Autophagy in malignant transformation and cancer progression

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is r...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 34; no. 7; pp. 856 - 880
Main Authors Galluzzi, Lorenzo, Pietrocola, Federico, Bravo-San Pedro, José Manuel, Amaravadi, Ravi K, Baehrecke, Eric H, Cecconi, Francesco, Codogno, Patrice, Debnath, Jayanta, Gewirtz, David A, Karantza, Vassiliki, Kimmelman, Alec, Kumar, Sharad, Levine, Beth, Maiuri, Maria Chiara, Martin, Seamus J, Penninger, Josef, Piacentini, Mauro, Rubinsztein, David C, Simon, Hans-Uwe, Simonsen, Anne, Thorburn, Andrew M, Velasco, Guillermo, Ryan, Kevin M, Kroemer, Guido
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.04.2015
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.201490784

Cover

Abstract Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Graphical Abstract Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy.
AbstractList Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy.
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Graphical Abstract Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy.
Author Karantza, Vassiliki
Rubinsztein, David C
Simonsen, Anne
Codogno, Patrice
Piacentini, Mauro
Galluzzi, Lorenzo
Penninger, Josef
Gewirtz, David A
Ryan, Kevin M
Kimmelman, Alec
Kumar, Sharad
Thorburn, Andrew M
Bravo‐San Pedro, José Manuel
Baehrecke, Eric H
Simon, Hans‐Uwe
Velasco, Guillermo
Pietrocola, Federico
Debnath, Jayanta
Maiuri, Maria Chiara
Martin, Seamus J
Amaravadi, Ravi K
Kroemer, Guido
Cecconi, Francesco
Levine, Beth
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Galluzzi
  fullname: Galluzzi, Lorenzo
  email: deadoc@vodafone.it
  organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
– sequence: 2
  givenname: Federico
  surname: Pietrocola
  fullname: Pietrocola, Federico
  organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
– sequence: 3
  givenname: José Manuel
  surname: Bravo-San Pedro
  fullname: Bravo-San Pedro, José Manuel
  organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
– sequence: 4
  givenname: Ravi K
  surname: Amaravadi
  fullname: Amaravadi, Ravi K
  organization: Abramson Cancer Center, University of Pennsylvania, PA, Philadelphia, USA
– sequence: 5
  givenname: Eric H
  surname: Baehrecke
  fullname: Baehrecke, Eric H
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, MA, Worcester, USA
– sequence: 6
  givenname: Francesco
  surname: Cecconi
  fullname: Cecconi, Francesco
  organization: Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
– sequence: 7
  givenname: Patrice
  surname: Codogno
  fullname: Codogno, Patrice
  organization: Université Paris Descartes, Sorbonne Paris Cité, Paris, France
– sequence: 8
  givenname: Jayanta
  surname: Debnath
  fullname: Debnath, Jayanta
  organization: Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA, San Francisco, USA
– sequence: 9
  givenname: David A
  surname: Gewirtz
  fullname: Gewirtz, David A
  organization: Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, VA, RichmondVirginia, USA
– sequence: 10
  givenname: Vassiliki
  surname: Karantza
  fullname: Karantza, Vassiliki
  organization: Merck Research Laboratories, NJ, Rahway, USA
– sequence: 11
  givenname: Alec
  surname: Kimmelman
  fullname: Kimmelman, Alec
  organization: Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, MA, Boston, USA
– sequence: 12
  givenname: Sharad
  surname: Kumar
  fullname: Kumar, Sharad
  organization: Centre for Cancer Biology, University of South Australia, SA, Adelaide, Australia
– sequence: 13
  givenname: Beth
  surname: Levine
  fullname: Levine, Beth
  organization: Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
– sequence: 14
  givenname: Maria Chiara
  surname: Maiuri
  fullname: Maiuri, Maria Chiara
  organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
– sequence: 15
  givenname: Seamus J
  surname: Martin
  fullname: Martin, Seamus J
  organization: Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland
– sequence: 16
  givenname: Josef
  surname: Penninger
  fullname: Penninger, Josef
  organization: Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
– sequence: 17
  givenname: Mauro
  surname: Piacentini
  fullname: Piacentini, Mauro
  organization: Department of Biology, University of Rome Tor Vergata, Rome, Italy
– sequence: 18
  givenname: David C
  surname: Rubinsztein
  fullname: Rubinsztein, David C
  organization: Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
– sequence: 19
  givenname: Hans-Uwe
  surname: Simon
  fullname: Simon, Hans-Uwe
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 20
  givenname: Anne
  surname: Simonsen
  fullname: Simonsen, Anne
  organization: Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
– sequence: 21
  givenname: Andrew M
  surname: Thorburn
  fullname: Thorburn, Andrew M
  organization: Department of Pharmacology, University of Colorado School of Medicine, CO, Aurora, USA
– sequence: 22
  givenname: Guillermo
  surname: Velasco
  fullname: Velasco, Guillermo
  organization: Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain
– sequence: 23
  givenname: Kevin M
  surname: Ryan
  fullname: Ryan, Kevin M
  organization: Cancer Research UK Beatson Institute, Glasgow, UK
– sequence: 24
  givenname: Guido
  surname: Kroemer
  fullname: Kroemer, Guido
  organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25712477$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v0zAchi00xLrBmRuKxIVLNn9_IIQ0qm2AOuAA2tFyEydzSexiJ7D-95hlq7pJEydL9vO8fu3fAdjzwVsAXiJ4hBhm-Nj2y9URhogqKCR9AmaIclhiKNgemEHMUUmRVPvgIKUVhJBJgZ6BfcwEwlSIGXh3Mg5hfWXaTeF80ZvOtd74oRii8akJsTeDC74wvi4q4ysbi3UMbbQp5e3n4GljumRf3K6H4MfZ6ff5x3Lx9fzT_GRRVhwJWnKpiGKEVUtqhbCcMaxqU0vFoWEcSaaIoQ3llDdsCWGNGoMUEiK3lTmhJofg_ZS7Hpe9rSvrc71Or6PrTdzoYJy-f-LdlW7Db02JzOk8B7y5DYjh12jToHuXKtt1xtswJo24xFLhDGf09QN0Fcbo8_MyxYVCBGOcqVe7jbZV7j42A2wCqhhSirbRlRtu_jIXdJ1GUN8MUP8boN4OMHvHD7y76MeNt5Pxx3V28z9cn158-Lwrw0lO2fOtjTuvffS-clJcGuz19j4Tf2ouiGD68su5pvwbuZxDqhfkL2OnzCc
CODEN EMJODG
CitedBy_id crossref_primary_10_3389_fonc_2021_599124
crossref_primary_10_3390_biology13060409
crossref_primary_10_1016_j_biochi_2022_10_004
crossref_primary_10_1016_j_bbadis_2022_166484
crossref_primary_10_1016_j_celrep_2019_06_010
crossref_primary_10_2147_CMAR_S241095
crossref_primary_10_18632_aging_203406
crossref_primary_10_3390_cancers12061697
crossref_primary_10_1002_adfm_202215244
crossref_primary_10_1016_j_ejps_2019_04_011
crossref_primary_10_1016_j_prp_2024_155597
crossref_primary_10_3389_fphar_2021_647350
crossref_primary_10_1038_s41418_019_0287_8
crossref_primary_10_1111_bjd_20889
crossref_primary_10_1016_j_molcel_2017_01_027
crossref_primary_10_1016_j_ijbiomac_2019_07_031
crossref_primary_10_1016_j_devcel_2018_02_019
crossref_primary_10_3389_fonc_2020_603661
crossref_primary_10_1016_j_bbcan_2016_11_003
crossref_primary_10_1016_j_cub_2016_11_055
crossref_primary_10_1016_j_lfs_2016_01_044
crossref_primary_10_1073_pnas_1908228116
crossref_primary_10_1080_15548627_2019_1598752
crossref_primary_10_1038_s41421_019_0110_1
crossref_primary_10_3390_molecules25214937
crossref_primary_10_1016_j_lfs_2020_117341
crossref_primary_10_1152_physrev_00044_2016
crossref_primary_10_3892_ol_2018_8123
crossref_primary_10_1371_journal_pone_0184909
crossref_primary_10_1038_cr_2016_110
crossref_primary_10_1080_23723556_2015_1046579
crossref_primary_10_3390_cells12081156
crossref_primary_10_1038_cr_2017_155
crossref_primary_10_1016_j_bbcan_2023_188946
crossref_primary_10_1016_j_jbo_2016_01_003
crossref_primary_10_3389_fonc_2017_00302
crossref_primary_10_3389_fphar_2024_1419806
crossref_primary_10_3390_cancers13051039
crossref_primary_10_3892_ol_2017_7426
crossref_primary_10_1007_s13205_023_03864_w
crossref_primary_10_1016_j_toxlet_2022_01_020
crossref_primary_10_18632_oncotarget_14338
crossref_primary_10_1016_j_devcel_2021_02_010
crossref_primary_10_4103_egjp_egjp_28_24
crossref_primary_10_3390_cells8030234
crossref_primary_10_3390_cells8111308
crossref_primary_10_1093_jmcb_mjab053
crossref_primary_10_1016_j_ccr_2024_216006
crossref_primary_10_1038_s41598_018_21106_5
crossref_primary_10_3390_cells10061447
crossref_primary_10_1038_s41598_019_42220_y
crossref_primary_10_1016_j_colsurfb_2021_112182
crossref_primary_10_1016_j_phrs_2016_03_031
crossref_primary_10_7717_peerj_8288
crossref_primary_10_1080_15548627_2016_1173799
crossref_primary_10_1111_joim_12609
crossref_primary_10_3389_fcell_2021_617801
crossref_primary_10_1016_j_bbcan_2016_02_001
crossref_primary_10_1189_jlb_4MR0216_079R
crossref_primary_10_1016_j_critrevonc_2022_103702
crossref_primary_10_1038_s41598_024_71123_w
crossref_primary_10_1080_15548627_2020_1856493
crossref_primary_10_1016_j_biopha_2020_110932
crossref_primary_10_1089_ars_2019_7872
crossref_primary_10_1002_cam4_5577
crossref_primary_10_1038_s41419_019_2011_5
crossref_primary_10_1016_j_ejphar_2020_173210
crossref_primary_10_1002_asia_202300308
crossref_primary_10_15212_AMM_2023_0018
crossref_primary_10_1007_s11033_021_06950_5
crossref_primary_10_1038_s41419_020_02835_w
crossref_primary_10_1038_s41467_019_13572_w
crossref_primary_10_3390_ph16050671
crossref_primary_10_1002_jcp_29479
crossref_primary_10_1038_s41419_022_05503_3
crossref_primary_10_1016_j_ejmech_2020_112421
crossref_primary_10_1080_15548627_2019_1687212
crossref_primary_10_1038_s41419_018_0498_9
crossref_primary_10_3892_ijo_2016_3505
crossref_primary_10_1016_j_trecan_2020_02_015
crossref_primary_10_1038_s41418_019_0474_7
crossref_primary_10_1172_JCI83013
crossref_primary_10_18632_aging_101686
crossref_primary_10_1038_s41419_018_0866_5
crossref_primary_10_1186_s13046_018_0884_2
crossref_primary_10_1016_j_dnarep_2021_103155
crossref_primary_10_1016_j_drup_2021_100779
crossref_primary_10_1080_15548627_2018_1504716
crossref_primary_10_18632_oncotarget_18974
crossref_primary_10_1016_j_ccell_2016_04_003
crossref_primary_10_1186_s12964_019_0422_7
crossref_primary_10_1038_s41419_018_1065_0
crossref_primary_10_1038_s41598_020_75598_1
crossref_primary_10_1017_S1431927619015071
crossref_primary_10_1038_s41564_019_0441_6
crossref_primary_10_1080_15548627_2016_1252890
crossref_primary_10_1007_s00018_016_2202_5
crossref_primary_10_1038_nature20815
crossref_primary_10_1038_s41598_019_47659_7
crossref_primary_10_3390_cells11203230
crossref_primary_10_1016_j_compbiomed_2022_105991
crossref_primary_10_31083_j_fbl2803047
crossref_primary_10_3892_ijo_2018_4486
crossref_primary_10_18632_oncotarget_9649
crossref_primary_10_1007_s10555_020_09883_w
crossref_primary_10_1016_j_canlet_2018_01_044
crossref_primary_10_3390_ijms241612626
crossref_primary_10_3390_biology9010020
crossref_primary_10_1016_j_celrep_2022_111292
crossref_primary_10_1016_j_semcdb_2019_07_015
crossref_primary_10_18632_oncotarget_9647
crossref_primary_10_1016_j_canlet_2020_10_029
crossref_primary_10_1016_j_critrevonc_2023_104037
crossref_primary_10_1007_s10495_021_01691_z
crossref_primary_10_1007_s11033_020_05669_z
crossref_primary_10_3892_mmr_2017_7815
crossref_primary_10_1074_jbc_M115_656116
crossref_primary_10_1016_j_apsb_2019_03_006
crossref_primary_10_1186_s13287_018_1060_5
crossref_primary_10_3389_fonc_2020_562196
crossref_primary_10_1007_s12672_023_00644_z
crossref_primary_10_1080_15548627_2015_1110667
crossref_primary_10_3390_ijms20174279
crossref_primary_10_1186_s12916_017_0873_x
crossref_primary_10_1016_j_cmi_2016_07_019
crossref_primary_10_1016_j_taap_2016_09_010
crossref_primary_10_1016_j_nanoso_2024_101280
crossref_primary_10_1186_s13046_017_0634_x
crossref_primary_10_1016_j_bbamcr_2022_119355
crossref_primary_10_1007_s11064_017_2308_7
crossref_primary_10_1096_fj_202000911R
crossref_primary_10_1073_pnas_1603650113
crossref_primary_10_1158_1535_7163_MCT_15_0621
crossref_primary_10_15252_embj_201593596
crossref_primary_10_1016_j_ejmech_2022_114805
crossref_primary_10_1101_cshperspect_a033993
crossref_primary_10_1155_2018_1482795
crossref_primary_10_1016_j_scitotenv_2020_139425
crossref_primary_10_1186_s12860_016_0093_9
crossref_primary_10_3389_fnmol_2016_00107
crossref_primary_10_1016_j_phrs_2016_01_028
crossref_primary_10_3390_ijms22189807
crossref_primary_10_1155_2018_6797924
crossref_primary_10_1007_s00232_016_9874_5
crossref_primary_10_1111_iju_15021
crossref_primary_10_3324_haematol_2022_280884
crossref_primary_10_1007_s00432_018_2675_8
crossref_primary_10_1016_j_tiv_2020_104840
crossref_primary_10_1097_CMR_0000000000000780
crossref_primary_10_1371_journal_pone_0141308
crossref_primary_10_3389_fimmu_2018_01243
crossref_primary_10_1111_imr_12568
crossref_primary_10_15252_embj_2020106214
crossref_primary_10_1007_s10120_020_01118_9
crossref_primary_10_3389_fcell_2023_1347446
crossref_primary_10_1186_s13046_019_1093_3
crossref_primary_10_1111_1440_1681_13133
crossref_primary_10_3390_ijms18071496
crossref_primary_10_3390_cancers11010027
crossref_primary_10_1002_advs_202207475
crossref_primary_10_1177_0192623317735776
crossref_primary_10_1016_S1875_5364_25_60804_1
crossref_primary_10_4062_biomolther_2020_155
crossref_primary_10_1016_j_bmc_2019_05_015
crossref_primary_10_1080_23723556_2017_1367873
crossref_primary_10_3389_fmed_2022_834164
crossref_primary_10_1080_15548627_2017_1310356
crossref_primary_10_1016_j_bbrc_2016_01_171
crossref_primary_10_1016_j_mce_2024_112196
crossref_primary_10_1007_s00018_018_2759_2
crossref_primary_10_1016_j_cbi_2024_111193
crossref_primary_10_1186_s40164_024_00529_z
crossref_primary_10_3390_ijms232112720
crossref_primary_10_3390_cancers11081209
crossref_primary_10_7717_peerj_7103
crossref_primary_10_1038_s41598_019_45641_x
crossref_primary_10_1038_s41388_021_01658_z
crossref_primary_10_2147_CMAR_S279672
crossref_primary_10_1016_j_molcel_2016_05_001
crossref_primary_10_1007_s10238_016_0436_z
crossref_primary_10_1093_nar_gkz095
crossref_primary_10_3390_cells10051068
crossref_primary_10_3390_biology8040071
crossref_primary_10_1158_0008_5472_CAN_18_2553
crossref_primary_10_1038_s41419_019_1607_0
crossref_primary_10_1111_gtc_12776
crossref_primary_10_3390_ijms20143559
crossref_primary_10_1371_journal_pone_0197610
crossref_primary_10_2174_1574892814666191211130342
crossref_primary_10_1016_j_jgr_2023_02_002
crossref_primary_10_3390_cancers12010048
crossref_primary_10_1007_s10522_016_9655_7
crossref_primary_10_1186_s40364_023_00487_4
crossref_primary_10_1038_s42255_024_01196_4
crossref_primary_10_1186_s12906_020_2858_0
crossref_primary_10_1038_cddis_2016_93
crossref_primary_10_1074_jbc_M116_725796
crossref_primary_10_1016_j_tcb_2020_03_004
crossref_primary_10_1155_2021_5564040
crossref_primary_10_1007_s00018_024_05199_y
crossref_primary_10_1016_j_biopha_2018_04_036
crossref_primary_10_3390_biology9030059
crossref_primary_10_3390_ijms25116141
crossref_primary_10_3390_cancers10090281
crossref_primary_10_18632_oncotarget_20403
crossref_primary_10_1016_j_bcp_2024_116075
crossref_primary_10_3390_cancers14010153
crossref_primary_10_1371_journal_pone_0232235
crossref_primary_10_15252_embj_2020107336
crossref_primary_10_1016_j_canlet_2024_216662
crossref_primary_10_3390_cells10020335
crossref_primary_10_3390_cancers13153752
crossref_primary_10_1038_s41598_019_56461_4
crossref_primary_10_3390_molecules29050948
crossref_primary_10_1007_s10549_020_05795_z
crossref_primary_10_1016_j_cell_2016_07_031
crossref_primary_10_1038_s41418_019_0479_2
crossref_primary_10_1016_j_bcp_2018_10_027
crossref_primary_10_1016_j_bbrc_2021_06_082
crossref_primary_10_1007_s12282_023_01440_x
crossref_primary_10_1016_j_bmc_2023_117262
crossref_primary_10_1002_mc_22406
crossref_primary_10_1111_febs_13545
crossref_primary_10_1155_2022_7925097
crossref_primary_10_3389_fcell_2019_00038
crossref_primary_10_1007_s13577_019_00295_9
crossref_primary_10_1038_onc_2017_193
crossref_primary_10_1042_BSR20170770
crossref_primary_10_3390_cancers13092042
crossref_primary_10_1007_s43188_023_00191_3
crossref_primary_10_3390_ijms24076019
crossref_primary_10_1177_2050312120926877
crossref_primary_10_1007_s13273_022_00296_0
crossref_primary_10_18632_oncotarget_8841
crossref_primary_10_3389_fonc_2020_589849
crossref_primary_10_3390_cancers14030686
crossref_primary_10_47470_0016_9900_2024_103_2_152_157
crossref_primary_10_1038_s41564_019_0633_0
crossref_primary_10_1007_s13577_023_00996_2
crossref_primary_10_1111_jcmm_17421
crossref_primary_10_1590_0001_3765201620160127
crossref_primary_10_1016_j_omto_2021_04_007
crossref_primary_10_1111_1756_185X_14665
crossref_primary_10_1038_s41388_020_01433_6
crossref_primary_10_1016_j_tcb_2016_04_006
crossref_primary_10_1074_jbc_RA117_001469
crossref_primary_10_21294_1814_4861_2021_20_6_134_140
crossref_primary_10_2139_ssrn_4047255
crossref_primary_10_3389_fphar_2020_591400
crossref_primary_10_3389_fphar_2024_1375585
crossref_primary_10_1002_jcb_30517
crossref_primary_10_1002_med_21571
crossref_primary_10_1080_15548627_2017_1380757
crossref_primary_10_1002_ptr_7796
crossref_primary_10_1007_s12105_023_01556_8
crossref_primary_10_3390_biomedicines11020618
crossref_primary_10_1038_cddis_2015_349
crossref_primary_10_1080_15548627_2016_1154244
crossref_primary_10_1002_jnr_25254
crossref_primary_10_18632_aging_102167
crossref_primary_10_1080_15548627_2023_2258052
crossref_primary_10_1016_j_jid_2020_10_004
crossref_primary_10_1016_j_tranon_2018_08_014
crossref_primary_10_1055_s_0044_1801293
crossref_primary_10_1038_s41419_021_03957_5
crossref_primary_10_1038_s41427_022_00422_3
crossref_primary_10_1080_23723556_2020_1789418
crossref_primary_10_1016_j_omtn_2017_10_002
crossref_primary_10_1016_j_envint_2018_02_016
crossref_primary_10_1038_s41419_023_06305_x
crossref_primary_10_3892_mmr_2016_6003
crossref_primary_10_1146_annurev_biochem_061516_044820
crossref_primary_10_1038_s41419_019_1446_z
crossref_primary_10_18632_oncotarget_7540
crossref_primary_10_1016_j_bbagen_2017_11_013
crossref_primary_10_1038_s41598_021_98544_1
crossref_primary_10_1042_BST20150124
crossref_primary_10_1111_jcmm_17696
crossref_primary_10_1080_15548627_2020_1805214
crossref_primary_10_4045_tidsskr_16_0908
crossref_primary_10_1007_s00259_017_3695_3
crossref_primary_10_1038_s41419_021_04254_x
crossref_primary_10_1038_nm_3944
crossref_primary_10_1186_s13046_019_1148_5
crossref_primary_10_3390_cancers12102951
crossref_primary_10_1080_15548627_2020_1816342
crossref_primary_10_1371_journal_pone_0162977
crossref_primary_10_3390_cells10102517
crossref_primary_10_3389_fimmu_2019_02203
crossref_primary_10_7717_peerj_4340
crossref_primary_10_1080_15384101_2020_1867780
crossref_primary_10_1590_1678_4685_gmb_2020_0014
crossref_primary_10_1016_j_dib_2019_104406
crossref_primary_10_1080_15548627_2019_1569947
crossref_primary_10_1016_j_gene_2019_144323
crossref_primary_10_1016_j_molcel_2015_07_021
crossref_primary_10_15252_embj_201592864
crossref_primary_10_1016_j_ydbio_2021_04_008
crossref_primary_10_1152_ajpcell_00337_2023
crossref_primary_10_1080_23723556_2017_1325550
crossref_primary_10_1038_cdd_2017_41
crossref_primary_10_1038_onc_2017_175
crossref_primary_10_1111_jcmm_70076
crossref_primary_10_1021_acs_jmedchem_2c00275
crossref_primary_10_1051_medsci_20173303010
crossref_primary_10_1038_s41598_019_47345_8
crossref_primary_10_1080_15548627_2018_1539592
crossref_primary_10_1186_s41232_022_00235_5
crossref_primary_10_1002_jcb_29339
crossref_primary_10_1042_BSR20171440
crossref_primary_10_3390_cancers10010018
crossref_primary_10_3390_molecules24213976
crossref_primary_10_3892_or_2017_5637
crossref_primary_10_1007_s10585_021_10130_x
crossref_primary_10_1083_jcb_202308099
crossref_primary_10_18632_oncotarget_11408
crossref_primary_10_1073_pnas_1515617113
crossref_primary_10_1038_s41523_025_00722_1
crossref_primary_10_3390_v9120372
crossref_primary_10_3389_fonc_2016_00240
crossref_primary_10_1038_s41467_017_02536_7
crossref_primary_10_1111_1759_7714_13287
crossref_primary_10_18632_oncotarget_6810
crossref_primary_10_1016_j_chom_2020_07_010
crossref_primary_10_18632_oncotarget_5966
crossref_primary_10_1016_j_phymed_2022_154560
crossref_primary_10_1089_acm_2017_0016
crossref_primary_10_4252_wjsc_v12_i11_1307
crossref_primary_10_1016_j_arr_2023_101967
crossref_primary_10_1242_jcs_215210
crossref_primary_10_3390_ijms18020367
crossref_primary_10_1016_j_nano_2020_102309
crossref_primary_10_3390_antiox10071138
crossref_primary_10_1155_2018_4231591
crossref_primary_10_3892_etm_2019_7803
crossref_primary_10_18632_oncotarget_7910
crossref_primary_10_2147_OTT_S267915
crossref_primary_10_1016_j_biopha_2019_109441
crossref_primary_10_1080_21541264_2016_1221491
crossref_primary_10_3390_cancers12051119
crossref_primary_10_1038_s41598_020_71527_4
crossref_primary_10_3892_ijo_2020_5106
crossref_primary_10_3389_fonc_2020_619727
crossref_primary_10_1007_s11523_018_0565_2
crossref_primary_10_1016_j_ijbiomac_2025_141528
crossref_primary_10_3389_fonc_2017_00051
crossref_primary_10_3389_fgene_2022_894990
crossref_primary_10_3389_fonc_2017_00295
crossref_primary_10_3390_biomedicines11010197
crossref_primary_10_3390_ijms20123010
crossref_primary_10_1093_carcin_bgac060
crossref_primary_10_1016_j_canlet_2019_06_001
crossref_primary_10_1080_15548627_2018_1501133
crossref_primary_10_1038_s42003_020_01362_w
crossref_primary_10_1016_j_ccell_2016_05_016
crossref_primary_10_3389_fonc_2017_00028
crossref_primary_10_1016_j_phrs_2020_105207
crossref_primary_10_1038_s41419_022_04509_1
crossref_primary_10_1080_15384101_2023_2216504
crossref_primary_10_3389_fcell_2023_1177440
crossref_primary_10_1038_nchembio_1909
crossref_primary_10_1186_s13046_018_0784_5
crossref_primary_10_1523_JNEUROSCI_1066_19_2019
crossref_primary_10_1016_j_jhep_2019_08_026
crossref_primary_10_3892_ol_2019_11057
crossref_primary_10_1186_s12967_024_06063_0
crossref_primary_10_1002_1878_0261_12155
crossref_primary_10_1016_j_ijbiomac_2024_132732
crossref_primary_10_18632_oncotarget_5990
crossref_primary_10_1038_nrd_2017_22
crossref_primary_10_3390_cancers13133287
crossref_primary_10_3390_biom11010065
crossref_primary_10_1016_j_bj_2016_12_004
crossref_primary_10_1021_acs_jmedchem_5b00511
crossref_primary_10_3389_fonc_2020_605314
crossref_primary_10_1038_s41419_020_2349_8
crossref_primary_10_1093_hmg_ddac201
crossref_primary_10_1074_jbc_RA118_003547
crossref_primary_10_1016_j_cellsig_2018_10_017
crossref_primary_10_3390_cancers12113461
crossref_primary_10_3389_fonc_2017_00081
crossref_primary_10_1038_s41467_017_00468_w
crossref_primary_10_1038_s41389_020_00278_8
crossref_primary_10_3389_fonc_2021_603224
crossref_primary_10_3390_ijms18091920
crossref_primary_10_1111_febs_14274
crossref_primary_10_1038_s41389_018_0054_6
crossref_primary_10_1080_01652176_2024_2419585
crossref_primary_10_1089_ars_2016_6898
crossref_primary_10_1038_cdd_2015_54
crossref_primary_10_1016_j_str_2015_07_011
crossref_primary_10_3389_fragi_2024_1447370
crossref_primary_10_1038_s41420_023_01600_0
crossref_primary_10_3389_fonc_2018_00073
crossref_primary_10_1038_nrclinonc_2016_183
crossref_primary_10_15252_embj_2021109288
crossref_primary_10_1016_j_lfs_2020_118745
crossref_primary_10_1080_23723556_2021_1947169
crossref_primary_10_1002_tox_23935
crossref_primary_10_14336_AD_2020_0314
crossref_primary_10_1038_s41598_024_51406_y
crossref_primary_10_1152_ajpcell_00295_2016
crossref_primary_10_1016_j_gendis_2017_12_003
crossref_primary_10_1038_s41598_023_36844_4
crossref_primary_10_1080_2162402X_2015_1088631
crossref_primary_10_18632_oncotarget_13892
crossref_primary_10_3390_antiox10121883
crossref_primary_10_15252_embj_201796697
crossref_primary_10_1158_1940_6207_CAPR_16_0249
crossref_primary_10_3390_molecules28083289
crossref_primary_10_1007_s10495_018_1458_7
crossref_primary_10_1158_1078_0432_CCR_15_1808
crossref_primary_10_1186_s13058_024_01951_1
crossref_primary_10_18632_oncotarget_24331
crossref_primary_10_6061_clinics_2018_e814s
crossref_primary_10_1016_j_arr_2023_101985
crossref_primary_10_1038_s41598_022_17533_0
crossref_primary_10_3389_fbioe_2020_614419
crossref_primary_10_1038_s41419_021_03668_x
crossref_primary_10_1080_07357907_2016_1272695
crossref_primary_10_1080_15548627_2016_1213927
crossref_primary_10_3389_fphar_2022_870282
crossref_primary_10_3389_fcell_2019_00050
crossref_primary_10_1080_10942912_2018_1560312
crossref_primary_10_1242_dev_146506
crossref_primary_10_62347_XTDZ5687
crossref_primary_10_18632_oncotarget_5797
crossref_primary_10_3390_antiox6040088
crossref_primary_10_1517_14728222_2016_1085971
crossref_primary_10_3390_cells12060897
crossref_primary_10_1016_j_jddst_2024_105833
crossref_primary_10_15789_1563_0625_SON_1991
crossref_primary_10_3390_biom12121902
crossref_primary_10_3389_fonc_2020_00409
crossref_primary_10_3389_fmed_2022_959348
crossref_primary_10_1016_j_critrevonc_2020_103063
crossref_primary_10_1016_j_bbrc_2021_10_067
crossref_primary_10_1155_2021_5510318
crossref_primary_10_1186_s12967_017_1308_3
crossref_primary_10_1016_j_jid_2019_11_014
crossref_primary_10_1016_j_pnpbp_2019_109674
crossref_primary_10_1080_15548627_2021_1988359
crossref_primary_10_3390_ijms18092016
crossref_primary_10_3390_jcm10225398
crossref_primary_10_1186_s12885_020_06964_5
crossref_primary_10_1016_j_cbi_2019_108751
crossref_primary_10_1080_10799893_2023_2291563
crossref_primary_10_1016_j_tips_2018_10_004
crossref_primary_10_1080_23723556_2019_1573080
crossref_primary_10_1186_s12935_019_0951_6
crossref_primary_10_1016_j_ceb_2016_02_010
crossref_primary_10_1155_2020_8899337
crossref_primary_10_1016_j_pdpdt_2021_102605
crossref_primary_10_1016_j_medp_2023_100004
crossref_primary_10_1038_nri_2016_107
crossref_primary_10_18632_oncotarget_11396
crossref_primary_10_1155_2020_6352876
crossref_primary_10_1111_joim_12714
crossref_primary_10_3390_cells10061330
crossref_primary_10_4997_jrcpe_2016_403
crossref_primary_10_1016_j_semcancer_2020_02_007
crossref_primary_10_2174_1574888X15666200502000807
crossref_primary_10_3389_fcell_2021_756911
crossref_primary_10_3892_etm_2018_5742
crossref_primary_10_1007_s11357_024_01444_1
crossref_primary_10_1038_cdd_2015_126
crossref_primary_10_1186_s13008_016_0022_5
crossref_primary_10_1097_MD_0000000000033698
crossref_primary_10_3389_fonc_2015_00173
crossref_primary_10_1158_1541_7786_MCR_16_0035
crossref_primary_10_1182_blood_2016_07_692707
crossref_primary_10_1515_oncologie_2024_0097
crossref_primary_10_1007_s11696_024_03845_0
crossref_primary_10_1016_j_scr_2017_09_006
crossref_primary_10_1126_sciadv_1600200
crossref_primary_10_18632_oncotarget_15537
crossref_primary_10_1186_s12935_017_0499_2
crossref_primary_10_3389_fonc_2019_00769
crossref_primary_10_1007_s00018_015_2104_y
crossref_primary_10_1016_j_tem_2023_05_004
crossref_primary_10_1186_s12935_020_01196_w
crossref_primary_10_18632_oncotarget_25366
crossref_primary_10_1039_C8TX00298C
crossref_primary_10_1038_s41589_023_01364_9
crossref_primary_10_12677_bp_2024_142013
crossref_primary_10_3389_fcell_2018_00146
crossref_primary_10_1142_S0192415X19500344
crossref_primary_10_1038_s41401_018_0165_9
crossref_primary_10_1093_brain_awv371
crossref_primary_10_1038_s41598_017_18935_1
crossref_primary_10_1101_gad_305292_117
crossref_primary_10_4251_wjgo_v12_i6_619
crossref_primary_10_1016_j_canlet_2018_07_028
crossref_primary_10_1016_j_bbcan_2024_189196
crossref_primary_10_1016_j_canlet_2016_03_005
crossref_primary_10_1038_nrn_2016_51
crossref_primary_10_18632_oncotarget_13132
crossref_primary_10_1016_j_semcancer_2019_07_013
crossref_primary_10_1158_1535_7163_MCT_17_0136
crossref_primary_10_1186_s12935_017_0486_7
crossref_primary_10_3390_cells9071586
crossref_primary_10_1007_s12031_016_0796_6
crossref_primary_10_1080_15548627_2020_1846302
crossref_primary_10_1136_jitc_2021_002722
crossref_primary_10_1038_nrurol_2016_272
crossref_primary_10_1186_s12935_024_03506_y
crossref_primary_10_3390_ma14123373
crossref_primary_10_1186_s13058_023_01720_6
crossref_primary_10_1111_jcmm_14840
crossref_primary_10_18632_aging_101325
crossref_primary_10_1080_15548627_2022_2105562
crossref_primary_10_18632_aging_103507
crossref_primary_10_3390_nu13041212
crossref_primary_10_1016_j_intimp_2022_108806
crossref_primary_10_3390_ijms21186635
crossref_primary_10_1016_j_lfs_2020_117466
crossref_primary_10_1002_cbin_70006
crossref_primary_10_1016_j_compbiolchem_2024_108235
crossref_primary_10_1080_15548627_2021_1872188
crossref_primary_10_1016_j_cmet_2019_03_003
crossref_primary_10_1038_cdd_2016_120
crossref_primary_10_1080_15548627_2020_1733262
crossref_primary_10_1126_scisignal_aag2791
crossref_primary_10_1007_s00109_019_01829_2
crossref_primary_10_1002_ijc_30205
crossref_primary_10_1007_s10522_022_09978_7
crossref_primary_10_1007_s13402_024_01025_6
crossref_primary_10_1038_s41556_018_0042_2
crossref_primary_10_18632_oncotarget_27550
crossref_primary_10_3389_fphar_2020_00547
crossref_primary_10_1038_cdd_2016_111
crossref_primary_10_1080_15548627_2016_1268300
crossref_primary_10_1016_j_comtox_2021_100191
crossref_primary_10_1080_2162402X_2019_1591878
crossref_primary_10_3390_cells11030426
crossref_primary_10_1016_j_biopha_2024_116684
crossref_primary_10_18632_oncotarget_7346
crossref_primary_10_1371_journal_pone_0288380
crossref_primary_10_1038_s41392_023_01667_2
crossref_primary_10_3389_fmolb_2021_790804
crossref_primary_10_1016_j_bbamcr_2023_119537
crossref_primary_10_1080_08820139_2019_1682600
crossref_primary_10_1080_15548627_2018_1427022
crossref_primary_10_3389_pore_2021_1609976
crossref_primary_10_1007_s10565_020_09553_1
crossref_primary_10_1080_15548627_2019_1628540
crossref_primary_10_3389_fcell_2018_00109
crossref_primary_10_18632_aging_203362
crossref_primary_10_1021_acs_jmedchem_1c00870
crossref_primary_10_3322_caac_21694
crossref_primary_10_3390_molecules25235597
crossref_primary_10_3390_cancers12092463
crossref_primary_10_1002_hep_30071
crossref_primary_10_1016_j_biotechadv_2018_01_007
crossref_primary_10_3390_molecules29051093
crossref_primary_10_1007_s10637_019_00812_5
crossref_primary_10_1186_s40364_023_00466_9
crossref_primary_10_1186_s13578_019_0327_6
crossref_primary_10_3389_fnmol_2024_1423132
crossref_primary_10_1371_journal_pone_0258741
crossref_primary_10_3389_fimmu_2018_01577
crossref_primary_10_1002_jimd_12061
crossref_primary_10_1080_15384101_2015_1064206
crossref_primary_10_1016_j_bbamcr_2018_05_007
crossref_primary_10_1158_1535_7163_MCT_20_0182
crossref_primary_10_18632_oncotarget_12084
crossref_primary_10_1007_s11033_020_05886_6
crossref_primary_10_18632_oncotarget_16685
crossref_primary_10_1007_s42764_020_00016_9
crossref_primary_10_1155_2020_7397132
crossref_primary_10_1016_j_ijbiomac_2018_06_005
crossref_primary_10_1042_BCJ20200064
crossref_primary_10_1016_j_pnpbp_2015_05_010
crossref_primary_10_1038_nrc_2017_53
crossref_primary_10_3390_ijms22189722
crossref_primary_10_1038_cddis_2015_181
crossref_primary_10_1016_j_bcp_2020_114098
crossref_primary_10_1186_s12885_015_1761_4
crossref_primary_10_1021_acs_jafc_3c02257
crossref_primary_10_1007_s00018_016_2209_y
crossref_primary_10_1016_j_jmb_2016_02_027
crossref_primary_10_1016_j_critrevonc_2025_104700
crossref_primary_10_1080_23723556_2016_1198299
crossref_primary_10_2147_IJN_S272902
crossref_primary_10_4252_wjsc_v14_i4_310
crossref_primary_10_1016_j_pharmthera_2017_10_017
crossref_primary_10_1134_S0006297916060031
crossref_primary_10_3390_ijms21197101
crossref_primary_10_1002_adma_202305394
crossref_primary_10_1073_pnas_2113465119
crossref_primary_10_3390_biomedicines9020147
crossref_primary_10_1038_nrclinonc_2016_60
crossref_primary_10_1038_onc_2016_333
crossref_primary_10_1371_journal_pone_0221413
crossref_primary_10_1002_mco2_150
crossref_primary_10_1016_j_bbrc_2023_03_039
crossref_primary_10_3390_pharmaceutics14030663
crossref_primary_10_1111_jcmm_14654
crossref_primary_10_3390_ijms19103069
crossref_primary_10_1146_annurev_biochem_060815_014556
crossref_primary_10_1016_j_gene_2017_05_006
crossref_primary_10_1038_s41418_020_00699_3
crossref_primary_10_1158_2326_6066_CIR_16_0197
crossref_primary_10_18632_oncotarget_17554
crossref_primary_10_1016_j_ecoenv_2023_115273
crossref_primary_10_3390_ijms22083995
crossref_primary_10_1016_j_tiv_2016_09_006
crossref_primary_10_3390_cells10113241
crossref_primary_10_1098_rsob_180106
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3389_fimmu_2015_00588
crossref_primary_10_3389_fgene_2023_1148192
crossref_primary_10_3390_cancers15174322
crossref_primary_10_1016_j_gene_2017_06_053
crossref_primary_10_1155_2017_4629495
crossref_primary_10_3390_cancers15041070
crossref_primary_10_1080_15548627_2016_1271513
crossref_primary_10_1016_j_tcb_2015_11_001
crossref_primary_10_3390_cimb45060319
crossref_primary_10_1016_j_yexcr_2019_111810
crossref_primary_10_1016_j_bbcan_2020_188418
crossref_primary_10_1016_j_molonc_2016_04_001
crossref_primary_10_3892_ol_2021_12871
crossref_primary_10_1096_fj_202201407R
crossref_primary_10_18632_oncotarget_25197
crossref_primary_10_1038_s41419_021_03442_z
crossref_primary_10_1016_j_tice_2022_101964
crossref_primary_10_1016_j_gendis_2015_12_002
crossref_primary_10_1038_nri_2017_99
crossref_primary_10_1177_1756284818821560
crossref_primary_10_3390_ph16010092
crossref_primary_10_1016_j_devcel_2020_02_005
crossref_primary_10_3389_fonc_2019_00942
crossref_primary_10_1016_j_taap_2017_09_004
crossref_primary_10_3390_separations8070092
crossref_primary_10_1016_j_immuni_2016_01_020
crossref_primary_10_1080_15548627_2019_1582951
crossref_primary_10_1038_s41418_018_0267_4
crossref_primary_10_1158_1078_0432_CCR_17_0249
crossref_primary_10_1080_15548627_2021_1936932
crossref_primary_10_1016_j_toxlet_2020_06_015
crossref_primary_10_1016_j_jconrel_2015_10_023
crossref_primary_10_1177_1010428317705762
crossref_primary_10_1016_j_repbio_2023_100846
crossref_primary_10_1186_s12935_020_01250_7
crossref_primary_10_1016_j_biopha_2018_03_126
crossref_primary_10_1186_s13046_019_1359_9
crossref_primary_10_1016_j_molcel_2017_07_003
crossref_primary_10_1002_cam4_5407
crossref_primary_10_1016_j_bcp_2019_03_023
crossref_primary_10_1186_s12935_023_02954_2
crossref_primary_10_1038_s41420_020_00365_0
crossref_primary_10_1002_cam4_1281
crossref_primary_10_3109_07853890_2015_1040831
crossref_primary_10_3892_or_2015_4505
crossref_primary_10_1038_bjc_2017_118
crossref_primary_10_1002_mc_22757
crossref_primary_10_1007_s11033_021_06817_9
crossref_primary_10_1016_j_canlet_2021_09_010
crossref_primary_10_3390_biom14060649
crossref_primary_10_1016_j_bios_2024_116123
crossref_primary_10_3389_fgene_2019_00846
crossref_primary_10_2478_acph_2022_0025
crossref_primary_10_1186_s12967_016_0796_x
crossref_primary_10_3389_fimmu_2018_00654
crossref_primary_10_1111_imr_13274
crossref_primary_10_3390_cancers13092168
crossref_primary_10_1146_annurev_pharmtox_010715_103101
crossref_primary_10_3390_cells8010044
crossref_primary_10_3390_cancers12123594
crossref_primary_10_18632_oncotarget_8727
crossref_primary_10_3389_fcell_2021_644851
crossref_primary_10_1002_med_21446
crossref_primary_10_5937_bii2101081e
crossref_primary_10_1080_2162402X_2015_1126063
crossref_primary_10_1074_jbc_M116_756536
crossref_primary_10_1038_ncomms11942
crossref_primary_10_1016_j_biocel_2016_02_009
crossref_primary_10_1007_s11864_023_01053_8
crossref_primary_10_1111_jcmm_13181
crossref_primary_10_1016_j_jds_2020_05_007
crossref_primary_10_1016_j_yexcr_2020_111981
crossref_primary_10_1080_14728222_2017_1349754
crossref_primary_10_3390_ijerph182111125
crossref_primary_10_3390_toxins8070203
crossref_primary_10_1002_med_21695
crossref_primary_10_1038_s42003_021_01651_y
crossref_primary_10_18632_oncotarget_6318
crossref_primary_10_1016_j_molcel_2017_04_027
crossref_primary_10_2174_0929867326666190402120231
crossref_primary_10_1016_j_cellin_2023_100127
crossref_primary_10_1039_D1NR05512G
crossref_primary_10_1093_bfgp_elab043
crossref_primary_10_1038_cddis_2016_264
crossref_primary_10_1038_s41418_017_0012_4
crossref_primary_10_1080_23723556_2018_1445941
crossref_primary_10_1088_1748_605X_adb673
crossref_primary_10_1016_j_canlet_2022_216032
crossref_primary_10_3390_ijms23052758
crossref_primary_10_1080_15548627_2019_1580105
crossref_primary_10_1038_s41419_020_02986_w
crossref_primary_10_3390_v10110599
crossref_primary_10_1093_cvr_cvad035
crossref_primary_10_1016_j_cnd_2016_01_006
crossref_primary_10_3390_ijms221910453
crossref_primary_10_3390_cells13211816
crossref_primary_10_18632_oncotarget_11736
crossref_primary_10_1073_pnas_1700200114
crossref_primary_10_15252_emmm_201910469
crossref_primary_10_3389_fcell_2022_1022191
crossref_primary_10_1021_acsmedchemlett_6b00392
crossref_primary_10_1186_s12964_024_01526_9
crossref_primary_10_3390_cancers14194769
crossref_primary_10_1016_j_preteyeres_2016_08_001
crossref_primary_10_18632_oncotarget_9601
crossref_primary_10_1007_s12094_022_02869_w
crossref_primary_10_1080_2162402X_2016_1174801
crossref_primary_10_1093_carcin_bgab030
crossref_primary_10_3892_etm_2018_6219
crossref_primary_10_3892_ijo_2020_4967
crossref_primary_10_1038_onc_2016_237
crossref_primary_10_1007_s00432_021_03598_3
crossref_primary_10_3389_fonc_2020_00281
crossref_primary_10_3322_caac_21818
crossref_primary_10_1016_j_biopha_2018_06_024
crossref_primary_10_1051_medsci_20183401015
crossref_primary_10_1016_j_canlet_2017_09_049
crossref_primary_10_1007_s12013_022_01097_x
crossref_primary_10_1038_onc_2017_267
crossref_primary_10_1038_s41571_021_00579_w
crossref_primary_10_3748_wjg_v29_i6_997
crossref_primary_10_1002_hep4_1429
crossref_primary_10_1016_j_fct_2023_114060
crossref_primary_10_1111_gtc_12812
crossref_primary_10_1038_s41420_019_0234_y
crossref_primary_10_1155_2020_8537381
crossref_primary_10_3389_fonc_2020_587343
crossref_primary_10_3390_cancers15020369
crossref_primary_10_1002_ijc_31190
crossref_primary_10_1080_15548627_2018_1489946
crossref_primary_10_1152_ajpgi_00138_2017
crossref_primary_10_1080_2162402X_2021_1893466
crossref_primary_10_1007_s10555_020_09925_3
crossref_primary_10_1186_s13046_017_0549_6
crossref_primary_10_1016_j_cmet_2015_05_014
crossref_primary_10_3389_fimmu_2015_00402
crossref_primary_10_3892_ol_2017_5963
crossref_primary_10_3892_or_2023_8616
crossref_primary_10_3892_ol_2024_14776
crossref_primary_10_1016_j_cmet_2017_04_004
crossref_primary_10_1083_jcb_201911036
crossref_primary_10_1007_s12253_020_00799_y
crossref_primary_10_1038_cdd_2016_80
crossref_primary_10_1016_j_ccell_2018_03_022
crossref_primary_10_3390_ijms21218196
crossref_primary_10_3892_mmr_2019_10734
crossref_primary_10_1080_23723556_2016_1143077
crossref_primary_10_1016_j_tcb_2017_05_001
crossref_primary_10_1093_abbs_gmv077
crossref_primary_10_1080_23723556_2015_1078923
crossref_primary_10_1007_s00441_024_03942_2
crossref_primary_10_3748_wjg_v24_i41_4643
crossref_primary_10_1038_s41577_022_00760_x
crossref_primary_10_1080_15548627_2017_1423439
crossref_primary_10_3390_cancers12010102
crossref_primary_10_1101_gad_275776_115
crossref_primary_10_2174_1568009622666220330194149
crossref_primary_10_3390_ijms18112351
crossref_primary_10_1038_cdd_2016_52
crossref_primary_10_1002_jor_23880
crossref_primary_10_1186_s12935_025_03636_x
crossref_primary_10_1186_s13578_020_00426_y
crossref_primary_10_1016_j_tice_2023_102160
crossref_primary_10_1007_s00520_020_05879_y
crossref_primary_10_1016_j_ejmech_2019_05_088
crossref_primary_10_3892_ol_2017_7488
crossref_primary_10_1186_s13045_018_0638_9
crossref_primary_10_3390_biomedicines8110517
crossref_primary_10_1038_s41419_020_03052_1
crossref_primary_10_1038_s41375_019_0700_9
crossref_primary_10_3390_cancers13061258
crossref_primary_10_1080_15548627_2018_1450708
crossref_primary_10_1186_s12989_020_00372_0
crossref_primary_10_1038_cddis_2017_485
crossref_primary_10_3390_ijms24087671
crossref_primary_10_1016_j_imlet_2019_09_005
crossref_primary_10_1080_23723556_2022_2044263
crossref_primary_10_1155_2018_7010472
crossref_primary_10_1038_s41418_019_0403_9
crossref_primary_10_1016_j_ccell_2017_06_009
crossref_primary_10_1002_jcp_30419
crossref_primary_10_1042_CS20171158
crossref_primary_10_1039_C8TB02390E
crossref_primary_10_3389_fonc_2017_00174
crossref_primary_10_4155_fmc_15_166
crossref_primary_10_1002_mnfr_201901231
crossref_primary_10_1016_j_isci_2024_109168
crossref_primary_10_1016_j_celrep_2016_04_065
crossref_primary_10_1038_s41598_021_87966_6
crossref_primary_10_1053_j_gastro_2015_09_042
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_3390_cells12162061
crossref_primary_10_3390_cancers9120161
crossref_primary_10_1242_jcs_261028
crossref_primary_10_3389_fonc_2017_00140
crossref_primary_10_3390_medicina58040467
crossref_primary_10_1177_15330338211049000
crossref_primary_10_1080_15548627_2017_1290751
crossref_primary_10_3390_cancers11030312
crossref_primary_10_1038_s41418_020_00627_5
crossref_primary_10_1038_s41418_024_01314_5
crossref_primary_10_18632_oncotarget_21138
crossref_primary_10_1016_j_tcb_2016_09_001
crossref_primary_10_1111_cpr_12749
crossref_primary_10_4251_wjgo_v15_i6_979
crossref_primary_10_1016_j_devcel_2024_05_004
crossref_primary_10_1016_j_bioorg_2023_107039
crossref_primary_10_1016_j_coph_2016_02_004
crossref_primary_10_3390_ijms232314890
crossref_primary_10_1038_s41418_019_0480_9
crossref_primary_10_3390_cancers14061462
crossref_primary_10_1002_mc_23006
crossref_primary_10_1124_mol_116_106070
crossref_primary_10_1016_j_semcancer_2017_01_008
crossref_primary_10_1016_j_semcancer_2019_05_020
crossref_primary_10_1016_j_cmet_2022_11_001
crossref_primary_10_4103_tmj_tmj_52_23
crossref_primary_10_1002_med_21473
crossref_primary_10_3390_cells11010057
crossref_primary_10_1016_j_jip_2024_108225
crossref_primary_10_1039_C6RA13431A
crossref_primary_10_3748_wjg_v22_i1_300
crossref_primary_10_1016_j_bcp_2017_11_021
crossref_primary_10_1016_j_trsl_2017_11_007
crossref_primary_10_1016_j_jtcme_2023_02_004
crossref_primary_10_1038_s41419_020_02880_5
crossref_primary_10_1002_cmdc_201500515
crossref_primary_10_1007_s10495_015_1176_3
crossref_primary_10_3389_fpsyg_2021_803421
crossref_primary_10_18632_oncotarget_6986
crossref_primary_10_1080_07853890_2021_1981547
crossref_primary_10_3390_cancers13061299
crossref_primary_10_1016_j_ceca_2016_12_001
crossref_primary_10_18632_oncotarget_25758
crossref_primary_10_4236_ijcm_2020_114017
crossref_primary_10_4236_jbm_2016_44001
crossref_primary_10_1007_s00109_023_02387_4
crossref_primary_10_1038_cddis_2016_415
crossref_primary_10_1016_j_heliyon_2019_e02367
crossref_primary_10_1016_j_ctarc_2020_100229
crossref_primary_10_1111_jnc_14892
crossref_primary_10_3389_fgene_2020_00930
crossref_primary_10_1038_srep41977
crossref_primary_10_1051_medsci_20163204009
crossref_primary_10_1016_j_canlet_2018_05_031
crossref_primary_10_1007_s11033_021_06334_9
crossref_primary_10_1002_jcp_26583
crossref_primary_10_1002_hep_29577
crossref_primary_10_1016_j_cytogfr_2021_01_007
crossref_primary_10_1124_mol_116_105171
crossref_primary_10_1007_s12032_023_02125_3
crossref_primary_10_1016_j_jaut_2019_102335
crossref_primary_10_1155_2022_4445293
crossref_primary_10_18632_oncotarget_11385
crossref_primary_10_3390_cancers12030562
crossref_primary_10_3390_cells11223691
crossref_primary_10_3390_ijms19113466
crossref_primary_10_1038_s41420_020_00294_y
crossref_primary_10_1007_s00432_023_05514_3
crossref_primary_10_3389_fonc_2021_743780
crossref_primary_10_1080_15548627_2017_1338556
crossref_primary_10_1158_2159_8290_CD_22_0504
crossref_primary_10_1039_D2CS00624C
crossref_primary_10_3389_fimmu_2021_746621
crossref_primary_10_1016_j_ejmech_2020_112922
crossref_primary_10_1038_s41419_021_04015_w
crossref_primary_10_3389_fneur_2022_841394
crossref_primary_10_1038_s41598_021_02503_9
Cites_doi 10.1056/NEJM200104053441401
10.1038/onc.2008.117
10.1158/0008-5472.CAN-05-4412
10.1073/pnas.96.1.214
10.1038/323643a0
10.1126/science.1720570
10.1056/NEJM199403173301105
10.1038/emboj.2013.133
10.1016/0092-8674(90)90149-9
10.1038/cdd.2014.137
10.1038/sj.emboj.7601689
10.1128/IAI.05308-11
10.1016/j.ccell.2014.09.015
10.1158/0008-5472.CAN-06-4149
10.1016/j.molcel.2013.12.014
10.1126/science.1196371
10.1016/j.semcancer.2013.05.008
10.4161/auto.26398
10.1038/ni.2224
10.1126/science.3798106
10.1158/1078-0432.CCR-08-0144
10.1038/35050500
10.1172/JCI37948
10.1016/j.molcel.2008.06.001
10.1016/j.ceb.2009.12.001
10.1016/j.humpath.2007.11.013
10.1126/science.1232227
10.1016/j.cell.2013.11.019
10.1016/j.cmet.2011.01.009
10.1038/ncb2069
10.1038/ncb1426
10.1158/2159-8290.CD-14-0049
10.1038/ncb1634
10.1038/ng0597-64
10.1101/gad.1599207
10.1002/path.4351
10.1073/pnas.1118193109
10.1084/jem.20130977
10.1016/j.chom.2014.03.012
10.1038/onc.2014.285
10.1074/jbc.M804705200
10.1038/ncomms4496
10.1016/j.ccr.2008.02.001
10.4161/cc.24128
10.1016/j.cmet.2012.12.002
10.1101/gad.1110003
10.1038/332268a0
10.1146/annurev-genet-102808-114910
10.1158/0008-5472.CAN-13-3470
10.1038/nature12865
10.1016/j.cell.2009.03.048
10.1634/theoncologist.2014-0086
10.1073/pnas.0503224102
10.1126/science.1095569
10.1016/j.molcel.2013.08.003
10.1091/mbc.E10-06-0500
10.1016/j.cell.2005.02.031
10.1038/cdd.2010.116
10.1016/j.cell.2005.07.002
10.4161/auto.29119
10.1038/cdd.2014.183
10.1146/annurev-immunol-032712-100008
10.1038/nrclinonc.2014.41
10.1038/ncomms4056
10.1038/onc.2014.244
10.1038/onc.2012.512
10.1101/gad.2016111
10.1038/onc.2014.264
10.1126/science.1250256
10.1038/45257
10.1016/j.cell.2013.08.015
10.1146/annurev-pharmtox-010611-134537
10.1038/nature10189
10.1038/nri3532
10.1126/science.2537532
10.1038/ncomms6637
10.1073/pnas.1407001111
10.1126/science.1218395
10.1128/MCB.02246-06
10.1016/j.cub.2009.08.042
10.1016/j.devcel.2011.12.027
10.1126/science.1201940
10.1158/1535-7163.MCT-10-0688
10.1126/science.7939630
10.1038/5971
10.1083/jcb.200712064
10.1200/JCO.2004.02.141
10.1101/gad.2016211
10.4161/auto.29165
10.1126/science.2543076
10.1182/blood-2013-12-543793
10.1016/j.cmet.2014.02.010
10.4161/auto.27867
10.1038/ni.1823
10.1158/0008-5472.CAN-10-1604
10.1101/gad.2051011
10.1074/jbc.M701194200
10.1038/5042
10.1158/1541-7786.MCR-13-0614
10.1126/science.1193497
10.1126/science.1978757
10.1093/hmg/ddt381
10.4161/cc.22778
10.1073/pnas.79.24.7824
10.1038/onc.2008.24
10.1016/j.cell.2007.10.035
10.1038/20459
10.1111/j.1600-0463.2007.00858.x
10.1126/science.1208347
10.4161/cc.11.1.18564
10.1038/nature13611
10.1038/nature06639
10.1038/nature12437
10.1158/1078-0432.CCR-11-1282
10.1073/pnas.1121572109
10.1016/j.cell.2012.03.017
10.1016/j.ccr.2012.02.019
10.1038/358080a0
10.1126/science.277.5327.805
10.1038/sj.onc.1206622
10.4161/auto.28984
10.1172/JCI62973
10.1038/cdd.2011.146
10.1016/j.molcel.2006.04.014
10.1016/j.ebiom.2015.01.008
10.1158/0008-5472.CAN-07-2069
10.1101/gad.521709
10.1016/j.cell.2012.01.058
10.1074/jbc.M110.118976
10.1074/jbc.M800102200
10.1038/cdd.2012.43
10.1101/gad.1565707
10.1182/blood-2011-08-373639
10.1016/j.ccr.2004.06.007
10.1038/sj.onc.1207539
10.1371/journal.pgen.1004626
10.4161/auto.29231
10.1101/gad.231894.113
10.1074/jbc.M113.529511
10.4161/auto.29568
10.1155/2011/865819
10.1038/nrd3802
10.1038/ncomms3130
10.1016/j.ccr.2014.06.025
10.1038/ncb839
10.1038/nature06030
10.1002/cncr.23323
10.1016/j.cell.2011.02.013
10.1002/cncr.23892
10.1038/nature00766
10.1053/j.gastro.2013.08.035
10.1016/j.cell.2013.05.039
10.1038/nrclinonc.2011.71
10.1016/j.cell.2011.10.026
10.1016/j.cell.2009.02.024
10.1101/gad.1545107
10.4161/auto.34398
10.1101/gad.219642.113
10.1126/science.1103966
10.1038/ncomms6276
10.1091/mbc.e08-12-1248
10.1038/cdd.2008.131
10.1073/pnas.1104361108
10.1038/nrd4145
10.1016/j.molcel.2011.02.009
10.1158/0008-5472.CAN-09-0910
10.1073/pnas.052713099
10.1016/j.ccr.2011.12.006
10.1016/j.tibs.2012.02.008
10.1038/nrm3696
10.1016/j.cell.2012.03.003
10.1158/0008-5472.CAN-12-4142
10.1111/nyas.12362
10.1158/2159-8290.CD-13-0397
10.1038/ncomms5706
10.1182/blood-2010-01-261040
10.1016/j.immuni.2012.04.008
10.1006/geno.1999.5851
10.1016/j.molcel.2010.09.023
10.1038/nn.3365
10.1038/cdd.2013.124
10.1126/science.1225967
10.1016/j.virol.2012.12.004
10.1038/sj.onc.1203597
10.1172/JCI69636
10.1158/2159-8290.CD-14-0362
10.4161/auto.29118
10.1158/2159-8290.CD-13-0011
10.1038/nature08221
10.1038/ncb2979
10.1002/humu.22556
10.1016/j.cell.2012.12.016
10.1038/cddis.2009.8
10.1126/scitranslmed.3005864
10.1038/nature13949
10.1146/annurev-biochem-052709-094552
10.1053/j.seminhematol.2014.05.008
10.1084/jem.20101145
10.1038/ncb2422
10.1016/j.cell.2007.06.009
10.1038/nrd4391
10.1038/sj.cdd.4401826
10.1038/34432
10.1084/jem.20130783
10.1083/jcb.201102031
10.1038/nrm3249
10.1172/JCI28833
10.1038/nature05933
10.1038/cdd.2011.32
10.1038/ng911
10.1073/pnas.0704014104
10.1016/j.molcel.2013.06.020
10.1038/ng0897-333
10.1038/nchembio.1681
10.1182/blood-2010-06-288589
10.1172/JCI70454
10.1101/gad.519709
10.1126/science.3460176
10.1371/journal.pone.0100819
10.1073/pnas.0406789102
10.1016/j.cell.2008.06.028
10.1038/cddis.2014.217
10.1016/j.bbamcr.2013.05.022
10.1089/ars.2010.3478
10.1158/0008-5472.CAN-06-0809
10.1038/nrm2395
10.4161/auto.29264
10.1073/pnas.1120193109
10.1038/ncb2329
10.1083/jcb.201402054
10.1128/MCB.25.3.1025-1040.2005
10.1038/onc.2012.277
10.1016/j.cell.2006.05.034
10.1038/cr.2011.200
10.1038/ni.1980
10.1128/MCB.00813-13
10.1016/j.bcp.2010.07.009
10.1186/bcr3576
10.1073/pnas.0911267106
10.1073/pnas.2436255100
10.4161/auto.7.4.14397
10.1172/JCI20039
10.1038/nrm2147
10.1073/pnas.1319661110
10.1126/science.1099314
10.1182/blood-2012-01-402578
10.1007/s00432-006-0174-9
10.1128/MCB.00166-09
10.4161/auto.4237
10.1101/gad.1699608
10.4161/auto.8.2.18554
10.1126/science.1204592
10.1002/jcp.1041160116
10.3892/ol.2014.2417
10.1016/j.ceb.2005.09.007
10.1038/nature04869
10.1038/onc.2012.252
10.1016/j.tcb.2014.09.001
10.1182/blood-2012-10-459826
10.1016/j.immuni.2013.07.017
10.1016/j.ccr.2014.05.004
10.1074/jbc.C100319200
10.1158/0008-5472.CAN-14-1420
10.1186/1471-2407-12-622
10.1038/431525b
10.1038/ncb3072
10.1038/ncb2788
10.1038/embor.2008.246
10.1038/ncb2708
10.1002/path.4244
10.1074/jbc.M702824200
10.1016/j.cell.2014.11.006
ContentType Journal Article
Copyright The Authors 2015
2015 The Authors
2015 The Authors.
2015 EMBO
2015 The Authors 2015
Copyright_xml – notice: The Authors 2015
– notice: 2015 The Authors
– notice: 2015 The Authors.
– notice: 2015 EMBO
– notice: 2015 The Authors 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201490784
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 880
ExternalDocumentID PMC4388596
3641290231
25712477
10_15252_embj_201490784
EMBJ201490784
ark_67375_WNG_46P3WC04_L
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cancéropôle Ile‐de‐France
– fundername: Fondo Europeo de Desarrollo Regional (FEDER)
  grantid: PI12/02248; FR2009‐0052; IT2009‐0053
– fundername: Fondation pour la Recherche Médicale (FRM)
– fundername: SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE)
– fundername: European Research Council (ERC)
– fundername: Paris Alliance of Cancer Research Institutes (PACRI)
– fundername: National Health and Medical Research Council of Australia Project Grant
  grantid: 1041807
– fundername: European Commission (MEL‐PLEX)
– fundername: Fondation Bettencourt‐Schueller
– fundername: Fondation de France
– fundername: Institutional Research Grant
  funderid: IRG‐14‐192‐40
– fundername: Fondo Europeo de Desarrollo Regional (FEDER)
  funderid: PI12/02248; FR2009‐0052; IT2009‐0053
– fundername: Fundació La Marató de TV3
  funderid: 20134031
– fundername: Cancer Research UK
  grantid: 15816
– fundername: Wellcome Trust
  grantid: 095317
– fundername: Wellcome Trust
  grantid: 100140
– fundername: NIGMS NIH HHS
  grantid: R01 GM111658
– fundername: NCI NIH HHS
  grantid: P50 CA127003
– fundername: NCI NIH HHS
  grantid: R01 CA169134
– fundername: NCI NIH HHS
  grantid: R01 CA159314
– fundername: NIGMS NIH HHS
  grantid: R01 GM079431
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
ABJNI
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AAYXX
ABUWG
ACKIV
ACRPL
ADNMO
AEUYN
AFKRA
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
M1P
M2O
M7P
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6174-68939535cb4e77e65529dad8960a5618593a4f4646f5b00d1fa191770588c61d3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:12:09 EDT 2025
Mon Sep 08 09:58:02 EDT 2025
Fri Jul 25 10:53:38 EDT 2025
Mon Jul 21 05:56:59 EDT 2025
Tue Jul 01 02:06:00 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Wed Jan 22 16:52:52 EST 2025
Fri Feb 21 02:37:33 EST 2025
Sun Sep 21 06:20:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords mitophagy
KRAS
adaptive stress responses
inflammation
Beclin 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6174-68939535cb4e77e65529dad8960a5618593a4f4646f5b00d1fa191770588c61d3
Notes Institutional Research Grant - No. IRG-14-192-40
National Health and Medical Research Council of Australia Project Grant - No. 1041807
Fondation Bettencourt-Schueller
Fondo Europeo de Desarrollo Regional (FEDER) - No. PI12/02248; No. FR2009-0052; No. IT2009-0053
European Commission (ArtForce)
SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE)
LabEx Immuno-Oncology
European Commission (MEL-PLEX)
American Cancer Society
Fundación Mutua Madrileña - No. AP101042012
Ministry of Health of Italy ('Ricerca Corrente' and 'Ricerca Finalizzata')
Spanish Ministry of Economy and Competitiveness (MINECO)
istex:1DD0F6A1097CF6D38BD562148AEBD9804AA41BFD
Paris Alliance of Cancer Research Institutes (PACRI)
Institut National du Cancer (INCa)
ark:/67375/WNG-46P3WC04-L
Senior Principal Research Fellowship - No. 1002863
Association pour la recherche sur le cancer (ARC)
SIRIC Cancer Research and Personalized Medicine (CARPEM)
Cancéropôle Ile-de-France
Swiss National Science Foundation
Fundació La Marató de TV3 - No. 20134031
ArticleID:EMBJ201490784
Fondation pour la Recherche Médicale (FRM)
Associazione Italiana per la Ricerca sul Cancro (AIRC)
Fondation de France
European Research Council (ERC)
Agence National de la Recherche (ANR)
Swiss Cancer League
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work
These authors share senior co-authorship
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4388596
PMID 25712477
PQID 1667913222
PQPubID 35985
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388596
proquest_miscellaneous_1682892885
proquest_journals_1667913222
pubmed_primary_25712477
crossref_citationtrail_10_15252_embj_201490784
crossref_primary_10_15252_embj_201490784
wiley_primary_10_15252_embj_201490784_EMBJ201490784
springer_journals_10_15252_embj_201490784
istex_primary_ark_67375_WNG_46P3WC04_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 1 April 2015
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Oxford, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: BlackWell Publishing Ltd
References Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13: 179-188
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293
Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA et al (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122: 4621-4634
Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19: 2739-2744
Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439-444
Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22: 181-185
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621-1635
van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805-808
Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056-2068
Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, Gibbings D (2014) Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun 5: 5276
Rote KV, Rechsteiner M (1983) Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy. J Cell Physiol 116: 103-110
Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-646
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B (2013) EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154: 1269-1284
Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210: 2057-2069
Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112
Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126-1132
Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M, Vitale I, Maiuri MC, Kroemer G (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14: 2251-2269
Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55-62
Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917-3929
Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525-526
Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835-841
Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91-99
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670
Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824-7827
Huang X, Wu Z, Mei Y, Wu M (2013) XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32: 2204-2216
Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH (2007) Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115: 1344-1349
Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10: 1712-1725
Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011: 865819
Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37: 230-236
Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119: 1359-1372
Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8: 275-283
Faderl S, Kantarjian HM, Manshouri T, Chan CY, Pierce S, Hays KJ, Cortes J, Thomas D, Estrov Z, Albitar M (1999) The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Clin Cancer Res 5: 1855-1861
Settembre C, Di MC, Polito VA, Garcia AM, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332: 1429-1433
Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21: 532-546
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177-182
Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D et al (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: 268-269
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 16: 108-111
Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12: 485-490
Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043-3053
Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36: 947-958
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632
Christoph F, Hinz S, Kempkensteffen C, Weikert S, Krause H, Schostak M, Schrader M, Miller K (2007) A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133: 343-349
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903
Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27: 4860-4864
Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075
Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187-190
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobaya
Cianfanelli, Fuoco, Lorente, Salazar, Quondamatteo, Gherardini, De Zio, Nazio, Antonioli, D'Orazio, Skobo, Bordi, Rohde, Dalla, Helmer‐Citterich, Gretzmeier, Dengjel, Fimia, Piacentini, Di (CR29) 2015; 17
Wu, Xue, Chen, Han, Huang, Zhu, Wang, Jin, Wang, Zhu, Liu, Chen (CR265) 2014; 10
Gong, Bauvy, Tonelli, Yue, Delomenie, Nicolas, Zhu, Domergue, Marin‐Esteban, Tharinger, Delbos, Gary‐Gouy, Morel, Ghavami, Song, Codogno, Mehrpour (CR72) 2013; 32
Shaw, Cantley (CR230) 2006; 441
Vara, Salazar, Olea‐Herrero, Guzman, Velasco, Diaz‐Laviada (CR249) 2011; 18
Wang, Yang, Huang, Huang, Gao, Zhao, Huang, Chen (CR254) 2014; 8
Ma, Chen, Erdjument‐Bromage, Tempst, Pandolfi (CR144) 2005; 121
Rao, Tortola, Perlot, Wirnsberger, Novatchkova, Nitsch, Sykacek, Frank, Schramek, Komnenovic, Sigl, Aumayr, Schmauss, Fellner, Handschuh, Glosmann, Pasierbek, Schlederer, Resch, Ma (CR205) 2014; 5
Shaw, Bardeesy, Manning, Lopez, Kosmatka, DePinho, Cantley (CR229) 2004; 6
Hara, Takamura, Kishi, Iemura, Natsume, Guan, Mizushima (CR84) 2008; 181
Yu, Xu, Peng, Fang, Zhao, Li, Cuevas, Kuo, Gray, Siciliano, Mills, Bast (CR272) 1999; 96
Budanov, Sablina, Feinstein, Koonin, Chumakov (CR19) 2004; 304
Yue, Jin, Yang, Levine, Heintz (CR273) 2003; 100
Strohecker, Guo, Karsli‐Uzunbas, Price, Chen, Mathew, McMahon, White (CR236) 2013; 3
Iannello, Thompson, Ardolino, Lowe, Raulet (CR96) 2013; 210
Madeo, Pietrocola, Eisenberg, Kroemer (CR148) 2014; 13
Belaid, Cerezo, Chargui, Corcelle‐Termeau, Pedeutour, Giuliano, Ilie, Rubera, Tauc, Barale, Bertolotto, Brest, Vouret‐Craviari, Klionsky, Carle, Hofman, Mograbi (CR12) 2013; 73
Abida, Gu (CR1) 2008; 68
McBride, Ballinger, Killick, Kirk, Tattersall, Eeles, Thomas, Mitchell (CR167) 2014; 11
Sen, Johnson (CR225) 2011; 2011
Hanahan, Weinberg (CR82) 2011; 144
Lee, Kawai, Fergusson, Rovira, Bishop, Motoyama, Cao, Finkel (CR126) 2012; 336
Artal‐Martinez de Narvajas, Gomez, Zhang, Mann, Taoda, Gorman, Herreros‐Villanueva, Gress, Ellenrieder, Bujanda, Kim, Kozikowski, Koenig, Billadeau (CR7) 2013; 33
Futreal, Liu, Shattuck‐Eidens, Cochran, Harshman, Tavtigian, Bennett, Haugen‐Strano, Swensen, Miki (CR65) 1994; 266
Lozy, Cai‐McRae, Teplova, Price, Reddy, Bhanot, Ganesan, Vazquez, Karantza (CR141) 2014; 10
Boya, Reggiori, Codogno (CR18) 2013; 15
Guo, Karsli‐Uzunbas, Mathew, Aisner, Kamphorst, Strohecker, Chen, Price, Lu, Teng, Snyder, Santanam, Dipaola, Jacks, Rabinowitz, White (CR79) 2013; 27
McAfee, Zhang, Samanta, Levi, Ma, Piao, Lynch, Uehara, Sepulveda, Davis, Winkler, Amaravadi (CR166) 2012; 109
Duran, Linares, Galvez, Wikenheiser, Flores, Diaz‐Meco, Moscat (CR52) 2008; 13
Levy, Thompson, Griesinger, Amani, Donson, Birks, Morgan, Mirsky, Handler, Foreman, Thorburn (CR128) 2014; 4
Seizinger, Rouleau, Ozelius, Lane, Farmer, Lamiell, Haines, Yuen, Collins, Majoor‐Krakauer (CR224) 1988; 332
Harrison, Strong, Sharp, Nelson, Astle, Flurkey, Nadon, Wilkinson, Frenkel, Carter, Pahor, Javors, Fernandez, Miller (CR85) 2009; 460
Elgendy, Ciro, Abdel‐Aziz, Belmonte, Zuffo, Mercurio, Miracco, Lanfrancone, Foiani, Minucci (CR57) 2014; 5
Morselli, Maiuri, Markaki, Megalou, Pasparaki, Palikaras, Criollo, Galluzzi, Malik, Vitale, Michaud, Madeo, Tavernarakis, Kroemer (CR177) 2010; 1
Galluzzi, Bravo‐San Pedro, Vitale, Aaronson, Abrams, Adam, Alnemri, Altucci, Andrews, Annicchiarico‐Petruzzelli, Baehrecke, Bazan, Bertrand, Bianchi, Blagosklonny, Blomgren, Borner, Bredesen, Brenner, Campanella (CR301) 2015; 22
Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell'antonio, Mautner, Tonon, Haigis, Shirihai, Doglioni, Bardeesy, Kimmelman (CR268) 2011; 25
Mizushima, Komatsu (CR175) 2011; 147
Gomez‐Manzano, Mitlianga, Fueyo, Lee, Hu, Spurgers, Glass, Koul, Liu, McDonnell, Yung (CR71) 2001; 61
Travassos, Carneiro, Ramjeet, Hussey, Kim, Magalhaes, Yuan, Soares, Chea, Le Bourhis, Boneca, Allaoui, Jones, Nunez, Girardin, Philpott (CR245) 2010; 11
Deretic, Saitoh, Akira (CR49) 2013; 13
Budanov, Karin (CR20) 2008; 134
Vousden, Lane (CR252) 2007; 8
Huang, Regan, Wang, Wang, Smith, van Deursen, Tindall (CR93) 2005; 102
Wei, Pattingre, Sinha, Bassik, Levine (CR259) 2008; 30
Zhao, Oh, Li, Ni, Pirooz, Lee, Yang, Lee, Ghozalli, Costanzo, Stark, Liang (CR279) 2012; 22
Hanning, Saini, Murray, Caffarel, van Dongen, Ward, Barker, Scarpini, Groves, Stanley, Enright, Pett, Coleman (CR83) 2013; 231
Pietrocola, Izzo, Niso‐Santano, Vacchelli, Galluzzi, Maiuri, Kroemer (CR197) 2013; 23
Mahalingam, Mita, Sarantopoulos, Wood, Amaravadi, Davis, Mita, Curiel, Espitia, Nawrocki, Giles, Carew (CR150) 2014; 10
Taguchi, Fujikawa, Komatsu, Ishii, Unno, Akaike, Motohashi, Yamamoto (CR237) 2012; 109
Nakagawa, Amano, Mizushima, Yamamoto, Yamaguchi, Kamimoto, Nara, Funao, Nakata, Tsuda, Hamada, Yoshimori (CR181) 2004; 306
Nardella, Chen, Salmena, Carracedo, Alimonti, Egia, Carver, Gerald, Cordon‐Cardo, Pandolfi (CR183) 2008; 22
Coussens, Zitvogel, Palucka (CR37) 2013; 339
Jain, Lamark, Sjottem, Larsen, Awuh, Overvatn, McMahon, Hayes, Johansen (CR104) 2010; 285
Jounai, Takeshita, Kobiyama, Sawano, Miyawaki, Xin, Ishii, Kawai, Akira, Suzuki, Okuda (CR110) 2007; 104
Ma, Piao, Dey, McAfee, Karakousis, Villanueva, Hart, Levi, Hu, Zhang, Lazova, Klump, Pawelek, Xu, Xu, Schuchter, Davies, Herlyn, Winkler, Koumenis (CR145) 2014; 124
Dang (CR41) 2012; 149
Rousselot, Hardas, Patel, Guidez, Gaken, Castaigne, Dejean, de The, Degos, Farzaneh (CR216) 1994; 9
Okamoto (CR186) 2014; 205
Luo, Solimini, Elledge (CR143) 2009; 136
Rodriguez, Choudhury, Kolukula, Vietsch, Catania, Preet, Reynoso, Bargonetti, Wellstein, Albanese, Avantaggiati (CR210) 2012; 11
Marsh, Dahia, Zheng, Liaw, Parsons, Gorlin, Eng (CR158) 1997; 16
Parkhitko, Myachina, Morrison, Hindi, Auricchio, Karbowniczek, Wu, Finkel, Kwiatkowski, Yu, Henske (CR191) 2011; 108
Vogl, Stadtmauer, Tan, Heitjan, Davis, Pontiggia, Rangwala, Piao, Chang, Scott, Paul, Nichols, Porter, Kaplan, Mallon, Bradner, Amaravadi (CR251) 2014; 10
Arico, Petiot, Bauvy, Dubbelhuis, Meijer, Codogno, Ogier‐Denis (CR6) 2001; 276
Dyson, Howley, Munger, Harlow (CR53) 1989; 243
Stolz, Ernst, Dikic (CR235) 2014; 16
de Freitas, Coimbra, Leitao Mda (CR43) 2014; 1845
Boya, Gonzalez‐Polo, Poncet, Andreau, Vieira, Roumier, Perfettini, Kroemer (CR16) 2003; 22
Chano, Kontani, Teramoto, Okabe, Ikegawa (CR24) 2002; 31
Kim, Kim, Fang, Russell, Kim, Fan, Liu, Zhong, Guan (CR114) 2013; 152
Wang, Wei, An, Zou, Xiao, Bhagat, White, Reichelt, Levine (CR255) 2012; 338
Liu, Lee, Wei, Tanabe, Engel, Morrison, Guan (CR135) 2010; 116
McKnight, Zhong, Wold, Gong, Phillips, Dou, Zhao, Heintz, Zong, Yue (CR168) 2014; 10
Park, Tougeron, Huang, Okamoto, Sinicrope (CR190) 2014; 9
Pattingre, Tassa, Qu, Garuti, Liang, Mizushima, Packer, Schneider, Levine (CR193) 2005; 122
Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata, Hamazaki, Nishito, Iemura, Natsume, Yanagawa, Uwayama, Warabi, Yoshida, Ishii, Kobayashi (CR117) 2007; 131
Denton, Shravage, Simin, Mills, Berry, Baehrecke, Kumar (CR46) 2009; 19
Jiang, Martin, Gomez‐Manzano, Johnson, Alonso, White, Xu, McDonnell, Shinojima, Fueyo (CR107) 2010; 70
Mortensen, Soilleux, Djordjevic, Tripp, Lutteropp, Sadighi‐Akha, Stranks, Glanville, Knight, Jacobsen, Kranc, Simon (CR179) 2011; 208
Qu, Yu, Bhagat, Furuya, Hibshoosh, Troxel, Rosen, Eskelinen, Mizushima, Ohsumi, Cattoretti, Levine (CR200) 2003; 112
Sharma, Tran, Liang, Sharma, Amin, Smith, Dong, Robertson (CR228) 2006; 66
Wilkinson, O'Prey, Fricker, Ryan (CR262) 2009; 23
Settembre, Di, Polito, Garcia, Vetrini, Erdin, Erdin, Huynh, Medina, Colella, Sardiello, Rubinsztein, Ballabio (CR227) 2011; 332
Stephens, Hunter, Bignell, Edkins, Davies, Teague, Stevens, O'Meara, Smith, Parker, Barthorpe, Blow, Brackenbury, Butler, Clarke, Cole, Dicks, Dike, Drozd, Edwards (CR234) 2004; 431
Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters, Vinckier, Vankelecom, Garmyn, Vion, Radtke, Boulanger, Gerhardt, Dejana, Dewerchin, Ghesquiere (CR149) 2014; 26
Moll, Wolff, Speidel, Deppert (CR176) 2005; 17
Barnard, Wittenburg, Amaravadi, Gustafson, Thorburn, Thamm (CR11) 2014; 10
Hall, Cost, Hegde, Kellner, Mikhaylova, Stratton, Ehmer, Abplanalp, Pandey, Biesiada, Harteneck, Plas, Meller, Czyzyk‐Krzeska (CR81) 2014; 26
Rosenfeld, Ye, Supko, Desideri, Grossman, Brem, Mikkelson, Wang, Chang, Hu, McAfee, Fisher, Troxel, Piao, Heitjan, Tan, Pontiggia, O'Dwyer, Davis, Amaravadi (CR213) 2014; 10
Ying, Kimmelman, Lyssiotis, Hua, Chu, Fletcher‐Sananikone, Locasale, Son, Zhang, Coloff, Yan, Wang, Chen, Viale, Zheng, Paik, Lim, Guimaraes, Martin, Chang (CR270) 2012; 149
Ma, Galluzzi, Zitvogel, Kroemer (CR146) 2013; 39
Ko, Kanehisa, Martins, Senovilla, Chargari, Dugue, Marino, Kepp, Michaud, Perfettini, Kroemer, Deutsch (CR116) 2014; 21
Zhang, Bosch‐Marce, Shimoda, Tan, Baek, Wesley, Gonzalez, Semenza (CR275) 2008; 283
Maskey, Yousefi, Schmid, Zlobec, Perren, Friis, Simon (CR160) 2013; 4
Maiuri, Criollo, Tasdemir, Vicencio, Tajeddine, Hickman, Geneste, Kroemer (CR151) 2007; 3
Christoph, Hinz, Kempkensteffen, Weikert, Krause, Schostak, Schrader, Miller (CR28) 2007; 133
Wolpin, Rubinson, Wang, Chan, Cleary, Enzinger, Fuchs, McCleary, Meyerhardt, Ng, Schrag, Sikora, Spicer, Killion, Mamon, Kimmelman (CR264) 2014; 19
Mathew, Kongara, Beaudoin, Karp, Bray, Degenhardt, Chen, Jin, White (CR161) 2007; 21
Codogno, Mehrpour, Proikas‐Cezanne (CR31) 2012; 13
Raveh, Droguett, Horwitz, DePinho, Kimchi (CR206) 2001; 3
CR241
Reef, Zalckvar, Shifman, Bialik, Sabanay, Oren, Kimchi (CR207) 2006; 22
Lopez‐Otin, Blasco, Partridge, Serrano, Kroemer (CR140) 2013; 153
Feng, Marquez, Lu, Liu, Lu, Issa, Fishman, Yu, Bast (CR59) 2008; 112
Inoki, Li, Zhu, Wu, Guan (CR99) 2002; 4
Elgendy, Sheridan, Brumatti, Martin (CR56) 2011; 42
Guo, Chitiprolu, Gagnon, Meng, Perez‐Iratxeta, Lagace, Gibbings (CR78) 2014; 5
Kenific, Debnath (CR113) 2015; 25
Bae, Sung, Oh, Lim, Lee, Park, Lee, Kang, Rhee (CR9) 2013; 17
Coppola, Khalil, Eschrich, Boulware, Yeatman, Wang (CR34) 2008; 113
Conway, Kuballa, Song, Patel, Castoreno, Yilmaz, Jijon, Zhang, Aldrich, Villablanca, Peloquin, Goel, Lee, Mizoguchi, Shi, Bha
2004; 22
2004; 23
2002; 99
2008; 39
2013; 123
2014a; 10
2004; 6
2012; 18
2013; 121
2008; 30
2012; 13
2007b; 26
2012; 11
2011; 475
1994; 266
2001; 61
2000; 19
2010; 1
1987; 235
2013; 51
1999; 59
2008; 27
1992; 358
2008; 118
2014; 1310
2008; 22
2013; 231
2008; 113
2008; 112
2012; 22
2012; 21
2006; 441
2009; 69
2007; 282
1999; 21
2010; 285
2002; 417
2012; 37
2012; 36
2004; 306
2004; 304
2011; 8
2011; 7
2001; 276
2004; 431
1998; 391
2011; 147
1989; 244
2013; 339
2012b; 19
2013; 73
1989; 243
2013; 210
2012b; 14
2008; 134
2011; 144
1994; 330
2001; 344
2013; 22
2013; 23
2008; 9
2007; 30
2013; 15
2014; 5
2011; 208
2013; 14
2014; 4
2013; 17
2014b; 10
2013; 16
2013; 13
2013; 12
2005; 146
2007; 133
2013; 437
2007; 131
2014; 59
2008; 68
2010; 70
2014; 9
2014; 51
2006; 126
2007; 21
2014; 8
2012; 336
2014; 53
2014; 289
2007; 27
2014; 514
1982; 79
2011; 334
2011; 333
2007; 129
2002; 31
2006; 13
2010; 80
2011; 332
2011; 331
2007; 115
2012a; 12
2012a; 19
1986; 323
2011; 108
2013; 39
2007; 117
2013; 33
2013; 32
2013; 31
1999; 399
2015
2014
2014; 74
2008; 451
2010; 12
2007; 104
2010; 11
2012; 120
2013; 3
2012; 122
2013; 4
1997; 277
2014; 26
2014; 28
2009; 119
2011; 193
2014; 21
2013; 9
2010; 22
2009; 10
2010; 116
2005; 102
2006; 22
2014; 16
2007; 8
2014; 15
2007; 9
1988; 332
2014; 13
2014; 19
2009; 19
2007; 67
2014; 12
2009; 16
2009; 15
2014; 11
2014; 10
2014; 124
2012a; 338
2007; 448
2013b; 155
2013; 504
1986; 233
2011; 80
2013; 501
2002; 4
2011; 79
2014; 1845
2010; 40
2014; 1843
2012; 109
2005; 121
2005; 122
2013a; 27
2010; 330
2014; 35
2009; 460
2005; 17
2003; 100
2012; 119
2003; 22
2009; 106
1983; 116
2009; 43
2007a; 3
2011; 10
2003; 17
2011; 13
2011; 12
2011; 14
1999; 402
2011; 18
2003; 112
2014; 211
2012; 52
2005; 25
2014; 205
2006; 66
2011; 22
1997; 16
2013; 152
1999; 96
2009; 284
2013; 154
2013; 153
2011; 25
1990; 250
2009; 23
2015; 17
2013b; 110
1991; 254
2009; 20
2013; 145
2006; 8
2013a; 5
2008; 13
2012b; 109
2014; 111
2012; 149
1999; 5
2009; 136
2009; 137
2008; 283
2009; 29
2014; 233
2008; 181
1994; 9
2011; 2011
1990; 63
2015; 25
2015; 22
2011; 42
2001; 3
2014; 345
2012; 8
1994; 54
e_1_2_10_271_1
e_1_2_10_40_1
e_1_2_10_109_1
Seok S (e_1_2_10_227_1) 2014; 16
e_1_2_10_210_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
Freitas AC (e_1_2_10_44_1) 2014; 1845
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
Miracco C (e_1_2_10_173_1) 2007; 30
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
Faderl S (e_1_2_10_59_1) 1999; 5
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_261_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
Gomez‐Manzano C (e_1_2_10_72_1) 2001; 61
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
Lu Z (e_1_2_10_143_1) 2008; 118
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_21_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_22_1
e_1_2_10_230_1
Martoriati A (e_1_2_10_160_1) 2005; 146
e_1_2_10_215_1
e_1_2_10_238_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
Rousselot P (e_1_2_10_217_1) 1994; 9
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_232_1
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
Shuin T (e_1_2_10_233_1) 1994; 54
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – reference: Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S, Dejean A, de The H, Degos L, Farzaneh F et al (1994) The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545-551
– reference: Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R (2014) The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 1310: 7-31
– reference: Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402-412
– reference: Chano T, Kontani K, Teramoto K, Okabe H, Ikegawa S (2002) Truncating mutations of RB1CC1 in human breast cancer. Nat Genet 31: 285-288
– reference: Lozy F, Cai-McRae X, Teplova I, Price S, Reddy A, Bhanot G, Ganesan S, Vazquez A, Karantza V (2014) ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss. Autophagy 10: 662-676
– reference: Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA 109: 13561-13566
– reference: Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L, Rangwala R, Piao S, Chang YC, Scott EC, Paul TM, Nichols CW, Porter DL, Kaplan J, Mallon G, Bradner JE, Amaravadi RK (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10: 1380-1390
– reference: Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208: 455-467
– reference: Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, Adams PD, Anderson KI, Gottlieb E, Sansom OJ, Ryan KM (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296-300
– reference: Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917-3929
– reference: Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439-444
– reference: Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55-62
– reference: Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51: 618-631
– reference: Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 16: 108-111
– reference: Gomez-Manzano C, Mitlianga P, Fueyo J, Lee HY, Hu M, Spurgers KB, Glass TL, Koul D, Liu TJ, McDonnell TJ, Yung WK (2001) Transfer of E2F-1 to human glioma cells results in transcriptional up-regulation of Bcl-2. Cancer Res 61: 6693-6697
– reference: Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293
– reference: Chinen Y, Kuroda J, Shimura Y, Nagoshi H, Kiyota M, Yamamoto-Sugitani M, Mizutani S, Sakamoto N, Ri M, Kawata E, Kobayashi T, Matsumoto Y, Horiike S, Iida S, Taniwaki M (2014) Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma. Cancer Res 74: 7418-7429
– reference: Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187-190
– reference: Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835-841
– reference: Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23: 3898-3904
– reference: Liu H, He Z, von Rutte T, Yousefi S, Hunger RE, Simon HU (2013a) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5: 202ra123
– reference: Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B (2013) EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154: 1269-1284
– reference: Hanning JE, Saini HK, Murray MJ, Caffarel MM, van Dongen S, Ward D, Barker EM, Scarpini CG, Groves IJ, Stanley MA, Enright AJ, Pett MR, Coleman N (2013) Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state. J Pathol 231: 354-366
– reference: Huang X, Wu Z, Mei Y, Wu M (2013) XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32: 2204-2216
– reference: Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH (2007) Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115: 1344-1349
– reference: Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13: 1016-1023
– reference: Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, Gibbings D (2014) Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun 5: 5276
– reference: Chen N, Eritja N, Lock R, Debnath J (2013) Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32: 2543-2554
– reference: Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678-688
– reference: Pattingre S, Levine B (2006) Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66: 2885-2888
– reference: Kim MS, Jeong EG, Ahn CH, Kim SS, Lee SH, Yoo NJ (2008) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39: 1059-1063
– reference: Cai Q, Yan L, Xu Y (2014) Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene doi: 10.1038/onc.2014.264
– reference: de Freitas AC, Coimbra EC, Leitao Mda C (2014) Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta 1845: 91-103
– reference: Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-646
– reference: Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688-699
– reference: Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11: 709-730
– reference: Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142-1151
– reference: Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330: 1344-1348
– reference: Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12: 829-846
– reference: Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326-336
– reference: Settembre C, Di MC, Polito VA, Garcia AM, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332: 1429-1433
– reference: Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91-99
– reference: Hock AK, Vousden KH (2014) The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta 1843: 137-149
– reference: Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT (2013) K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51: 283-296
– reference: Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343-354
– reference: Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, Kroemer G (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16: 87-93
– reference: Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: 665-675
– reference: Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981-1991
– reference: Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596-600
– reference: Wang Y, Wang XD, Lapi E, Sullivan A, Jia W, He YW, Ratnayaka I, Zhong S, Goldin RD, Goemans CG, Tolkovsky AM, Lu X (2012b) Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA 109: 13325-13330
– reference: Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon HU (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4: 2130
– reference: Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, Avantaggiati ML (2012) Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle 11: 4436-4446
– reference: Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26: 121-135
– reference: Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10: 285-292
– reference: Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY, Sullivan BA, Hahn WC, Loda M, Febbo PG (2009) MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 69: 7803-7810
– reference: Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A et al (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949-954
– reference: Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525-526
– reference: Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102: 1649-1654
– reference: Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Tang D (2011) Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARalpha oncoprotein. Autophagy 7: 401-411
– reference: Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112
– reference: Hervier B, Haroche J, Arnaud L, Charlotte F, Donadieu J, Neel A, Lifermann F, Villabona C, Graffin B, Hermine O, Rigolet A, Roubille C, Hachulla E, Carmoi T, Bezier M, Meignin V, Conrad M, Marie L, Kostrzewa E, Michot JM et al (2014) Association of both Langerhans cell histiocytosis and Erdheim-Chester disease linked to the BRAFV600E mutation. Blood 124: 1119-1126
– reference: Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13: 179-188
– reference: Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8: 275-283
– reference: Cosse JP, Rommelaere G, Ninane N, Arnould T, Michiels C (2010) BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochem Pharmacol 80: 1160-1169
– reference: Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809-1820
– reference: Choudhury S, Kolukula VK, Preet A, Albanese C, Avantaggiati ML (2013) Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle 12: 1022-1029
– reference: Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861-2873
– reference: Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16: 495-501
– reference: Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80-83
– reference: Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10: 1712-1725
– reference: Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025-1040
– reference: Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy LJ, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL, Thorburn A (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590
– reference: He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67-93
– reference: Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, Zhong H, Vazquez A, Kang Y, Karantza V (2014) Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy 10: 2036-2052
– reference: Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570-2581
– reference: Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30: 429-436
– reference: Shuin T, Kondo K, Torigoe S, Kishida T, Kubota Y, Hosaka M, Nagashima Y, Kitamura H, Latif F, Zbar B et al (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54: 2852-2855
– reference: Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136: 823-837
– reference: Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15: 713-720
– reference: Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T (2014) Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35: 756-765
– reference: Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-6242
– reference: Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16: 64-67
– reference: Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163
– reference: Vara D, Salazar M, Olea-Herrero N, Guzman M, Velasco G, Diaz-Laviada I (2011) Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ 18: 1099-1111
– reference: Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461
– reference: Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3: 1-7
– reference: Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22: 3927-3936
– reference: Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13: 727-740
– reference: Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21: 532-546
– reference: Sahni S, Bae DH, Lane DJ, Kovacevic Z, Kalinowski DS, Jansson PJ, Richardson DR (2014) The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J Biol Chem 289: 9692-9709
– reference: Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4: 905-913
– reference: Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA (2014) Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One 9: e100819
– reference: Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106: 20842-20846
– reference: Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y, Bast RC Jr (2008) Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112: 1489-1502
– reference: Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205: 435-445
– reference: Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB, Yilmaz OH, Jijon HB, Zhang M, Aldrich LN, Villablanca EJ, Peloquin JM, Goel G, Lee IA, Mizoguchi E, Shi HN, Bhan AK, Shaw SY, Schreiber SL, Virgin HW, Shamji AF et al (2013) Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145: 1347-1357
– reference: Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25: 37-45
– reference: Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22: 2954-2963
– reference: Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM, Nawrocki ST, Giles FJ, Carew JS (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10: 1403-1414
– reference: Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 59: 1263-1276
– reference: Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27: 2312-2319
– reference: Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G (2007a) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3: 374-376
– reference: Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367-1381
– reference: Denton D, Nicolson S, Kumar S (2012b) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19: 87-95
– reference: Zitvogel L, Kepp O, Galluzzi L, Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13: 343-351
– reference: Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031-1037
– reference: McBride KA, Ballinger ML, Killick E, Kirk J, Tattersall MH, Eeles RA, Thomas DM, Mitchell G (2014) Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11: 260-271
– reference: Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski DJ, Yu JJ, Henske EP (2011) Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 108: 12455-12460
– reference: Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119: 1490-1500
– reference: Christoph F, Hinz S, Kempkensteffen C, Weikert S, Krause H, Schostak M, Schrader M, Miller K (2007) A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133: 343-349
– reference: Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, Mills GB, Bast RC Jr (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA 96: 214-219
– reference: Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A (2006) A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22: 463-475
– reference: Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012a) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956-959
– reference: Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573-8578
– reference: Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179-193
– reference: Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795-800
– reference: Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19: 1741-1746
– reference: Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497-1500
– reference: Abida WM, Gu W (2008) p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res 68: 352-357
– reference: Anderson MA, Huang D, Roberts A (2014) Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol 51: 219-227
– reference: Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670
– reference: Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12: 222-230
– reference: Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, Shaw SY, Clarke PG, Puyal J, Levine B (2013b) Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 110: 20364-20371
– reference: Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16: 532-542
– reference: McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, Winkler JD, Amaravadi RK (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109: 8253-8258
– reference: Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254: 1371-1374
– reference: Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184-187
– reference: Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18: 370-379
– reference: Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104: 14050-14055
– reference: Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460: 392-395
– reference: Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE, Piacentini M (2014) Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ doi: 10.1038/cdd.2014.183
– reference: Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H, Liu J, Lemischka IR, Hung MC, Chiao PJ (2012) KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21: 105-120
– reference: Avivar-Valderas A, Bobrovnikova-Marjon E, Alan DJ, Bardeesy N, Debnath J, Aguirre-Ghiso JA (2013) Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32: 4932-4940
– reference: Faderl S, Kantarjian HM, Manshouri T, Chan CY, Pierce S, Hays KJ, Cortes J, Thomas D, Estrov Z, Albitar M (1999) The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Clin Cancer Res 5: 1855-1861
– reference: Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153: 1194-1217
– reference: Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14: 759-774
– reference: Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056-2068
– reference: Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077-15082
– reference: Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10: 1359-1368
– reference: Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674
– reference: McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10: e1004626
– reference: Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275-284
– reference: Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bujanda L, Kim DH, Kozikowski AP, Koenig A, Billadeau DD (2013) Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 33: 3983-3993
– reference: Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80: 125-156
– reference: Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J (2010) The RB-E2F1 pathway regulates autophagy. Cancer Res 70: 7882-7893
– reference: Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, Fuchs CS, McCleary NJ, Meyerhardt JA, Ng K, Schrag D, Sikora AL, Spicer BA, Killion L, Mamon H, Kimmelman AC (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19: 637-638
– reference: Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181: 497-510
– reference: Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, Sathirapongsasuti JF, Cervo M, Yao H, Chung AL, Mizumura K, An CH, Shan B, Franks JM, Haley KJ, Owen CA, Tesfaigzi Y, Washko GR, Quackenbush J, Silverman EK, Rahman I et al (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 123: 5212-5230
– reference: Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040
– reference: Wang HY, Yang GF, Huang YH, Huang QW, Gao J, Zhao XD, Huang LM, Chen HL (2014) Reduced expression of autophagy markers correlates with high-risk human papillomavirus infection in human cervical squamous cell carcinoma. Oncol Lett 8: 1492-1498
– reference: Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32: 2261-2272, 2272e 2261-2211
– reference: Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1: e10
– reference: Rote KV, Rechsteiner M (1983) Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy. J Cell Physiol 116: 103-110
– reference: Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3: 1272-1285
– reference: Perez E, Das G, Bergmann A, Baehrecke EH (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene doi: 10.1038/onc.2014.285
– reference: Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233-1238
– reference: Pimkina J, Humbey O, Zilfou JT, Jarnik M, Murphy ME (2009) ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem 284: 2803-2810
– reference: Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266: 120-122
– reference: Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37: 230-236
– reference: Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527
– reference: Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu Z, Liu D, Gao J, Lin B (2012a) Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer 12: 622
– reference: Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939
– reference: Cai-McRae X, Zhong H, Karantza V (2014) Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways. Oncogene doi: 10.1038/onc.2014.244
– reference: Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O'Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014b) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10: 1369-1379
– reference: Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22: 2172-2177
– reference: Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, Altman JK, Platanias LC (2012) Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 120: 3555-3562
– reference: Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12: 485-490
– reference: Wilkinson S, O'Prey J, Fricker M, Ryan KM (2009) Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev 23: 1283-1288
– reference: Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336: 225-228
– reference: Yasir M, Pachikara ND, Bao X, Pan Z, Fan H (2011) Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect Immun 79: 4019-4028
– reference: Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934-937
– reference: Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075
– reference: Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, Bachelot MF, Lamberton A, Mathieu M, Bertrand T, Marquette JP, El-Ahmad Y, Filoche-Romme B, Schio L, Garcia-Echeverria C, Goulaouic H, Pasquier B (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10: 1013-1019
– reference: Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31: 51-72
– reference: Guo JY, Xia B, White E (2013b) Autophagy-mediated tumor promotion. Cell 155: 1216-1219
– reference: Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274
– reference: Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631-636
– reference: Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381-400
– reference: Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD, Dong C, Robertson GP (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66: 8200-8209
– reference: Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276: 35243-35246
– reference: Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717-729
– reference: Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824-7827
– reference: de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J, Jacks T (2002) Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 99: 2948-2953
– reference: Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648-657
– reference: Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116: 4806-4814
– reference: Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59: 59-65
– reference: Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, Moustafa T, Sprenger A, Jany E, Buttner S, Carmona-Gutierrez D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19: 431-444
– reference: Takahashi Y, Hori T, Cooper TK, Liao J, Desai N, Serfass JM, Young MM, Park S, Izu Y, Wang HG (2013) Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy. Blood 121: 1622-1632
– reference: Cryns VL, Thor A, Xu HJ, Hu SX, Wierman ME, Vickery AL Jr, Benedict WF, Arnold A (1994) Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med 330: 757-761
– reference: Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177-182
– reference: Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573-18583
– reference: Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119: 1359-1372
– reference: Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152: 290-303
– reference: Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5: 3496
– reference: Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275
– reference: Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu TC, Heath RJ, Becker ML, Fagbami L, Horn H, Mercer J, Yilmaz OH, Jaffe JD, Shamji AF, Bhan AK, Carr SA, Daly MJ et al (2014) Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci USA 111: 7741-7746
– reference: Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99-102
– reference: Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M, Vitale I, Maiuri MC, Kroemer G (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14: 2251-2269
– reference: Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345: 1250256
– reference: Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, De Zio D, Nazio F, Antonioli M, D'Orazio M, Skobo T, Bordi M, Rohde M, Dalla VL, Helmer-Citterich M, Gretzmeier C, Dengjel J, Fimia GM, Piacentini M, Di BS et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17: 20-30
– reference: Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22: 432-435
– reference: Horikawa I, Fujita K, Jenkins LM, Hiyoshi Y, Mondal AM, Vojtesek B, Lane DP, Appella E, Harris CC (2014) Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53-mediated senescence. Nat Commun 5: 4706
– reference: Hall DP, Cost NG, Hegde S, Kellner E, Mikhaylova O, Stratton Y, Ehmer B, Abplanalp WA, Pandey R, Biesiada J, Harteneck C, Plas DR, Meller J, Czyzyk-Krzeska MF (2014) TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell 26: 738-753
– reference: Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676
– reference: Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212-214
– reference: Codogno P, Mehrpour M, Proikas-Cezanne T (2012) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13: 7-12
– reference: Elgendy M, Sheridan C, Brumatti G, Martin SJ (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42: 23-35
– reference: Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39: 211-227
– reference: Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210: 2057-2069
– reference: Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10: 1415-1425
– reference: Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424-430
– reference: Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632
– reference: Griffin LM, Cicchini L, Pyeon D (2013) Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology 437: 12-19
– reference: Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829-1834
– reference: Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17: 73-84
– reference: Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741
– reference: Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15: 406-416
– reference: Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22: 58-73
– reference: Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA et al (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122: 4621-4634
– reference: Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine JC (2005) dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24: 146: 1-1466
– reference: Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121-134
– reference: Rello-Varona S, Lissa D, Shen S, Niso-Santano M, Senovilla L, Marino G, Vitale I, Jemaa M, Harper F, Pierron G, Castedo M, Kroemer G (2012) Autophagic removal of micronuclei. Cell Cycle 11: 170-176
– reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903
– reference: Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23: 798-803
– reference: Denton D, Chang TK, Nicolson S, Shravage B, Simin R, Baehrecke EH, Kumar S (2012a) Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila. Cell Death Differ 19: 1299-1307
– reference: Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman NK, Thorburn A (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 4: 773-780
– reference: DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106-109
– reference: Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di VF, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334: 1573-1577
– reference: Elgendy M, Ciro M, Abdel-Aziz AK, Belmonte G, Zuffo RD, Mercurio C, Miracco C, Lanfrancone L, Foiani M, Minucci S (2014) Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat Commun 5: 5637
– reference: Isakson P, Bjoras M, Boe SO, Simonsen A (2010) Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116: 2324-2331
– reference: Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13: 722-737
– reference: Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y, Levine B (2015) Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine doi: 10.1016/j.ebiom.2015.01.008
– reference: Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfurst B, Walenta S, Mueller-Klieser W, Graler M, Hummel M, Keller U, Buck AK, Dorken B, Willmitzer L et al (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501: 421-425
– reference: Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22: 181-185
– reference: van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805-808
– reference: Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S et al (2012b) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14: 177-185
– reference: Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, Vinckier S, Vankelecom H, Garmyn M, Vion AC, Radtke F, Boulanger C, Gerhardt H, Dejana E, Dewerchin M, Ghesquiere B et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26: 190-206
– reference: Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36: 947-958
– reference: Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S, Barnard N, Ganesan S, Karantza V, White E, Xia B (2013) Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov 3: 894-907
– reference: Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8: 528-539
– reference: Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285: 22576-22591
– reference: Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Marino G, Kepp O, Michaud M, Perfettini JL, Kroemer G, Deutsch E (2014) Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 21: 92-99
– reference: Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075
– reference: Oh S, Xiaofei E, Ni D, Pirooz SD, Lee JY, Lee D, Zhao Z, Lee S, Lee H, Ku B, Kowalik T, Martin SE, Oh BH, Jung JU, Liang C (2011) Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis. Cell Death Differ 18: 452-464
– reference: Berres ML, Lim KP, Peters T, Price J, Takizawa H, Salmon H, Idoyaga J, Ruzo A, Lupo PJ, Hicks MJ, Shih A, Simko SJ, Abhyankar H, Chakraborty R, Leboeuf M, Beltrao M, Lira SA, Heym KM, Bigley V, Collin M et al (2014) BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med 211: 669-683
– reference: Dang CV (2012) MYC on the path to cancer. Cell 149: 22-35
– reference: Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola RS, Jacks T, Rabinowitz JD, White E (2013a) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461
– reference: Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, Lazova R, Klump V, Pawelek JM, Xu X, Xu W, Schuchter LM, Davies MA, Herlyn M, Winkler J, Koumenis C et al (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 124: 1406-1417
– reference: Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, Schuchter LM, Torigian DA, Panosian JT, Troxel AB, Tan KS, Heitjan DF, DeMichele AM, Vaughn DJ, Redlinger M, Alavi A, Kaiser J, Pontiggia L, Davis LE, O'Dwyer PJ et al (2014a) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10: 1391-1402
– reference: Garufi A, Pucci D, D'Orazi V, Cirone M, Bossi G, Avantaggiati ML, D'Orazi G (2014) Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis 5: e1271
– reference: Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23: 310-322
– reference: Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D et al (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: 268-269
– reference: Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451-460
– reference: Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22: 165-178
– reference: Fountain JW, Wallace MR, Bruce MA, Seizinger BR, Menon AG, Gusella JF, Michels VV, Schmidt MA, Dewald GW, Collins FS (1989) Physical mapping of a translocation breakpoint in neurofibromatosis. Science 244: 1085-1087
– reference: Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126-1132
– reference: Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007b) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527-2539
– reference: Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043-3053
– reference: Torres S, Lorente M, Rodriguez-Fornes F, Hernandez-Tiedra S, Salazar M, Garcia-Taboada E, Barcia J, Guzman M, Velasco G (2011) A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10: 90-103
– reference: Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011: 865819
– reference: Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19: 2739-2744
– reference: Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339: 286-291
– reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-24145
– reference: Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13: 119-120
– reference: Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN (2014) Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev 28: 689-707
– reference: Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27: 4860-4864
– reference: Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40: 280-293
– reference: Toh PP, Luo S, Menzies FM, Rasko T, Wanker EE, Rubinsztein DC (2013) Myc inhibition impairs autophagosome formation. Hum Mol Genet 22: 5237-5248
– reference: Randow F, Youle RJ (2014) Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15: 403-411
– reference: Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15: R109
– reference: Zhang L, Sung JJ, Yu J, Ng SC, Wong SH, Cho CH, Ng SS, Chan FK, Wu WK (2014) Xenophagy in Helicobacter pylori- and Epstein-Barr virus-induced gastric cancer. J Pathol 233: 103-112
– reference: Belaid A, Cerezo M, Chargui A, Corcelle-Termeau E, Pedeutour F, Giuliano S, Ilie M, Rubera I, Tauc M, Barale S, Bertolotto C, Brest P, Vouret-Craviari V, Klionsky DJ, Carle GF, Hofman P, Mograbi B (2013) Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res 73: 4311-4322
– reference: Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, Eng C (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16: 333-334
– reference: Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8: 200-212
– reference: Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, Sigl V, Aumayr K, Schmauss G, Fellner N, Handschuh S, Glosmann M, Pasierbek P, Schlederer M, Resch GP, Ma Y et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5: 3056
– reference: Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee JH, Yang S, Lee JY, Ghozalli I, Costanzo V, Stark JM, Liang C (2012) A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell 22: 1001-1016
– reference: Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L, Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807-810
– reference: Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG (2008) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113: 2665-2670
– reference: Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53: 167-178
– reference: Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621-1635
– ident: CR22
– volume: 26
  start-page: 190
  year: 2014
  end-page: 206
  ident: CR149
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
– volume: 119
  start-page: 1490
  year: 2012
  end-page: 1500
  ident: CR247
  article-title: Mitochondrial dysfunction in ataxia‐telangiectasia
  publication-title: Blood
– volume: 39
  start-page: 1059
  year: 2008
  end-page: 1063
  ident: CR115
  article-title: Frameshift mutation of UVRAG, an autophagy‐related gene, in gastric carcinomas with microsatellite instability
  publication-title: Hum Pathol
– ident: CR196
– volume: 460
  start-page: 392
  year: 2009
  end-page: 395
  ident: CR85
  article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
  publication-title: Nature
– volume: 21
  start-page: 105
  year: 2012
  end-page: 120
  ident: CR133
  article-title: KrasG12D‐induced IKK2/beta/NF‐kappaB activation by IL‐1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
– volume: 10
  start-page: 1403
  year: 2014
  end-page: 1414
  ident: CR150
  article-title: Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors
  publication-title: Autophagy
– volume: 13
  start-page: 119
  year: 2011
  end-page: 120
  ident: CR277
  article-title: AMPK‐dependent phosphorylation of ULK1 induces autophagy
  publication-title: Cell Metab
– volume: 96
  start-page: 214
  year: 1999
  end-page: 219
  ident: CR272
  article-title: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 2543
  year: 2013
  end-page: 2554
  ident: CR25
  article-title: Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3‐kinase in three‐dimensional culture
  publication-title: Oncogene
– volume: 6
  start-page: 91
  year: 2004
  end-page: 99
  ident: CR229
  article-title: The LKB1 tumor suppressor negatively regulates mTOR signaling
  publication-title: Cancer Cell
– volume: 14
  start-page: 2251
  year: 2011
  end-page: 2269
  ident: CR178
  article-title: Oncosuppressive functions of autophagy
  publication-title: Antioxid Redox Signal
– volume: 15
  start-page: 406
  year: 2013
  end-page: 416
  ident: CR184
  article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self‐association and function through AMBRA1 and TRAF6
  publication-title: Nat Cell Biol
– volume: 11
  start-page: 170
  year: 2012
  end-page: 176
  ident: CR208
  article-title: Autophagic removal of micronuclei
  publication-title: Cell Cycle
– volume: 19
  start-page: 431
  year: 2014
  end-page: 444
  ident: CR55
  article-title: Nucleocytosolic depletion of the energy metabolite acetyl‐coenzyme a stimulates autophagy and prolongs lifespan
  publication-title: Cell Metab
– volume: 32
  start-page: 2261
  year: 2013
  end-page: 2272
  ident: CR72
  article-title: Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem‐like/progenitor cells
  publication-title: Oncogene
– volume: 417
  start-page: 949
  year: 2002
  end-page: 954
  ident: CR42
  article-title: Mutations of the BRAF gene in human cancer
  publication-title: Nature
– volume: 391
  start-page: 184
  year: 1998
  end-page: 187
  ident: CR88
  article-title: A serine/threonine kinase gene defective in Peutz‐Jeghers syndrome
  publication-title: Nature
– volume: 12
  start-page: 665
  year: 2010
  end-page: 675
  ident: CR278
  article-title: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
  publication-title: Nat Cell Biol
– volume: 104
  start-page: 14050
  year: 2007
  end-page: 14055
  ident: CR110
  article-title: The Atg5 Atg12 conjugate associates with innate antiviral immune responses
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 402
  year: 2008
  end-page: 412
  ident: CR209
  article-title: Transcriptional control of human p53‐regulated genes
  publication-title: Nat Rev Mol Cell Biol
– volume: 59
  start-page: 1263
  year: 2014
  end-page: 1276
  ident: CR68
  article-title: Metabolic control of autophagy
  publication-title: Cell
– volume: 210
  start-page: 2057
  year: 2013
  end-page: 2069
  ident: CR96
  article-title: p53‐dependent chemokine production by senescent tumor cells supports NKG2D‐dependent tumor elimination by natural killer cells
  publication-title: J Exp Med
– volume: 80
  start-page: 125
  year: 2011
  end-page: 156
  ident: CR261
  article-title: Biogenesis and cargo selectivity of autophagosomes
  publication-title: Annu Rev Biochem
– volume: 67
  start-page: 3043
  year: 2007
  end-page: 3053
  ident: CR60
  article-title: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF‐1‐AKT‐mTOR pathways
  publication-title: Cancer Res
– volume: 15
  start-page: 1126
  year: 2009
  end-page: 1132
  ident: CR111
  article-title: Bcl‐2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy
  publication-title: Clin Cancer Res
– volume: 345
  start-page: 1250256
  year: 2014
  ident: CR75
  article-title: Cell biology. Metabolic control of cell death
  publication-title: Science
– volume: 330
  start-page: 757
  year: 1994
  end-page: 761
  ident: CR39
  article-title: Loss of the retinoblastoma tumor‐suppressor gene in parathyroid carcinoma
  publication-title: N Engl J Med
– volume: 3
  start-page: 374
  year: 2007
  end-page: 376
  ident: CR151
  article-title: BH3‐only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl‐2/Bcl‐X(L)
  publication-title: Autophagy
– ident: CR241
– volume: 448
  start-page: 807
  year: 2007
  end-page: 810
  ident: CR106
  article-title: LKB1 modulates lung cancer differentiation and metastasis
  publication-title: Nature
– volume: 18
  start-page: 452
  year: 2011
  end-page: 464
  ident: CR185
  article-title: Downregulation of autophagy by Bcl‐2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis
  publication-title: Cell Death Differ
– volume: 250
  start-page: 1233
  year: 1990
  end-page: 1238
  ident: CR155
  article-title: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms
  publication-title: Science
– volume: 33
  start-page: 3983
  year: 2013
  end-page: 3993
  ident: CR7
  article-title: Epigenetic regulation of autophagy by the methyltransferase G9a
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 2570
  year: 2009
  end-page: 2581
  ident: CR13
  article-title: Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
  publication-title: Mol Cell Biol
– volume: 12
  start-page: 485
  year: 2014
  end-page: 490
  ident: CR120
  article-title: Mutational landscape of the essential autophagy gene BECN1 in human cancers
  publication-title: Mol Cancer Res
– volume: 117
  start-page: 326
  year: 2007
  end-page: 336
  ident: CR4
  article-title: Autophagy inhibition enhances therapy‐induced apoptosis in a Myc‐induced model of lymphoma
  publication-title: J Clin Invest
– volume: 25
  start-page: 37
  year: 2015
  end-page: 45
  ident: CR113
  article-title: Cellular and metabolic functions for autophagy in cancer cells
  publication-title: Trends Cell Biol
– volume: 358
  start-page: 80
  year: 1992
  end-page: 83
  ident: CR187
  article-title: Amplification of a gene encoding a p53‐associated protein in human sarcomas
  publication-title: Nature
– volume: 17
  start-page: 1829
  year: 2003
  end-page: 1834
  ident: CR100
  article-title: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
  publication-title: Genes Dev
– volume: 16
  start-page: 64
  year: 1997
  end-page: 67
  ident: CR131
  article-title: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome
  publication-title: Nat Genet
– volume: 27
  start-page: 4860
  year: 2008
  end-page: 4864
  ident: CR199
  article-title: E2F1 regulates autophagy and the transcription of autophagy genes
  publication-title: Oncogene
– volume: 51
  start-page: 283
  year: 2013
  end-page: 296
  ident: CR132
  article-title: K63 polyubiquitination and activation of mTOR by the p62‐TRAF6 complex in nutrient‐activated cells
  publication-title: Mol Cell
– volume: 52
  start-page: 381
  year: 2012
  end-page: 400
  ident: CR101
  article-title: AMPK and mTOR in cellular energy homeostasis and drug targets
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  ident: CR250
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 9
  start-page: e100819
  year: 2014
  ident: CR190
  article-title: Beclin 1 and UVRAG confer protection from radiation‐induced DNA damage and maintain centrosome stability in colorectal cancer cells
  publication-title: PLoS One
– volume: 8
  start-page: 1492
  year: 2014
  end-page: 1498
  ident: CR254
  article-title: Reduced expression of autophagy markers correlates with high‐risk human papillomavirus infection in human cervical squamous cell carcinoma
  publication-title: Oncol Lett
– volume: 102
  start-page: 8573
  year: 2005
  end-page: 8578
  ident: CR109
  article-title: The NF1 tumor suppressor critically regulates TSC2 and mTOR
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 4706
  year: 2014
  ident: CR91
  article-title: Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53‐mediated senescence
  publication-title: Nat Commun
– volume: 22
  start-page: 3927
  year: 2003
  end-page: 3936
  ident: CR16
  article-title: Mitochondrial membrane permeabilization is a critical step of lysosome‐initiated apoptosis induced by hydroxychloroquine
  publication-title: Oncogene
– volume: 332
  start-page: 268
  year: 1988
  end-page: 269
  ident: CR224
  article-title: Von Hippel‐Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma
  publication-title: Nature
– volume: 304
  start-page: 1497
  year: 2004
  end-page: 1500
  ident: CR188
  article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy
  publication-title: Science
– volume: 70
  start-page: 7882
  year: 2010
  end-page: 7893
  ident: CR107
  article-title: The RB‐E2F1 pathway regulates autophagy
  publication-title: Cancer Res
– volume: 19
  start-page: 1299
  year: 2012
  end-page: 1307
  ident: CR47
  article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila
  publication-title: Cell Death Differ
– volume: 193
  start-page: 275
  year: 2011
  end-page: 284
  ident: CR98
  article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
  publication-title: J Cell Biol
– volume: 13
  start-page: 343
  year: 2012
  end-page: 351
  ident: CR280
  article-title: Inflammasomes in carcinogenesis and anticancer immune responses
  publication-title: Nat Immunol
– volume: 344
  start-page: 1031
  year: 2001
  end-page: 1037
  ident: CR51
  article-title: Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia
  publication-title: N Engl J Med
– volume: 10
  start-page: 662
  year: 2014
  end-page: 676
  ident: CR141
  article-title: ERBB2 overexpression suppresses stress‐induced autophagy and renders ERBB2‐induced mammary tumorigenesis independent of monoallelic Becn1 loss
  publication-title: Autophagy
– volume: 109
  start-page: 13561
  year: 2012
  end-page: 13566
  ident: CR237
  article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis
  publication-title: Proc Natl Acad Sci USA
– volume: 330
  start-page: 1344
  year: 2010
  end-page: 1348
  ident: CR201
  article-title: Autophagy and metabolism
  publication-title: Science
– volume: 323
  start-page: 643
  year: 1986
  end-page: 646
  ident: CR62
  article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma
  publication-title: Nature
– volume: 7
  start-page: 401
  year: 2011
  end-page: 411
  ident: CR257
  article-title: Autophagy regulates myeloid cell differentiation by p62/SQSTM1‐mediated degradation of PML‐RARalpha oncoprotein
  publication-title: Autophagy
– volume: 152
  start-page: 290
  year: 2013
  end-page: 303
  ident: CR114
  article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
  publication-title: Cell
– volume: 17
  start-page: 20
  year: 2015
  end-page: 30
  ident: CR29
  article-title: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c‐Myc dephosphorylation and degradation
  publication-title: Nat Cell Biol
– volume: 8
  start-page: 200
  year: 2012
  end-page: 212
  ident: CR164
  article-title: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy
  publication-title: Autophagy
– volume: 277
  start-page: 805
  year: 1997
  end-page: 808
  ident: CR248
  article-title: Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34
  publication-title: Science
– volume: 112
  start-page: 1809
  year: 2003
  end-page: 1820
  ident: CR200
  article-title: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
  publication-title: J Clin Invest
– volume: 331
  start-page: 456
  year: 2011
  end-page: 461
  ident: CR54
  article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
– volume: 8
  start-page: 688
  year: 2006
  end-page: 699
  ident: CR129
  article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 495
  year: 2014
  end-page: 501
  ident: CR235
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat Cell Biol
– volume: 18
  start-page: 1099
  year: 2011
  end-page: 1111
  ident: CR249
  article-title: Anti‐tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK‐dependent activation of autophagy
  publication-title: Cell Death Differ
– volume: 99
  start-page: 2948
  year: 2002
  end-page: 2953
  ident: CR44
  article-title: Targeted point mutations of p53 lead to dominant‐negative inhibition of wild‐type p53 function
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: R109
  year: 2013
  ident: CR263
  article-title: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem‐like phenotype
  publication-title: Breast Cancer Res
– volume: 5
  start-page: 3056
  year: 2014
  ident: CR205
  article-title: A dual role for autophagy in a murine model of lung cancer
  publication-title: Nat Commun
– volume: 28
  start-page: 689
  year: 2014
  end-page: 707
  ident: CR32
  article-title: Stress‐induced cleavage of Myc promotes cancer cell survival
  publication-title: Genes Dev
– volume: 5
  start-page: 3496
  year: 2014
  ident: CR108
  article-title: Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
  publication-title: Nat Commun
– volume: 13
  start-page: 722
  year: 2013
  end-page: 737
  ident: CR49
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat Rev Immunol
– volume: 12
  start-page: 829
  year: 2013
  end-page: 846
  ident: CR66
  article-title: Metabolic targets for cancer therapy
  publication-title: Nat Rev Drug Discov
– volume: 136
  start-page: 823
  year: 2009
  end-page: 837
  ident: CR143
  article-title: Principles of cancer therapy: oncogene and non‐oncogene addiction
  publication-title: Cell
– volume: 22
  start-page: 2954
  year: 2004
  end-page: 2963
  ident: CR222
  article-title: The biology and clinical relevance of the PTEN tumor suppressor pathway
  publication-title: J Clin Oncol
– volume: 22
  start-page: 5237
  year: 2013
  end-page: 5248
  ident: CR242
  article-title: Myc inhibition impairs autophagosome formation
  publication-title: Hum Mol Genet
– volume: 19
  start-page: 637
  year: 2014
  end-page: 638
  ident: CR264
  article-title: Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma
  publication-title: Oncologist
– volume: 61
  start-page: 6693
  year: 2001
  end-page: 6697
  ident: CR71
  article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2
  publication-title: Cancer Res
– volume: 5
  start-page: e1271
  year: 2014
  ident: CR69
  article-title: Degradation of mutant p53H175 protein by Zn(II) through autophagy
  publication-title: Cell Death Dis
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  ident: CR275
  article-title: Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia
  publication-title: J Biol Chem
– volume: 289
  start-page: 9692
  year: 2014
  end-page: 9709
  ident: CR218
  article-title: The metastasis suppressor, N‐myc downstream‐regulated gene 1 (NDRG1), inhibits stress‐induced autophagy in cancer cells
  publication-title: J Biol Chem
– volume: 66
  start-page: 2885
  year: 2006
  end-page: 2888
  ident: CR192
  article-title: Bcl‐2 inhibition of autophagy: a new route to cancer?
  publication-title: Cancer Res
– volume: 74
  start-page: 7418
  year: 2014
  end-page: 7429
  ident: CR26
  article-title: Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma
  publication-title: Cancer Res
– volume: 10
  start-page: 1013
  year: 2014
  end-page: 1019
  ident: CR212
  article-title: A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
  publication-title: Nat Chem Biol
– volume: 51
  start-page: 219
  year: 2014
  end-page: 227
  ident: CR5
  article-title: Targeting BCL2 for the treatment of lymphoid malignancies
  publication-title: Semin Hematol
– volume: 20
  start-page: 1981
  year: 2009
  end-page: 1991
  ident: CR92
  article-title: Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy
  publication-title: Mol Biol Cell
– volume: 111
  start-page: 7741
  year: 2014
  end-page: 7746
  ident: CR124
  article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
  publication-title: Proc Natl Acad Sci USA
– volume: 59
  start-page: 59
  year: 1999
  end-page: 65
  ident: CR3
  article-title: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21
  publication-title: Genomics
– volume: 133
  start-page: 343
  year: 2007
  end-page: 349
  ident: CR28
  article-title: A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer
  publication-title: J Cancer Res Clin Oncol
– volume: 27
  start-page: 2312
  year: 2008
  end-page: 2319
  ident: CR63
  article-title: FOXOs, cancer and regulation of apoptosis
  publication-title: Oncogene
– volume: 18
  start-page: 370
  year: 2012
  end-page: 379
  ident: CR125
  article-title: Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
  publication-title: Clin Cancer Res
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  ident: CR214
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 126
  start-page: 121
  year: 2006
  end-page: 134
  ident: CR38
  article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis
  publication-title: Cell
– volume: 15
  start-page: 403
  year: 2014
  end-page: 411
  ident: CR202
  article-title: Self and nonself: how autophagy targets mitochondria and bacteria
  publication-title: Cell Host Microbe
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  ident: CR268
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev
– volume: 116
  start-page: 2324
  year: 2010
  end-page: 2331
  ident: CR103
  article-title: Autophagy contributes to therapy‐induced degradation of the PML/RARA oncoprotein
  publication-title: Blood
– volume: 30
  start-page: 678
  year: 2008
  end-page: 688
  ident: CR259
  article-title: JNK1‐mediated phosphorylation of Bcl‐2 regulates starvation‐induced autophagy
  publication-title: Mol Cell
– ident: CR21
– volume: 3
  start-page: 894
  year: 2013
  end-page: 907
  ident: CR95
  article-title: Autophagy opposes p53‐mediated tumor barrier to facilitate tumorigenesis in a model of PALB2‐associated hereditary breast cancer
  publication-title: Cancer Discov
– volume: 431
  start-page: 525
  year: 2004
  end-page: 526
  ident: CR234
  article-title: Lung cancer: intragenic ERBB2 kinase mutations in tumours
  publication-title: Nature
– volume: 66
  start-page: 8200
  year: 2006
  end-page: 8209
  ident: CR228
  article-title: Targeting mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase in the mutant (V600E) B‐Raf signaling cascade effectively inhibits melanoma lung metastases
  publication-title: Cancer Res
– volume: 122
  start-page: 4621
  year: 2012
  end-page: 4634
  ident: CR86
  article-title: ER stress‐mediated autophagy promotes Myc‐dependent transformation and tumor growth
  publication-title: J Clin Invest
– volume: 116
  start-page: 4806
  year: 2010
  end-page: 4814
  ident: CR135
  article-title: FIP200 is required for the cell‐autonomous maintenance of fetal hematopoietic stem cells
  publication-title: Blood
– volume: 11
  start-page: 709
  year: 2012
  end-page: 730
  ident: CR217
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases
  publication-title: Nat Rev Drug Discov
– volume: 79
  start-page: 7824
  year: 1982
  end-page: 7827
  ident: CR40
  article-title: Human c‐myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells
  publication-title: Proc Natl Acad Sci USA
– volume: 231
  start-page: 354
  year: 2013
  end-page: 366
  ident: CR83
  article-title: Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state
  publication-title: J Pathol
– volume: 17
  start-page: 73
  year: 2013
  end-page: 84
  ident: CR9
  article-title: Sestrins activate Nrf2 by promoting p62‐dependent autophagic degradation of Keap1 and prevent oxidative liver damage
  publication-title: Cell Metab
– volume: 73
  start-page: 4311
  year: 2013
  end-page: 4322
  ident: CR12
  article-title: Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability
  publication-title: Cancer Res
– volume: 4
  start-page: 648
  year: 2002
  end-page: 657
  ident: CR99
  article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
  publication-title: Nat Cell Biol
– volume: 1
  start-page: e10
  year: 2010
  ident: CR177
  article-title: Caloric restriction and resveratrol promote longevity through the Sirtuin‐1‐dependent induction of autophagy
  publication-title: Cell Death Dis
– volume: 9
  start-page: 545
  year: 1994
  end-page: 551
  ident: CR216
  article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells
  publication-title: Oncogene
– volume: 43
  start-page: 67
  year: 2009
  end-page: 93
  ident: CR87
  article-title: Regulation mechanisms and signaling pathways of autophagy
  publication-title: Annu Rev Genet
– volume: 53
  start-page: 167
  year: 2014
  end-page: 178
  ident: CR211
  article-title: Interactions between autophagy receptors and ubiquitin‐like proteins form the molecular basis for selective autophagy
  publication-title: Mol Cell
– volume: 106
  start-page: 20842
  year: 2009
  end-page: 20846
  ident: CR219
  article-title: Atg9a controls dsDNA‐driven dynamic translocation of STING and the innate immune response
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 121
  year: 2014
  end-page: 135
  ident: CR246
  article-title: Metabolic reprogramming of stromal fibroblasts through p62‐mTORC1 signaling promotes inflammation and tumorigenesis
  publication-title: Cancer Cell
– volume: 211
  start-page: 669
  year: 2014
  end-page: 683
  ident: CR15
  article-title: BRAF‐V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups
  publication-title: J Exp Med
– volume: 10
  start-page: e1004626
  year: 2014
  ident: CR168
  article-title: Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG‐VPS34 complex
  publication-title: PLoS Genet
– volume: 13
  start-page: 1016
  year: 2011
  end-page: 1023
  ident: CR170
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat Cell Biol
– volume: 304
  start-page: 596
  year: 2004
  end-page: 600
  ident: CR19
  article-title: Regeneration of peroxiredoxins by p53‐regulated sestrins, homologs of bacterial AhpD
  publication-title: Science
– volume: 31
  start-page: 285
  year: 2002
  end-page: 288
  ident: CR24
  article-title: Truncating mutations of RB1CC1 in human breast cancer
  publication-title: Nat Genet
– volume: 154
  start-page: 1269
  year: 2013
  end-page: 1284
  ident: CR260
  article-title: EGFR‐mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
  publication-title: Cell
– volume: 35
  start-page: 756
  year: 2014
  end-page: 765
  ident: CR127
  article-title: Analysis of TP53 mutation status in human cancer cell lines: a reassessment
  publication-title: Hum Mutat
– volume: 19
  start-page: 1741
  year: 2009
  end-page: 1746
  ident: CR46
  article-title: Autophagy, not apoptosis, is essential for midgut cell death in Drosophila
  publication-title: Curr Biol
– volume: 109
  start-page: 8253
  year: 2012
  end-page: 8258
  ident: CR166
  article-title: Autophagy inhibitor Lys05 has single‐agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
  publication-title: Proc Natl Acad Sci USA
– volume: 284
  start-page: 2803
  year: 2009
  end-page: 2810
  ident: CR198
  article-title: ARF induces autophagy by virtue of interaction with Bcl‐xl
  publication-title: J Biol Chem
– volume: 276
  start-page: 35243
  year: 2001
  end-page: 35246
  ident: CR6
  article-title: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3‐kinase/protein kinase B pathway
  publication-title: J Biol Chem
– volume: 26
  start-page: 2527
  year: 2007
  end-page: 2539
  ident: CR152
  article-title: Functional and physical interaction between Bcl‐X(L) and a BH3‐like domain in Beclin‐1
  publication-title: EMBO J
– volume: 208
  start-page: 455
  year: 2011
  end-page: 467
  ident: CR179
  article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
  publication-title: J Exp Med
– volume: 11
  start-page: 55
  year: 2010
  end-page: 62
  ident: CR245
  article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
  publication-title: Nat Immunol
– volume: 102
  start-page: 1649
  year: 2005
  end-page: 1654
  ident: CR93
  article-title: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin‐mediated degradation
  publication-title: Proc Natl Acad Sci USA
– volume: 233
  start-page: 212
  year: 1986
  end-page: 214
  ident: CR14
  article-title: The chronic myelogenous leukemia‐specific P210 protein is the product of the bcr/abl hybrid gene
  publication-title: Science
– volume: 243
  start-page: 934
  year: 1989
  end-page: 937
  ident: CR53
  article-title: The human papilloma virus‐16 E7 oncoprotein is able to bind to the retinoblastoma gene product
  publication-title: Science
– volume: 36
  start-page: 947
  year: 2012
  end-page: 958
  ident: CR194
  article-title: Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF‐kappaB
  publication-title: Immunity
– volume: 10
  start-page: 1369
  year: 2014
  end-page: 1379
  ident: CR204
  article-title: Phase I trial of hydroxychloroquine with dose‐intense temozolomide in patients with advanced solid tumors and melanoma
  publication-title: Autophagy
– volume: 9
  start-page: 1142
  year: 2007
  end-page: 1151
  ident: CR238
  article-title: Bif‐1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
  publication-title: Nat Cell Biol
– volume: 146
  start-page: 1
  year: 2005
  end-page: 1466
  ident: CR159
  article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53
  publication-title: Oncogene 24:
– volume: 131
  start-page: 1149
  year: 2007
  end-page: 1163
  ident: CR117
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice
  publication-title: Cell
– volume: 155
  start-page: 1216
  year: 2013
  end-page: 1219
  ident: CR80
  article-title: Autophagy‐mediated tumor promotion
  publication-title: Cell
– volume: 5
  start-page: 5637
  year: 2014
  ident: CR57
  article-title: Beclin 1 restrains tumorigenesis through Mcl‐1 destabilization in an autophagy‐independent reciprocal manner
  publication-title: Nat Commun
– volume: 21
  start-page: 187
  year: 1999
  end-page: 190
  ident: CR102
  article-title: Activating SRC mutation in a subset of advanced human colon cancers
  publication-title: Nat Genet
– volume: 10
  start-page: 1391
  year: 2014
  end-page: 1402
  ident: CR203
  article-title: Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
  publication-title: Autophagy
– volume: 123
  start-page: 5212
  year: 2013
  end-page: 5230
  ident: CR121
  article-title: Histone deacetylase 6‐mediated selective autophagy regulates COPD‐associated cilia dysfunction
  publication-title: J Clin Invest
– volume: 14
  start-page: 759
  year: 2013
  end-page: 774
  ident: CR122
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat Rev Mol Cell Biol
– volume: 17
  start-page: 631
  year: 2005
  end-page: 636
  ident: CR176
  article-title: Transcription‐independent pro‐apoptotic functions of p53
  publication-title: Curr Opin Cell Biol
– volume: 10
  start-page: 1380
  year: 2014
  end-page: 1390
  ident: CR251
  article-title: Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma
  publication-title: Autophagy
– volume: 4
  start-page: 2130
  year: 2013
  ident: CR160
  article-title: ATG5 is induced by DNA‐damaging agents and promotes mitotic catastrophe independent of autophagy
  publication-title: Nat Commun
– volume: 10
  start-page: 285
  year: 2009
  end-page: 292
  ident: CR274
  article-title: DAP‐kinase‐mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl‐XL and induction of autophagy
  publication-title: EMBO Rep
– volume: 235
  start-page: 177
  year: 1987
  end-page: 182
  ident: CR233
  article-title: Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene
  publication-title: Science
– volume: 74
  start-page: 2579
  year: 2014
  end-page: 2590
  ident: CR165
  article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious
  publication-title: Cancer Res
– volume: 13
  start-page: 7
  year: 2012
  end-page: 12
  ident: CR31
  article-title: Canonical and non‐canonical autophagy: variations on a common theme of self‐eating?
  publication-title: Nat Rev Mol Cell Biol
– volume: 39
  start-page: 211
  year: 2013
  end-page: 227
  ident: CR146
  article-title: Autophagy and cellular immune responses
  publication-title: Immunity
– volume: 23
  start-page: 310
  year: 2013
  end-page: 322
  ident: CR197
  article-title: Regulation of autophagy by stress‐responsive transcription factors
  publication-title: Semin Cancer Biol
– volume: 10
  start-page: 1359
  year: 2014
  end-page: 1368
  ident: CR213
  article-title: A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme
  publication-title: Autophagy
– volume: 336
  start-page: 225
  year: 2012
  end-page: 228
  ident: CR126
  article-title: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
  publication-title: Science
– volume: 14
  start-page: 177
  year: 2012
  end-page: 185
  ident: CR137
  article-title: Mitochondrial outer‐membrane protein FUNDC1 mediates hypoxia‐induced mitophagy in mammalian cells
  publication-title: Nat Cell Biol
– volume: 282
  start-page: 18573
  year: 2007
  end-page: 18583
  ident: CR157
  article-title: Tissue‐specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin‐3
  publication-title: J Biol Chem
– volume: 116
  start-page: 103
  year: 1983
  end-page: 110
  ident: CR215
  article-title: Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy
  publication-title: J Cell Physiol
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: CR82
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 3
  start-page: 1
  year: 2001
  end-page: 7
  ident: CR206
  article-title: DAP kinase activates a p19ARF/p53‐mediated apoptotic checkpoint to suppress oncogenic transformation
  publication-title: Nat Cell Biol
– volume: 21
  start-page: 2861
  year: 2007
  end-page: 2873
  ident: CR173
  article-title: Autophagy: process and function
  publication-title: Genes Dev
– volume: 119
  start-page: 1359
  year: 2009
  end-page: 1372
  ident: CR220
  article-title: Cannabinoid action induces autophagy‐mediated cell death through stimulation of ER stress in human glioma cells
  publication-title: J Clin Invest
– volume: 16
  start-page: 87
  year: 2009
  end-page: 93
  ident: CR153
  article-title: Control of autophagy by oncogenes and tumor suppressor genes
  publication-title: Cell Death Differ
– volume: 5
  start-page: 202ra123
  year: 2013
  ident: CR136
  article-title: Down‐regulation of autophagy‐related protein 5 (ATG5) contributes to the pathogenesis of early‐stage cutaneous melanoma
  publication-title: Sci Transl Med
– volume: 21
  start-page: 99
  year: 1999
  end-page: 102
  ident: CR231
  article-title: PIK3CA is implicated as an oncogene in ovarian cancer
  publication-title: Nat Genet
– volume: 22
  start-page: 432
  year: 2012
  end-page: 435
  ident: CR221
  article-title: Autophagy is required for self‐renewal and differentiation of adult human stem cells
  publication-title: Cell Res
– volume: 121
  start-page: 179
  year: 2005
  end-page: 193
  ident: CR144
  article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
  publication-title: Cell
– volume: 108
  start-page: 12455
  year: 2011
  end-page: 12460
  ident: CR191
  article-title: Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)‐dependent
  publication-title: Proc Natl Acad Sci USA
– volume: 441
  start-page: 424
  year: 2006
  end-page: 430
  ident: CR230
  article-title: Ras, PI(3)K and mTOR signalling controls tumour cell growth
  publication-title: Nature
– volume: 306
  start-page: 1037
  year: 2004
  end-page: 1040
  ident: CR181
  article-title: Autophagy defends cells against invading group A Streptococcus
  publication-title: Science
– volume: 23
  start-page: 798
  year: 2009
  end-page: 803
  ident: CR271
  article-title: Autophagy mediates the mitotic senescence transition
  publication-title: Genes Dev
– volume: 80
  start-page: 1160
  year: 2010
  end-page: 1169
  ident: CR36
  article-title: BNIP3 protects HepG2 cells against etoposide‐induced cell death under hypoxia by an autophagy‐independent pathway
  publication-title: Biochem Pharmacol
– volume: 137
  start-page: 1062
  year: 2009
  end-page: 1075
  ident: CR162
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
– volume: 27
  start-page: 6229
  year: 2007
  end-page: 6242
  ident: CR244
  article-title: BNIP3 is an RB/E2F target gene required for hypoxia‐induced autophagy
  publication-title: Mol Cell Biol
– volume: 244
  start-page: 1085
  year: 1989
  end-page: 1087
  ident: CR61
  article-title: Physical mapping of a translocation breakpoint in neurofibromatosis
  publication-title: Science
– volume: 8
  start-page: 275
  year: 2007
  end-page: 283
  ident: CR252
  article-title: p53 in health and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 2011
  start-page: 865819
  year: 2011
  ident: CR225
  article-title: Regulation of SRC family kinases in human cancers
  publication-title: J Signal Transduct
– volume: 333
  start-page: 1109
  year: 2011
  end-page: 1112
  ident: CR74
  article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging
  publication-title: Science
– volume: 30
  start-page: 429
  year: 2007
  end-page: 436
  ident: CR172
  article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours
  publication-title: Int J Oncol
– volume: 285
  start-page: 22576
  year: 2010
  end-page: 22591
  ident: CR104
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element‐driven gene transcription
  publication-title: J Biol Chem
– volume: 25
  start-page: 795
  year: 2011
  end-page: 800
  ident: CR240
  article-title: Autophagy‐deficient mice develop multiple liver tumors
  publication-title: Genes Dev
– volume: 15
  start-page: 713
  year: 2013
  end-page: 720
  ident: CR18
  article-title: Emerging regulation and functions of autophagy
  publication-title: Nat Cell Biol
– volume: 54
  start-page: 2852
  year: 1994
  end-page: 2855
  ident: CR232
  article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas
  publication-title: Cancer Res
– volume: 149
  start-page: 656
  year: 2012
  end-page: 670
  ident: CR270
  article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
  publication-title: Cell
– volume: 19
  start-page: 2739
  year: 2000
  end-page: 2744
  ident: CR147
  article-title: PIK3CA as an oncogene in cervical cancer
  publication-title: Oncogene
– volume: 3
  start-page: 1272
  year: 2013
  end-page: 1285
  ident: CR236
  article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E‐driven lung tumors
  publication-title: Cancer Discov
– volume: 42
  start-page: 23
  year: 2011
  end-page: 35
  ident: CR56
  article-title: Oncogenic Ras‐induced expression of Noxa and Beclin‐1 promotes autophagic cell death and limits clonogenic survival
  publication-title: Mol Cell
– volume: 4
  start-page: 773
  year: 2014
  end-page: 780
  ident: CR128
  article-title: Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors
  publication-title: Cancer Discov
– volume: 4
  start-page: 905
  year: 2014
  end-page: 913
  ident: CR267
  article-title: Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
  publication-title: Cancer Discov
– volume: 113
  start-page: 2665
  year: 2008
  end-page: 2670
  ident: CR34
  article-title: Down‐regulation of Bax‐interacting factor‐1 in colorectal adenocarcinoma
  publication-title: Cancer
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  ident: CR140
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 233
  start-page: 103
  year: 2014
  end-page: 112
  ident: CR276
  article-title: Xenophagy in Helicobacter pylori‐ and Epstein‐Barr virus‐induced gastric cancer
  publication-title: J Pathol
– volume: 22
  start-page: 1001
  year: 2012
  end-page: 1016
  ident: CR279
  article-title: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy
  publication-title: Dev Cell
– volume: 32
  start-page: 4932
  year: 2013
  end-page: 4940
  ident: CR8
  article-title: Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
  publication-title: Oncogene
– volume: 181
  start-page: 497
  year: 2008
  end-page: 510
  ident: CR84
  article-title: FIP200, a ULK‐interacting protein, is required for autophagosome formation in mammalian cells
  publication-title: J Cell Biol
– volume: 147
  start-page: 728
  year: 2011
  end-page: 741
  ident: CR175
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
– volume: 149
  start-page: 22
  year: 2012
  end-page: 35
  ident: CR41
  article-title: MYC on the path to cancer
  publication-title: Cell
– volume: 79
  start-page: 4019
  year: 2011
  end-page: 4028
  ident: CR269
  article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase‐bearing organelles
  publication-title: Infect Immun
– volume: 501
  start-page: 421
  year: 2013
  end-page: 425
  ident: CR50
  article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy
  publication-title: Nature
– volume: 149
  start-page: 274
  year: 2012
  end-page: 293
  ident: CR123
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
– volume: 37
  start-page: 230
  year: 2012
  end-page: 236
  ident: CR180
  article-title: p62: a versatile multitasker takes on cancer
  publication-title: Trends Biochem Sci
– volume: 118
  start-page: 3917
  year: 2008
  end-page: 3929
  ident: CR142
  article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells
  publication-title: J Clin Invest
– volume: 332
  start-page: 1429
  year: 2011
  end-page: 1433
  ident: CR227
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science
– volume: 23
  start-page: 1283
  year: 2009
  end-page: 1288
  ident: CR262
  article-title: Hypoxia‐selective macroautophagy and cell survival signaled by autocrine PDGFR activity
  publication-title: Genes Dev
– volume: 475
  start-page: 106
  year: 2011
  end-page: 109
  ident: CR45
  article-title: Oncogene‐induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
  publication-title: Nature
– volume: 16
  start-page: 108
  year: 2014
  end-page: 111
  ident: CR226
  article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis
  publication-title: Nature
– volume: 10
  start-page: 90
  year: 2011
  end-page: 103
  ident: CR243
  article-title: A combined preclinical therapy of cannabinoids and temozolomide against glioma
  publication-title: Mol Cancer Ther
– volume: 26
  start-page: 738
  year: 2014
  end-page: 753
  ident: CR81
  article-title: TRPM3 and miR‐204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma
  publication-title: Cancer Cell
– volume: 10
  start-page: 1415
  year: 2014
  end-page: 1425
  ident: CR11
  article-title: Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma
  publication-title: Autophagy
– volume: 1845
  start-page: 91
  year: 2014
  end-page: 103
  ident: CR43
  article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis
  publication-title: Biochim Biophys Acta
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  ident: CR189
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J Biol Chem
– volume: 22
  start-page: 165
  year: 2011
  end-page: 178
  ident: CR139
  article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation
  publication-title: Mol Biol Cell
– volume: 25
  start-page: 1510
  year: 2011
  end-page: 1527
  ident: CR258
  article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
  publication-title: Genes Dev
– volume: 12
  start-page: 1022
  year: 2013
  end-page: 1029
  ident: CR27
  article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?
  publication-title: Cell Cycle
– volume: 437
  start-page: 12
  year: 2013
  end-page: 19
  ident: CR77
  article-title: Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes
  publication-title: Virology
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: CR174
  article-title: Autophagy fights disease through cellular self‐digestion
  publication-title: Nature
– volume: 402
  start-page: 672
  year: 1999
  end-page: 676
  ident: CR130
  article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1
  publication-title: Nature
– volume: 134
  start-page: 451
  year: 2008
  end-page: 460
  ident: CR20
  article-title: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
  publication-title: Cell
– volume: 13
  start-page: 179
  year: 2006
  end-page: 188
  ident: CR223
  article-title: Targeting XIAP for the treatment of malignancy
  publication-title: Cell Death Differ
– volume: 9
  start-page: 2056
  year: 2013
  end-page: 2068
  ident: CR195
  article-title: Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
  publication-title: Autophagy
– volume: 122
  start-page: 927
  year: 2005
  end-page: 939
  ident: CR193
  article-title: Bcl‐2 antiapoptotic proteins inhibit Beclin 1‐dependent autophagy
  publication-title: Cell
– volume: 27
  start-page: 1447
  year: 2013
  end-page: 1461
  ident: CR79
  article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis
  publication-title: Genes Dev
– ident: CR35
– volume: 40
  start-page: 280
  year: 2010
  end-page: 293
  ident: CR118
  article-title: Autophagy and the integrated stress response
  publication-title: Mol Cell
– volume: 23
  start-page: 3898
  year: 2004
  end-page: 3904
  ident: CR64
  article-title: Ras is involved in the negative control of autophagy through the class I PI3‐kinase
  publication-title: Oncogene
– volume: 69
  start-page: 7803
  year: 2009
  end-page: 7810
  ident: CR10
  article-title: MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E‐binding protein 1‐mediated inhibition of autophagy
  publication-title: Cancer Res
– volume: 22
  start-page: 58
  year: 2015
  end-page: 73
  ident: CR301
  article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
  publication-title: Cell Death Differ
– volume: 205
  start-page: 435
  year: 2014
  end-page: 445
  ident: CR186
  article-title: Organellophagy: eliminating cellular building blocks via selective autophagy
  publication-title: J Cell Biol
– volume: 12
  start-page: 222
  year: 2011
  end-page: 230
  ident: CR182
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat Immunol
– volume: 22
  start-page: 181
  year: 2010
  end-page: 185
  ident: CR154
  article-title: Autophagy regulation by p53
  publication-title: Curr Opin Cell Biol
– volume: 16
  start-page: 532
  year: 2013
  end-page: 542
  ident: CR253
  article-title: FIP200 is required for maintenance and differentiation of postnatal neural stem cells
  publication-title: Nat Neurosci
– volume: 5
  start-page: 5276
  year: 2014
  ident: CR78
  article-title: Autophagy supports genomic stability by degrading retrotransposon RNA
  publication-title: Nat Commun
– volume: 19
  start-page: 87
  year: 2012
  end-page: 95
  ident: CR48
  article-title: Cell death by autophagy: facts and apparent artefacts
  publication-title: Cell Death Differ
– volume: 22
  start-page: 2172
  year: 2008
  end-page: 2177
  ident: CR183
  article-title: Aberrant Rheb‐mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events
  publication-title: Genes Dev
– volume: 448
  start-page: 439
  year: 2007
  end-page: 444
  ident: CR23
  article-title: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
  publication-title: Nature
– volume: 112
  start-page: 1489
  year: 2008
  end-page: 1502
  ident: CR59
  article-title: Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down‐regulated in human ovarian cancers by loss of heterozygosity and promoter methylation
  publication-title: Cancer
– volume: 13
  start-page: 343
  year: 2008
  end-page: 354
  ident: CR52
  article-title: The signaling adaptor p62 is an important NF‐kappaB mediator in tumorigenesis
  publication-title: Cancer Cell
– volume: 51
  start-page: 618
  year: 2013
  end-page: 631
  ident: CR97
  article-title: Phosphorylation of p62 activates the Keap1‐Nrf2 pathway during selective autophagy
  publication-title: Mol Cell
– volume: 16
  start-page: 333
  year: 1997
  end-page: 334
  ident: CR158
  article-title: Germline mutations in PTEN are present in Bannayan‐Zonana syndrome
  publication-title: Nat Genet
– volume: 10
  start-page: 1712
  year: 2014
  end-page: 1725
  ident: CR265
  article-title: The BCL2L1 and PGAM5 axis defines hypoxia‐induced receptor‐mediated mitophagy
  publication-title: Autophagy
– volume: 63
  start-page: 835
  year: 1990
  end-page: 841
  ident: CR266
  article-title: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae
  publication-title: Cell
– volume: 334
  start-page: 1573
  year: 2011
  end-page: 1577
  ident: CR169
  article-title: Autophagy‐dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
– volume: 11
  start-page: 4436
  year: 2012
  end-page: 4446
  ident: CR210
  article-title: Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy
  publication-title: Cell Cycle
– volume: 21
  start-page: 1367
  year: 2007
  end-page: 1381
  ident: CR161
  article-title: Autophagy suppresses tumor progression by limiting chromosomal instability
  publication-title: Genes Dev
– volume: 338
  start-page: 956
  year: 2012
  end-page: 959
  ident: CR255
  article-title: Akt‐mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
  publication-title: Science
– volume: 109
  start-page: 13325
  year: 2012
  end-page: 13330
  ident: CR256
  article-title: Autophagic activity dictates the cellular response to oncogenic RAS
  publication-title: Proc Natl Acad Sci USA
– volume: 124
  start-page: 1119
  year: 2014
  end-page: 1126
  ident: CR89
  article-title: Association of both Langerhans cell histiocytosis and Erdheim‐Chester disease linked to the BRAFV600E mutation
  publication-title: Blood
– volume: 1310
  start-page: 7
  year: 2014
  end-page: 31
  ident: CR76
  article-title: The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment
  publication-title: Ann N Y Acad Sci
– volume: 115
  start-page: 1344
  year: 2007
  end-page: 1349
  ident: CR2
  article-title: Expression of beclin‐1, an autophagy‐related protein, in gastric and colorectal cancers
  publication-title: APMIS
– volume: 21
  start-page: 532
  year: 2012
  end-page: 546
  ident: CR171
  article-title: VHL‐regulated MiR‐204 suppresses tumor growth through inhibition of LC3B‐mediated autophagy in renal clear cell carcinoma
  publication-title: Cancer Cell
– volume: 10
  start-page: 2036
  year: 2014
  end-page: 2052
  ident: CR30
  article-title: Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity
  publication-title: Autophagy
– volume: 5
  start-page: 1855
  year: 1999
  end-page: 1861
  ident: CR58
  article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia
  publication-title: Clin Cancer Res
– volume: 399
  start-page: 271
  year: 1999
  end-page: 275
  ident: CR163
  article-title: The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis
  publication-title: Nature
– volume: 100
  start-page: 15077
  year: 2003
  end-page: 15082
  ident: CR273
  article-title: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 1621
  year: 2007
  end-page: 1635
  ident: CR112
  article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
  publication-title: Genes Dev
– volume: 120
  start-page: 3555
  year: 2012
  end-page: 3562
  ident: CR73
  article-title: Autophagic degradation of the BCR‐ABL oncoprotein and generation of antileukemic responses by arsenic trioxide
  publication-title: Blood
– volume: 25
  start-page: 1025
  year: 2005
  end-page: 1040
  ident: CR17
  article-title: Inhibition of macroautophagy triggers apoptosis
  publication-title: Mol Cell Biol
– volume: 21
  start-page: 92
  year: 2014
  end-page: 99
  ident: CR116
  article-title: Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling
  publication-title: Cell Death Differ
– volume: 254
  start-page: 1371
  year: 1991
  end-page: 1374
  ident: CR70
  article-title: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia
  publication-title: Science
– volume: 8
  start-page: 528
  year: 2011
  end-page: 539
  ident: CR105
  article-title: Autophagy as a target for anticancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 32
  start-page: 2204
  year: 2013
  end-page: 2216
  ident: CR94
  article-title: XIAP inhibits autophagy via XIAP‐Mdm2‐p53 signalling
  publication-title: EMBO J
– volume: 129
  start-page: 1261
  year: 2007
  end-page: 1274
  ident: CR156
  article-title: AKT/PKB signaling: navigating downstream
  publication-title: Cell
– volume: 68
  start-page: 352
  year: 2008
  end-page: 357
  ident: CR1
  article-title: p53‐Dependent and p53‐independent activation of autophagy by ARF
  publication-title: Cancer Res
– volume: 266
  start-page: 120
  year: 1994
  end-page: 122
  ident: CR65
  article-title: BRCA1 mutations in primary breast and ovarian carcinomas
  publication-title: Science
– volume: 12
  start-page: 622
  year: 2012
  ident: CR134
  article-title: Autophagy‐independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors
  publication-title: BMC Cancer
– volume: 11
  start-page: 260
  year: 2014
  end-page: 271
  ident: CR167
  article-title: Li‐Fraumeni syndrome: cancer risk assessment and clinical management
  publication-title: Nat Rev Clin Oncol
– volume: 121
  start-page: 1622
  year: 2013
  end-page: 1632
  ident: CR239
  article-title: Bif‐1 haploinsufficiency promotes chromosomal instability and accelerates Myc‐driven lymphomagenesis via suppression of mitophagy
  publication-title: Blood
– volume: 145
  start-page: 1347
  year: 2013
  end-page: 1357
  ident: CR33
  article-title: Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
  publication-title: Gastroenterology
– volume: 1843
  start-page: 137
  year: 2014
  end-page: 149
  ident: CR90
  article-title: The role of ubiquitin modification in the regulation of p53
  publication-title: Biochim Biophys Acta
– volume: 13
  start-page: 727
  year: 2014
  end-page: 740
  ident: CR148
  article-title: Caloric restriction mimetics: towards a molecular definition
  publication-title: Nat Rev Drug Discov
– volume: 22
  start-page: 463
  year: 2006
  end-page: 475
  ident: CR207
  article-title: A short mitochondrial form of p19ARF induces autophagy and caspase‐independent cell death
  publication-title: Mol Cell
– volume: 110
  start-page: 20364
  year: 2013
  end-page: 20371
  ident: CR138
  article-title: Autosis is a Na , K ‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia
  publication-title: Proc Natl Acad Sci USA
– volume: 124
  start-page: 1406
  year: 2014
  end-page: 1417
  ident: CR145
  article-title: Targeting ER stress‐induced autophagy overcomes BRAF inhibitor resistance in melanoma
  publication-title: J Clin Invest
– volume: 339
  start-page: 286
  year: 2013
  end-page: 291
  ident: CR37
  article-title: Neutralizing tumor‐promoting chronic inflammation: a magic bullet?
  publication-title: Science
– volume: 31
  start-page: 51
  year: 2013
  end-page: 72
  ident: CR119
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu Rev Immunol
– volume: 22
  start-page: 3927
  year: 2003
  end-page: 3936
  article-title: Mitochondrial membrane permeabilization is a critical step of lysosome‐initiated apoptosis induced by hydroxychloroquine
  publication-title: Oncogene
– volume: 254
  start-page: 1371
  year: 1991
  end-page: 1374
  article-title: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia
  publication-title: Science
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 10
  start-page: e1004626
  year: 2014
  article-title: Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG‐VPS34 complex
  publication-title: PLoS Genet
– volume: 25
  start-page: 37
  year: 2015
  end-page: 45
  article-title: Cellular and metabolic functions for autophagy in cancer cells
  publication-title: Trends Cell Biol
– volume: 10
  start-page: 1712
  year: 2014
  end-page: 1725
  article-title: The BCL2L1 and PGAM5 axis defines hypoxia‐induced receptor‐mediated mitophagy
  publication-title: Autophagy
– volume: 30
  start-page: 429
  year: 2007
  end-page: 436
  article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours
  publication-title: Int J Oncol
– volume: 104
  start-page: 14050
  year: 2007
  end-page: 14055
  article-title: The Atg5 Atg12 conjugate associates with innate antiviral immune responses
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev
– volume: 277
  start-page: 805
  year: 1997
  end-page: 808
  article-title: Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34
  publication-title: Science
– volume: 448
  start-page: 439
  year: 2007
  end-page: 444
  article-title: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
  publication-title: Nature
– volume: 10
  start-page: 1415
  year: 2014
  end-page: 1425
  article-title: Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma
  publication-title: Autophagy
– volume: 116
  start-page: 2324
  year: 2010
  end-page: 2331
  article-title: Autophagy contributes to therapy‐induced degradation of the PML/RARA oncoprotein
  publication-title: Blood
– volume: 210
  start-page: 2057
  year: 2013
  end-page: 2069
  article-title: p53‐dependent chemokine production by senescent tumor cells supports NKG2D‐dependent tumor elimination by natural killer cells
  publication-title: J Exp Med
– volume: 155
  start-page: 1216
  year: 2013b
  end-page: 1219
  article-title: Autophagy‐mediated tumor promotion
  publication-title: Cell
– volume: 1
  start-page: e10
  year: 2010
  article-title: Caloric restriction and resveratrol promote longevity through the Sirtuin‐1‐dependent induction of autophagy
  publication-title: Cell Death Dis
– volume: 13
  start-page: 343
  year: 2008
  end-page: 354
  article-title: The signaling adaptor p62 is an important NF‐kappaB mediator in tumorigenesis
  publication-title: Cancer Cell
– volume: 123
  start-page: 5212
  year: 2013
  end-page: 5230
  article-title: Histone deacetylase 6‐mediated selective autophagy regulates COPD‐associated cilia dysfunction
  publication-title: J Clin Invest
– volume: 6
  start-page: 91
  year: 2004
  end-page: 99
  article-title: The LKB1 tumor suppressor negatively regulates mTOR signaling
  publication-title: Cancer Cell
– volume: 115
  start-page: 1344
  year: 2007
  end-page: 1349
  article-title: Expression of beclin‐1, an autophagy‐related protein, in gastric and colorectal cancers
  publication-title: APMIS
– volume: 3
  start-page: 374
  year: 2007a
  end-page: 376
  article-title: BH3‐only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl‐2/Bcl‐X(L)
  publication-title: Autophagy
– volume: 250
  start-page: 1233
  year: 1990
  end-page: 1238
  article-title: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms
  publication-title: Science
– volume: 284
  start-page: 2803
  year: 2009
  end-page: 2810
  article-title: ARF induces autophagy by virtue of interaction with Bcl‐xl
  publication-title: J Biol Chem
– volume: 51
  start-page: 219
  year: 2014
  end-page: 227
  article-title: Targeting BCL2 for the treatment of lymphoid malignancies
  publication-title: Semin Hematol
– volume: 15
  start-page: 403
  year: 2014
  end-page: 411
  article-title: Self and nonself: how autophagy targets mitochondria and bacteria
  publication-title: Cell Host Microbe
– volume: 11
  start-page: 709
  year: 2012
  end-page: 730
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases
  publication-title: Nat Rev Drug Discov
– volume: 266
  start-page: 120
  year: 1994
  end-page: 122
  article-title: BRCA1 mutations in primary breast and ovarian carcinomas
  publication-title: Science
– volume: 10
  start-page: 1391
  year: 2014a
  end-page: 1402
  article-title: Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
  publication-title: Autophagy
– volume: 15
  start-page: 406
  year: 2013
  end-page: 416
  article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self‐association and function through AMBRA1 and TRAF6
  publication-title: Nat Cell Biol
– volume: 26
  start-page: 2527
  year: 2007b
  end-page: 2539
  article-title: Functional and physical interaction between Bcl‐X(L) and a BH3‐like domain in Beclin‐1
  publication-title: EMBO J
– volume: 8
  start-page: 275
  year: 2007
  end-page: 283
  article-title: p53 in health and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 11
  start-page: 260
  year: 2014
  end-page: 271
  article-title: Li‐Fraumeni syndrome: cancer risk assessment and clinical management
  publication-title: Nat Rev Clin Oncol
– volume: 129
  start-page: 1261
  year: 2007
  end-page: 1274
  article-title: AKT/PKB signaling: navigating downstream
  publication-title: Cell
– volume: 27
  start-page: 1447
  year: 2013a
  end-page: 1461
  article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis
  publication-title: Genes Dev
– volume: 332
  start-page: 1429
  year: 2011
  end-page: 1433
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science
– volume: 116
  start-page: 103
  year: 1983
  end-page: 110
  article-title: Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy
  publication-title: J Cell Physiol
– volume: 99
  start-page: 2948
  year: 2002
  end-page: 2953
  article-title: Targeted point mutations of p53 lead to dominant‐negative inhibition of wild‐type p53 function
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 2570
  year: 2009
  end-page: 2581
  article-title: Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
  publication-title: Mol Cell Biol
– volume: 1843
  start-page: 137
  year: 2014
  end-page: 149
  article-title: The role of ubiquitin modification in the regulation of p53
  publication-title: Biochim Biophys Acta
– volume: 391
  start-page: 184
  year: 1998
  end-page: 187
  article-title: A serine/threonine kinase gene defective in Peutz‐Jeghers syndrome
  publication-title: Nature
– volume: 4
  start-page: 2130
  year: 2013
  article-title: ATG5 is induced by DNA‐damaging agents and promotes mitotic catastrophe independent of autophagy
  publication-title: Nat Commun
– volume: 233
  start-page: 212
  year: 1986
  end-page: 214
  article-title: The chronic myelogenous leukemia‐specific P210 protein is the product of the bcr/abl hybrid gene
  publication-title: Science
– volume: 15
  start-page: 1126
  year: 2009
  end-page: 1132
  article-title: Bcl‐2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 1403
  year: 2014
  end-page: 1414
  article-title: Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors
  publication-title: Autophagy
– volume: 106
  start-page: 20842
  year: 2009
  end-page: 20846
  article-title: Atg9a controls dsDNA‐driven dynamic translocation of STING and the innate immune response
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 1492
  year: 2014
  end-page: 1498
  article-title: Reduced expression of autophagy markers correlates with high‐risk human papillomavirus infection in human cervical squamous cell carcinoma
  publication-title: Oncol Lett
– volume: 32
  start-page: 2543
  year: 2013
  end-page: 2554
  article-title: Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3‐kinase in three‐dimensional culture
  publication-title: Oncogene
– volume: 32
  start-page: 2204
  year: 2013
  end-page: 2216
  article-title: XIAP inhibits autophagy via XIAP‐Mdm2‐p53 signalling
  publication-title: EMBO J
– volume: 16
  start-page: 495
  year: 2014
  end-page: 501
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat Cell Biol
– volume: 345
  start-page: 1250256
  year: 2014
  article-title: Cell biology. Metabolic control of cell death
  publication-title: Science
– volume: 8
  start-page: 200
  year: 2012
  end-page: 212
  article-title: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy
  publication-title: Autophagy
– volume: 51
  start-page: 618
  year: 2013
  end-page: 631
  article-title: Phosphorylation of p62 activates the Keap1‐Nrf2 pathway during selective autophagy
  publication-title: Mol Cell
– volume: 21
  start-page: 92
  year: 2014
  end-page: 99
  article-title: Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling
  publication-title: Cell Death Differ
– volume: 5
  start-page: 4706
  year: 2014
  article-title: Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53‐mediated senescence
  publication-title: Nat Commun
– volume: 40
  start-page: 280
  year: 2010
  end-page: 293
  article-title: Autophagy and the integrated stress response
  publication-title: Mol Cell
– volume: 27
  start-page: 4860
  year: 2008
  end-page: 4864
  article-title: E2F1 regulates autophagy and the transcription of autophagy genes
  publication-title: Oncogene
– volume: 13
  start-page: 1016
  year: 2011
  end-page: 1023
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat Cell Biol
– volume: 119
  start-page: 1490
  year: 2012
  end-page: 1500
  article-title: Mitochondrial dysfunction in ataxia‐telangiectasia
  publication-title: Blood
– volume: 10
  start-page: 1380
  year: 2014
  end-page: 1390
  article-title: Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma
  publication-title: Autophagy
– volume: 21
  start-page: 187
  year: 1999
  end-page: 190
  article-title: Activating SRC mutation in a subset of advanced human colon cancers
  publication-title: Nat Genet
– volume: 19
  start-page: 87
  year: 2012b
  end-page: 95
  article-title: Cell death by autophagy: facts and apparent artefacts
  publication-title: Cell Death Differ
– volume: 344
  start-page: 1031
  year: 2001
  end-page: 1037
  article-title: Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia
  publication-title: N Engl J Med
– volume: 124
  start-page: 1406
  year: 2014
  end-page: 1417
  article-title: Targeting ER stress‐induced autophagy overcomes BRAF inhibitor resistance in melanoma
  publication-title: J Clin Invest
– volume: 9
  start-page: 2056
  year: 2013
  end-page: 2068
  article-title: Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
  publication-title: Autophagy
– volume: 22
  start-page: 463
  year: 2006
  end-page: 475
  article-title: A short mitochondrial form of p19ARF induces autophagy and caspase‐independent cell death
  publication-title: Mol Cell
– volume: 13
  start-page: 343
  year: 2012
  end-page: 351
  article-title: Inflammasomes in carcinogenesis and anticancer immune responses
  publication-title: Nat Immunol
– volume: 149
  start-page: 22
  year: 2012
  end-page: 35
  article-title: MYC on the path to cancer
  publication-title: Cell
– volume: 19
  start-page: 637
  year: 2014
  end-page: 638
  article-title: Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma
  publication-title: Oncologist
– volume: 16
  start-page: 87
  year: 2009
  end-page: 93
  article-title: Control of autophagy by oncogenes and tumor suppressor genes
  publication-title: Cell Death Differ
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  article-title: Autophagy fights disease through cellular self‐digestion
  publication-title: Nature
– volume: 15
  start-page: R109
  year: 2013
  article-title: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem‐like phenotype
  publication-title: Breast Cancer Res
– volume: 10
  start-page: 285
  year: 2009
  end-page: 292
  article-title: DAP‐kinase‐mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl‐XL and induction of autophagy
  publication-title: EMBO Rep
– volume: 32
  start-page: 4932
  year: 2013
  end-page: 4940
  article-title: Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
  publication-title: Oncogene
– volume: 23
  start-page: 310
  year: 2013
  end-page: 322
  article-title: Regulation of autophagy by stress‐responsive transcription factors
  publication-title: Semin Cancer Biol
– volume: 110
  start-page: 20364
  year: 2013b
  end-page: 20371
  article-title: Autosis is a Na , K ‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia
  publication-title: Proc Natl Acad Sci USA
– volume: 112
  start-page: 1809
  year: 2003
  end-page: 1820
  article-title: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
  publication-title: J Clin Invest
– volume: 19
  start-page: 431
  year: 2014
  end-page: 444
  article-title: Nucleocytosolic depletion of the energy metabolite acetyl‐coenzyme a stimulates autophagy and prolongs lifespan
  publication-title: Cell Metab
– volume: 2011
  start-page: 865819
  year: 2011
  article-title: Regulation of SRC family kinases in human cancers
  publication-title: J Signal Transduct
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 1845
  start-page: 91
  year: 2014
  end-page: 103
  article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis
  publication-title: Biochim Biophys Acta
– volume: 102
  start-page: 8573
  year: 2005
  end-page: 8578
  article-title: The NF1 tumor suppressor critically regulates TSC2 and mTOR
  publication-title: Proc Natl Acad Sci USA
– volume: 118
  start-page: 3917
  year: 2008
  end-page: 3929
  article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells
  publication-title: J Clin Invest
– volume: 63
  start-page: 835
  year: 1990
  end-page: 841
  article-title: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae
  publication-title: Cell
– volume: 80
  start-page: 125
  year: 2011
  end-page: 156
  article-title: Biogenesis and cargo selectivity of autophagosomes
  publication-title: Annu Rev Biochem
– volume: 74
  start-page: 7418
  year: 2014
  end-page: 7429
  article-title: Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma
  publication-title: Cancer Res
– volume: 231
  start-page: 354
  year: 2013
  end-page: 366
  article-title: Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state
  publication-title: J Pathol
– volume: 154
  start-page: 1269
  year: 2013
  end-page: 1284
  article-title: EGFR‐mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
  publication-title: Cell
– year: 2014
  article-title: Sequestosome 1/p62 facilitates HER2‐induced mammary tumorigenesis through multiple signaling pathways
  publication-title: Oncogene
– volume: 22
  start-page: 58
  year: 2015
  end-page: 73
  article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
  publication-title: Cell Death Differ
– volume: 460
  start-page: 392
  year: 2009
  end-page: 395
  article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
  publication-title: Nature
– volume: 68
  start-page: 352
  year: 2008
  end-page: 357
  article-title: p53‐Dependent and p53‐independent activation of autophagy by ARF
  publication-title: Cancer Res
– volume: 4
  start-page: 905
  year: 2014
  end-page: 913
  article-title: Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
  publication-title: Cancer Discov
– volume: 323
  start-page: 643
  year: 1986
  end-page: 646
  article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma
  publication-title: Nature
– volume: 119
  start-page: 1359
  year: 2009
  end-page: 1372
  article-title: Cannabinoid action induces autophagy‐mediated cell death through stimulation of ER stress in human glioma cells
  publication-title: J Clin Invest
– volume: 20
  start-page: 1981
  year: 2009
  end-page: 1991
  article-title: Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy
  publication-title: Mol Biol Cell
– volume: 14
  start-page: 177
  year: 2012b
  end-page: 185
  article-title: Mitochondrial outer‐membrane protein FUNDC1 mediates hypoxia‐induced mitophagy in mammalian cells
  publication-title: Nat Cell Biol
– volume: 26
  start-page: 190
  year: 2014
  end-page: 206
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
– volume: 9
  start-page: 545
  year: 1994
  end-page: 551
  article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells
  publication-title: Oncogene
– volume: 12
  start-page: 665
  year: 2010
  end-page: 675
  article-title: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
  publication-title: Nat Cell Biol
– volume: 333
  start-page: 1109
  year: 2011
  end-page: 1112
  article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging
  publication-title: Science
– volume: 8
  start-page: 688
  year: 2006
  end-page: 699
  article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG
  publication-title: Nat Cell Biol
– volume: 18
  start-page: 1099
  year: 2011
  end-page: 1111
  article-title: Anti‐tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK‐dependent activation of autophagy
  publication-title: Cell Death Differ
– volume: 244
  start-page: 1085
  year: 1989
  end-page: 1087
  article-title: Physical mapping of a translocation breakpoint in neurofibromatosis
  publication-title: Science
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J Biol Chem
– volume: 17
  start-page: 20
  year: 2015
  end-page: 30
  article-title: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c‐Myc dephosphorylation and degradation
  publication-title: Nat Cell Biol
– volume: 3
  start-page: 1272
  year: 2013
  end-page: 1285
  article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E‐driven lung tumors
  publication-title: Cancer Discov
– volume: 402
  start-page: 672
  year: 1999
  end-page: 676
  article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1
  publication-title: Nature
– volume: 10
  start-page: 1369
  year: 2014b
  end-page: 1379
  article-title: Phase I trial of hydroxychloroquine with dose‐intense temozolomide in patients with advanced solid tumors and melanoma
  publication-title: Autophagy
– volume: 181
  start-page: 497
  year: 2008
  end-page: 510
  article-title: FIP200, a ULK‐interacting protein, is required for autophagosome formation in mammalian cells
  publication-title: J Cell Biol
– volume: 19
  start-page: 2739
  year: 2000
  end-page: 2744
  article-title: PIK3CA as an oncogene in cervical cancer
  publication-title: Oncogene
– volume: 21
  start-page: 2861
  year: 2007
  end-page: 2873
  article-title: Autophagy: process and function
  publication-title: Genes Dev
– volume: 69
  start-page: 7803
  year: 2009
  end-page: 7810
  article-title: MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E‐binding protein 1‐mediated inhibition of autophagy
  publication-title: Cancer Res
– volume: 19
  start-page: 1299
  year: 2012a
  end-page: 1307
  article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila
  publication-title: Cell Death Differ
– volume: 205
  start-page: 435
  year: 2014
  end-page: 445
  article-title: Organellophagy: eliminating cellular building blocks via selective autophagy
  publication-title: J Cell Biol
– volume: 59
  start-page: 1263
  year: 2014
  end-page: 1276
  article-title: Metabolic control of autophagy
  publication-title: Cell
– volume: 4
  start-page: 773
  year: 2014
  end-page: 780
  article-title: Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors
  publication-title: Cancer Discov
– volume: 13
  start-page: 179
  year: 2006
  end-page: 188
  article-title: Targeting XIAP for the treatment of malignancy
  publication-title: Cell Death Differ
– volume: 18
  start-page: 452
  year: 2011
  end-page: 464
  article-title: Downregulation of autophagy by Bcl‐2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis
  publication-title: Cell Death Differ
– volume: 5
  start-page: e1271
  year: 2014
  article-title: Degradation of mutant p53H175 protein by Zn(II) through autophagy
  publication-title: Cell Death Dis
– volume: 147
  start-page: 728
  year: 2011
  end-page: 741
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
– volume: 5
  start-page: 3496
  year: 2014
  article-title: Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
  publication-title: Nat Commun
– volume: 102
  start-page: 1649
  year: 2005
  end-page: 1654
  article-title: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin‐mediated degradation
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 222
  year: 2011
  end-page: 230
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat Immunol
– volume: 66
  start-page: 8200
  year: 2006
  end-page: 8209
  article-title: Targeting mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase in the mutant (V600E) B‐Raf signaling cascade effectively inhibits melanoma lung metastases
  publication-title: Cancer Res
– volume: 21
  start-page: 1367
  year: 2007
  end-page: 1381
  article-title: Autophagy suppresses tumor progression by limiting chromosomal instability
  publication-title: Genes Dev
– volume: 23
  start-page: 1283
  year: 2009
  end-page: 1288
  article-title: Hypoxia‐selective macroautophagy and cell survival signaled by autocrine PDGFR activity
  publication-title: Genes Dev
– volume: 10
  start-page: 2036
  year: 2014
  end-page: 2052
  article-title: Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity
  publication-title: Autophagy
– volume: 27
  start-page: 2312
  year: 2008
  end-page: 2319
  article-title: FOXOs, cancer and regulation of apoptosis
  publication-title: Oncogene
– volume: 74
  start-page: 2579
  year: 2014
  end-page: 2590
  article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious
  publication-title: Cancer Res
– volume: 16
  start-page: 108
  year: 2014
  end-page: 111
  article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis
  publication-title: Nature
– volume: 15
  start-page: 713
  year: 2013
  end-page: 720
  article-title: Emerging regulation and functions of autophagy
  publication-title: Nat Cell Biol
– volume: 124
  start-page: 1119
  year: 2014
  end-page: 1126
  article-title: Association of both Langerhans cell histiocytosis and Erdheim‐Chester disease linked to the BRAFV600E mutation
  publication-title: Blood
– volume: 28
  start-page: 689
  year: 2014
  end-page: 707
  article-title: Stress‐induced cleavage of Myc promotes cancer cell survival
  publication-title: Genes Dev
– volume: 113
  start-page: 2665
  year: 2008
  end-page: 2670
  article-title: Down‐regulation of Bax‐interacting factor‐1 in colorectal adenocarcinoma
  publication-title: Cancer
– volume: 100
  start-page: 15077
  year: 2003
  end-page: 15082
  article-title: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
  publication-title: Proc Natl Acad Sci USA
– volume: 417
  start-page: 949
  year: 2002
  end-page: 954
  article-title: Mutations of the BRAF gene in human cancer
  publication-title: Nature
– volume: 437
  start-page: 12
  year: 2013
  end-page: 19
  article-title: Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes
  publication-title: Virology
– volume: 233
  start-page: 103
  year: 2014
  end-page: 112
  article-title: Xenophagy in Helicobacter pylori‐ and Epstein‐Barr virus‐induced gastric cancer
  publication-title: J Pathol
– volume: 43
  start-page: 67
  year: 2009
  end-page: 93
  article-title: Regulation mechanisms and signaling pathways of autophagy
  publication-title: Annu Rev Genet
– volume: 13
  start-page: 7
  year: 2012
  end-page: 12
  article-title: Canonical and non‐canonical autophagy: variations on a common theme of self‐eating?
  publication-title: Nat Rev Mol Cell Biol
– volume: 475
  start-page: 106
  year: 2011
  end-page: 109
  article-title: Oncogene‐induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
  publication-title: Nature
– volume: 243
  start-page: 934
  year: 1989
  end-page: 937
  article-title: The human papilloma virus‐16 E7 oncoprotein is able to bind to the retinoblastoma gene product
  publication-title: Science
– volume: 14
  start-page: 2251
  year: 2011
  end-page: 2269
  article-title: Oncosuppressive functions of autophagy
  publication-title: Antioxid Redox Signal
– volume: 306
  start-page: 1037
  year: 2004
  end-page: 1040
  article-title: Autophagy defends cells against invading group A Streptococcus
  publication-title: Science
– volume: 36
  start-page: 947
  year: 2012
  end-page: 958
  article-title: Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF‐kappaB
  publication-title: Immunity
– volume: 441
  start-page: 424
  year: 2006
  end-page: 430
  article-title: Ras, PI(3)K and mTOR signalling controls tumour cell growth
  publication-title: Nature
– volume: 108
  start-page: 12455
  year: 2011
  end-page: 12460
  article-title: Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)‐dependent
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 5276
  year: 2014
  article-title: Autophagy supports genomic stability by degrading retrotransposon RNA
  publication-title: Nat Commun
– volume: 109
  start-page: 13561
  year: 2012
  end-page: 13566
  article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis
  publication-title: Proc Natl Acad Sci USA
– volume: 338
  start-page: 956
  year: 2012a
  end-page: 959
  article-title: Akt‐mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
  publication-title: Science
– volume: 5
  start-page: 5637
  year: 2014
  article-title: Beclin 1 restrains tumorigenesis through Mcl‐1 destabilization in an autophagy‐independent reciprocal manner
  publication-title: Nat Commun
– volume: 35
  start-page: 756
  year: 2014
  end-page: 765
  article-title: Analysis of TP53 mutation status in human cancer cell lines: a reassessment
  publication-title: Hum Mutat
– volume: 51
  start-page: 283
  year: 2013
  end-page: 296
  article-title: K63 polyubiquitination and activation of mTOR by the p62‐TRAF6 complex in nutrient‐activated cells
  publication-title: Mol Cell
– volume: 26
  start-page: 121
  year: 2014
  end-page: 135
  article-title: Metabolic reprogramming of stromal fibroblasts through p62‐mTORC1 signaling promotes inflammation and tumorigenesis
  publication-title: Cancer Cell
– year: 2014
  article-title: Autophagy regulates tissue overgrowth in a context‐dependent manner
  publication-title: Oncogene
– volume: 17
  start-page: 73
  year: 2013
  end-page: 84
  article-title: Sestrins activate Nrf2 by promoting p62‐dependent autophagic degradation of Keap1 and prevent oxidative liver damage
  publication-title: Cell Metab
– volume: 25
  start-page: 1510
  year: 2011
  end-page: 1527
  article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
  publication-title: Genes Dev
– volume: 126
  start-page: 121
  year: 2006
  end-page: 134
  article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis
  publication-title: Cell
– volume: 25
  start-page: 795
  year: 2011
  end-page: 800
  article-title: Autophagy‐deficient mice develop multiple liver tumors
  publication-title: Genes Dev
– volume: 12
  start-page: 485
  year: 2014
  end-page: 490
  article-title: Mutational landscape of the essential autophagy gene BECN1 in human cancers
  publication-title: Mol Cancer Res
– volume: 80
  start-page: 1160
  year: 2010
  end-page: 1169
  article-title: BNIP3 protects HepG2 cells against etoposide‐induced cell death under hypoxia by an autophagy‐independent pathway
  publication-title: Biochem Pharmacol
– volume: 22
  start-page: 2172
  year: 2008
  end-page: 2177
  article-title: Aberrant Rheb‐mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events
  publication-title: Genes Dev
– volume: 23
  start-page: 3898
  year: 2004
  end-page: 3904
  article-title: Ras is involved in the negative control of autophagy through the class I PI3‐kinase
  publication-title: Oncogene
– volume: 12
  start-page: 1022
  year: 2013
  end-page: 1029
  article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?
  publication-title: Cell Cycle
– volume: 17
  start-page: 631
  year: 2005
  end-page: 636
  article-title: Transcription‐independent pro‐apoptotic functions of p53
  publication-title: Curr Opin Cell Biol
– volume: 37
  start-page: 230
  year: 2012
  end-page: 236
  article-title: p62: a versatile multitasker takes on cancer
  publication-title: Trends Biochem Sci
– volume: 211
  start-page: 669
  year: 2014
  end-page: 683
  article-title: BRAF‐V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups
  publication-title: J Exp Med
– volume: 17
  start-page: 1829
  year: 2003
  end-page: 1834
  article-title: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
  publication-title: Genes Dev
– volume: 8
  start-page: 528
  year: 2011
  end-page: 539
  article-title: Autophagy as a target for anticancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 11
  start-page: 55
  year: 2010
  end-page: 62
  article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
  publication-title: Nat Immunol
– volume: 33
  start-page: 3983
  year: 2013
  end-page: 3993
  article-title: Epigenetic regulation of autophagy by the methyltransferase G9a
  publication-title: Mol Cell Biol
– year: 2015
  article-title: Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor‐negative subtypes and poor prognosis
  publication-title: EBioMedicine
– volume: 208
  start-page: 455
  year: 2011
  end-page: 467
  article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
  publication-title: J Exp Med
– volume: 9
  start-page: e100819
  year: 2014
  article-title: Beclin 1 and UVRAG confer protection from radiation‐induced DNA damage and maintain centrosome stability in colorectal cancer cells
  publication-title: PLoS One
– volume: 21
  start-page: 105
  year: 2012
  end-page: 120
  article-title: KrasG12D‐induced IKK2/beta/NF‐kappaB activation by IL‐1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
– volume: 42
  start-page: 23
  year: 2011
  end-page: 35
  article-title: Oncogenic Ras‐induced expression of Noxa and Beclin‐1 promotes autophagic cell death and limits clonogenic survival
  publication-title: Mol Cell
– volume: 52
  start-page: 381
  year: 2012
  end-page: 400
  article-title: AMPK and mTOR in cellular energy homeostasis and drug targets
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 22
  start-page: 181
  year: 2010
  end-page: 185
  article-title: Autophagy regulation by p53
  publication-title: Curr Opin Cell Biol
– volume: 235
  start-page: 177
  year: 1987
  end-page: 182
  article-title: Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene
  publication-title: Science
– volume: 73
  start-page: 4311
  year: 2013
  end-page: 4322
  article-title: Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability
  publication-title: Cancer Res
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  article-title: Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia
  publication-title: J Biol Chem
– volume: 21
  start-page: 532
  year: 2012
  end-page: 546
  article-title: VHL‐regulated MiR‐204 suppresses tumor growth through inhibition of LC3B‐mediated autophagy in renal clear cell carcinoma
  publication-title: Cancer Cell
– volume: 39
  start-page: 211
  year: 2013
  end-page: 227
  article-title: Autophagy and cellular immune responses
  publication-title: Immunity
– volume: 122
  start-page: 4621
  year: 2012
  end-page: 4634
  article-title: ER stress‐mediated autophagy promotes Myc‐dependent transformation and tumor growth
  publication-title: J Clin Invest
– volume: 112
  start-page: 1489
  year: 2008
  end-page: 1502
  article-title: Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down‐regulated in human ovarian cancers by loss of heterozygosity and promoter methylation
  publication-title: Cancer
– volume: 11
  start-page: 4436
  year: 2012
  end-page: 4446
  article-title: Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy
  publication-title: Cell Cycle
– volume: 16
  start-page: 532
  year: 2013
  end-page: 542
  article-title: FIP200 is required for maintenance and differentiation of postnatal neural stem cells
  publication-title: Nat Neurosci
– volume: 16
  start-page: 64
  year: 1997
  end-page: 67
  article-title: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome
  publication-title: Nat Genet
– volume: 31
  start-page: 51
  year: 2013
  end-page: 72
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu Rev Immunol
– volume: 53
  start-page: 167
  year: 2014
  end-page: 178
  article-title: Interactions between autophagy receptors and ubiquitin‐like proteins form the molecular basis for selective autophagy
  publication-title: Mol Cell
– volume: 11
  start-page: 170
  year: 2012
  end-page: 176
  article-title: Autophagic removal of micronuclei
  publication-title: Cell Cycle
– volume: 54
  start-page: 2852
  year: 1994
  end-page: 2855
  article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas
  publication-title: Cancer Res
– volume: 193
  start-page: 275
  year: 2011
  end-page: 284
  article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
  publication-title: J Cell Biol
– volume: 3
  start-page: 894
  year: 2013
  end-page: 907
  article-title: Autophagy opposes p53‐mediated tumor barrier to facilitate tumorigenesis in a model of PALB2‐associated hereditary breast cancer
  publication-title: Cancer Discov
– volume: 120
  start-page: 3555
  year: 2012
  end-page: 3562
  article-title: Autophagic degradation of the BCR‐ABL oncoprotein and generation of antileukemic responses by arsenic trioxide
  publication-title: Blood
– volume: 137
  start-page: 1062
  year: 2009
  end-page: 1075
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
– volume: 79
  start-page: 4019
  year: 2011
  end-page: 4028
  article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase‐bearing organelles
  publication-title: Infect Immun
– volume: 4
  start-page: 648
  year: 2002
  end-page: 657
  article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
  publication-title: Nat Cell Biol
– volume: 111
  start-page: 7741
  year: 2014
  end-page: 7746
  article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 829
  year: 2013
  end-page: 846
  article-title: Metabolic targets for cancer therapy
  publication-title: Nat Rev Drug Discov
– volume: 61
  start-page: 6693
  year: 2001
  end-page: 6697
  article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2
  publication-title: Cancer Res
– volume: 117
  start-page: 326
  year: 2007
  end-page: 336
  article-title: Autophagy inhibition enhances therapy‐induced apoptosis in a Myc‐induced model of lymphoma
  publication-title: J Clin Invest
– volume: 12
  start-page: 622
  year: 2012a
  article-title: Autophagy‐independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors
  publication-title: BMC Cancer
– volume: 70
  start-page: 7882
  year: 2010
  end-page: 7893
  article-title: The RB‐E2F1 pathway regulates autophagy
  publication-title: Cancer Res
– volume: 131
  start-page: 1149
  year: 2007
  end-page: 1163
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice
  publication-title: Cell
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 121
  start-page: 1622
  year: 2013
  end-page: 1632
  article-title: Bif‐1 haploinsufficiency promotes chromosomal instability and accelerates Myc‐driven lymphomagenesis via suppression of mitophagy
  publication-title: Blood
– volume: 285
  start-page: 22576
  year: 2010
  end-page: 22591
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element‐driven gene transcription
  publication-title: J Biol Chem
– volume: 136
  start-page: 823
  year: 2009
  end-page: 837
  article-title: Principles of cancer therapy: oncogene and non‐oncogene addiction
  publication-title: Cell
– volume: 3
  start-page: 1
  year: 2001
  end-page: 7
  article-title: DAP kinase activates a p19ARF/p53‐mediated apoptotic checkpoint to suppress oncogenic transformation
  publication-title: Nat Cell Biol
– volume: 96
  start-page: 214
  year: 1999
  end-page: 219
  article-title: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 722
  year: 2013
  end-page: 737
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat Rev Immunol
– volume: 10
  start-page: 90
  year: 2011
  end-page: 103
  article-title: A combined preclinical therapy of cannabinoids and temozolomide against glioma
  publication-title: Mol Cancer Ther
– volume: 1310
  start-page: 7
  year: 2014
  end-page: 31
  article-title: The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment
  publication-title: Ann N Y Acad Sci
– volume: 10
  start-page: 662
  year: 2014
  end-page: 676
  article-title: ERBB2 overexpression suppresses stress‐induced autophagy and renders ERBB2‐induced mammary tumorigenesis independent of monoallelic Becn1 loss
  publication-title: Autophagy
– volume: 30
  start-page: 678
  year: 2008
  end-page: 688
  article-title: JNK1‐mediated phosphorylation of Bcl‐2 regulates starvation‐induced autophagy
  publication-title: Mol Cell
– volume: 79
  start-page: 7824
  year: 1982
  end-page: 7827
  article-title: Human c‐myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells
  publication-title: Proc Natl Acad Sci USA
– volume: 336
  start-page: 225
  year: 2012
  end-page: 228
  article-title: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
  publication-title: Science
– year: 2014
  article-title: Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma
  publication-title: Cell Death Differ
– volume: 59
  start-page: 59
  year: 1999
  end-page: 65
  article-title: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21
  publication-title: Genomics
– volume: 22
  start-page: 1001
  year: 2012
  end-page: 1016
  article-title: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy
  publication-title: Dev Cell
– volume: 21
  start-page: 99
  year: 1999
  end-page: 102
  article-title: PIK3CA is implicated as an oncogene in ovarian cancer
  publication-title: Nat Genet
– volume: 5
  start-page: 1855
  year: 1999
  end-page: 1861
  article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia
  publication-title: Clin Cancer Res
– volume: 22
  start-page: 165
  year: 2011
  end-page: 178
  article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation
  publication-title: Mol Biol Cell
– volume: 109
  start-page: 8253
  year: 2012
  end-page: 8258
  article-title: Autophagy inhibitor Lys05 has single‐agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 759
  year: 2013
  end-page: 774
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat Rev Mol Cell Biol
– volume: 282
  start-page: 18573
  year: 2007
  end-page: 18583
  article-title: Tissue‐specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin‐3
  publication-title: J Biol Chem
– volume: 25
  start-page: 1025
  year: 2005
  end-page: 1040
  article-title: Inhibition of macroautophagy triggers apoptosis
  publication-title: Mol Cell Biol
– year: 2014
  article-title: Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells
  publication-title: Oncogene
– volume: 39
  start-page: 1059
  year: 2008
  end-page: 1063
  article-title: Frameshift mutation of UVRAG, an autophagy‐related gene, in gastric carcinomas with microsatellite instability
  publication-title: Hum Pathol
– volume: 10
  start-page: 1013
  year: 2014
  end-page: 1019
  article-title: A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
  publication-title: Nat Chem Biol
– volume: 149
  start-page: 656
  year: 2012
  end-page: 670
  article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
  publication-title: Cell
– volume: 19
  start-page: 1741
  year: 2009
  end-page: 1746
  article-title: Autophagy, not apoptosis, is essential for midgut cell death in Drosophila
  publication-title: Curr Biol
– volume: 13
  start-page: 727
  year: 2014
  end-page: 740
  article-title: Caloric restriction mimetics: towards a molecular definition
  publication-title: Nat Rev Drug Discov
– volume: 21
  start-page: 1621
  year: 2007
  end-page: 1635
  article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
  publication-title: Genes Dev
– volume: 149
  start-page: 274
  year: 2012
  end-page: 293
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
– volume: 26
  start-page: 738
  year: 2014
  end-page: 753
  article-title: TRPM3 and miR‐204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma
  publication-title: Cancer Cell
– volume: 145
  start-page: 1347
  year: 2013
  end-page: 1357
  article-title: Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
  publication-title: Gastroenterology
– volume: 7
  start-page: 401
  year: 2011
  end-page: 411
  article-title: Autophagy regulates myeloid cell differentiation by p62/SQSTM1‐mediated degradation of PML‐RARalpha oncoprotein
  publication-title: Autophagy
– volume: 501
  start-page: 421
  year: 2013
  end-page: 425
  article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy
  publication-title: Nature
– volume: 133
  start-page: 343
  year: 2007
  end-page: 349
  article-title: A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer
  publication-title: J Cancer Res Clin Oncol
– volume: 18
  start-page: 370
  year: 2012
  end-page: 379
  article-title: Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
  publication-title: Clin Cancer Res
– volume: 304
  start-page: 596
  year: 2004
  end-page: 600
  article-title: Regeneration of peroxiredoxins by p53‐regulated sestrins, homologs of bacterial AhpD
  publication-title: Science
– volume: 134
  start-page: 451
  year: 2008
  end-page: 460
  article-title: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
  publication-title: Cell
– volume: 31
  start-page: 285
  year: 2002
  end-page: 288
  article-title: Truncating mutations of RB1CC1 in human breast cancer
  publication-title: Nat Genet
– volume: 289
  start-page: 9692
  year: 2014
  end-page: 9709
  article-title: The metastasis suppressor, N‐myc downstream‐regulated gene 1 (NDRG1), inhibits stress‐induced autophagy in cancer cells
  publication-title: J Biol Chem
– volume: 13
  start-page: 119
  year: 2011
  end-page: 120
  article-title: AMPK‐dependent phosphorylation of ULK1 induces autophagy
  publication-title: Cell Metab
– volume: 276
  start-page: 35243
  year: 2001
  end-page: 35246
  article-title: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3‐kinase/protein kinase B pathway
  publication-title: J Biol Chem
– volume: 67
  start-page: 3043
  year: 2007
  end-page: 3053
  article-title: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF‐1‐AKT‐mTOR pathways
  publication-title: Cancer Res
– volume: 5
  start-page: 3056
  year: 2014
  article-title: A dual role for autophagy in a murine model of lung cancer
  publication-title: Nat Commun
– volume: 10
  start-page: 1359
  year: 2014
  end-page: 1368
  article-title: A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme
  publication-title: Autophagy
– volume: 22
  start-page: 2954
  year: 2004
  end-page: 2963
  article-title: The biology and clinical relevance of the PTEN tumor suppressor pathway
  publication-title: J Clin Oncol
– volume: 304
  start-page: 1497
  year: 2004
  end-page: 1500
  article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy
  publication-title: Science
– volume: 332
  start-page: 268
  year: 1988
  end-page: 269
  article-title: Von Hippel‐Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma
  publication-title: Nature
– volume: 448
  start-page: 807
  year: 2007
  end-page: 810
  article-title: LKB1 modulates lung cancer differentiation and metastasis
  publication-title: Nature
– volume: 146
  start-page: 1
  year: 2005
  end-page: 1466
  article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53
  publication-title: Oncogene 24:
– volume: 358
  start-page: 80
  year: 1992
  end-page: 83
  article-title: Amplification of a gene encoding a p53‐associated protein in human sarcomas
  publication-title: Nature
– volume: 9
  start-page: 1142
  year: 2007
  end-page: 1151
  article-title: Bif‐1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
  publication-title: Nat Cell Biol
– volume: 334
  start-page: 1573
  year: 2011
  end-page: 1577
  article-title: Autophagy‐dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
– volume: 431
  start-page: 525
  year: 2004
  end-page: 526
  article-title: Lung cancer: intragenic ERBB2 kinase mutations in tumours
  publication-title: Nature
– volume: 16
  start-page: 333
  year: 1997
  end-page: 334
  article-title: Germline mutations in PTEN are present in Bannayan‐Zonana syndrome
  publication-title: Nat Genet
– volume: 339
  start-page: 286
  year: 2013
  end-page: 291
  article-title: Neutralizing tumor‐promoting chronic inflammation: a magic bullet?
  publication-title: Science
– volume: 32
  start-page: 2261
  year: 2013
  end-page: 2272
  article-title: Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem‐like/progenitor cells
  publication-title: Oncogene
– volume: 66
  start-page: 2885
  year: 2006
  end-page: 2888
  article-title: Bcl‐2 inhibition of autophagy: a new route to cancer?
  publication-title: Cancer Res
– volume: 22
  start-page: 5237
  year: 2013
  end-page: 5248
  article-title: Myc inhibition impairs autophagosome formation
  publication-title: Hum Mol Genet
– volume: 121
  start-page: 179
  year: 2005
  end-page: 193
  article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
  publication-title: Cell
– volume: 23
  start-page: 798
  year: 2009
  end-page: 803
  article-title: Autophagy mediates the mitotic senescence transition
  publication-title: Genes Dev
– volume: 330
  start-page: 1344
  year: 2010
  end-page: 1348
  article-title: Autophagy and metabolism
  publication-title: Science
– volume: 27
  start-page: 6229
  year: 2007
  end-page: 6242
  article-title: BNIP3 is an RB/E2F target gene required for hypoxia‐induced autophagy
  publication-title: Mol Cell Biol
– volume: 22
  start-page: 432
  year: 2012
  end-page: 435
  article-title: Autophagy is required for self‐renewal and differentiation of adult human stem cells
  publication-title: Cell Res
– volume: 109
  start-page: 13325
  year: 2012b
  end-page: 13330
  article-title: Autophagic activity dictates the cellular response to oncogenic RAS
  publication-title: Proc Natl Acad Sci USA
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 5
  start-page: 202ra123
  year: 2013a
  article-title: Down‐regulation of autophagy‐related protein 5 (ATG5) contributes to the pathogenesis of early‐stage cutaneous melanoma
  publication-title: Sci Transl Med
– volume: 399
  start-page: 271
  year: 1999
  end-page: 275
  article-title: The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis
  publication-title: Nature
– volume: 330
  start-page: 757
  year: 1994
  end-page: 761
  article-title: Loss of the retinoblastoma tumor‐suppressor gene in parathyroid carcinoma
  publication-title: N Engl J Med
– volume: 116
  start-page: 4806
  year: 2010
  end-page: 4814
  article-title: FIP200 is required for the cell‐autonomous maintenance of fetal hematopoietic stem cells
  publication-title: Blood
– volume: 331
  start-page: 456
  year: 2011
  end-page: 461
  article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
– volume: 9
  start-page: 402
  year: 2008
  end-page: 412
  article-title: Transcriptional control of human p53‐regulated genes
  publication-title: Nat Rev Mol Cell Biol
– volume: 152
  start-page: 290
  year: 2013
  end-page: 303
  article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
  publication-title: Cell
– volume: 122
  start-page: 927
  year: 2005
  end-page: 939
  article-title: Bcl‐2 antiapoptotic proteins inhibit Beclin 1‐dependent autophagy
  publication-title: Cell
– ident: e_1_2_10_52_1
  doi: 10.1056/NEJM200104053441401
– ident: e_1_2_10_200_1
  doi: 10.1038/onc.2008.117
– ident: e_1_2_10_193_1
  doi: 10.1158/0008-5472.CAN-05-4412
– ident: e_1_2_10_273_1
  doi: 10.1073/pnas.96.1.214
– ident: e_1_2_10_63_1
  doi: 10.1038/323643a0
– ident: e_1_2_10_71_1
  doi: 10.1126/science.1720570
– ident: e_1_2_10_40_1
  doi: 10.1056/NEJM199403173301105
– ident: e_1_2_10_95_1
  doi: 10.1038/emboj.2013.133
– ident: e_1_2_10_267_1
  doi: 10.1016/0092-8674(90)90149-9
– ident: e_1_2_10_69_1
  doi: 10.1038/cdd.2014.137
– ident: e_1_2_10_153_1
  doi: 10.1038/sj.emboj.7601689
– ident: e_1_2_10_270_1
  doi: 10.1128/IAI.05308-11
– ident: e_1_2_10_82_1
  doi: 10.1016/j.ccell.2014.09.015
– ident: e_1_2_10_61_1
  doi: 10.1158/0008-5472.CAN-06-4149
– ident: e_1_2_10_212_1
  doi: 10.1016/j.molcel.2013.12.014
– ident: e_1_2_10_55_1
  doi: 10.1126/science.1196371
– ident: e_1_2_10_198_1
  doi: 10.1016/j.semcancer.2013.05.008
– ident: e_1_2_10_196_1
  doi: 10.4161/auto.26398
– volume: 1845
  start-page: 91
  year: 2014
  ident: e_1_2_10_44_1
  article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis
  publication-title: Biochim Biophys Acta
– ident: e_1_2_10_281_1
  doi: 10.1038/ni.2224
– ident: e_1_2_10_234_1
  doi: 10.1126/science.3798106
– ident: e_1_2_10_112_1
  doi: 10.1158/1078-0432.CCR-08-0144
– ident: e_1_2_10_207_1
  doi: 10.1038/35050500
– ident: e_1_2_10_221_1
  doi: 10.1172/JCI37948
– ident: e_1_2_10_260_1
  doi: 10.1016/j.molcel.2008.06.001
– ident: e_1_2_10_155_1
  doi: 10.1016/j.ceb.2009.12.001
– ident: e_1_2_10_116_1
  doi: 10.1016/j.humpath.2007.11.013
– ident: e_1_2_10_38_1
  doi: 10.1126/science.1232227
– ident: e_1_2_10_81_1
  doi: 10.1016/j.cell.2013.11.019
– ident: e_1_2_10_278_1
  doi: 10.1016/j.cmet.2011.01.009
– volume: 5
  start-page: 1855
  year: 1999
  ident: e_1_2_10_59_1
  article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia
  publication-title: Clin Cancer Res
– ident: e_1_2_10_279_1
  doi: 10.1038/ncb2069
– ident: e_1_2_10_130_1
  doi: 10.1038/ncb1426
– ident: e_1_2_10_129_1
  doi: 10.1158/2159-8290.CD-14-0049
– ident: e_1_2_10_239_1
  doi: 10.1038/ncb1634
– ident: e_1_2_10_132_1
  doi: 10.1038/ng0597-64
– ident: e_1_2_10_174_1
  doi: 10.1101/gad.1599207
– volume: 9
  start-page: 545
  year: 1994
  ident: e_1_2_10_217_1
  article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells
  publication-title: Oncogene
– ident: e_1_2_10_277_1
  doi: 10.1002/path.4351
– ident: e_1_2_10_167_1
  doi: 10.1073/pnas.1118193109
– ident: e_1_2_10_16_1
  doi: 10.1084/jem.20130977
– ident: e_1_2_10_203_1
  doi: 10.1016/j.chom.2014.03.012
– ident: e_1_2_10_197_1
  doi: 10.1038/onc.2014.285
– ident: e_1_2_10_199_1
  doi: 10.1074/jbc.M804705200
– ident: e_1_2_10_109_1
  doi: 10.1038/ncomms4496
– ident: e_1_2_10_53_1
  doi: 10.1016/j.ccr.2008.02.001
– ident: e_1_2_10_28_1
  doi: 10.4161/cc.24128
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cmet.2012.12.002
– ident: e_1_2_10_101_1
  doi: 10.1101/gad.1110003
– ident: e_1_2_10_225_1
  doi: 10.1038/332268a0
– ident: e_1_2_10_88_1
  doi: 10.1146/annurev-genet-102808-114910
– ident: e_1_2_10_166_1
  doi: 10.1158/0008-5472.CAN-13-3470
– ident: e_1_2_10_215_1
  doi: 10.1038/nature12865
– ident: e_1_2_10_163_1
  doi: 10.1016/j.cell.2009.03.048
– ident: e_1_2_10_265_1
  doi: 10.1634/theoncologist.2014-0086
– ident: e_1_2_10_110_1
  doi: 10.1073/pnas.0503224102
– ident: e_1_2_10_20_1
  doi: 10.1126/science.1095569
– ident: e_1_2_10_98_1
  doi: 10.1016/j.molcel.2013.08.003
– ident: e_1_2_10_140_1
  doi: 10.1091/mbc.E10-06-0500
– ident: e_1_2_10_145_1
  doi: 10.1016/j.cell.2005.02.031
– ident: e_1_2_10_186_1
  doi: 10.1038/cdd.2010.116
– ident: e_1_2_10_194_1
  doi: 10.1016/j.cell.2005.07.002
– ident: e_1_2_10_204_1
  doi: 10.4161/auto.29119
– ident: e_1_2_10_36_1
  doi: 10.1038/cdd.2014.183
– ident: e_1_2_10_120_1
  doi: 10.1146/annurev-immunol-032712-100008
– ident: e_1_2_10_168_1
  doi: 10.1038/nrclinonc.2014.41
– ident: e_1_2_10_206_1
  doi: 10.1038/ncomms4056
– ident: e_1_2_10_22_1
  doi: 10.1038/onc.2014.244
– ident: e_1_2_10_9_1
  doi: 10.1038/onc.2012.512
– ident: e_1_2_10_269_1
  doi: 10.1101/gad.2016111
– ident: e_1_2_10_23_1
  doi: 10.1038/onc.2014.264
– ident: e_1_2_10_76_1
  doi: 10.1126/science.1250256
– ident: e_1_2_10_131_1
  doi: 10.1038/45257
– ident: e_1_2_10_261_1
  doi: 10.1016/j.cell.2013.08.015
– ident: e_1_2_10_102_1
  doi: 10.1146/annurev-pharmtox-010611-134537
– ident: e_1_2_10_46_1
  doi: 10.1038/nature10189
– ident: e_1_2_10_50_1
  doi: 10.1038/nri3532
– ident: e_1_2_10_54_1
  doi: 10.1126/science.2537532
– ident: e_1_2_10_58_1
  doi: 10.1038/ncomms6637
– ident: e_1_2_10_125_1
  doi: 10.1073/pnas.1407001111
– ident: e_1_2_10_127_1
  doi: 10.1126/science.1218395
– ident: e_1_2_10_245_1
  doi: 10.1128/MCB.02246-06
– ident: e_1_2_10_47_1
  doi: 10.1016/j.cub.2009.08.042
– ident: e_1_2_10_280_1
  doi: 10.1016/j.devcel.2011.12.027
– volume: 118
  start-page: 3917
  year: 2008
  ident: e_1_2_10_143_1
  article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells
  publication-title: J Clin Invest
– ident: e_1_2_10_75_1
  doi: 10.1126/science.1201940
– ident: e_1_2_10_244_1
  doi: 10.1158/1535-7163.MCT-10-0688
– ident: e_1_2_10_66_1
  doi: 10.1126/science.7939630
– ident: e_1_2_10_103_1
  doi: 10.1038/5971
– ident: e_1_2_10_85_1
  doi: 10.1083/jcb.200712064
– ident: e_1_2_10_223_1
  doi: 10.1200/JCO.2004.02.141
– ident: e_1_2_10_241_1
  doi: 10.1101/gad.2016211
– ident: e_1_2_10_12_1
  doi: 10.4161/auto.29165
– ident: e_1_2_10_62_1
  doi: 10.1126/science.2543076
– ident: e_1_2_10_90_1
  doi: 10.1182/blood-2013-12-543793
– ident: e_1_2_10_56_1
  doi: 10.1016/j.cmet.2014.02.010
– ident: e_1_2_10_142_1
  doi: 10.4161/auto.27867
– ident: e_1_2_10_246_1
  doi: 10.1038/ni.1823
– ident: e_1_2_10_108_1
  doi: 10.1158/0008-5472.CAN-10-1604
– ident: e_1_2_10_259_1
  doi: 10.1101/gad.2051011
– ident: e_1_2_10_158_1
  doi: 10.1074/jbc.M701194200
– ident: e_1_2_10_232_1
  doi: 10.1038/5042
– ident: e_1_2_10_121_1
  doi: 10.1158/1541-7786.MCR-13-0614
– ident: e_1_2_10_202_1
  doi: 10.1126/science.1193497
– ident: e_1_2_10_156_1
  doi: 10.1126/science.1978757
– ident: e_1_2_10_243_1
  doi: 10.1093/hmg/ddt381
– ident: e_1_2_10_211_1
  doi: 10.4161/cc.22778
– ident: e_1_2_10_41_1
  doi: 10.1073/pnas.79.24.7824
– ident: e_1_2_10_64_1
  doi: 10.1038/onc.2008.24
– ident: e_1_2_10_118_1
  doi: 10.1016/j.cell.2007.10.035
– ident: e_1_2_10_164_1
  doi: 10.1038/20459
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1600-0463.2007.00858.x
– ident: e_1_2_10_170_1
  doi: 10.1126/science.1208347
– ident: e_1_2_10_209_1
  doi: 10.4161/cc.11.1.18564
– ident: e_1_2_10_251_1
  doi: 10.1038/nature13611
– ident: e_1_2_10_175_1
  doi: 10.1038/nature06639
– ident: e_1_2_10_51_1
  doi: 10.1038/nature12437
– ident: e_1_2_10_126_1
  doi: 10.1158/1078-0432.CCR-11-1282
– ident: e_1_2_10_238_1
  doi: 10.1073/pnas.1121572109
– ident: e_1_2_10_124_1
  doi: 10.1016/j.cell.2012.03.017
– ident: e_1_2_10_172_1
  doi: 10.1016/j.ccr.2012.02.019
– ident: e_1_2_10_188_1
  doi: 10.1038/358080a0
– ident: e_1_2_10_249_1
  doi: 10.1126/science.277.5327.805
– ident: e_1_2_10_17_1
  doi: 10.1038/sj.onc.1206622
– ident: e_1_2_10_214_1
  doi: 10.4161/auto.28984
– ident: e_1_2_10_87_1
  doi: 10.1172/JCI62973
– ident: e_1_2_10_49_1
  doi: 10.1038/cdd.2011.146
– ident: e_1_2_10_208_1
  doi: 10.1016/j.molcel.2006.04.014
– ident: e_1_2_10_242_1
  doi: 10.1016/j.ebiom.2015.01.008
– ident: e_1_2_10_2_1
  doi: 10.1158/0008-5472.CAN-07-2069
– ident: e_1_2_10_263_1
  doi: 10.1101/gad.521709
– ident: e_1_2_10_271_1
  doi: 10.1016/j.cell.2012.01.058
– ident: e_1_2_10_105_1
  doi: 10.1074/jbc.M110.118976
– ident: e_1_2_10_276_1
  doi: 10.1074/jbc.M800102200
– volume: 30
  start-page: 429
  year: 2007
  ident: e_1_2_10_173_1
  article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours
  publication-title: Int J Oncol
– ident: e_1_2_10_48_1
  doi: 10.1038/cdd.2012.43
– ident: e_1_2_10_113_1
  doi: 10.1101/gad.1565707
– ident: e_1_2_10_248_1
  doi: 10.1182/blood-2011-08-373639
– ident: e_1_2_10_230_1
  doi: 10.1016/j.ccr.2004.06.007
– ident: e_1_2_10_65_1
  doi: 10.1038/sj.onc.1207539
– ident: e_1_2_10_169_1
  doi: 10.1371/journal.pgen.1004626
– ident: e_1_2_10_151_1
  doi: 10.4161/auto.29231
– ident: e_1_2_10_33_1
  doi: 10.1101/gad.231894.113
– ident: e_1_2_10_219_1
  doi: 10.1074/jbc.M113.529511
– ident: e_1_2_10_266_1
  doi: 10.4161/auto.29568
– ident: e_1_2_10_226_1
  doi: 10.1155/2011/865819
– ident: e_1_2_10_218_1
  doi: 10.1038/nrd3802
– ident: e_1_2_10_161_1
  doi: 10.1038/ncomms3130
– ident: e_1_2_10_150_1
  doi: 10.1016/j.ccr.2014.06.025
– ident: e_1_2_10_100_1
  doi: 10.1038/ncb839
– ident: e_1_2_10_107_1
  doi: 10.1038/nature06030
– ident: e_1_2_10_60_1
  doi: 10.1002/cncr.23323
– ident: e_1_2_10_83_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_10_35_1
  doi: 10.1002/cncr.23892
– ident: e_1_2_10_43_1
  doi: 10.1038/nature00766
– ident: e_1_2_10_34_1
  doi: 10.1053/j.gastro.2013.08.035
– ident: e_1_2_10_141_1
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_2_10_106_1
  doi: 10.1038/nrclinonc.2011.71
– ident: e_1_2_10_176_1
  doi: 10.1016/j.cell.2011.10.026
– ident: e_1_2_10_144_1
  doi: 10.1016/j.cell.2009.02.024
– ident: e_1_2_10_162_1
  doi: 10.1101/gad.1545107
– ident: e_1_2_10_31_1
  doi: 10.4161/auto.34398
– ident: e_1_2_10_80_1
  doi: 10.1101/gad.219642.113
– ident: e_1_2_10_182_1
  doi: 10.1126/science.1103966
– ident: e_1_2_10_79_1
  doi: 10.1038/ncomms6276
– ident: e_1_2_10_93_1
  doi: 10.1091/mbc.e08-12-1248
– ident: e_1_2_10_154_1
  doi: 10.1038/cdd.2008.131
– ident: e_1_2_10_192_1
  doi: 10.1073/pnas.1104361108
– ident: e_1_2_10_67_1
  doi: 10.1038/nrd4145
– ident: e_1_2_10_57_1
  doi: 10.1016/j.molcel.2011.02.009
– ident: e_1_2_10_11_1
  doi: 10.1158/0008-5472.CAN-09-0910
– ident: e_1_2_10_45_1
  doi: 10.1073/pnas.052713099
– ident: e_1_2_10_134_1
  doi: 10.1016/j.ccr.2011.12.006
– ident: e_1_2_10_181_1
  doi: 10.1016/j.tibs.2012.02.008
– ident: e_1_2_10_123_1
  doi: 10.1038/nrm3696
– ident: e_1_2_10_42_1
  doi: 10.1016/j.cell.2012.03.003
– ident: e_1_2_10_13_1
  doi: 10.1158/0008-5472.CAN-12-4142
– ident: e_1_2_10_77_1
  doi: 10.1111/nyas.12362
– ident: e_1_2_10_237_1
  doi: 10.1158/2159-8290.CD-13-0397
– ident: e_1_2_10_92_1
  doi: 10.1038/ncomms5706
– ident: e_1_2_10_104_1
  doi: 10.1182/blood-2010-01-261040
– ident: e_1_2_10_195_1
  doi: 10.1016/j.immuni.2012.04.008
– ident: e_1_2_10_4_1
  doi: 10.1006/geno.1999.5851
– ident: e_1_2_10_119_1
  doi: 10.1016/j.molcel.2010.09.023
– ident: e_1_2_10_254_1
  doi: 10.1038/nn.3365
– ident: e_1_2_10_117_1
  doi: 10.1038/cdd.2013.124
– ident: e_1_2_10_256_1
  doi: 10.1126/science.1225967
– ident: e_1_2_10_78_1
  doi: 10.1016/j.virol.2012.12.004
– ident: e_1_2_10_148_1
  doi: 10.1038/sj.onc.1203597
– ident: e_1_2_10_122_1
  doi: 10.1172/JCI69636
– ident: e_1_2_10_268_1
  doi: 10.1158/2159-8290.CD-14-0362
– ident: e_1_2_10_205_1
  doi: 10.4161/auto.29118
– ident: e_1_2_10_96_1
  doi: 10.1158/2159-8290.CD-13-0011
– ident: e_1_2_10_86_1
  doi: 10.1038/nature08221
– ident: e_1_2_10_236_1
  doi: 10.1038/ncb2979
– ident: e_1_2_10_128_1
  doi: 10.1002/humu.22556
– ident: e_1_2_10_115_1
  doi: 10.1016/j.cell.2012.12.016
– ident: e_1_2_10_178_1
  doi: 10.1038/cddis.2009.8
– ident: e_1_2_10_137_1
  doi: 10.1126/scitranslmed.3005864
– volume: 16
  start-page: 108
  year: 2014
  ident: e_1_2_10_227_1
  article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis
  publication-title: Nature
  doi: 10.1038/nature13949
– ident: e_1_2_10_262_1
  doi: 10.1146/annurev-biochem-052709-094552
– ident: e_1_2_10_6_1
  doi: 10.1053/j.seminhematol.2014.05.008
– volume: 54
  start-page: 2852
  year: 1994
  ident: e_1_2_10_233_1
  article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas
  publication-title: Cancer Res
– ident: e_1_2_10_180_1
  doi: 10.1084/jem.20101145
– ident: e_1_2_10_138_1
  doi: 10.1038/ncb2422
– ident: e_1_2_10_157_1
  doi: 10.1016/j.cell.2007.06.009
– ident: e_1_2_10_149_1
  doi: 10.1038/nrd4391
– ident: e_1_2_10_224_1
  doi: 10.1038/sj.cdd.4401826
– volume: 146
  start-page: 1
  year: 2005
  ident: e_1_2_10_160_1
  article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53
  publication-title: Oncogene 24:
– ident: e_1_2_10_89_1
  doi: 10.1038/34432
– ident: e_1_2_10_97_1
  doi: 10.1084/jem.20130783
– ident: e_1_2_10_99_1
  doi: 10.1083/jcb.201102031
– ident: e_1_2_10_32_1
  doi: 10.1038/nrm3249
– ident: e_1_2_10_5_1
  doi: 10.1172/JCI28833
– ident: e_1_2_10_24_1
  doi: 10.1038/nature05933
– ident: e_1_2_10_250_1
  doi: 10.1038/cdd.2011.32
– ident: e_1_2_10_25_1
  doi: 10.1038/ng911
– ident: e_1_2_10_111_1
  doi: 10.1073/pnas.0704014104
– ident: e_1_2_10_133_1
  doi: 10.1016/j.molcel.2013.06.020
– ident: e_1_2_10_159_1
  doi: 10.1038/ng0897-333
– ident: e_1_2_10_213_1
  doi: 10.1038/nchembio.1681
– ident: e_1_2_10_136_1
  doi: 10.1182/blood-2010-06-288589
– ident: e_1_2_10_146_1
  doi: 10.1172/JCI70454
– ident: e_1_2_10_272_1
  doi: 10.1101/gad.519709
– ident: e_1_2_10_15_1
  doi: 10.1126/science.3460176
– ident: e_1_2_10_191_1
  doi: 10.1371/journal.pone.0100819
– ident: e_1_2_10_94_1
  doi: 10.1073/pnas.0406789102
– ident: e_1_2_10_21_1
  doi: 10.1016/j.cell.2008.06.028
– ident: e_1_2_10_70_1
  doi: 10.1038/cddis.2014.217
– ident: e_1_2_10_91_1
  doi: 10.1016/j.bbamcr.2013.05.022
– ident: e_1_2_10_179_1
  doi: 10.1089/ars.2010.3478
– ident: e_1_2_10_229_1
  doi: 10.1158/0008-5472.CAN-06-0809
– ident: e_1_2_10_210_1
  doi: 10.1038/nrm2395
– ident: e_1_2_10_252_1
  doi: 10.4161/auto.29264
– ident: e_1_2_10_257_1
  doi: 10.1073/pnas.1120193109
– ident: e_1_2_10_171_1
  doi: 10.1038/ncb2329
– ident: e_1_2_10_187_1
  doi: 10.1083/jcb.201402054
– ident: e_1_2_10_18_1
  doi: 10.1128/MCB.25.3.1025-1040.2005
– ident: e_1_2_10_26_1
  doi: 10.1038/onc.2012.277
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cell.2006.05.034
– ident: e_1_2_10_222_1
  doi: 10.1038/cr.2011.200
– ident: e_1_2_10_183_1
  doi: 10.1038/ni.1980
– ident: e_1_2_10_8_1
  doi: 10.1128/MCB.00813-13
– ident: e_1_2_10_37_1
  doi: 10.1016/j.bcp.2010.07.009
– ident: e_1_2_10_264_1
  doi: 10.1186/bcr3576
– volume: 61
  start-page: 6693
  year: 2001
  ident: e_1_2_10_72_1
  article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2
  publication-title: Cancer Res
– ident: e_1_2_10_220_1
  doi: 10.1073/pnas.0911267106
– ident: e_1_2_10_274_1
  doi: 10.1073/pnas.2436255100
– ident: e_1_2_10_258_1
  doi: 10.4161/auto.7.4.14397
– ident: e_1_2_10_201_1
  doi: 10.1172/JCI20039
– ident: e_1_2_10_253_1
  doi: 10.1038/nrm2147
– ident: e_1_2_10_139_1
  doi: 10.1073/pnas.1319661110
– ident: e_1_2_10_189_1
  doi: 10.1126/science.1099314
– ident: e_1_2_10_74_1
  doi: 10.1182/blood-2012-01-402578
– ident: e_1_2_10_29_1
  doi: 10.1007/s00432-006-0174-9
– ident: e_1_2_10_14_1
  doi: 10.1128/MCB.00166-09
– ident: e_1_2_10_152_1
  doi: 10.4161/auto.4237
– ident: e_1_2_10_184_1
  doi: 10.1101/gad.1699608
– ident: e_1_2_10_165_1
  doi: 10.4161/auto.8.2.18554
– ident: e_1_2_10_228_1
  doi: 10.1126/science.1204592
– ident: e_1_2_10_216_1
  doi: 10.1002/jcp.1041160116
– ident: e_1_2_10_255_1
  doi: 10.3892/ol.2014.2417
– ident: e_1_2_10_177_1
  doi: 10.1016/j.ceb.2005.09.007
– ident: e_1_2_10_231_1
  doi: 10.1038/nature04869
– ident: e_1_2_10_73_1
  doi: 10.1038/onc.2012.252
– ident: e_1_2_10_114_1
  doi: 10.1016/j.tcb.2014.09.001
– ident: e_1_2_10_240_1
  doi: 10.1182/blood-2012-10-459826
– ident: e_1_2_10_147_1
  doi: 10.1016/j.immuni.2013.07.017
– ident: e_1_2_10_247_1
  doi: 10.1016/j.ccr.2014.05.004
– ident: e_1_2_10_7_1
  doi: 10.1074/jbc.C100319200
– ident: e_1_2_10_27_1
  doi: 10.1158/0008-5472.CAN-14-1420
– ident: e_1_2_10_135_1
  doi: 10.1186/1471-2407-12-622
– ident: e_1_2_10_235_1
  doi: 10.1038/431525b
– ident: e_1_2_10_30_1
  doi: 10.1038/ncb3072
– ident: e_1_2_10_19_1
  doi: 10.1038/ncb2788
– ident: e_1_2_10_275_1
  doi: 10.1038/embor.2008.246
– ident: e_1_2_10_185_1
  doi: 10.1038/ncb2708
– ident: e_1_2_10_84_1
  doi: 10.1002/path.4244
– ident: e_1_2_10_190_1
  doi: 10.1074/jbc.M702824200
– ident: e_1_2_10_68_1
  doi: 10.1016/j.cell.2014.11.006
SSID ssj0005871
Score 2.6600745
SecondaryResourceType review_article
Snippet Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 856
SubjectTerms adaptive stress responses
Animals
Autophagy
Beclin 1
Cancer therapies
Cell Transformation, Neoplastic - immunology
Cell Transformation, Neoplastic - metabolism
Cell Transformation, Neoplastic - pathology
Cellular biology
EMBO03
EMBO07
Environmental stress
Humans
inflammation
KRAS
mitophagy
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - therapy
Review
Reviews
Tumor Escape
Tumor Suppressor Proteins - immunology
Tumor Suppressor Proteins - metabolism
Title Autophagy in malignant transformation and cancer progression
URI https://api.istex.fr/ark:/67375/WNG-46P3WC04-L/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201490784
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201490784
https://www.ncbi.nlm.nih.gov/pubmed/25712477
https://www.proquest.com/docview/1667913222
https://www.proquest.com/docview/1682892885
https://pubmed.ncbi.nlm.nih.gov/PMC4388596
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4oxOiLEfxBBUlNCNGH6l07u90mvGADEgKEBwm8bXa3W0SkZ867RP57Z7a9ehchxrc2u91tZ2Z3v9mdfgOwhVaooSHj9bS6JJjVRWJTlElq3UDWXjrreGvg-EQenOHhhbjoSJL4X5j583uRivSjv7HfOAILyYtT-BCWBc26bMqlLP_EcqjgWYXNFByqouPwuaOBheVnmSX56y5s-XeIZH9OuohiwzK0_wyedvgx3m0VvgIPfLMKj9qMkrer8LicJXB7Dju7U2YNMJe38VUT3xDgvuSol3gyh1VHTWyaKnas-3EcgrVaoo4XcLa_96U8SLpkCYkjEIKJJOBRiEw4iz7PvRQiLSpTKfJQDGEkpjUzWKNEWQsaatWwNuyq5SQ7RS1U2UtYakaNX4PYo2MW_NR4a1AaWzhhBmmtyFkktFhlEXyYyVC7jkmcE1p81-xRsNA1C133Qo_gXf_Aj5ZE4_6q20EpfT0zvubYs1zo85PPGuVpdl4OUB9FsDHTmu6G3U89lDIvwuFRBG_7YhI7n4KYxo-mXIedzFQpEcGrVsl9ZzR_Ed7J8wjyBfX3FZiMe7GkufoaSLkxoxYLGcH7maHMvdZ935oFS_qXTPTe8afD_u71f_SwDk_oWrSRRhuwNBlP_RsCURO7GQbQb1FpEJE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4gxOCLEVSsINTEGH2o3rW7223iCzbgiXcXHyDwttndbgGVnjnuEvj3zGx75S5AjI9tp7vtzG73m53pNwDvmOGyq3HwOlxdIpaUWWRiJqLY2I4onbDG0tbAYCh6R-zghJ80JEn0L8x8_J7HPP7sLswvysBi6MVJ9ghWKGxJJPm5yG9zOaT3rPxmCuvKrOHwuaeBheVnhTR5dR-2vJsi2cZJF1GsX4b2n8HTBj-Gu7XB12DJVevwuK4oeb0Oq_msgNtz-LI7JdYAfXodnlfhBQLuU8p6CSdzWHVUhboqQku2H4c-Wasm6ngBR_t7h3kvaoolRBZBCIsEAo-MJ9wa5tLUCc7jrNCFRA9FI0YiWjPNSiaYKDlOtaJbanLVUtSdxBaK5CUsV6PKvYLQMUss-LF2RjOhTWa57sSlRGcR0WKRBPBppkNlGyZxKmjxR5FHQUpXpHTVKj2AD-0Nf2sSjYdF33ujtHJ6_Jtyz1KujoffFBM_k-O8w1Q_gK2Z1VQz7S5VV4g088GjAN62l1HtFAXRlRtNSYaczFhKHsBGbeS2M_x-Id5J0wDSBfO3AkTGvXilOj_zpNwswRYzEcDH2UCZe6yH3jXxI-lfOlF7g68H7dHr_-hhB1Z7h4O-6n8f_tiEJ3ie11lHW7A8GU_dGwRUE7PtJ9MNS2gTgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CVVxeEIzLwgYECSF4yNYmtmNLvJSyMspWTYJpe7Nsxxm7pVPXStu_55zcWMUmxGMSx06Oj-Pv2F--A_COWS57Bp3X4-wSsSRXkY2ZiGLruiL3wllHSwM7Y7G1x0YH_KDm5lw0bPdmS7L6p4FUmorZxnmWN_l64g1_Zo-Jl8UwtpPsLnQkVwpjr06_P_ox-sPxkGXEVS6ysJ5UtbbPDVUsTEsdsvDlTZjzb-pku3-6iG7L6Wn4GB7VuDLsV47wBO74YhnuVZkmr5bhwaBJ7PYUPvXnpCZgDq_CoyI8QyB-SGyYcHYNw06K0BRZ6MgnpmFJ4qoEPJ7B3nDz52ArqpMoRA7BCYsEAhLFE-4s82nqBeexykwmMXIxiJ1I7sywnAkmco5DMOvlhkK4FG0nsYYseQ5LxaTwKxB65kgdPzbeGiaMVY6bbpxLDCIRRWZJAOuNDbWrFcYp0cWppkiDjK7J6Lo1egAf2hvOK3GN24u-LzulLWemJ8RJS7neH3_VTOwm-4Mu09sBrDW9puvheKF7QqSq3FQK4G17Gc1OuyOm8JM5laHgM5aSB_Ci6uS2MfyuIQ5K0wDShe5vC5BI9-KV4uhXKdbNEqxRiQA-No5y7bFue9ek9KR_2URv7nwetUcv_6OFN3B_98tQb38bf1-Fh3iaV2SkNViaTef-FeKsmX1dj6bfAAsdPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+malignant+transformation+and+cancer+progression&rft.jtitle=The+EMBO+journal&rft.au=Galluzzi%2C+Lorenzo&rft.au=Pietrocola%2C+Federico&rft.au=Bravo-San+Pedro%2C+Jos%C3%A9+Manuel&rft.au=Amaravadi%2C+Ravi+K&rft.date=2015-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=34&rft.issue=7&rft.spage=856&rft_id=info:doi/10.15252%2Fembj.201490784&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3641290231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon