublicationPlace_xml – name: Cambridge, MA
– name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2012
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Baker, Harrison, Maltby, Smith, Moore, Shaw, Heath, Holden, Andrews (bib1) 2007; 25
Hanna, Cheng, Saha, Kim, Lengner, Soldner, Cassady, Muffat, Carey, Jaenisch (bib20) 2010; 107
Chin, Mason, Xie, Volinia, Singer, Peterson, Ambartsumyan, Aimiuwu, Richter, Zhang (bib8) 2009; 5
Erwin, Lee (bib16) 2010
Lengner, Gimelbrant, Erwin, Cheng, Guenther, Welstead, Alagappan, Frampton, Xu, Muffat (bib23) 2010; 141
Jinnah (bib21) 2009; 2
Shen, Matsuno, Fouse, Rao, Root, Xu, Pellegrini, Riggs, Fan (bib28) 2008; 105
Cheung, Horvath, Grafodatskaya, Pasceri, Weksberg, Hotta, Carrel, Ellis (bib7) 2011; 20
Pomp, Dreesen, Leong, Meller-Pomp, Tan, Zhou, Colman (bib27) 2011; 9
Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib30) 2007; 131
Marchetto, Carromeu, Acab, Yu, Yeo, Mu, Chen, Gage, Muotri (bib24) 2010; 143
Cristini, Navone, Canzi, Acerbi, Ciusani, Hladnik, de Gemmis, Alessandri, Colombo, Parati, Invernici (bib10) 2010; 19
Nazor, Altun, Lynch, Tran, Harness, Slavin, Garitaonandia, Müller, Wang, Boscolo (bib26) 2012; 10
Csankovszki, Nagy, Jaenisch (bib11) 2001; 153
Tchieu, Kuoy, Chin, Trinh, Patterson, Sherman, Aimiuwu, Lindgren, Hakimian, Zack (bib31) 2010; 7
Carrel, Willard (bib6) 2005; 434
Finger, Heavens, Sirinathsinghji, Kuehn, Dunnett (bib17) 1988; 86
Brown, Willard (bib5) 1994; 368
Kim, Hysolli, Park (bib22) 2011; 108
Silva, Rowntree, Mekhoubad, Lee (bib29) 2008; 105
Boulting, Kiskinis, Croft, Amoroso, Oakley, Wainger, Williams, Kahler, Yamaki, Davidow (bib4) 2011; 29
Visser, Bär, Jinnah (bib32) 2000; 32
Dvash, Lavon, Fan (bib13) 2010; 5
Enver, Soneji, Joshi, Brown, Iborra, Orntoft, Thykjaer, Maltby, Smith, Abu Dawud (bib15) 2005; 14
Chiurazzi, Schwartz, Gecz, Neri (bib9) 2008; 16
Dimos, Rodolfa, Niakan, Weisenthal, Mitsumoto, Chung, Croft, Saphier, Leibel, Goland (bib12) 2008; 321
Gore, Li, Fung, Young, Agarwal, Antosiewicz-Bourget, Canto, Giorgetti, Israel, Kiskinis (bib18) 2011; 471
Guibinga, Hsu, Friedmann (bib19) 2010; 18
Baumeister, Frye (bib2) 1985; 9
Engle, Womer, Davies, Boivin, Sahota, Simmonds, Stambrook, Tischfield (bib14) 1996; 5
Bock, Kiskinis, Verstappen, Gu, Boulting, Smith, Ziller, Croft, Amoroso, Oakley (bib3) 2011; 144
McDonald, Kelley (bib25) 1971; 171
Tchieu (10.1016/j.stem.2012.02.014_bib31) 2010; 7
Shen (10.1016/j.stem.2012.02.014_bib28) 2008; 105
Silva (10.1016/j.stem.2012.02.014_bib29) 2008; 105
Erwin (10.1016/j.stem.2012.02.014_bib16) 2010
Engle (10.1016/j.stem.2012.02.014_bib14) 1996; 5
Chin (10.1016/j.stem.2012.02.014_bib8) 2009; 5
Bock (10.1016/j.stem.2012.02.014_bib3) 2011; 144
Cristini (10.1016/j.stem.2012.02.014_bib10) 2010; 19
Finger (10.1016/j.stem.2012.02.014_bib17) 1988; 86
Kim (10.1016/j.stem.2012.02.014_bib22) 2011; 108
Baker (10.1016/j.stem.2012.02.014_bib1) 2007; 25
Dvash (10.1016/j.stem.2012.02.014_bib13) 2010; 5
Chiurazzi (10.1016/j.stem.2012.02.014_bib9) 2008; 16
Enver (10.1016/j.stem.2012.02.014_bib15) 2005; 14
Marchetto (10.1016/j.stem.2012.02.014_bib24) 2010; 143
Lengner (10.1016/j.stem.2012.02.014_bib23) 2010; 141
Hanna (10.1016/j.stem.2012.02.014_bib20) 2010; 107
Csankovszki (10.1016/j.stem.2012.02.014_bib11) 2001; 153
Brown (10.1016/j.stem.2012.02.014_bib5) 1994; 368
Cheung (10.1016/j.stem.2012.02.014_bib7) 2011; 20
Baumeister (10.1016/j.stem.2012.02.014_bib2) 1985; 9
Dimos (10.1016/j.stem.2012.02.014_bib12) 2008; 321
Nazor (10.1016/j.stem.2012.02.014_bib26) 2012; 10
Boulting (10.1016/j.stem.2012.02.014_bib4) 2011; 29
Guibinga (10.1016/j.stem.2012.02.014_bib19) 2010; 18
Visser (10.1016/j.stem.2012.02.014_bib32) 2000; 32
Gore (10.1016/j.stem.2012.02.014_bib18) 2011; 471
Jinnah (10.1016/j.stem.2012.02.014_bib21) 2009; 2
Carrel (10.1016/j.stem.2012.02.014_bib6) 2005; 434
Takahashi (10.1016/j.stem.2012.02.014_bib30) 2007; 131
McDonald (10.1016/j.stem.2012.02.014_bib25) 1971; 171
Pomp (10.1016/j.stem.2012.02.014_bib27) 2011; 9
18669821 - Science. 2008 Aug 29;321(5893):1218-21
19570518 - Cell Stem Cell. 2009 Jul 2;5(1):111-23
20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7
19259384 - Dis Model Mech. 2009 Mar-Apr;2(3-4):116-21
18339804 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4709-14
20727844 - Cell Stem Cell. 2010 Sep 3;7(3):329-42
20127856 - Curr Protoc Stem Cell Biol. 2010 Feb;Chapter 1:Unit 1B.6
19672249 - Mol Ther. 2010 Jan;18(1):54-62
10760551 - Brain Res Brain Res Rev. 2000 Apr;32(2-3):449-75
21372149 - Hum Mol Genet. 2011 Jun 1;20(11):2103-15
8894695 - Hum Mol Genet. 1996 Oct;5(10):1607-10
21368825 - Nature. 2011 Mar 3;471(7336):63-7
18035408 - Cell. 2007 Nov 30;131(5):861-72
21295703 - Cell. 2011 Feb 4;144(3):439-52
18339803 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4820-5
20471072 - Cell. 2010 May 28;141(5):872-83
20593031 - PLoS One. 2010;5(6):e11330
21074045 - Cell. 2010 Nov 12;143(4):527-39
21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86
21816366 - Cell Stem Cell. 2011 Aug 5;9(2):156-65
11352938 - J Cell Biol. 2001 May 14;153(4):773-84
8139659 - Nature. 1994 Mar 10;368(6467):154-6
17287758 - Nat Biotechnol. 2007 Feb;25(2):207-15
21807996 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14169-74
22560082 - Cell Stem Cell. 2012 May 4;10(5):620-34
20159777 - Hum Mol Genet. 2010 May 15;19(10):1939-50
4322125 - Science. 1971 Feb 19;171(3972):689-91
15772666 - Nature. 2005 Mar 17;434(7031):400-4
16159889 - Hum Mol Genet. 2005 Nov 1;14(21):3129-40
3221240 - J Neurol Sci. 1988 Sep;86(2-3):203-13
18197188 - Eur J Hum Genet. 2008 Apr;16(4):422-34
3925393 - Neurosci Biobehav Rev. 1985 Summer;9(2):169-78
References_xml – volume: 9
  start-page: 169
  year: 1985
  end-page: 178
  ident: bib2
  article-title: The biochemical basis of the behavioral disorder in the Lesch-Nyhan syndrome
  publication-title: Neurosci. Biobehav. Rev.
– volume: 144
  start-page: 439
  year: 2011
  end-page: 452
  ident: bib3
  article-title: Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines
  publication-title: Cell
– volume: 143
  start-page: 527
  year: 2010
  end-page: 539
  ident: bib24
  article-title: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells
  publication-title: Cell
– volume: 141
  start-page: 872
  year: 2010
  end-page: 883
  ident: bib23
  article-title: Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations
  publication-title: Cell
– volume: 32
  start-page: 449
  year: 2000
  end-page: 475
  ident: bib32
  article-title: Lesch-Nyhan disease and the basal ganglia
  publication-title: Brain Res. Brain Res. Rev.
– volume: 5
  start-page: 111
  year: 2009
  end-page: 123
  ident: bib8
  article-title: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures
  publication-title: Cell Stem Cell
– volume: 10
  start-page: 620
  year: 2012
  end-page: 634
  ident: bib26
  article-title: Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 422
  year: 2008
  end-page: 434
  ident: bib9
  article-title: XLMR genes: update 2007
  publication-title: Eur. J. Hum. Genet.
– volume: 7
  start-page: 329
  year: 2010
  end-page: 342
  ident: bib31
  article-title: Female human iPSCs retain an inactive X chromosome
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 2103
  year: 2011
  end-page: 2115
  ident: bib7
  article-title: Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation
  publication-title: Hum. Mol. Genet.
– volume: 153
  start-page: 773
  year: 2001
  end-page: 784
  ident: bib11
  article-title: Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation
  publication-title: J. Cell Biol.
– volume: 5
  start-page: e11330
  year: 2010
  ident: bib13
  article-title: Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells
  publication-title: PLoS ONE
– volume: 18
  start-page: 54
  year: 2010
  end-page: 62
  ident: bib19
  article-title: Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis
  publication-title: Mol. Ther.
– volume: 108
  start-page: 14169
  year: 2011
  end-page: 14174
  ident: bib22
  article-title: Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: bib30
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 19
  start-page: 1939
  year: 2010
  end-page: 1950
  ident: bib10
  article-title: Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects
  publication-title: Hum. Mol. Genet.
– volume: 107
  start-page: 9222
  year: 2010
  end-page: 9227
  ident: bib20
  article-title: Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 368
  start-page: 154
  year: 1994
  end-page: 156
  ident: bib5
  article-title: The human X-inactivation centre is not required for maintenance of X-chromosome inactivation
  publication-title: Nature
– volume: 321
  start-page: 1218
  year: 2008
  end-page: 1221
  ident: bib12
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
– volume: 14
  start-page: 3129
  year: 2005
  end-page: 3140
  ident: bib15
  article-title: Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells
  publication-title: Hum. Mol. Genet.
– volume: 471
  start-page: 63
  year: 2011
  end-page: 67
  ident: bib18
  article-title: Somatic coding mutations in human induced pluripotent stem cells
  publication-title: Nature
– volume: 9
  start-page: 156
  year: 2011
  end-page: 165
  ident: bib27
  article-title: Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase
  publication-title: Cell Stem Cell
– volume: 2
  start-page: 116
  year: 2009
  end-page: 121
  ident: bib21
  article-title: Lesch-Nyhan disease: from mechanism to model and back again
  publication-title: Dis Model Mech
– volume: 105
  start-page: 4820
  year: 2008
  end-page: 4825
  ident: bib29
  article-title: X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 4709
  year: 2008
  end-page: 4714
  ident: bib28
  article-title: X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 434
  start-page: 400
  year: 2005
  end-page: 404
  ident: bib6
  article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females
  publication-title: Nature
– volume: 171
  start-page: 689
  year: 1971
  end-page: 691
  ident: bib25
  article-title: Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme
  publication-title: Science
– year: 2010
  ident: bib16
  article-title: Characterization of X-chromosome inactivation status in human pluripotent stem cells
  publication-title: Current protocols in stem cell biology
– volume: 25
  start-page: 207
  year: 2007
  end-page: 215
  ident: bib1
  article-title: Adaptation to culture of human embryonic stem cells and oncogenesis in vivo
  publication-title: Nat. Biotechnol.
– volume: 86
  start-page: 203
  year: 1988
  end-page: 213
  ident: bib17
  article-title: Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome
  publication-title: J. Neurol. Sci.
– volume: 29
  start-page: 279
  year: 2011
  end-page: 286
  ident: bib4
  article-title: A functionally characterized test set of human induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: 1607
  year: 1996
  end-page: 1610
  ident: bib14
  article-title: HPRT-APRT-deficient mice are not a model for lesch-nyhan syndrome
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 620
  year: 2012
  ident: 10.1016/j.stem.2012.02.014_bib26
  article-title: Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.02.013
– volume: 153
  start-page: 773
  year: 2001
  ident: 10.1016/j.stem.2012.02.014_bib11
  article-title: Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.4.773
– volume: 107
  start-page: 9222
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib20
  article-title: Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004584107
– volume: 131
  start-page: 861
  year: 2007
  ident: 10.1016/j.stem.2012.02.014_bib30
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 5
  start-page: 111
  year: 2009
  ident: 10.1016/j.stem.2012.02.014_bib8
  article-title: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.06.008
– volume: 2
  start-page: 116
  year: 2009
  ident: 10.1016/j.stem.2012.02.014_bib21
  article-title: Lesch-Nyhan disease: from mechanism to model and back again
  publication-title: Dis Model Mech
  doi: 10.1242/dmm.002543
– volume: 32
  start-page: 449
  year: 2000
  ident: 10.1016/j.stem.2012.02.014_bib32
  article-title: Lesch-Nyhan disease and the basal ganglia
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(99)00094-6
– volume: 7
  start-page: 329
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib31
  article-title: Female human iPSCs retain an inactive X chromosome
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.024
– volume: 105
  start-page: 4820
  year: 2008
  ident: 10.1016/j.stem.2012.02.014_bib29
  article-title: X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712136105
– volume: 434
  start-page: 400
  year: 2005
  ident: 10.1016/j.stem.2012.02.014_bib6
  article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females
  publication-title: Nature
  doi: 10.1038/nature03479
– volume: 19
  start-page: 1939
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib10
  article-title: Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq072
– volume: 25
  start-page: 207
  year: 2007
  ident: 10.1016/j.stem.2012.02.014_bib1
  article-title: Adaptation to culture of human embryonic stem cells and oncogenesis in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1285
– year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib16
  article-title: Characterization of X-chromosome inactivation status in human pluripotent stem cells
  publication-title: Current protocols in stem cell biology
  doi: 10.1002/9780470151808.sc01b06s12
– volume: 368
  start-page: 154
  year: 1994
  ident: 10.1016/j.stem.2012.02.014_bib5
  article-title: The human X-inactivation centre is not required for maintenance of X-chromosome inactivation
  publication-title: Nature
  doi: 10.1038/368154a0
– volume: 471
  start-page: 63
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib18
  article-title: Somatic coding mutations in human induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature09805
– volume: 86
  start-page: 203
  year: 1988
  ident: 10.1016/j.stem.2012.02.014_bib17
  article-title: Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(88)90099-8
– volume: 171
  start-page: 689
  year: 1971
  ident: 10.1016/j.stem.2012.02.014_bib25
  article-title: Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme
  publication-title: Science
  doi: 10.1126/science.171.3972.689
– volume: 144
  start-page: 439
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib3
  article-title: Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.032
– volume: 18
  start-page: 54
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib19
  article-title: Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.178
– volume: 20
  start-page: 2103
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib7
  article-title: Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr093
– volume: 14
  start-page: 3129
  year: 2005
  ident: 10.1016/j.stem.2012.02.014_bib15
  article-title: Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi345
– volume: 143
  start-page: 527
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib24
  article-title: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.016
– volume: 9
  start-page: 156
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib27
  article-title: Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.06.004
– volume: 5
  start-page: e11330
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib13
  article-title: Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011330
– volume: 16
  start-page: 422
  year: 2008
  ident: 10.1016/j.stem.2012.02.014_bib9
  article-title: XLMR genes: update 2007
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/sj.ejhg.5201994
– volume: 321
  start-page: 1218
  year: 2008
  ident: 10.1016/j.stem.2012.02.014_bib12
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 5
  start-page: 1607
  year: 1996
  ident: 10.1016/j.stem.2012.02.014_bib14
  article-title: HPRT-APRT-deficient mice are not a model for lesch-nyhan syndrome
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/5.10.1607
– volume: 108
  start-page: 14169
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib22
  article-title: Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018979108
– volume: 141
  start-page: 872
  year: 2010
  ident: 10.1016/j.stem.2012.02.014_bib23
  article-title: Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.010
– volume: 105
  start-page: 4709
  year: 2008
  ident: 10.1016/j.stem.2012.02.014_bib28
  article-title: X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712018105
– volume: 9
  start-page: 169
  year: 1985
  ident: 10.1016/j.stem.2012.02.014_bib2
  article-title: The biochemical basis of the behavioral disorder in the Lesch-Nyhan syndrome
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/0149-7634(85)90043-0
– volume: 29
  start-page: 279
  year: 2011
  ident: 10.1016/j.stem.2012.02.014_bib4
  article-title: A functionally characterized test set of human induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1783
– reference: 21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86
– reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21
– reference: 18197188 - Eur J Hum Genet. 2008 Apr;16(4):422-34
– reference: 19259384 - Dis Model Mech. 2009 Mar-Apr;2(3-4):116-21
– reference: 20159777 - Hum Mol Genet. 2010 May 15;19(10):1939-50
– reference: 18339803 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4820-5
– reference: 20471072 - Cell. 2010 May 28;141(5):872-83
– reference: 8139659 - Nature. 1994 Mar 10;368(6467):154-6
– reference: 18339804 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4709-14
– reference: 19672249 - Mol Ther. 2010 Jan;18(1):54-62
– reference: 21816366 - Cell Stem Cell. 2011 Aug 5;9(2):156-65
– reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4
– reference: 22560082 - Cell Stem Cell. 2012 May 4;10(5):620-34
– reference: 20593031 - PLoS One. 2010;5(6):e11330
– reference: 20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7
– reference: 3221240 - J Neurol Sci. 1988 Sep;86(2-3):203-13
– reference: 21295703 - Cell. 2011 Feb 4;144(3):439-52
– reference: 10760551 - Brain Res Brain Res Rev. 2000 Apr;32(2-3):449-75
– reference: 16159889 - Hum Mol Genet. 2005 Nov 1;14(21):3129-40
– reference: 3925393 - Neurosci Biobehav Rev. 1985 Summer;9(2):169-78
– reference: 20727844 - Cell Stem Cell. 2010 Sep 3;7(3):329-42
– reference: 20127856 - Curr Protoc Stem Cell Biol. 2010 Feb;Chapter 1:Unit 1B.6
– reference: 8894695 - Hum Mol Genet. 1996 Oct;5(10):1607-10
– reference: 21368825 - Nature. 2011 Mar 3;471(7336):63-7
– reference: 11352938 - J Cell Biol. 2001 May 14;153(4):773-84
– reference: 17287758 - Nat Biotechnol. 2007 Feb;25(2):207-15
– reference: 21807996 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14169-74
– reference: 4322125 - Science. 1971 Feb 19;171(3972):689-91
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 19570518 - Cell Stem Cell. 2009 Jul 2;5(1):111-23
– reference: 21074045 - Cell. 2010 Nov 12;143(4):527-39
– reference: 21372149 - Hum Mol Genet. 2011 Jun 1;20(11):2103-15
SSID ssj0057107
Score 2.5265234
Snippet Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear whether such variability...
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation, it has been unclear if such variability...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 595
SubjectTerms anthropogenic activities
Biological and medical sciences
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Cells, Cultured
Chromosomes, Human, X - genetics
DNA Methylation
Dosage Compensation, Genetic
epigenetics
Female
females
Fundamental and applied biological sciences. Psychology
genes
Genomic Instability
Histones - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Lesch-Nyhan Syndrome - genetics
Lesch-Nyhan Syndrome - pathology
Lesch-Nyhan Syndrome - physiopathology
Models, Biological
Molecular and cellular biology
RNA, Long Noncoding
RNA, Untranslated - genetics
somatic cells
stem cells
transcription (genetics)
X chromosome
Title Erosion of Dosage Compensation Impacts Human iPSC Disease Modeling
URI https://dx.doi.org/10.1016/j.stem.2012.02.014
https://www.ncbi.nlm.nih.gov/pubmed/22560080
https://www.proquest.com/docview/1011541311
https://www.proquest.com/docview/1034809346
https://www.proquest.com/docview/1733548656
https://pubmed.ncbi.nlm.nih.gov/PMC3603710
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1875-9777
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0057107
  issn: 1934-5909
  databaseCode: IXB
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1875-9777
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0057107
  issn: 1934-5909
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1875-9777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057107
  issn: 1934-5909
  databaseCode: AKRWK
  dateStart: 20070607
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hpElIaGIbbBlQeRJvKKoT23HyCC2IbgIhAVLfothJtCKUVmv7wH_PnZ10FLE-TMpD017i5M6--119HwAnVgshTKJC1H0ilMrqMIuLNDSl4RUhAsUp3_n6Jrl6kD_HarwFgy4XhsIqW93vdbrT1u03_Zab_dlk0r9D6CFVhvYudvtNpIeF1C6Jb3zeaWOFFlT7nWUZEnWbOONjvKhWMoV3xa5uZyT_ZZx2Z8UcWVb7XhfvgdG3MZWvjNTlHnxs0SU78y_wCbaq5jN88P0mn7_A-QUOi4Jg05oNpxRSxkgfoCfr5MNGLmVyztw_-2xyezdgQ7-Bw6hnGmWu78PD5cX94CpsmyiEFsHJApWZrcvY1LoU0iJ24yo2KtJpnVhj8aMqy0JUXNalThPqQBO7sI3CClytxlTiALabaVN9AyYig3hDlLUsMoluRsaNtgnPbJRmaRrZAKKOe7ltK4xTo4unvAsle8yJ4zlxPOd4RDKA09U1M19fYyO16oSSr82SHA3Axut6axJcDYXOXyTQCQ7gRyfSHNcXbZoUTTVdzumOiDKpKNEmGiFTjjMs2UCDiwK9Q4TPAXz1U-XvUzjcmfIA9NokWhFQDfD1X5rJb1cLXCRUc5F__0_GHMIOnbkITnkE24s_y-oYUdbC9NC_GP3qucX0ApV3JFU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5MSmghlCZ9RG3jbCG3IrzS7upxbJwEOy8KScC3RbuSqEuRTe0c-u87sys5dUl8COggpNFrZnfmG-08AI5sKoQwiQpR94lQKpuGeVxkoSkNrwgRKE75zlfXyehOnk_UpAfDLheGwipb3e91utPW7ZFBy83BfDod3CD0kCpHexe79SbUwy8QDXCK6xpPjjt1rNCEpn5pWYZE3mbO-CAvKpZM8V2xK9wZyaes0868WCDPat_s4jE0-n9Q5T9W6uwNvG7hJfvmv2AXelWzB9u-4eSft3B8io9FSbBZzU5mFFPGSCGgK-sExMYuZ3LB3K99Nv1-M2QnfgWHUdM0Sl1_B3dnp7fDUdh2UQgtopMlajNbl7Gp01JIi-CNq9ioKM3qxBqLu6osC1FxWZdpllALmtjFbRRW4HQ1phLvYauZNdU-MBEZBByirGWRS_Qzcm5Sm_DcRlmeZZENIOq4p21bYpw6XfzSXSzZT00c18RxzXGLZABfV9fMfYGNjdSqE4peGyYaLcDG6_prElw9Cr2_SKAXHMCXTqQaJxitmhRNNbtf0B0RZlJVok00QmYcR1iygQZnBbqHiJ8D-OCHysNbOOCZ8QDStUG0IqAi4OtnmukPVwxcJFR0kX98JmMO4eXo9upSX46vLz7BKzrjwjnlZ9ha_r6vDhByLU3fTam_Y-8mfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+of+Dosage+Compensation+Impacts+Human+iPSC+Disease+Modeling&rft.jtitle=Cell+stem+cell&rft.au=Mekhoubad%2C+Shila&rft.au=Bock%2C+Christoph&rft.au=de+Boer%2C+A+Sophie&rft.au=Kiskinis%2C+Evangelos&rft.date=2012-05-04&rft.issn=1934-5909&rft.volume=10&rft.issue=5+p.595-609&rft.spage=595&rft.epage=609&rft_id=info:doi/10.1016%2Fj.stem.2012.02.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon