Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes

Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 an...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 30; pp. 8679 - 8683
Main Authors Margulies, Eric A., Wu, Yi-Lin, Gawel, Przemyslaw, Miller, Stephen A., Shoer, Leah E., Schaller, Richard D., Diederich, François, Wasielewski, Michael R.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 20.07.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201501355

Cover

Abstract Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Divide and conquer: Transient absorption measurements reveal sub‐picosecond singlet exciton fission in thin films of a cyano‐substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6±0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission.
AbstractList Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2ps and τ=23±3ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)−E(S1)=−0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state. Divide and conquer: Transient absorption measurements reveal sub‐picosecond singlet exciton fission in thin films of a cyano‐substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6±0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission.
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T 1 )−E(S 1 )=−0.17 eV), where S 1 and T 1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.
Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.
Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.
Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T sub(1))-E(S sub(1))= -0.17eV), where S sub(1) and T sub(1) are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples ( tau =0.8 plus or minus 0.2ps and tau =23 plus or minus 3ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6 plus or minus 0.3 triplets per initial excited state. Divide and conquer: Transient absorption measurements reveal sub-picosecond singlet exciton fission in thin films of a cyano-substituted diaryltetracene. A triplet yield analysis of the transient absorption data set indicates the formation of 1.6 plus or minus 0.3 triplet excitons per singlet exciton, as a result of rapid and efficient singlet fission.
Author Wasielewski, Michael R.
Margulies, Eric A.
Schaller, Richard D.
Wu, Yi-Lin
Shoer, Leah E.
Diederich, François
Gawel, Przemyslaw
Miller, Stephen A.
Author_xml – sequence: 1
  givenname: Eric A.
  surname: Margulies
  fullname: Margulies, Eric A.
  organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
– sequence: 2
  givenname: Yi-Lin
  surname: Wu
  fullname: Wu, Yi-Lin
  organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
– sequence: 3
  givenname: Przemyslaw
  surname: Gawel
  fullname: Gawel, Przemyslaw
  organization: Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich (Switzerland)
– sequence: 4
  givenname: Stephen A.
  surname: Miller
  fullname: Miller, Stephen A.
  organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
– sequence: 5
  givenname: Leah E.
  surname: Shoer
  fullname: Shoer, Leah E.
  organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
– sequence: 6
  givenname: Richard D.
  surname: Schaller
  fullname: Schaller, Richard D.
  organization: Department of Chemistry, Northwestern University and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (USA)
– sequence: 7
  givenname: François
  surname: Diederich
  fullname: Diederich, François
  email: diederich@org.chem.ethz.ch
  organization: Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich (Switzerland)
– sequence: 8
  givenname: Michael R.
  surname: Wasielewski
  fullname: Wasielewski, Michael R.
  email: m-wasielewski@northwestern.edu
  organization: Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26097009$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv0zAUgC00xLbClSOKxIVLyrMd28lxKt2YVpVJA42b5TgvyCO1R-yI9d_jraNCk9BOz4fvs-XvHZMDHzwS8pbCnAKwj8Y7nDOgAigX4gU5ooLRkivFD_K54rxUtaCH5DjGm8zXNchX5JBJaBRAc0RWV1NbXjobItrgu-LK-R8DpmJ5Z10Kvjh1Mbo8nS8WW-NDmfmYXJoSdsUnZ8btkDCNxqLH-Jq87M0Q8c3jnJFvp8uvi8_l6svZ-eJkVVpJlSiptcBawauOoqGKMbBC1n2D0jBWMcFl2_dQQwO9Adr1TNjOgO06LvqGQctn5MPu3tsx_JowJr1x0eIwGI9hipqqqpKqkQyeR2Uj61rynGpG3j9Bb8I0-vyRByqHzdky9e6RmtoNdvp2dJtcQf9NmoH5DrBjiHHEfo9Q0Pc70_c70_udZaF6IuT0JuXquasb_q81O-23G3D7zCP6ZH2-_Nctd66LCe_2rhl_aqm4Evp6faYZW19cXn9facX_ADvquNs
CODEN ACIEAY
CitedBy_id crossref_primary_10_1039_C8SC00293B
crossref_primary_10_1021_acs_jpclett_5b02186
crossref_primary_10_1002_cphc_202200454
crossref_primary_10_1016_j_jfluchem_2023_110110
crossref_primary_10_1063_1_5099062
crossref_primary_10_1039_C9TC04070F
crossref_primary_10_1039_D0SC03271A
crossref_primary_10_1063_1_5110188
crossref_primary_10_1021_acs_chemmater_7b01845
crossref_primary_10_1016_j_jphotochem_2020_112597
crossref_primary_10_1021_acs_jpcc_2c01474
crossref_primary_10_1021_acs_jpca_6b04367
crossref_primary_10_1021_acs_jpcc_1c01964
crossref_primary_10_1002_ange_201711605
crossref_primary_10_1016_j_jphotochem_2021_113251
crossref_primary_10_1039_D1TC05316G
crossref_primary_10_1063_5_0026254
crossref_primary_10_1002_advs_202405864
crossref_primary_10_1039_D0CP03951A
crossref_primary_10_1021_jacs_2c03550
crossref_primary_10_1039_C9TC01348B
crossref_primary_10_1021_acs_jpcc_7b07870
crossref_primary_10_1039_D2QM00531J
crossref_primary_10_1002_anie_201711605
crossref_primary_10_1002_adfm_201703929
crossref_primary_10_1021_acs_joc_7b00602
crossref_primary_10_1002_anie_201912202
crossref_primary_10_1021_acs_jpclett_8b00628
crossref_primary_10_1021_acs_jpcc_9b00210
crossref_primary_10_1021_acsaem_4c03246
crossref_primary_10_1016_j_jphotochem_2021_113262
crossref_primary_10_1021_jacs_6b07721
crossref_primary_10_1021_acs_jpcc_0c07920
crossref_primary_10_1021_acs_jpcc_2c03226
crossref_primary_10_1021_jacs_8b04830
crossref_primary_10_1021_acs_jpclett_8b01226
crossref_primary_10_1021_jacs_6b10010
crossref_primary_10_1016_j_mser_2019_100519
crossref_primary_10_1021_acs_jpcc_0c10979
crossref_primary_10_1021_jacs_6b05627
crossref_primary_10_1002_anie_201704668
crossref_primary_10_1002_nadc_20164047492
crossref_primary_10_1021_acs_jpcc_9b10397
crossref_primary_10_1002_chem_201700043
crossref_primary_10_1002_adma_201701416
crossref_primary_10_1002_anie_201601421
crossref_primary_10_1002_anie_202401103
crossref_primary_10_1039_D0QM00072H
crossref_primary_10_1038_nchem_2589
crossref_primary_10_1021_acs_jpcc_1c02999
crossref_primary_10_1021_acs_orglett_3c02306
crossref_primary_10_1002_ange_201912202
crossref_primary_10_1021_acs_jpcc_2c02622
crossref_primary_10_1021_jacs_8b08627
crossref_primary_10_1039_C7TC05783K
crossref_primary_10_1002_ange_202401103
crossref_primary_10_1021_acs_jpcc_8b05260
crossref_primary_10_1002_ange_201704668
crossref_primary_10_1002_marc_202300241
crossref_primary_10_1021_acs_jpclett_7b02597
crossref_primary_10_1021_acsnano_6b02814
crossref_primary_10_1021_acs_jpclett_7b02434
crossref_primary_10_1002_ange_201601421
crossref_primary_10_1021_acs_jpcc_7b11228
crossref_primary_10_1002_chem_201703903
crossref_primary_10_1016_j_comptc_2017_02_018
Cites_doi 10.1021/cr1002613
10.1021/ar300286s
10.1002/anie.201402299
10.1038/nmat4097
10.1351/pac196511030371
10.1063/1.4867696
10.1021/ja300504t
10.1126/science.1232994
10.1038/nchem.1436
10.1016/0009-2614(69)80122-3
10.1063/1.4876600
10.1063/1.1674702
10.1063/1.555770
10.1021/ja501337b
10.1063/1.3664630
10.1021/ja408854u
10.1038/ncomms3679
10.1038/nmat4093
10.1021/jz2015346
10.1002/ange.201402299
10.1021/ja301683w
10.1039/c2cp40449d
10.1063/1.2717561
10.1021/jp208063h
10.1103/PhysRevB.84.193203
10.1063/1.2356795
10.1021/ja073173y
10.1063/1.3495764
10.1038/nchem.1945
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201501355
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8683
ExternalDocumentID 3743148871
26097009
10_1002_anie_201501355
ANIE201501355
ark_67375_WNG_22NKPWXL_7
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1121262
– fundername: Swiss National Science Foundation
– fundername: ERC
  funderid: 246637
– fundername: Office of Basic Energy Sciences, U.S. Department of Energy (DOE)
  funderid: DE‐FG02‐99ER14999
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6175-1cc02b534d1ea17220c568f9e6a2242536bff08090fa01df25cda0cdd35f920b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:52:20 EDT 2025
Thu Jul 10 23:43:08 EDT 2025
Fri Jul 25 10:43:31 EDT 2025
Thu Apr 03 07:00:48 EDT 2025
Tue Jul 01 03:26:55 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed Aug 20 07:25:22 EDT 2025
Sun Sep 21 06:14:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords time-resolved spectroscopy
chromophores
photophysics
tetracene derivatives
singlet fission
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6175-1cc02b534d1ea17220c568f9e6a2242536bff08090fa01df25cda0cdd35f920b3
Notes Swiss National Science Foundation
Office of Basic Energy Sciences, U.S. Department of Energy (DOE) - No. DE-FG02-99ER14999
National Science Foundation - No. DMR-1121262
This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under Grant No. DE-FG02-99ER14999 (M.R.W.), the Swiss National Science Foundation, and the ERC Advanced Grant No. 246637 ("OPTELOMAC"). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. This work made use of the J. B. Cohen X-ray Diffraction Facility at the Materials Research Center of Northwestern University supported by the National Science Foundation MRSEC program (DMR-1121262). We thank Dr. Matthew Krzyaniak and Dr. Samuel Eaton for help with data analysis, acquiring time-resolved fluorescence data, and helpful discussions.
ArticleID:ANIE201501355
ERC - No. 246637
ark:/67375/WNG-22NKPWXL-7
istex:848979D32E438E7CBF70DB5CEAC27F187B0F6448
This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under Grant No. DE‐FG02‐99ER14999 (M.R.W.), the Swiss National Science Foundation, and the ERC Advanced Grant No. 246637 (“OPTELOMAC”). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE‐AC02‐06CH11357. This work made use of the J. B. Cohen X‐ray Diffraction Facility at the Materials Research Center of Northwestern University supported by the National Science Foundation MRSEC program (DMR‐1121262). We thank Dr. Matthew Krzyaniak and Dr. Samuel Eaton for help with data analysis, acquiring time‐resolved fluorescence data, and helpful discussions.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26097009
PQID 1696152260
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1744679620
proquest_miscellaneous_1696886314
proquest_journals_1696152260
pubmed_primary_26097009
crossref_primary_10_1002_anie_201501355
crossref_citationtrail_10_1002_anie_201501355
wiley_primary_10_1002_anie_201501355_ANIE201501355
istex_primary_ark_67375_WNG_22NKPWXL_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 20, 2015
PublicationDateYYYYMMDD 2015-07-20
PublicationDate_xml – month: 07
  year: 2015
  text: July 20, 2015
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References M. B. Smith, J. Michl, Chem. Rev. 2010, 110, 6891-6936.
J. J. Burdett, C. J. Bardeen, J. Am. Chem. Soc. 2012, 134, 8597-8607
L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312
I. Carmichael, G. L. Hug, J. Phys. Chem. Ref. Data 1986, 15, 1-250.
P. Gawel, C. Dengiz, A. D. Finke, N. Trapp, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Angew. Chem. Int. Ed. 2014, 53, 4341-4345
A. Ryasnyanskiy, I. Biaggio, Phys. Rev. B 2011, 84, 193203.
J. J. Burdett, A. M. Müller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506
M. W. B. Wilson, A. Rao, K. Johnson, S. Gélinas, R. di Pietro, J. Clark, R. H. Friend, J. Am. Chem. Soc. 2013, 135, 16680-16688
J. N. Schrauben, J. L. Ryerson, J. Michl, J. C. Johnson, J. Am. Chem. Soc. 2014, 136, 7363-7373.
M. Kytka, A. Gerlach, F. Schreiber, J. Kováč, Appl. Phys. Lett. 2007, 90, 131911.
R. E. Merrifield, P. Avakian, R. P. Groff, Chem. Phys. Lett. 1969, 3, 155-157
S. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, S. E. Bradforth, J. Am. Chem. Soc. 2012, 134, 6388-6400
Y.-F. Chang, Z.-Y. Lu, L.-J. An, J.-P. Zhang, J. Phys. Chem. C 2011, 116, 1195-1199.
W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, X. Y. Zhu, Acc. Chem. Res. 2013, 46, 1321-1329
W.-L. Chan, M. Ligges, X. Y. Zhu, Nat. Chem. 2012, 4, 840-845.
J. J. Burdett, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508
S. R. Yost, J. Lee, M. W. B. Wilson, T. Wu, D. P. McMahon, R. R. Parkhurst, N. J. Thompson, D. N. Congreve, A. Rao, K. Johnson, M. Y. Sfeir, M. G. Bawendi, T. M. Swager, R. H. Friend, M. A. Baldo, T. Van Voorhis, Nat. Chem. 2014, 6, 492-497.
T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. Van Voorhis, M. A. Baldo, Appl. Phys. Lett. 2014, 104, 193901.
J. R. Tritsch, W.-L. Chan, X. Wu, N. R. Monahan, X.-Y. Zhu, Nat. Commun. 2013, 4, 2679
D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334-337.
M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014, 13, 1033-1038
Z. Birech, M. Schwoerer, T. Schmeiler, J. Pflaum, H. Schwoerer, J. Chem. Phys. 2014, 140, 114501
M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371-392.
T. Minami, M. Nakano, J. Phys. Chem. Lett. 2011, 3, 145-150.
M. C. Hanna, A. J. Nozik, J. Appl. Phys. 2006, 100, 074510.
N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo, Nat. Mater. 2014, 13, 1039-1043.
A. M. Müller, Y. S. Avlasevich, W. W. Schoeller, K. Müllen, C. J. Bardeen, J. Am. Chem. Soc. 2007, 129, 14240-14250
Y. Tomkiewicz, R. P. Groff, P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507
Angew. Chem. 2014, 126, 4430-4434.
2011; 116
2014 2014; 53 126
2011; 135
2007; 129
1965; 11
2013; 4
2013; 46
2011; 84
1986; 15
2007; 90
2013; 340
2012; 14
2011; 3
2014; 136
1971; 54
2012; 134
1969; 3
2010; 110
2010; 133
2014; 13
2013; 135
2014; 140
2012; 4
2014; 6
2006; 100
2014; 104
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_2_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_27_2
e_1_2_2_24_4
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_24_3
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_14_2
References_xml – reference: J. N. Schrauben, J. L. Ryerson, J. Michl, J. C. Johnson, J. Am. Chem. Soc. 2014, 136, 7363-7373.
– reference: W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, X. Y. Zhu, Acc. Chem. Res. 2013, 46, 1321-1329;
– reference: P. Gawel, C. Dengiz, A. D. Finke, N. Trapp, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Angew. Chem. Int. Ed. 2014, 53, 4341-4345;
– reference: A. Ryasnyanskiy, I. Biaggio, Phys. Rev. B 2011, 84, 193203.
– reference: S. R. Yost, J. Lee, M. W. B. Wilson, T. Wu, D. P. McMahon, R. R. Parkhurst, N. J. Thompson, D. N. Congreve, A. Rao, K. Johnson, M. Y. Sfeir, M. G. Bawendi, T. M. Swager, R. H. Friend, M. A. Baldo, T. Van Voorhis, Nat. Chem. 2014, 6, 492-497.
– reference: M. W. B. Wilson, A. Rao, K. Johnson, S. Gélinas, R. di Pietro, J. Clark, R. H. Friend, J. Am. Chem. Soc. 2013, 135, 16680-16688;
– reference: M. B. Smith, J. Michl, Chem. Rev. 2010, 110, 6891-6936.
– reference: J. J. Burdett, A. M. Müller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506;
– reference: R. E. Merrifield, P. Avakian, R. P. Groff, Chem. Phys. Lett. 1969, 3, 155-157;
– reference: Y.-F. Chang, Z.-Y. Lu, L.-J. An, J.-P. Zhang, J. Phys. Chem. C 2011, 116, 1195-1199.
– reference: I. Carmichael, G. L. Hug, J. Phys. Chem. Ref. Data 1986, 15, 1-250.
– reference: M. C. Hanna, A. J. Nozik, J. Appl. Phys. 2006, 100, 074510.
– reference: N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo, Nat. Mater. 2014, 13, 1039-1043.
– reference: T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. Van Voorhis, M. A. Baldo, Appl. Phys. Lett. 2014, 104, 193901.
– reference: D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334-337.
– reference: T. Minami, M. Nakano, J. Phys. Chem. Lett. 2011, 3, 145-150.
– reference: Y. Tomkiewicz, R. P. Groff, P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507;
– reference: M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014, 13, 1033-1038;
– reference: J. R. Tritsch, W.-L. Chan, X. Wu, N. R. Monahan, X.-Y. Zhu, Nat. Commun. 2013, 4, 2679;
– reference: A. M. Müller, Y. S. Avlasevich, W. W. Schoeller, K. Müllen, C. J. Bardeen, J. Am. Chem. Soc. 2007, 129, 14240-14250;
– reference: M. Kytka, A. Gerlach, F. Schreiber, J. Kováč, Appl. Phys. Lett. 2007, 90, 131911.
– reference: Angew. Chem. 2014, 126, 4430-4434.
– reference: M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371-392.
– reference: J. J. Burdett, C. J. Bardeen, J. Am. Chem. Soc. 2012, 134, 8597-8607;
– reference: L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312;
– reference: J. J. Burdett, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508;
– reference: W.-L. Chan, M. Ligges, X. Y. Zhu, Nat. Chem. 2012, 4, 840-845.
– reference: S. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, S. E. Bradforth, J. Am. Chem. Soc. 2012, 134, 6388-6400;
– reference: Z. Birech, M. Schwoerer, T. Schmeiler, J. Pflaum, H. Schwoerer, J. Chem. Phys. 2014, 140, 114501;
– volume: 116
  start-page: 1195
  year: 2011
  end-page: 1199
  publication-title: J. Phys. Chem. C
– volume: 104
  start-page: 193901
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 133
  start-page: 144506
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 074510
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 1
  year: 1986
  end-page: 250
  publication-title: J. Phys. Chem. Ref. Data
– volume: 134
  start-page: 8597
  year: 2012
  end-page: 8607
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 492
  year: 2014
  end-page: 497
  publication-title: Nat. Chem.
– volume: 3
  start-page: 155
  year: 1969
  end-page: 157
  publication-title: Chem. Phys. Lett.
– volume: 3
  start-page: 145
  year: 2011
  end-page: 150
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 2679
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  start-page: 840
  year: 2012
  end-page: 845
  publication-title: Nat. Chem.
– volume: 11
  start-page: 371
  year: 1965
  end-page: 392
  publication-title: Pure Appl. Chem.
– volume: 129
  start-page: 14240
  year: 2007
  end-page: 14250
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 114501
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 84
  start-page: 193203
  year: 2011
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 1039
  year: 2014
  end-page: 1043
  publication-title: Nat. Mater.
– volume: 136
  start-page: 7363
  year: 2014
  end-page: 7373
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 6891
  year: 2010
  end-page: 6936
  publication-title: Chem. Rev.
– volume: 54
  start-page: 4504
  year: 1971
  end-page: 4507
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 214508
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 8307
  year: 2012
  end-page: 8312
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 1033
  year: 2014
  end-page: 1038
  publication-title: Nat. Mater.
– volume: 134
  start-page: 6388
  year: 2012
  end-page: 6400
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1321
  year: 2013
  end-page: 1329
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 4341 4430
  year: 2014 2014
  end-page: 4345 4434
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 16680
  year: 2013
  end-page: 16688
  publication-title: J. Am. Chem. Soc.
– volume: 340
  start-page: 334
  year: 2013
  end-page: 337
  publication-title: Science
– volume: 90
  start-page: 131911
  year: 2007
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_2_1_2
  doi: 10.1021/cr1002613
– ident: e_1_2_2_17_2
  doi: 10.1021/ar300286s
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201402299
– ident: e_1_2_2_28_2
– ident: e_1_2_2_5_2
  doi: 10.1038/nmat4097
– ident: e_1_2_2_27_2
  doi: 10.1351/pac196511030371
– ident: e_1_2_2_20_2
  doi: 10.1063/1.4867696
– ident: e_1_2_2_16_2
  doi: 10.1021/ja300504t
– ident: e_1_2_2_3_2
– ident: e_1_2_2_6_2
  doi: 10.1126/science.1232994
– ident: e_1_2_2_26_2
  doi: 10.1038/nchem.1436
– ident: e_1_2_2_10_2
  doi: 10.1016/0009-2614(69)80122-3
– ident: e_1_2_2_21_2
  doi: 10.1063/1.4876600
– ident: e_1_2_2_9_2
– ident: e_1_2_2_24_4
– ident: e_1_2_2_11_2
  doi: 10.1063/1.1674702
– ident: e_1_2_2_31_2
  doi: 10.1063/1.555770
– ident: e_1_2_2_30_2
  doi: 10.1021/ja501337b
– ident: e_1_2_2_14_2
  doi: 10.1063/1.3664630
– ident: e_1_2_2_18_2
  doi: 10.1021/ja408854u
– ident: e_1_2_2_19_2
  doi: 10.1038/ncomms3679
– ident: e_1_2_2_4_2
  doi: 10.1038/nmat4093
– ident: e_1_2_2_8_2
  doi: 10.1021/jz2015346
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201402299
– ident: e_1_2_2_15_2
  doi: 10.1021/ja301683w
– ident: e_1_2_2_29_2
  doi: 10.1039/c2cp40449d
– ident: e_1_2_2_22_2
  doi: 10.1063/1.2717561
– ident: e_1_2_2_23_2
  doi: 10.1021/jp208063h
– ident: e_1_2_2_25_2
  doi: 10.1103/PhysRevB.84.193203
– ident: e_1_2_2_2_2
  doi: 10.1063/1.2356795
– ident: e_1_2_2_12_2
  doi: 10.1021/ja073173y
– ident: e_1_2_2_13_2
  doi: 10.1063/1.3495764
– ident: e_1_2_2_7_2
  doi: 10.1038/nchem.1945
SSID ssj0028806
Score 2.4304283
Snippet Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of...
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of...
Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8679
SubjectTerms chromophores
Diffusion
Disorders
Excitation
Excitation spectra
Fission
Formations
photophysics
singlet fission
tetracene derivatives
Thin films
time-resolved spectroscopy
Tuning
Title Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes
URI https://api.istex.fr/ark:/67375/WNG-22NKPWXL-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201501355
https://www.ncbi.nlm.nih.gov/pubmed/26097009
https://www.proquest.com/docview/1696152260
https://www.proquest.com/docview/1696886314
https://www.proquest.com/docview/1744679620
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM9Ai4KE4JTWseN4fay2u5TXagVU3Zvl-CGtWmXRNisVTvwEfiO_pDPxJrCIhwSnJMrY8mM8_myPvyHkaeEDkyr3GbWwVkVGuswYIzPHYfIHyMGZwf2Ot5Py6Lh4NROzH27xR36IfsMNR0Zrr3GAm-p8_ztpKN7ARtcsATkKvGUOj_ac9l3PH8VAOeP1Is4zjELfsTZStr-ZfGNWuooNfPEryLmJYNspaHyTmK7w0fPkdG_VVHv280-8jv9Tu1vkxhqfpgdRobbJFV_fJteGXVi4O2QKpubbl6_TOXq6w2Lape9h9oPeT0cXFsxDnY7n6Flbp_M6HX4y9QKk0TxFnwSXHs6hVGeNb5bGoqG9S47How_Do2wdliGzAHdElltLWSV44XJvAP8wakU5CMqXhuEChpdVCABEFQ2G5i4wYZ2h1jkugmK04vfIVr2o_QOSYrCyUDjHXFCFMFaVwUlvpPSDqqLKJyTrukXbNWc5hs4405FtmWlsJ923U0Ke9_IfI1vHbyWftb3ci5nlKfq4SaFPJi80Y5PX05PZGy0TstOpgV4P73OdlwqQICBXmpAn_W_oCDxtMbVfrKLMYFDyvPiDjITVuFQlg3zuRxXrCwSZKwkIOCGsVZS_VEgfTF6O-q-H_5LoEbmO77hzzegO2WqWK78LkKupHrfD6hKFeCMj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL5U1KgSAhOKV1nDheH6vtLlu6jVbQqr1Zjh_SqlUWbbNSy4mfwG_sL-lMsglaxEOCY5KJ5cfM-LM9_oaQt6nzTMjYRdTAWhUZ6SKttYhsApM_QI6EadzvOMqz0Un68Yy30YR4F6bhh-g23NAyan-NBo4b0rs_WEPxCjbGZnEokvO7ZB0P6dA29z91DFIM1LO5YJQkEeahb3kbKdtd_X9lXlrHLr76FehcxbD1JDTcJEVb_Sb25HxnURU75utPzI7_1b4H5P4SooZ7jU49JHdc-Yhs9NvMcI_JBLzNzbfvkykGu8N62oafYQIEBQgHVwY8RBkOpxhcW4bTMuxf63IG0uihmrAEG-5PoVoXlavm2qCvfUJOhoPj_ihaZmaIDCAeHsXGUFbwJLWx0wCBGDU863npMs1wDZNkhfeARSX1msbWM26spsbahHvJaJE8JWvlrHTPSYj5ynxqLbNeplwbmXkrnBbC9YqCSheQqB0XZZa05Zg940I1hMtMYT-prp8C8r6T_9IQdvxW8l09zJ2Ynp9jmJvg6jT_oBjLDyenZ2MlArLd6oFaWvilijMJYBDAKw3Im-4zDAQeuOjSzRaNTK-XJXH6BxkBC3IhMwblPGt0rKsQFC4FgOCAsFpT_tIgtZcfDLqnrX_56TXZGB0fjdX4ID98Qe7he9zIZnSbrFXzhXsJCKwqXtU2dgupGSc_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egQJAQnNI6Thyvj9V2l5aWaAVU3Zvl-CGtWmWrJSsVTvwEfiO_hJl4E1jEQ4JjkrHlx3j8jTP-hpDnufNMyNQl1ICviox0idZaJDaDzR8gR8Y0nne8KYv94_z1lE9_uMUf-CH6AzdcGa29xgV-bv3Od9JQvIGNoVkcauT8MtnMC3CxEBa97QmkGGhnuF-UZQmmoe9oGynbWS-_ti1t4ghf_ApzrkPYdg8a3yC6a30IPTndXjbVtvn0E7Hj_3TvJrm-AqjxbtCoW-SSq2-Tq8MuL9wdMgFb8_Xzl8kMQ93Bm7bxO9j-YPrj0YUB-1DH4xmG1tbxrI6HH3U9B2m0TyEowcZ7M2jVWeOahTZoae-S4_Ho_XA_WeVlSAzgHZ6kxlBW8Sy3qdMAgBg1vBh46QrN0IPJisp7QKKSek1T6xk3VlNjbca9ZLTK7pGNel67ByTGbGU-t5ZZL3OujSy8FU4L4QZVRaWLSNJNizIr0nLMnXGmAt0yUzhOqh-niLzs5c8DXcdvJV-0s9yL6cUpBrkJrk7KV4qx8nByMj1SIiJbnRqo1fr-oNJCAhQE6Eoj8qz_DBOBv1t07ebLIDMYFFma_0FGgDsuZMGgnvtBxfoGQeVSAASOCGsV5S8dUrvlwah_evgvhZ6SK5O9sTo6KA8fkWv4Gk-xGd0iG81i6R4D_GqqJ-0K-wYQsyXu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-Picosecond+Singlet+Exciton+Fission+in+Cyano-Substituted+Diaryltetracenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Margulies%2C+Eric+A&rft.au=Wu%2C+Yi-Lin&rft.au=Gawel%2C+Przemyslaw&rft.au=Miller%2C+Stephen+A&rft.date=2015-07-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=30&rft.spage=8679&rft.epage=8683&rft_id=info:doi/10.1002%2Fanie.201501355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon