Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 an...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 30; pp. 8679 - 8683 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
20.07.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201501355 |
Cover
Abstract | Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.
Divide and conquer: Transient absorption measurements reveal sub‐picosecond singlet exciton fission in thin films of a cyano‐substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6±0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission. |
---|---|
AbstractList | Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2ps and τ=23±3ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Divide and conquer: Transient absorption measurements reveal sub‐picosecond singlet exciton fission in thin films of a cyano‐substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6±0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission. Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T 1 )−E(S 1 )=−0.17 eV), where S 1 and T 1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T sub(1))-E(S sub(1))= -0.17eV), where S sub(1) and T sub(1) are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples ( tau =0.8 plus or minus 0.2ps and tau =23 plus or minus 3ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6 plus or minus 0.3 triplets per initial excited state. Divide and conquer: Transient absorption measurements reveal sub-picosecond singlet exciton fission in thin films of a cyano-substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6 plus or minus 0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission. |
Author | Wasielewski, Michael R. Margulies, Eric A. Schaller, Richard D. Wu, Yi-Lin Shoer, Leah E. Diederich, François Gawel, Przemyslaw Miller, Stephen A. |
Author_xml | – sequence: 1 givenname: Eric A. surname: Margulies fullname: Margulies, Eric A. organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) – sequence: 2 givenname: Yi-Lin surname: Wu fullname: Wu, Yi-Lin organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) – sequence: 3 givenname: Przemyslaw surname: Gawel fullname: Gawel, Przemyslaw organization: Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich (Switzerland) – sequence: 4 givenname: Stephen A. surname: Miller fullname: Miller, Stephen A. organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) – sequence: 5 givenname: Leah E. surname: Shoer fullname: Shoer, Leah E. organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) – sequence: 6 givenname: Richard D. surname: Schaller fullname: Schaller, Richard D. organization: Department of Chemistry, Northwestern University and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (USA) – sequence: 7 givenname: François surname: Diederich fullname: Diederich, François email: diederich@org.chem.ethz.ch organization: Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich (Switzerland) – sequence: 8 givenname: Michael R. surname: Wasielewski fullname: Wasielewski, Michael R. email: m-wasielewski@northwestern.edu organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26097009$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv0zAUgC00xLbClSOKxIVLyrMd28lxKt2YVpVJA42b5TgvyCO1R-yI9d_jraNCk9BOz4fvs-XvHZMDHzwS8pbCnAKwj8Y7nDOgAigX4gU5ooLRkivFD_K54rxUtaCH5DjGm8zXNchX5JBJaBRAc0RWV1NbXjobItrgu-LK-R8DpmJ5Z10Kvjh1Mbo8nS8WW-NDmfmYXJoSdsUnZ8btkDCNxqLH-Jq87M0Q8c3jnJFvp8uvi8_l6svZ-eJkVVpJlSiptcBawauOoqGKMbBC1n2D0jBWMcFl2_dQQwO9Adr1TNjOgO06LvqGQctn5MPu3tsx_JowJr1x0eIwGI9hipqqqpKqkQyeR2Uj61rynGpG3j9Bb8I0-vyRByqHzdky9e6RmtoNdvp2dJtcQf9NmoH5DrBjiHHEfo9Q0Pc70_c70_udZaF6IuT0JuXquasb_q81O-23G3D7zCP6ZH2-_Nctd66LCe_2rhl_aqm4Evp6faYZW19cXn9facX_ADvquNs |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1039_C8SC00293B crossref_primary_10_1021_acs_jpclett_5b02186 crossref_primary_10_1002_cphc_202200454 crossref_primary_10_1016_j_jfluchem_2023_110110 crossref_primary_10_1063_1_5099062 crossref_primary_10_1039_C9TC04070F crossref_primary_10_1039_D0SC03271A crossref_primary_10_1063_1_5110188 crossref_primary_10_1021_acs_chemmater_7b01845 crossref_primary_10_1016_j_jphotochem_2020_112597 crossref_primary_10_1021_acs_jpcc_2c01474 crossref_primary_10_1021_acs_jpca_6b04367 crossref_primary_10_1021_acs_jpcc_1c01964 crossref_primary_10_1002_ange_201711605 crossref_primary_10_1016_j_jphotochem_2021_113251 crossref_primary_10_1039_D1TC05316G crossref_primary_10_1063_5_0026254 crossref_primary_10_1002_advs_202405864 crossref_primary_10_1039_D0CP03951A crossref_primary_10_1021_jacs_2c03550 crossref_primary_10_1039_C9TC01348B crossref_primary_10_1021_acs_jpcc_7b07870 crossref_primary_10_1039_D2QM00531J crossref_primary_10_1002_anie_201711605 crossref_primary_10_1002_adfm_201703929 crossref_primary_10_1021_acs_joc_7b00602 crossref_primary_10_1002_anie_201912202 crossref_primary_10_1021_acs_jpclett_8b00628 crossref_primary_10_1021_acs_jpcc_9b00210 crossref_primary_10_1021_acsaem_4c03246 crossref_primary_10_1016_j_jphotochem_2021_113262 crossref_primary_10_1021_jacs_6b07721 crossref_primary_10_1021_acs_jpcc_0c07920 crossref_primary_10_1021_acs_jpcc_2c03226 crossref_primary_10_1021_jacs_8b04830 crossref_primary_10_1021_acs_jpclett_8b01226 crossref_primary_10_1021_jacs_6b10010 crossref_primary_10_1016_j_mser_2019_100519 crossref_primary_10_1021_acs_jpcc_0c10979 crossref_primary_10_1021_jacs_6b05627 crossref_primary_10_1002_anie_201704668 crossref_primary_10_1002_nadc_20164047492 crossref_primary_10_1021_acs_jpcc_9b10397 crossref_primary_10_1002_chem_201700043 crossref_primary_10_1002_adma_201701416 crossref_primary_10_1002_anie_201601421 crossref_primary_10_1002_anie_202401103 crossref_primary_10_1039_D0QM00072H crossref_primary_10_1038_nchem_2589 crossref_primary_10_1021_acs_jpcc_1c02999 crossref_primary_10_1021_acs_orglett_3c02306 crossref_primary_10_1002_ange_201912202 crossref_primary_10_1021_acs_jpcc_2c02622 crossref_primary_10_1021_jacs_8b08627 crossref_primary_10_1039_C7TC05783K crossref_primary_10_1002_ange_202401103 crossref_primary_10_1021_acs_jpcc_8b05260 crossref_primary_10_1002_ange_201704668 crossref_primary_10_1002_marc_202300241 crossref_primary_10_1021_acs_jpclett_7b02597 crossref_primary_10_1021_acsnano_6b02814 crossref_primary_10_1021_acs_jpclett_7b02434 crossref_primary_10_1002_ange_201601421 crossref_primary_10_1021_acs_jpcc_7b11228 crossref_primary_10_1002_chem_201703903 crossref_primary_10_1016_j_comptc_2017_02_018 |
Cites_doi | 10.1021/cr1002613 10.1021/ar300286s 10.1002/anie.201402299 10.1038/nmat4097 10.1351/pac196511030371 10.1063/1.4867696 10.1021/ja300504t 10.1126/science.1232994 10.1038/nchem.1436 10.1016/0009-2614(69)80122-3 10.1063/1.4876600 10.1063/1.1674702 10.1063/1.555770 10.1021/ja501337b 10.1063/1.3664630 10.1021/ja408854u 10.1038/ncomms3679 10.1038/nmat4093 10.1021/jz2015346 10.1002/ange.201402299 10.1021/ja301683w 10.1039/c2cp40449d 10.1063/1.2717561 10.1021/jp208063h 10.1103/PhysRevB.84.193203 10.1063/1.2356795 10.1021/ja073173y 10.1063/1.3495764 10.1038/nchem.1945 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201501355 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8683 |
ExternalDocumentID | 3743148871 26097009 10_1002_anie_201501355 ANIE201501355 ark_67375_WNG_22NKPWXL_7 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1121262 – fundername: Swiss National Science Foundation – fundername: ERC funderid: 246637 – fundername: Office of Basic Energy Sciences, U.S. Department of Energy (DOE) funderid: DE‐FG02‐99ER14999 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c6175-1cc02b534d1ea17220c568f9e6a2242536bff08090fa01df25cda0cdd35f920b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:52:20 EDT 2025 Thu Jul 10 23:43:08 EDT 2025 Fri Jul 25 10:43:31 EDT 2025 Thu Apr 03 07:00:48 EDT 2025 Tue Jul 01 03:26:55 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Aug 20 07:25:22 EDT 2025 Sun Sep 21 06:14:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | time-resolved spectroscopy chromophores photophysics tetracene derivatives singlet fission |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6175-1cc02b534d1ea17220c568f9e6a2242536bff08090fa01df25cda0cdd35f920b3 |
Notes | Swiss National Science Foundation Office of Basic Energy Sciences, U.S. Department of Energy (DOE) - No. DE-FG02-99ER14999 National Science Foundation - No. DMR-1121262 This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under Grant No. DE-FG02-99ER14999 (M.R.W.), the Swiss National Science Foundation, and the ERC Advanced Grant No. 246637 ("OPTELOMAC"). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. This work made use of the J. B. Cohen X-ray Diffraction Facility at the Materials Research Center of Northwestern University supported by the National Science Foundation MRSEC program (DMR-1121262). We thank Dr. Matthew Krzyaniak and Dr. Samuel Eaton for help with data analysis, acquiring time-resolved fluorescence data, and helpful discussions. ArticleID:ANIE201501355 ERC - No. 246637 ark:/67375/WNG-22NKPWXL-7 istex:848979D32E438E7CBF70DB5CEAC27F187B0F6448 This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under Grant No. DE‐FG02‐99ER14999 (M.R.W.), the Swiss National Science Foundation, and the ERC Advanced Grant No. 246637 (“OPTELOMAC”). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE‐AC02‐06CH11357. This work made use of the J. B. Cohen X‐ray Diffraction Facility at the Materials Research Center of Northwestern University supported by the National Science Foundation MRSEC program (DMR‐1121262). We thank Dr. Matthew Krzyaniak and Dr. Samuel Eaton for help with data analysis, acquiring time‐resolved fluorescence data, and helpful discussions. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26097009 |
PQID | 1696152260 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1744679620 proquest_miscellaneous_1696886314 proquest_journals_1696152260 pubmed_primary_26097009 crossref_primary_10_1002_anie_201501355 crossref_citationtrail_10_1002_anie_201501355 wiley_primary_10_1002_anie_201501355_ANIE201501355 istex_primary_ark_67375_WNG_22NKPWXL_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 20, 2015 |
PublicationDateYYYYMMDD | 2015-07-20 |
PublicationDate_xml | – month: 07 year: 2015 text: July 20, 2015 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | M. B. Smith, J. Michl, Chem. Rev. 2010, 110, 6891-6936. J. J. Burdett, C. J. Bardeen, J. Am. Chem. Soc. 2012, 134, 8597-8607 L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312 I. Carmichael, G. L. Hug, J. Phys. Chem. Ref. Data 1986, 15, 1-250. P. Gawel, C. Dengiz, A. D. Finke, N. Trapp, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Angew. Chem. Int. Ed. 2014, 53, 4341-4345 A. Ryasnyanskiy, I. Biaggio, Phys. Rev. B 2011, 84, 193203. J. J. Burdett, A. M. Müller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506 M. W. B. Wilson, A. Rao, K. Johnson, S. Gélinas, R. di Pietro, J. Clark, R. H. Friend, J. Am. Chem. Soc. 2013, 135, 16680-16688 J. N. Schrauben, J. L. Ryerson, J. Michl, J. C. Johnson, J. Am. Chem. Soc. 2014, 136, 7363-7373. M. Kytka, A. Gerlach, F. Schreiber, J. Kováč, Appl. Phys. Lett. 2007, 90, 131911. R. E. Merrifield, P. Avakian, R. P. Groff, Chem. Phys. Lett. 1969, 3, 155-157 S. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, S. E. Bradforth, J. Am. Chem. Soc. 2012, 134, 6388-6400 Y.-F. Chang, Z.-Y. Lu, L.-J. An, J.-P. Zhang, J. Phys. Chem. C 2011, 116, 1195-1199. W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, X. Y. Zhu, Acc. Chem. Res. 2013, 46, 1321-1329 W.-L. Chan, M. Ligges, X. Y. Zhu, Nat. Chem. 2012, 4, 840-845. J. J. Burdett, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508 S. R. Yost, J. Lee, M. W. B. Wilson, T. Wu, D. P. McMahon, R. R. Parkhurst, N. J. Thompson, D. N. Congreve, A. Rao, K. Johnson, M. Y. Sfeir, M. G. Bawendi, T. M. Swager, R. H. Friend, M. A. Baldo, T. Van Voorhis, Nat. Chem. 2014, 6, 492-497. T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. Van Voorhis, M. A. Baldo, Appl. Phys. Lett. 2014, 104, 193901. J. R. Tritsch, W.-L. Chan, X. Wu, N. R. Monahan, X.-Y. Zhu, Nat. Commun. 2013, 4, 2679 D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334-337. M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014, 13, 1033-1038 Z. Birech, M. Schwoerer, T. Schmeiler, J. Pflaum, H. Schwoerer, J. Chem. Phys. 2014, 140, 114501 M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371-392. T. Minami, M. Nakano, J. Phys. Chem. Lett. 2011, 3, 145-150. M. C. Hanna, A. J. Nozik, J. Appl. Phys. 2006, 100, 074510. N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo, Nat. Mater. 2014, 13, 1039-1043. A. M. Müller, Y. S. Avlasevich, W. W. Schoeller, K. Müllen, C. J. Bardeen, J. Am. Chem. Soc. 2007, 129, 14240-14250 Y. Tomkiewicz, R. P. Groff, P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507 Angew. Chem. 2014, 126, 4430-4434. 2011; 116 2014 2014; 53 126 2011; 135 2007; 129 1965; 11 2013; 4 2013; 46 2011; 84 1986; 15 2007; 90 2013; 340 2012; 14 2011; 3 2014; 136 1971; 54 2012; 134 1969; 3 2010; 110 2010; 133 2014; 13 2013; 135 2014; 140 2012; 4 2014; 6 2006; 100 2014; 104 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_27_2 e_1_2_2_24_4 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_24_3 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_14_2 |
References_xml | – reference: J. N. Schrauben, J. L. Ryerson, J. Michl, J. C. Johnson, J. Am. Chem. Soc. 2014, 136, 7363-7373. – reference: W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, X. Y. Zhu, Acc. Chem. Res. 2013, 46, 1321-1329; – reference: P. Gawel, C. Dengiz, A. D. Finke, N. Trapp, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Angew. Chem. Int. Ed. 2014, 53, 4341-4345; – reference: A. Ryasnyanskiy, I. Biaggio, Phys. Rev. B 2011, 84, 193203. – reference: S. R. Yost, J. Lee, M. W. B. Wilson, T. Wu, D. P. McMahon, R. R. Parkhurst, N. J. Thompson, D. N. Congreve, A. Rao, K. Johnson, M. Y. Sfeir, M. G. Bawendi, T. M. Swager, R. H. Friend, M. A. Baldo, T. Van Voorhis, Nat. Chem. 2014, 6, 492-497. – reference: M. W. B. Wilson, A. Rao, K. Johnson, S. Gélinas, R. di Pietro, J. Clark, R. H. Friend, J. Am. Chem. Soc. 2013, 135, 16680-16688; – reference: M. B. Smith, J. Michl, Chem. Rev. 2010, 110, 6891-6936. – reference: J. J. Burdett, A. M. Müller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506; – reference: R. E. Merrifield, P. Avakian, R. P. Groff, Chem. Phys. Lett. 1969, 3, 155-157; – reference: Y.-F. Chang, Z.-Y. Lu, L.-J. An, J.-P. Zhang, J. Phys. Chem. C 2011, 116, 1195-1199. – reference: I. Carmichael, G. L. Hug, J. Phys. Chem. Ref. Data 1986, 15, 1-250. – reference: M. C. Hanna, A. J. Nozik, J. Appl. Phys. 2006, 100, 074510. – reference: N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo, Nat. Mater. 2014, 13, 1039-1043. – reference: T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. Van Voorhis, M. A. Baldo, Appl. Phys. Lett. 2014, 104, 193901. – reference: D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334-337. – reference: T. Minami, M. Nakano, J. Phys. Chem. Lett. 2011, 3, 145-150. – reference: Y. Tomkiewicz, R. P. Groff, P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507; – reference: M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014, 13, 1033-1038; – reference: J. R. Tritsch, W.-L. Chan, X. Wu, N. R. Monahan, X.-Y. Zhu, Nat. Commun. 2013, 4, 2679; – reference: A. M. Müller, Y. S. Avlasevich, W. W. Schoeller, K. Müllen, C. J. Bardeen, J. Am. Chem. Soc. 2007, 129, 14240-14250; – reference: M. Kytka, A. Gerlach, F. Schreiber, J. Kováč, Appl. Phys. Lett. 2007, 90, 131911. – reference: Angew. Chem. 2014, 126, 4430-4434. – reference: M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371-392. – reference: J. J. Burdett, C. J. Bardeen, J. Am. Chem. Soc. 2012, 134, 8597-8607; – reference: L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312; – reference: J. J. Burdett, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508; – reference: W.-L. Chan, M. Ligges, X. Y. Zhu, Nat. Chem. 2012, 4, 840-845. – reference: S. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, S. E. Bradforth, J. Am. Chem. Soc. 2012, 134, 6388-6400; – reference: Z. Birech, M. Schwoerer, T. Schmeiler, J. Pflaum, H. Schwoerer, J. Chem. Phys. 2014, 140, 114501; – volume: 116 start-page: 1195 year: 2011 end-page: 1199 publication-title: J. Phys. Chem. C – volume: 104 start-page: 193901 year: 2014 publication-title: Appl. Phys. Lett. – volume: 133 start-page: 144506 year: 2010 publication-title: J. Chem. Phys. – volume: 100 start-page: 074510 year: 2006 publication-title: J. Appl. Phys. – volume: 15 start-page: 1 year: 1986 end-page: 250 publication-title: J. Phys. Chem. Ref. Data – volume: 134 start-page: 8597 year: 2012 end-page: 8607 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 492 year: 2014 end-page: 497 publication-title: Nat. Chem. – volume: 3 start-page: 155 year: 1969 end-page: 157 publication-title: Chem. Phys. Lett. – volume: 3 start-page: 145 year: 2011 end-page: 150 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 2679 year: 2013 publication-title: Nat. Commun. – volume: 4 start-page: 840 year: 2012 end-page: 845 publication-title: Nat. Chem. – volume: 11 start-page: 371 year: 1965 end-page: 392 publication-title: Pure Appl. Chem. – volume: 129 start-page: 14240 year: 2007 end-page: 14250 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 114501 year: 2014 publication-title: J. Chem. Phys. – volume: 84 start-page: 193203 year: 2011 publication-title: Phys. Rev. B – volume: 13 start-page: 1039 year: 2014 end-page: 1043 publication-title: Nat. Mater. – volume: 136 start-page: 7363 year: 2014 end-page: 7373 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 6891 year: 2010 end-page: 6936 publication-title: Chem. Rev. – volume: 54 start-page: 4504 year: 1971 end-page: 4507 publication-title: J. Chem. Phys. – volume: 135 start-page: 214508 year: 2011 publication-title: J. Chem. Phys. – volume: 14 start-page: 8307 year: 2012 end-page: 8312 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 1033 year: 2014 end-page: 1038 publication-title: Nat. Mater. – volume: 134 start-page: 6388 year: 2012 end-page: 6400 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1321 year: 2013 end-page: 1329 publication-title: Acc. Chem. Res. – volume: 53 126 start-page: 4341 4430 year: 2014 2014 end-page: 4345 4434 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 16680 year: 2013 end-page: 16688 publication-title: J. Am. Chem. Soc. – volume: 340 start-page: 334 year: 2013 end-page: 337 publication-title: Science – volume: 90 start-page: 131911 year: 2007 publication-title: Appl. Phys. Lett. – ident: e_1_2_2_1_2 doi: 10.1021/cr1002613 – ident: e_1_2_2_17_2 doi: 10.1021/ar300286s – ident: e_1_2_2_24_2 doi: 10.1002/anie.201402299 – ident: e_1_2_2_28_2 – ident: e_1_2_2_5_2 doi: 10.1038/nmat4097 – ident: e_1_2_2_27_2 doi: 10.1351/pac196511030371 – ident: e_1_2_2_20_2 doi: 10.1063/1.4867696 – ident: e_1_2_2_16_2 doi: 10.1021/ja300504t – ident: e_1_2_2_3_2 – ident: e_1_2_2_6_2 doi: 10.1126/science.1232994 – ident: e_1_2_2_26_2 doi: 10.1038/nchem.1436 – ident: e_1_2_2_10_2 doi: 10.1016/0009-2614(69)80122-3 – ident: e_1_2_2_21_2 doi: 10.1063/1.4876600 – ident: e_1_2_2_9_2 – ident: e_1_2_2_24_4 – ident: e_1_2_2_11_2 doi: 10.1063/1.1674702 – ident: e_1_2_2_31_2 doi: 10.1063/1.555770 – ident: e_1_2_2_30_2 doi: 10.1021/ja501337b – ident: e_1_2_2_14_2 doi: 10.1063/1.3664630 – ident: e_1_2_2_18_2 doi: 10.1021/ja408854u – ident: e_1_2_2_19_2 doi: 10.1038/ncomms3679 – ident: e_1_2_2_4_2 doi: 10.1038/nmat4093 – ident: e_1_2_2_8_2 doi: 10.1021/jz2015346 – ident: e_1_2_2_24_3 doi: 10.1002/ange.201402299 – ident: e_1_2_2_15_2 doi: 10.1021/ja301683w – ident: e_1_2_2_29_2 doi: 10.1039/c2cp40449d – ident: e_1_2_2_22_2 doi: 10.1063/1.2717561 – ident: e_1_2_2_23_2 doi: 10.1021/jp208063h – ident: e_1_2_2_25_2 doi: 10.1103/PhysRevB.84.193203 – ident: e_1_2_2_2_2 doi: 10.1063/1.2356795 – ident: e_1_2_2_12_2 doi: 10.1021/ja073173y – ident: e_1_2_2_13_2 doi: 10.1063/1.3495764 – ident: e_1_2_2_7_2 doi: 10.1038/nchem.1945 |
SSID | ssj0028806 |
Score | 2.4304283 |
Snippet | Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of... Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of... Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8679 |
SubjectTerms | chromophores Diffusion Disorders Excitation Excitation spectra Fission Formations photophysics singlet fission tetracene derivatives Thin films time-resolved spectroscopy Tuning |
Title | Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes |
URI | https://api.istex.fr/ark:/67375/WNG-22NKPWXL-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201501355 https://www.ncbi.nlm.nih.gov/pubmed/26097009 https://www.proquest.com/docview/1696152260 https://www.proquest.com/docview/1696886314 https://www.proquest.com/docview/1744679620 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM9Ai4KE4JTWseN4fay2u5TXagVU3Zvl-CGtWmXRNisVTvwEfiO_pDPxJrCIhwSnJMrY8mM8_myPvyHkaeEDkyr3GbWwVkVGuswYIzPHYfIHyMGZwf2Ot5Py6Lh4NROzH27xR36IfsMNR0Zrr3GAm-p8_ztpKN7ARtcsATkKvGUOj_ac9l3PH8VAOeP1Is4zjELfsTZStr-ZfGNWuooNfPEryLmJYNspaHyTmK7w0fPkdG_VVHv280-8jv9Tu1vkxhqfpgdRobbJFV_fJteGXVi4O2QKpubbl6_TOXq6w2Lape9h9oPeT0cXFsxDnY7n6Flbp_M6HX4y9QKk0TxFnwSXHs6hVGeNb5bGoqG9S47How_Do2wdliGzAHdElltLWSV44XJvAP8wakU5CMqXhuEChpdVCABEFQ2G5i4wYZ2h1jkugmK04vfIVr2o_QOSYrCyUDjHXFCFMFaVwUlvpPSDqqLKJyTrukXbNWc5hs4405FtmWlsJ923U0Ke9_IfI1vHbyWftb3ci5nlKfq4SaFPJi80Y5PX05PZGy0TstOpgV4P73OdlwqQICBXmpAn_W_oCDxtMbVfrKLMYFDyvPiDjITVuFQlg3zuRxXrCwSZKwkIOCGsVZS_VEgfTF6O-q-H_5LoEbmO77hzzegO2WqWK78LkKupHrfD6hKFeCMj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL5U1KgSAhOKV1nDheH6vtLlu6jVbQqr1Zjh_SqlUWbbNSy4mfwG_sL-lMsglaxEOCY5KJ5cfM-LM9_oaQt6nzTMjYRdTAWhUZ6SKttYhsApM_QI6EadzvOMqz0Un68Yy30YR4F6bhh-g23NAyan-NBo4b0rs_WEPxCjbGZnEokvO7ZB0P6dA29z91DFIM1LO5YJQkEeahb3kbKdtd_X9lXlrHLr76FehcxbD1JDTcJEVb_Sb25HxnURU75utPzI7_1b4H5P4SooZ7jU49JHdc-Yhs9NvMcI_JBLzNzbfvkykGu8N62oafYQIEBQgHVwY8RBkOpxhcW4bTMuxf63IG0uihmrAEG-5PoVoXlavm2qCvfUJOhoPj_ihaZmaIDCAeHsXGUFbwJLWx0wCBGDU863npMs1wDZNkhfeARSX1msbWM26spsbahHvJaJE8JWvlrHTPSYj5ynxqLbNeplwbmXkrnBbC9YqCSheQqB0XZZa05Zg940I1hMtMYT-prp8C8r6T_9IQdvxW8l09zJ2Ynp9jmJvg6jT_oBjLDyenZ2MlArLd6oFaWvilijMJYBDAKw3Im-4zDAQeuOjSzRaNTK-XJXH6BxkBC3IhMwblPGt0rKsQFC4FgOCAsFpT_tIgtZcfDLqnrX_56TXZGB0fjdX4ID98Qe7he9zIZnSbrFXzhXsJCKwqXtU2dgupGSc_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egQJAQnNI6Thyvj9V2l5aWaAVU3Zvl-CGtWmWrJSsVTvwEfiO_hJl4E1jEQ4JjkrHlx3j8jTP-hpDnufNMyNQl1ICviox0idZaJDaDzR8gR8Y0nne8KYv94_z1lE9_uMUf-CH6AzdcGa29xgV-bv3Od9JQvIGNoVkcauT8MtnMC3CxEBa97QmkGGhnuF-UZQmmoe9oGynbWS-_ti1t4ghf_ApzrkPYdg8a3yC6a30IPTndXjbVtvn0E7Hj_3TvJrm-AqjxbtCoW-SSq2-Tq8MuL9wdMgFb8_Xzl8kMQ93Bm7bxO9j-YPrj0YUB-1DH4xmG1tbxrI6HH3U9B2m0TyEowcZ7M2jVWeOahTZoae-S4_Ho_XA_WeVlSAzgHZ6kxlBW8Sy3qdMAgBg1vBh46QrN0IPJisp7QKKSek1T6xk3VlNjbca9ZLTK7pGNel67ByTGbGU-t5ZZL3OujSy8FU4L4QZVRaWLSNJNizIr0nLMnXGmAt0yUzhOqh-niLzs5c8DXcdvJV-0s9yL6cUpBrkJrk7KV4qx8nByMj1SIiJbnRqo1fr-oNJCAhQE6Eoj8qz_DBOBv1t07ebLIDMYFFma_0FGgDsuZMGgnvtBxfoGQeVSAASOCGsV5S8dUrvlwah_evgvhZ6SK5O9sTo6KA8fkWv4Gk-xGd0iG81i6R4D_GqqJ-0K-wYQsyXu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-Picosecond+Singlet+Exciton+Fission+in+Cyano-Substituted+Diaryltetracenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Margulies%2C+Eric+A&rft.au=Wu%2C+Yi-Lin&rft.au=Gawel%2C+Przemyslaw&rft.au=Miller%2C+Stephen+A&rft.date=2015-07-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=30&rft.spage=8679&rft.epage=8683&rft_id=info:doi/10.1002%2Fanie.201501355&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |