Autophagy in malignant transformation and cancer progression
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is r...
Saved in:
Published in | The EMBO journal Vol. 34; no. 7; pp. 856 - 880 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.04.2015
Nature Publishing Group UK Springer Nature B.V BlackWell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.201490784 |
Cover
Abstract | Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Graphical Abstract
Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy. |
---|---|
AbstractList | Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy. Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. Graphical Abstract Autophagy has been described to have tumor‐suppressive as well as tumor‐promoting functions. This review discusses how stage and context alters the role for autophagy in cancer, and argues for further research prior to targeting autophagy in cancer therapy. |
Author | Karantza, Vassiliki Rubinsztein, David C Simonsen, Anne Codogno, Patrice Piacentini, Mauro Galluzzi, Lorenzo Penninger, Josef Gewirtz, David A Ryan, Kevin M Kimmelman, Alec Kumar, Sharad Thorburn, Andrew M Bravo‐San Pedro, José Manuel Baehrecke, Eric H Simon, Hans‐Uwe Velasco, Guillermo Pietrocola, Federico Debnath, Jayanta Maiuri, Maria Chiara Martin, Seamus J Amaravadi, Ravi K Kroemer, Guido Cecconi, Francesco Levine, Beth |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Galluzzi fullname: Galluzzi, Lorenzo email: deadoc@vodafone.it organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France – sequence: 2 givenname: Federico surname: Pietrocola fullname: Pietrocola, Federico organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France – sequence: 3 givenname: José Manuel surname: Bravo-San Pedro fullname: Bravo-San Pedro, José Manuel organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France – sequence: 4 givenname: Ravi K surname: Amaravadi fullname: Amaravadi, Ravi K organization: Abramson Cancer Center, University of Pennsylvania, PA, Philadelphia, USA – sequence: 5 givenname: Eric H surname: Baehrecke fullname: Baehrecke, Eric H organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, MA, Worcester, USA – sequence: 6 givenname: Francesco surname: Cecconi fullname: Cecconi, Francesco organization: Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark – sequence: 7 givenname: Patrice surname: Codogno fullname: Codogno, Patrice organization: Université Paris Descartes, Sorbonne Paris Cité, Paris, France – sequence: 8 givenname: Jayanta surname: Debnath fullname: Debnath, Jayanta organization: Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA, San Francisco, USA – sequence: 9 givenname: David A surname: Gewirtz fullname: Gewirtz, David A organization: Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, VA, RichmondVirginia, USA – sequence: 10 givenname: Vassiliki surname: Karantza fullname: Karantza, Vassiliki organization: Merck Research Laboratories, NJ, Rahway, USA – sequence: 11 givenname: Alec surname: Kimmelman fullname: Kimmelman, Alec organization: Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, MA, Boston, USA – sequence: 12 givenname: Sharad surname: Kumar fullname: Kumar, Sharad organization: Centre for Cancer Biology, University of South Australia, SA, Adelaide, Australia – sequence: 13 givenname: Beth surname: Levine fullname: Levine, Beth organization: Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA – sequence: 14 givenname: Maria Chiara surname: Maiuri fullname: Maiuri, Maria Chiara organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France – sequence: 15 givenname: Seamus J surname: Martin fullname: Martin, Seamus J organization: Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland – sequence: 16 givenname: Josef surname: Penninger fullname: Penninger, Josef organization: Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria – sequence: 17 givenname: Mauro surname: Piacentini fullname: Piacentini, Mauro organization: Department of Biology, University of Rome Tor Vergata, Rome, Italy – sequence: 18 givenname: David C surname: Rubinsztein fullname: Rubinsztein, David C organization: Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK – sequence: 19 givenname: Hans-Uwe surname: Simon fullname: Simon, Hans-Uwe organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 20 givenname: Anne surname: Simonsen fullname: Simonsen, Anne organization: Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway – sequence: 21 givenname: Andrew M surname: Thorburn fullname: Thorburn, Andrew M organization: Department of Pharmacology, University of Colorado School of Medicine, CO, Aurora, USA – sequence: 22 givenname: Guillermo surname: Velasco fullname: Velasco, Guillermo organization: Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain – sequence: 23 givenname: Kevin M surname: Ryan fullname: Ryan, Kevin M organization: Cancer Research UK Beatson Institute, Glasgow, UK – sequence: 24 givenname: Guido surname: Kroemer fullname: Kroemer, Guido organization: Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25712477$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v0zAchi00xLrBmRuKxIVLNn9_IIQ0qm2AOuAA2tFyEydzSexiJ7D-95hlq7pJEydL9vO8fu3fAdjzwVsAXiJ4hBhm-Nj2y9URhogqKCR9AmaIclhiKNgemEHMUUmRVPvgIKUVhJBJgZ6BfcwEwlSIGXh3Mg5hfWXaTeF80ZvOtd74oRii8akJsTeDC74wvi4q4ysbi3UMbbQp5e3n4GljumRf3K6H4MfZ6ff5x3Lx9fzT_GRRVhwJWnKpiGKEVUtqhbCcMaxqU0vFoWEcSaaIoQ3llDdsCWGNGoMUEiK3lTmhJofg_ZS7Hpe9rSvrc71Or6PrTdzoYJy-f-LdlW7Db02JzOk8B7y5DYjh12jToHuXKtt1xtswJo24xFLhDGf09QN0Fcbo8_MyxYVCBGOcqVe7jbZV7j42A2wCqhhSirbRlRtu_jIXdJ1GUN8MUP8boN4OMHvHD7y76MeNt5Pxx3V28z9cn158-Lwrw0lO2fOtjTuvffS-clJcGuz19j4Tf2ouiGD68su5pvwbuZxDqhfkL2OnzCc |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_3389_fonc_2021_599124 crossref_primary_10_3390_biology13060409 crossref_primary_10_1016_j_biochi_2022_10_004 crossref_primary_10_1016_j_bbadis_2022_166484 crossref_primary_10_1016_j_celrep_2019_06_010 crossref_primary_10_2147_CMAR_S241095 crossref_primary_10_18632_aging_203406 crossref_primary_10_3390_cancers12061697 crossref_primary_10_1002_adfm_202215244 crossref_primary_10_1016_j_ejps_2019_04_011 crossref_primary_10_1016_j_prp_2024_155597 crossref_primary_10_3389_fphar_2021_647350 crossref_primary_10_1038_s41418_019_0287_8 crossref_primary_10_1111_bjd_20889 crossref_primary_10_1016_j_molcel_2017_01_027 crossref_primary_10_1016_j_ijbiomac_2019_07_031 crossref_primary_10_1016_j_devcel_2018_02_019 crossref_primary_10_3389_fonc_2020_603661 crossref_primary_10_1016_j_bbcan_2016_11_003 crossref_primary_10_1016_j_cub_2016_11_055 crossref_primary_10_1016_j_lfs_2016_01_044 crossref_primary_10_1073_pnas_1908228116 crossref_primary_10_1080_15548627_2019_1598752 crossref_primary_10_1038_s41421_019_0110_1 crossref_primary_10_3390_molecules25214937 crossref_primary_10_1016_j_lfs_2020_117341 crossref_primary_10_1152_physrev_00044_2016 crossref_primary_10_3892_ol_2018_8123 crossref_primary_10_1371_journal_pone_0184909 crossref_primary_10_1038_cr_2016_110 crossref_primary_10_1080_23723556_2015_1046579 crossref_primary_10_3390_cells12081156 crossref_primary_10_1038_cr_2017_155 crossref_primary_10_1016_j_bbcan_2023_188946 crossref_primary_10_1016_j_jbo_2016_01_003 crossref_primary_10_3389_fonc_2017_00302 crossref_primary_10_3389_fphar_2024_1419806 crossref_primary_10_3390_cancers13051039 crossref_primary_10_3892_ol_2017_7426 crossref_primary_10_1007_s13205_023_03864_w crossref_primary_10_1016_j_toxlet_2022_01_020 crossref_primary_10_18632_oncotarget_14338 crossref_primary_10_1016_j_devcel_2021_02_010 crossref_primary_10_4103_egjp_egjp_28_24 crossref_primary_10_3390_cells8030234 crossref_primary_10_3390_cells8111308 crossref_primary_10_1093_jmcb_mjab053 crossref_primary_10_1016_j_ccr_2024_216006 crossref_primary_10_1038_s41598_018_21106_5 crossref_primary_10_3390_cells10061447 crossref_primary_10_1038_s41598_019_42220_y crossref_primary_10_1016_j_colsurfb_2021_112182 crossref_primary_10_1016_j_phrs_2016_03_031 crossref_primary_10_7717_peerj_8288 crossref_primary_10_1080_15548627_2016_1173799 crossref_primary_10_1111_joim_12609 crossref_primary_10_3389_fcell_2021_617801 crossref_primary_10_1016_j_bbcan_2016_02_001 crossref_primary_10_1189_jlb_4MR0216_079R crossref_primary_10_1016_j_critrevonc_2022_103702 crossref_primary_10_1038_s41598_024_71123_w crossref_primary_10_1080_15548627_2020_1856493 crossref_primary_10_1016_j_biopha_2020_110932 crossref_primary_10_1089_ars_2019_7872 crossref_primary_10_1002_cam4_5577 crossref_primary_10_1038_s41419_019_2011_5 crossref_primary_10_1016_j_ejphar_2020_173210 crossref_primary_10_1002_asia_202300308 crossref_primary_10_15212_AMM_2023_0018 crossref_primary_10_1007_s11033_021_06950_5 crossref_primary_10_1038_s41419_020_02835_w crossref_primary_10_1038_s41467_019_13572_w crossref_primary_10_3390_ph16050671 crossref_primary_10_1002_jcp_29479 crossref_primary_10_1038_s41419_022_05503_3 crossref_primary_10_1016_j_ejmech_2020_112421 crossref_primary_10_1080_15548627_2019_1687212 crossref_primary_10_1038_s41419_018_0498_9 crossref_primary_10_3892_ijo_2016_3505 crossref_primary_10_1016_j_trecan_2020_02_015 crossref_primary_10_1038_s41418_019_0474_7 crossref_primary_10_1172_JCI83013 crossref_primary_10_18632_aging_101686 crossref_primary_10_1038_s41419_018_0866_5 crossref_primary_10_1186_s13046_018_0884_2 crossref_primary_10_1016_j_dnarep_2021_103155 crossref_primary_10_1016_j_drup_2021_100779 crossref_primary_10_1080_15548627_2018_1504716 crossref_primary_10_18632_oncotarget_18974 crossref_primary_10_1016_j_ccell_2016_04_003 crossref_primary_10_1186_s12964_019_0422_7 crossref_primary_10_1038_s41419_018_1065_0 crossref_primary_10_1038_s41598_020_75598_1 crossref_primary_10_1017_S1431927619015071 crossref_primary_10_1038_s41564_019_0441_6 crossref_primary_10_1080_15548627_2016_1252890 crossref_primary_10_1007_s00018_016_2202_5 crossref_primary_10_1038_nature20815 crossref_primary_10_1038_s41598_019_47659_7 crossref_primary_10_3390_cells11203230 crossref_primary_10_1016_j_compbiomed_2022_105991 crossref_primary_10_31083_j_fbl2803047 crossref_primary_10_3892_ijo_2018_4486 crossref_primary_10_18632_oncotarget_9649 crossref_primary_10_1007_s10555_020_09883_w crossref_primary_10_1016_j_canlet_2018_01_044 crossref_primary_10_3390_ijms241612626 crossref_primary_10_3390_biology9010020 crossref_primary_10_1016_j_celrep_2022_111292 crossref_primary_10_1016_j_semcdb_2019_07_015 crossref_primary_10_18632_oncotarget_9647 crossref_primary_10_1016_j_canlet_2020_10_029 crossref_primary_10_1016_j_critrevonc_2023_104037 crossref_primary_10_1007_s10495_021_01691_z crossref_primary_10_1007_s11033_020_05669_z crossref_primary_10_3892_mmr_2017_7815 crossref_primary_10_1074_jbc_M115_656116 crossref_primary_10_1016_j_apsb_2019_03_006 crossref_primary_10_1186_s13287_018_1060_5 crossref_primary_10_3389_fonc_2020_562196 crossref_primary_10_1007_s12672_023_00644_z crossref_primary_10_1080_15548627_2015_1110667 crossref_primary_10_3390_ijms20174279 crossref_primary_10_1186_s12916_017_0873_x crossref_primary_10_1016_j_cmi_2016_07_019 crossref_primary_10_1016_j_taap_2016_09_010 crossref_primary_10_1016_j_nanoso_2024_101280 crossref_primary_10_1186_s13046_017_0634_x crossref_primary_10_1016_j_bbamcr_2022_119355 crossref_primary_10_1007_s11064_017_2308_7 crossref_primary_10_1096_fj_202000911R crossref_primary_10_1073_pnas_1603650113 crossref_primary_10_1158_1535_7163_MCT_15_0621 crossref_primary_10_15252_embj_201593596 crossref_primary_10_1016_j_ejmech_2022_114805 crossref_primary_10_1101_cshperspect_a033993 crossref_primary_10_1155_2018_1482795 crossref_primary_10_1016_j_scitotenv_2020_139425 crossref_primary_10_1186_s12860_016_0093_9 crossref_primary_10_3389_fnmol_2016_00107 crossref_primary_10_1016_j_phrs_2016_01_028 crossref_primary_10_3390_ijms22189807 crossref_primary_10_1155_2018_6797924 crossref_primary_10_1007_s00232_016_9874_5 crossref_primary_10_1111_iju_15021 crossref_primary_10_3324_haematol_2022_280884 crossref_primary_10_1007_s00432_018_2675_8 crossref_primary_10_1016_j_tiv_2020_104840 crossref_primary_10_1097_CMR_0000000000000780 crossref_primary_10_1371_journal_pone_0141308 crossref_primary_10_3389_fimmu_2018_01243 crossref_primary_10_1111_imr_12568 crossref_primary_10_15252_embj_2020106214 crossref_primary_10_1007_s10120_020_01118_9 crossref_primary_10_3389_fcell_2023_1347446 crossref_primary_10_1186_s13046_019_1093_3 crossref_primary_10_1111_1440_1681_13133 crossref_primary_10_3390_ijms18071496 crossref_primary_10_3390_cancers11010027 crossref_primary_10_1002_advs_202207475 crossref_primary_10_1177_0192623317735776 crossref_primary_10_1016_S1875_5364_25_60804_1 crossref_primary_10_4062_biomolther_2020_155 crossref_primary_10_1016_j_bmc_2019_05_015 crossref_primary_10_1080_23723556_2017_1367873 crossref_primary_10_3389_fmed_2022_834164 crossref_primary_10_1080_15548627_2017_1310356 crossref_primary_10_1016_j_bbrc_2016_01_171 crossref_primary_10_1016_j_mce_2024_112196 crossref_primary_10_1007_s00018_018_2759_2 crossref_primary_10_1016_j_cbi_2024_111193 crossref_primary_10_1186_s40164_024_00529_z crossref_primary_10_3390_ijms232112720 crossref_primary_10_3390_cancers11081209 crossref_primary_10_7717_peerj_7103 crossref_primary_10_1038_s41598_019_45641_x crossref_primary_10_1038_s41388_021_01658_z crossref_primary_10_2147_CMAR_S279672 crossref_primary_10_1016_j_molcel_2016_05_001 crossref_primary_10_1007_s10238_016_0436_z crossref_primary_10_1093_nar_gkz095 crossref_primary_10_3390_cells10051068 crossref_primary_10_3390_biology8040071 crossref_primary_10_1158_0008_5472_CAN_18_2553 crossref_primary_10_1038_s41419_019_1607_0 crossref_primary_10_1111_gtc_12776 crossref_primary_10_3390_ijms20143559 crossref_primary_10_1371_journal_pone_0197610 crossref_primary_10_2174_1574892814666191211130342 crossref_primary_10_1016_j_jgr_2023_02_002 crossref_primary_10_3390_cancers12010048 crossref_primary_10_1007_s10522_016_9655_7 crossref_primary_10_1186_s40364_023_00487_4 crossref_primary_10_1038_s42255_024_01196_4 crossref_primary_10_1186_s12906_020_2858_0 crossref_primary_10_1038_cddis_2016_93 crossref_primary_10_1074_jbc_M116_725796 crossref_primary_10_1016_j_tcb_2020_03_004 crossref_primary_10_1155_2021_5564040 crossref_primary_10_1007_s00018_024_05199_y crossref_primary_10_1016_j_biopha_2018_04_036 crossref_primary_10_3390_biology9030059 crossref_primary_10_3390_ijms25116141 crossref_primary_10_3390_cancers10090281 crossref_primary_10_18632_oncotarget_20403 crossref_primary_10_1016_j_bcp_2024_116075 crossref_primary_10_3390_cancers14010153 crossref_primary_10_1371_journal_pone_0232235 crossref_primary_10_15252_embj_2020107336 crossref_primary_10_1016_j_canlet_2024_216662 crossref_primary_10_3390_cells10020335 crossref_primary_10_3390_cancers13153752 crossref_primary_10_1038_s41598_019_56461_4 crossref_primary_10_3390_molecules29050948 crossref_primary_10_1007_s10549_020_05795_z crossref_primary_10_1016_j_cell_2016_07_031 crossref_primary_10_1038_s41418_019_0479_2 crossref_primary_10_1016_j_bcp_2018_10_027 crossref_primary_10_1016_j_bbrc_2021_06_082 crossref_primary_10_1007_s12282_023_01440_x crossref_primary_10_1016_j_bmc_2023_117262 crossref_primary_10_1002_mc_22406 crossref_primary_10_1111_febs_13545 crossref_primary_10_1155_2022_7925097 crossref_primary_10_3389_fcell_2019_00038 crossref_primary_10_1007_s13577_019_00295_9 crossref_primary_10_1038_onc_2017_193 crossref_primary_10_1042_BSR20170770 crossref_primary_10_3390_cancers13092042 crossref_primary_10_1007_s43188_023_00191_3 crossref_primary_10_3390_ijms24076019 crossref_primary_10_1177_2050312120926877 crossref_primary_10_1007_s13273_022_00296_0 crossref_primary_10_18632_oncotarget_8841 crossref_primary_10_3389_fonc_2020_589849 crossref_primary_10_3390_cancers14030686 crossref_primary_10_47470_0016_9900_2024_103_2_152_157 crossref_primary_10_1038_s41564_019_0633_0 crossref_primary_10_1007_s13577_023_00996_2 crossref_primary_10_1111_jcmm_17421 crossref_primary_10_1590_0001_3765201620160127 crossref_primary_10_1016_j_omto_2021_04_007 crossref_primary_10_1111_1756_185X_14665 crossref_primary_10_1038_s41388_020_01433_6 crossref_primary_10_1016_j_tcb_2016_04_006 crossref_primary_10_1074_jbc_RA117_001469 crossref_primary_10_21294_1814_4861_2021_20_6_134_140 crossref_primary_10_2139_ssrn_4047255 crossref_primary_10_3389_fphar_2020_591400 crossref_primary_10_3389_fphar_2024_1375585 crossref_primary_10_1002_jcb_30517 crossref_primary_10_1002_med_21571 crossref_primary_10_1080_15548627_2017_1380757 crossref_primary_10_1002_ptr_7796 crossref_primary_10_1007_s12105_023_01556_8 crossref_primary_10_3390_biomedicines11020618 crossref_primary_10_1038_cddis_2015_349 crossref_primary_10_1080_15548627_2016_1154244 crossref_primary_10_1002_jnr_25254 crossref_primary_10_18632_aging_102167 crossref_primary_10_1080_15548627_2023_2258052 crossref_primary_10_1016_j_jid_2020_10_004 crossref_primary_10_1016_j_tranon_2018_08_014 crossref_primary_10_1055_s_0044_1801293 crossref_primary_10_1038_s41419_021_03957_5 crossref_primary_10_1038_s41427_022_00422_3 crossref_primary_10_1080_23723556_2020_1789418 crossref_primary_10_1016_j_omtn_2017_10_002 crossref_primary_10_1016_j_envint_2018_02_016 crossref_primary_10_1038_s41419_023_06305_x crossref_primary_10_3892_mmr_2016_6003 crossref_primary_10_1146_annurev_biochem_061516_044820 crossref_primary_10_1038_s41419_019_1446_z crossref_primary_10_18632_oncotarget_7540 crossref_primary_10_1016_j_bbagen_2017_11_013 crossref_primary_10_1038_s41598_021_98544_1 crossref_primary_10_1042_BST20150124 crossref_primary_10_1111_jcmm_17696 crossref_primary_10_1080_15548627_2020_1805214 crossref_primary_10_4045_tidsskr_16_0908 crossref_primary_10_1007_s00259_017_3695_3 crossref_primary_10_1038_s41419_021_04254_x crossref_primary_10_1038_nm_3944 crossref_primary_10_1186_s13046_019_1148_5 crossref_primary_10_3390_cancers12102951 crossref_primary_10_1080_15548627_2020_1816342 crossref_primary_10_1371_journal_pone_0162977 crossref_primary_10_3390_cells10102517 crossref_primary_10_3389_fimmu_2019_02203 crossref_primary_10_7717_peerj_4340 crossref_primary_10_1080_15384101_2020_1867780 crossref_primary_10_1590_1678_4685_gmb_2020_0014 crossref_primary_10_1016_j_dib_2019_104406 crossref_primary_10_1080_15548627_2019_1569947 crossref_primary_10_1016_j_gene_2019_144323 crossref_primary_10_1016_j_molcel_2015_07_021 crossref_primary_10_15252_embj_201592864 crossref_primary_10_1016_j_ydbio_2021_04_008 crossref_primary_10_1152_ajpcell_00337_2023 crossref_primary_10_1080_23723556_2017_1325550 crossref_primary_10_1038_cdd_2017_41 crossref_primary_10_1038_onc_2017_175 crossref_primary_10_1111_jcmm_70076 crossref_primary_10_1021_acs_jmedchem_2c00275 crossref_primary_10_1051_medsci_20173303010 crossref_primary_10_1038_s41598_019_47345_8 crossref_primary_10_1080_15548627_2018_1539592 crossref_primary_10_1186_s41232_022_00235_5 crossref_primary_10_1002_jcb_29339 crossref_primary_10_1042_BSR20171440 crossref_primary_10_3390_cancers10010018 crossref_primary_10_3390_molecules24213976 crossref_primary_10_3892_or_2017_5637 crossref_primary_10_1007_s10585_021_10130_x crossref_primary_10_1083_jcb_202308099 crossref_primary_10_18632_oncotarget_11408 crossref_primary_10_1073_pnas_1515617113 crossref_primary_10_1038_s41523_025_00722_1 crossref_primary_10_3390_v9120372 crossref_primary_10_3389_fonc_2016_00240 crossref_primary_10_1038_s41467_017_02536_7 crossref_primary_10_1111_1759_7714_13287 crossref_primary_10_18632_oncotarget_6810 crossref_primary_10_1016_j_chom_2020_07_010 crossref_primary_10_18632_oncotarget_5966 crossref_primary_10_1016_j_phymed_2022_154560 crossref_primary_10_1089_acm_2017_0016 crossref_primary_10_4252_wjsc_v12_i11_1307 crossref_primary_10_1016_j_arr_2023_101967 crossref_primary_10_1242_jcs_215210 crossref_primary_10_3390_ijms18020367 crossref_primary_10_1016_j_nano_2020_102309 crossref_primary_10_3390_antiox10071138 crossref_primary_10_1155_2018_4231591 crossref_primary_10_3892_etm_2019_7803 crossref_primary_10_18632_oncotarget_7910 crossref_primary_10_2147_OTT_S267915 crossref_primary_10_1016_j_biopha_2019_109441 crossref_primary_10_1080_21541264_2016_1221491 crossref_primary_10_3390_cancers12051119 crossref_primary_10_1038_s41598_020_71527_4 crossref_primary_10_3892_ijo_2020_5106 crossref_primary_10_3389_fonc_2020_619727 crossref_primary_10_1007_s11523_018_0565_2 crossref_primary_10_1016_j_ijbiomac_2025_141528 crossref_primary_10_3389_fonc_2017_00051 crossref_primary_10_3389_fgene_2022_894990 crossref_primary_10_3389_fonc_2017_00295 crossref_primary_10_3390_biomedicines11010197 crossref_primary_10_3390_ijms20123010 crossref_primary_10_1093_carcin_bgac060 crossref_primary_10_1016_j_canlet_2019_06_001 crossref_primary_10_1080_15548627_2018_1501133 crossref_primary_10_1038_s42003_020_01362_w crossref_primary_10_1016_j_ccell_2016_05_016 crossref_primary_10_3389_fonc_2017_00028 crossref_primary_10_1016_j_phrs_2020_105207 crossref_primary_10_1038_s41419_022_04509_1 crossref_primary_10_1080_15384101_2023_2216504 crossref_primary_10_3389_fcell_2023_1177440 crossref_primary_10_1038_nchembio_1909 crossref_primary_10_1186_s13046_018_0784_5 crossref_primary_10_1523_JNEUROSCI_1066_19_2019 crossref_primary_10_1016_j_jhep_2019_08_026 crossref_primary_10_3892_ol_2019_11057 crossref_primary_10_1186_s12967_024_06063_0 crossref_primary_10_1002_1878_0261_12155 crossref_primary_10_1016_j_ijbiomac_2024_132732 crossref_primary_10_18632_oncotarget_5990 crossref_primary_10_1038_nrd_2017_22 crossref_primary_10_3390_cancers13133287 crossref_primary_10_3390_biom11010065 crossref_primary_10_1016_j_bj_2016_12_004 crossref_primary_10_1021_acs_jmedchem_5b00511 crossref_primary_10_3389_fonc_2020_605314 crossref_primary_10_1038_s41419_020_2349_8 crossref_primary_10_1093_hmg_ddac201 crossref_primary_10_1074_jbc_RA118_003547 crossref_primary_10_1016_j_cellsig_2018_10_017 crossref_primary_10_3390_cancers12113461 crossref_primary_10_3389_fonc_2017_00081 crossref_primary_10_1038_s41467_017_00468_w crossref_primary_10_1038_s41389_020_00278_8 crossref_primary_10_3389_fonc_2021_603224 crossref_primary_10_3390_ijms18091920 crossref_primary_10_1111_febs_14274 crossref_primary_10_1038_s41389_018_0054_6 crossref_primary_10_1080_01652176_2024_2419585 crossref_primary_10_1089_ars_2016_6898 crossref_primary_10_1038_cdd_2015_54 crossref_primary_10_1016_j_str_2015_07_011 crossref_primary_10_3389_fragi_2024_1447370 crossref_primary_10_1038_s41420_023_01600_0 crossref_primary_10_3389_fonc_2018_00073 crossref_primary_10_1038_nrclinonc_2016_183 crossref_primary_10_15252_embj_2021109288 crossref_primary_10_1016_j_lfs_2020_118745 crossref_primary_10_1080_23723556_2021_1947169 crossref_primary_10_1002_tox_23935 crossref_primary_10_14336_AD_2020_0314 crossref_primary_10_1038_s41598_024_51406_y crossref_primary_10_1152_ajpcell_00295_2016 crossref_primary_10_1016_j_gendis_2017_12_003 crossref_primary_10_1038_s41598_023_36844_4 crossref_primary_10_1080_2162402X_2015_1088631 crossref_primary_10_18632_oncotarget_13892 crossref_primary_10_3390_antiox10121883 crossref_primary_10_15252_embj_201796697 crossref_primary_10_1158_1940_6207_CAPR_16_0249 crossref_primary_10_3390_molecules28083289 crossref_primary_10_1007_s10495_018_1458_7 crossref_primary_10_1158_1078_0432_CCR_15_1808 crossref_primary_10_1186_s13058_024_01951_1 crossref_primary_10_18632_oncotarget_24331 crossref_primary_10_6061_clinics_2018_e814s crossref_primary_10_1016_j_arr_2023_101985 crossref_primary_10_1038_s41598_022_17533_0 crossref_primary_10_3389_fbioe_2020_614419 crossref_primary_10_1038_s41419_021_03668_x crossref_primary_10_1080_07357907_2016_1272695 crossref_primary_10_1080_15548627_2016_1213927 crossref_primary_10_3389_fphar_2022_870282 crossref_primary_10_3389_fcell_2019_00050 crossref_primary_10_1080_10942912_2018_1560312 crossref_primary_10_1242_dev_146506 crossref_primary_10_62347_XTDZ5687 crossref_primary_10_18632_oncotarget_5797 crossref_primary_10_3390_antiox6040088 crossref_primary_10_1517_14728222_2016_1085971 crossref_primary_10_3390_cells12060897 crossref_primary_10_1016_j_jddst_2024_105833 crossref_primary_10_15789_1563_0625_SON_1991 crossref_primary_10_3390_biom12121902 crossref_primary_10_3389_fonc_2020_00409 crossref_primary_10_3389_fmed_2022_959348 crossref_primary_10_1016_j_critrevonc_2020_103063 crossref_primary_10_1016_j_bbrc_2021_10_067 crossref_primary_10_1155_2021_5510318 crossref_primary_10_1186_s12967_017_1308_3 crossref_primary_10_1016_j_jid_2019_11_014 crossref_primary_10_1016_j_pnpbp_2019_109674 crossref_primary_10_1080_15548627_2021_1988359 crossref_primary_10_3390_ijms18092016 crossref_primary_10_3390_jcm10225398 crossref_primary_10_1186_s12885_020_06964_5 crossref_primary_10_1016_j_cbi_2019_108751 crossref_primary_10_1080_10799893_2023_2291563 crossref_primary_10_1016_j_tips_2018_10_004 crossref_primary_10_1080_23723556_2019_1573080 crossref_primary_10_1186_s12935_019_0951_6 crossref_primary_10_1016_j_ceb_2016_02_010 crossref_primary_10_1155_2020_8899337 crossref_primary_10_1016_j_pdpdt_2021_102605 crossref_primary_10_1016_j_medp_2023_100004 crossref_primary_10_1038_nri_2016_107 crossref_primary_10_18632_oncotarget_11396 crossref_primary_10_1155_2020_6352876 crossref_primary_10_1111_joim_12714 crossref_primary_10_3390_cells10061330 crossref_primary_10_4997_jrcpe_2016_403 crossref_primary_10_1016_j_semcancer_2020_02_007 crossref_primary_10_2174_1574888X15666200502000807 crossref_primary_10_3389_fcell_2021_756911 crossref_primary_10_3892_etm_2018_5742 crossref_primary_10_1007_s11357_024_01444_1 crossref_primary_10_1038_cdd_2015_126 crossref_primary_10_1186_s13008_016_0022_5 crossref_primary_10_1097_MD_0000000000033698 crossref_primary_10_3389_fonc_2015_00173 crossref_primary_10_1158_1541_7786_MCR_16_0035 crossref_primary_10_1182_blood_2016_07_692707 crossref_primary_10_1515_oncologie_2024_0097 crossref_primary_10_1007_s11696_024_03845_0 crossref_primary_10_1016_j_scr_2017_09_006 crossref_primary_10_1126_sciadv_1600200 crossref_primary_10_18632_oncotarget_15537 crossref_primary_10_1186_s12935_017_0499_2 crossref_primary_10_3389_fonc_2019_00769 crossref_primary_10_1007_s00018_015_2104_y crossref_primary_10_1016_j_tem_2023_05_004 crossref_primary_10_1186_s12935_020_01196_w crossref_primary_10_18632_oncotarget_25366 crossref_primary_10_1039_C8TX00298C crossref_primary_10_1038_s41589_023_01364_9 crossref_primary_10_12677_bp_2024_142013 crossref_primary_10_3389_fcell_2018_00146 crossref_primary_10_1142_S0192415X19500344 crossref_primary_10_1038_s41401_018_0165_9 crossref_primary_10_1093_brain_awv371 crossref_primary_10_1038_s41598_017_18935_1 crossref_primary_10_1101_gad_305292_117 crossref_primary_10_4251_wjgo_v12_i6_619 crossref_primary_10_1016_j_canlet_2018_07_028 crossref_primary_10_1016_j_bbcan_2024_189196 crossref_primary_10_1016_j_canlet_2016_03_005 crossref_primary_10_1038_nrn_2016_51 crossref_primary_10_18632_oncotarget_13132 crossref_primary_10_1016_j_semcancer_2019_07_013 crossref_primary_10_1158_1535_7163_MCT_17_0136 crossref_primary_10_1186_s12935_017_0486_7 crossref_primary_10_3390_cells9071586 crossref_primary_10_1007_s12031_016_0796_6 crossref_primary_10_1080_15548627_2020_1846302 crossref_primary_10_1136_jitc_2021_002722 crossref_primary_10_1038_nrurol_2016_272 crossref_primary_10_1186_s12935_024_03506_y crossref_primary_10_3390_ma14123373 crossref_primary_10_1186_s13058_023_01720_6 crossref_primary_10_1111_jcmm_14840 crossref_primary_10_18632_aging_101325 crossref_primary_10_1080_15548627_2022_2105562 crossref_primary_10_18632_aging_103507 crossref_primary_10_3390_nu13041212 crossref_primary_10_1016_j_intimp_2022_108806 crossref_primary_10_3390_ijms21186635 crossref_primary_10_1016_j_lfs_2020_117466 crossref_primary_10_1002_cbin_70006 crossref_primary_10_1016_j_compbiolchem_2024_108235 crossref_primary_10_1080_15548627_2021_1872188 crossref_primary_10_1016_j_cmet_2019_03_003 crossref_primary_10_1038_cdd_2016_120 crossref_primary_10_1080_15548627_2020_1733262 crossref_primary_10_1126_scisignal_aag2791 crossref_primary_10_1007_s00109_019_01829_2 crossref_primary_10_1002_ijc_30205 crossref_primary_10_1007_s10522_022_09978_7 crossref_primary_10_1007_s13402_024_01025_6 crossref_primary_10_1038_s41556_018_0042_2 crossref_primary_10_18632_oncotarget_27550 crossref_primary_10_3389_fphar_2020_00547 crossref_primary_10_1038_cdd_2016_111 crossref_primary_10_1080_15548627_2016_1268300 crossref_primary_10_1016_j_comtox_2021_100191 crossref_primary_10_1080_2162402X_2019_1591878 crossref_primary_10_3390_cells11030426 crossref_primary_10_1016_j_biopha_2024_116684 crossref_primary_10_18632_oncotarget_7346 crossref_primary_10_1371_journal_pone_0288380 crossref_primary_10_1038_s41392_023_01667_2 crossref_primary_10_3389_fmolb_2021_790804 crossref_primary_10_1016_j_bbamcr_2023_119537 crossref_primary_10_1080_08820139_2019_1682600 crossref_primary_10_1080_15548627_2018_1427022 crossref_primary_10_3389_pore_2021_1609976 crossref_primary_10_1007_s10565_020_09553_1 crossref_primary_10_1080_15548627_2019_1628540 crossref_primary_10_3389_fcell_2018_00109 crossref_primary_10_18632_aging_203362 crossref_primary_10_1021_acs_jmedchem_1c00870 crossref_primary_10_3322_caac_21694 crossref_primary_10_3390_molecules25235597 crossref_primary_10_3390_cancers12092463 crossref_primary_10_1002_hep_30071 crossref_primary_10_1016_j_biotechadv_2018_01_007 crossref_primary_10_3390_molecules29051093 crossref_primary_10_1007_s10637_019_00812_5 crossref_primary_10_1186_s40364_023_00466_9 crossref_primary_10_1186_s13578_019_0327_6 crossref_primary_10_3389_fnmol_2024_1423132 crossref_primary_10_1371_journal_pone_0258741 crossref_primary_10_3389_fimmu_2018_01577 crossref_primary_10_1002_jimd_12061 crossref_primary_10_1080_15384101_2015_1064206 crossref_primary_10_1016_j_bbamcr_2018_05_007 crossref_primary_10_1158_1535_7163_MCT_20_0182 crossref_primary_10_18632_oncotarget_12084 crossref_primary_10_1007_s11033_020_05886_6 crossref_primary_10_18632_oncotarget_16685 crossref_primary_10_1007_s42764_020_00016_9 crossref_primary_10_1155_2020_7397132 crossref_primary_10_1016_j_ijbiomac_2018_06_005 crossref_primary_10_1042_BCJ20200064 crossref_primary_10_1016_j_pnpbp_2015_05_010 crossref_primary_10_1038_nrc_2017_53 crossref_primary_10_3390_ijms22189722 crossref_primary_10_1038_cddis_2015_181 crossref_primary_10_1016_j_bcp_2020_114098 crossref_primary_10_1186_s12885_015_1761_4 crossref_primary_10_1021_acs_jafc_3c02257 crossref_primary_10_1007_s00018_016_2209_y crossref_primary_10_1016_j_jmb_2016_02_027 crossref_primary_10_1016_j_critrevonc_2025_104700 crossref_primary_10_1080_23723556_2016_1198299 crossref_primary_10_2147_IJN_S272902 crossref_primary_10_4252_wjsc_v14_i4_310 crossref_primary_10_1016_j_pharmthera_2017_10_017 crossref_primary_10_1134_S0006297916060031 crossref_primary_10_3390_ijms21197101 crossref_primary_10_1002_adma_202305394 crossref_primary_10_1073_pnas_2113465119 crossref_primary_10_3390_biomedicines9020147 crossref_primary_10_1038_nrclinonc_2016_60 crossref_primary_10_1038_onc_2016_333 crossref_primary_10_1371_journal_pone_0221413 crossref_primary_10_1002_mco2_150 crossref_primary_10_1016_j_bbrc_2023_03_039 crossref_primary_10_3390_pharmaceutics14030663 crossref_primary_10_1111_jcmm_14654 crossref_primary_10_3390_ijms19103069 crossref_primary_10_1146_annurev_biochem_060815_014556 crossref_primary_10_1016_j_gene_2017_05_006 crossref_primary_10_1038_s41418_020_00699_3 crossref_primary_10_1158_2326_6066_CIR_16_0197 crossref_primary_10_18632_oncotarget_17554 crossref_primary_10_1016_j_ecoenv_2023_115273 crossref_primary_10_3390_ijms22083995 crossref_primary_10_1016_j_tiv_2016_09_006 crossref_primary_10_3390_cells10113241 crossref_primary_10_1098_rsob_180106 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3389_fimmu_2015_00588 crossref_primary_10_3389_fgene_2023_1148192 crossref_primary_10_3390_cancers15174322 crossref_primary_10_1016_j_gene_2017_06_053 crossref_primary_10_1155_2017_4629495 crossref_primary_10_3390_cancers15041070 crossref_primary_10_1080_15548627_2016_1271513 crossref_primary_10_1016_j_tcb_2015_11_001 crossref_primary_10_3390_cimb45060319 crossref_primary_10_1016_j_yexcr_2019_111810 crossref_primary_10_1016_j_bbcan_2020_188418 crossref_primary_10_1016_j_molonc_2016_04_001 crossref_primary_10_3892_ol_2021_12871 crossref_primary_10_1096_fj_202201407R crossref_primary_10_18632_oncotarget_25197 crossref_primary_10_1038_s41419_021_03442_z crossref_primary_10_1016_j_tice_2022_101964 crossref_primary_10_1016_j_gendis_2015_12_002 crossref_primary_10_1038_nri_2017_99 crossref_primary_10_1177_1756284818821560 crossref_primary_10_3390_ph16010092 crossref_primary_10_1016_j_devcel_2020_02_005 crossref_primary_10_3389_fonc_2019_00942 crossref_primary_10_1016_j_taap_2017_09_004 crossref_primary_10_3390_separations8070092 crossref_primary_10_1016_j_immuni_2016_01_020 crossref_primary_10_1080_15548627_2019_1582951 crossref_primary_10_1038_s41418_018_0267_4 crossref_primary_10_1158_1078_0432_CCR_17_0249 crossref_primary_10_1080_15548627_2021_1936932 crossref_primary_10_1016_j_toxlet_2020_06_015 crossref_primary_10_1016_j_jconrel_2015_10_023 crossref_primary_10_1177_1010428317705762 crossref_primary_10_1016_j_repbio_2023_100846 crossref_primary_10_1186_s12935_020_01250_7 crossref_primary_10_1016_j_biopha_2018_03_126 crossref_primary_10_1186_s13046_019_1359_9 crossref_primary_10_1016_j_molcel_2017_07_003 crossref_primary_10_1002_cam4_5407 crossref_primary_10_1016_j_bcp_2019_03_023 crossref_primary_10_1186_s12935_023_02954_2 crossref_primary_10_1038_s41420_020_00365_0 crossref_primary_10_1002_cam4_1281 crossref_primary_10_3109_07853890_2015_1040831 crossref_primary_10_3892_or_2015_4505 crossref_primary_10_1038_bjc_2017_118 crossref_primary_10_1002_mc_22757 crossref_primary_10_1007_s11033_021_06817_9 crossref_primary_10_1016_j_canlet_2021_09_010 crossref_primary_10_3390_biom14060649 crossref_primary_10_1016_j_bios_2024_116123 crossref_primary_10_3389_fgene_2019_00846 crossref_primary_10_2478_acph_2022_0025 crossref_primary_10_1186_s12967_016_0796_x crossref_primary_10_3389_fimmu_2018_00654 crossref_primary_10_1111_imr_13274 crossref_primary_10_3390_cancers13092168 crossref_primary_10_1146_annurev_pharmtox_010715_103101 crossref_primary_10_3390_cells8010044 crossref_primary_10_3390_cancers12123594 crossref_primary_10_18632_oncotarget_8727 crossref_primary_10_3389_fcell_2021_644851 crossref_primary_10_1002_med_21446 crossref_primary_10_5937_bii2101081e crossref_primary_10_1080_2162402X_2015_1126063 crossref_primary_10_1074_jbc_M116_756536 crossref_primary_10_1038_ncomms11942 crossref_primary_10_1016_j_biocel_2016_02_009 crossref_primary_10_1007_s11864_023_01053_8 crossref_primary_10_1111_jcmm_13181 crossref_primary_10_1016_j_jds_2020_05_007 crossref_primary_10_1016_j_yexcr_2020_111981 crossref_primary_10_1080_14728222_2017_1349754 crossref_primary_10_3390_ijerph182111125 crossref_primary_10_3390_toxins8070203 crossref_primary_10_1002_med_21695 crossref_primary_10_1038_s42003_021_01651_y crossref_primary_10_18632_oncotarget_6318 crossref_primary_10_1016_j_molcel_2017_04_027 crossref_primary_10_2174_0929867326666190402120231 crossref_primary_10_1016_j_cellin_2023_100127 crossref_primary_10_1039_D1NR05512G crossref_primary_10_1093_bfgp_elab043 crossref_primary_10_1038_cddis_2016_264 crossref_primary_10_1038_s41418_017_0012_4 crossref_primary_10_1080_23723556_2018_1445941 crossref_primary_10_1088_1748_605X_adb673 crossref_primary_10_1016_j_canlet_2022_216032 crossref_primary_10_3390_ijms23052758 crossref_primary_10_1080_15548627_2019_1580105 crossref_primary_10_1038_s41419_020_02986_w crossref_primary_10_3390_v10110599 crossref_primary_10_1093_cvr_cvad035 crossref_primary_10_1016_j_cnd_2016_01_006 crossref_primary_10_3390_ijms221910453 crossref_primary_10_3390_cells13211816 crossref_primary_10_18632_oncotarget_11736 crossref_primary_10_1073_pnas_1700200114 crossref_primary_10_15252_emmm_201910469 crossref_primary_10_3389_fcell_2022_1022191 crossref_primary_10_1021_acsmedchemlett_6b00392 crossref_primary_10_1186_s12964_024_01526_9 crossref_primary_10_3390_cancers14194769 crossref_primary_10_1016_j_preteyeres_2016_08_001 crossref_primary_10_18632_oncotarget_9601 crossref_primary_10_1007_s12094_022_02869_w crossref_primary_10_1080_2162402X_2016_1174801 crossref_primary_10_1093_carcin_bgab030 crossref_primary_10_3892_etm_2018_6219 crossref_primary_10_3892_ijo_2020_4967 crossref_primary_10_1038_onc_2016_237 crossref_primary_10_1007_s00432_021_03598_3 crossref_primary_10_3389_fonc_2020_00281 crossref_primary_10_3322_caac_21818 crossref_primary_10_1016_j_biopha_2018_06_024 crossref_primary_10_1051_medsci_20183401015 crossref_primary_10_1016_j_canlet_2017_09_049 crossref_primary_10_1007_s12013_022_01097_x crossref_primary_10_1038_onc_2017_267 crossref_primary_10_1038_s41571_021_00579_w crossref_primary_10_3748_wjg_v29_i6_997 crossref_primary_10_1002_hep4_1429 crossref_primary_10_1016_j_fct_2023_114060 crossref_primary_10_1111_gtc_12812 crossref_primary_10_1038_s41420_019_0234_y crossref_primary_10_1155_2020_8537381 crossref_primary_10_3389_fonc_2020_587343 crossref_primary_10_3390_cancers15020369 crossref_primary_10_1002_ijc_31190 crossref_primary_10_1080_15548627_2018_1489946 crossref_primary_10_1152_ajpgi_00138_2017 crossref_primary_10_1080_2162402X_2021_1893466 crossref_primary_10_1007_s10555_020_09925_3 crossref_primary_10_1186_s13046_017_0549_6 crossref_primary_10_1016_j_cmet_2015_05_014 crossref_primary_10_3389_fimmu_2015_00402 crossref_primary_10_3892_ol_2017_5963 crossref_primary_10_3892_or_2023_8616 crossref_primary_10_3892_ol_2024_14776 crossref_primary_10_1016_j_cmet_2017_04_004 crossref_primary_10_1083_jcb_201911036 crossref_primary_10_1007_s12253_020_00799_y crossref_primary_10_1038_cdd_2016_80 crossref_primary_10_1016_j_ccell_2018_03_022 crossref_primary_10_3390_ijms21218196 crossref_primary_10_3892_mmr_2019_10734 crossref_primary_10_1080_23723556_2016_1143077 crossref_primary_10_1016_j_tcb_2017_05_001 crossref_primary_10_1093_abbs_gmv077 crossref_primary_10_1080_23723556_2015_1078923 crossref_primary_10_1007_s00441_024_03942_2 crossref_primary_10_3748_wjg_v24_i41_4643 crossref_primary_10_1038_s41577_022_00760_x crossref_primary_10_1080_15548627_2017_1423439 crossref_primary_10_3390_cancers12010102 crossref_primary_10_1101_gad_275776_115 crossref_primary_10_2174_1568009622666220330194149 crossref_primary_10_3390_ijms18112351 crossref_primary_10_1038_cdd_2016_52 crossref_primary_10_1002_jor_23880 crossref_primary_10_1186_s12935_025_03636_x crossref_primary_10_1186_s13578_020_00426_y crossref_primary_10_1016_j_tice_2023_102160 crossref_primary_10_1007_s00520_020_05879_y crossref_primary_10_1016_j_ejmech_2019_05_088 crossref_primary_10_3892_ol_2017_7488 crossref_primary_10_1186_s13045_018_0638_9 crossref_primary_10_3390_biomedicines8110517 crossref_primary_10_1038_s41419_020_03052_1 crossref_primary_10_1038_s41375_019_0700_9 crossref_primary_10_3390_cancers13061258 crossref_primary_10_1080_15548627_2018_1450708 crossref_primary_10_1186_s12989_020_00372_0 crossref_primary_10_1038_cddis_2017_485 crossref_primary_10_3390_ijms24087671 crossref_primary_10_1016_j_imlet_2019_09_005 crossref_primary_10_1080_23723556_2022_2044263 crossref_primary_10_1155_2018_7010472 crossref_primary_10_1038_s41418_019_0403_9 crossref_primary_10_1016_j_ccell_2017_06_009 crossref_primary_10_1002_jcp_30419 crossref_primary_10_1042_CS20171158 crossref_primary_10_1039_C8TB02390E crossref_primary_10_3389_fonc_2017_00174 crossref_primary_10_4155_fmc_15_166 crossref_primary_10_1002_mnfr_201901231 crossref_primary_10_1016_j_isci_2024_109168 crossref_primary_10_1016_j_celrep_2016_04_065 crossref_primary_10_1038_s41598_021_87966_6 crossref_primary_10_1053_j_gastro_2015_09_042 crossref_primary_10_1016_j_biopha_2023_114762 crossref_primary_10_3390_cells12162061 crossref_primary_10_3390_cancers9120161 crossref_primary_10_1242_jcs_261028 crossref_primary_10_3389_fonc_2017_00140 crossref_primary_10_3390_medicina58040467 crossref_primary_10_1177_15330338211049000 crossref_primary_10_1080_15548627_2017_1290751 crossref_primary_10_3390_cancers11030312 crossref_primary_10_1038_s41418_020_00627_5 crossref_primary_10_1038_s41418_024_01314_5 crossref_primary_10_18632_oncotarget_21138 crossref_primary_10_1016_j_tcb_2016_09_001 crossref_primary_10_1111_cpr_12749 crossref_primary_10_4251_wjgo_v15_i6_979 crossref_primary_10_1016_j_devcel_2024_05_004 crossref_primary_10_1016_j_bioorg_2023_107039 crossref_primary_10_1016_j_coph_2016_02_004 crossref_primary_10_3390_ijms232314890 crossref_primary_10_1038_s41418_019_0480_9 crossref_primary_10_3390_cancers14061462 crossref_primary_10_1002_mc_23006 crossref_primary_10_1124_mol_116_106070 crossref_primary_10_1016_j_semcancer_2017_01_008 crossref_primary_10_1016_j_semcancer_2019_05_020 crossref_primary_10_1016_j_cmet_2022_11_001 crossref_primary_10_4103_tmj_tmj_52_23 crossref_primary_10_1002_med_21473 crossref_primary_10_3390_cells11010057 crossref_primary_10_1016_j_jip_2024_108225 crossref_primary_10_1039_C6RA13431A crossref_primary_10_3748_wjg_v22_i1_300 crossref_primary_10_1016_j_bcp_2017_11_021 crossref_primary_10_1016_j_trsl_2017_11_007 crossref_primary_10_1016_j_jtcme_2023_02_004 crossref_primary_10_1038_s41419_020_02880_5 crossref_primary_10_1002_cmdc_201500515 crossref_primary_10_1007_s10495_015_1176_3 crossref_primary_10_3389_fpsyg_2021_803421 crossref_primary_10_18632_oncotarget_6986 crossref_primary_10_1080_07853890_2021_1981547 crossref_primary_10_3390_cancers13061299 crossref_primary_10_1016_j_ceca_2016_12_001 crossref_primary_10_18632_oncotarget_25758 crossref_primary_10_4236_ijcm_2020_114017 crossref_primary_10_4236_jbm_2016_44001 crossref_primary_10_1007_s00109_023_02387_4 crossref_primary_10_1038_cddis_2016_415 crossref_primary_10_1016_j_heliyon_2019_e02367 crossref_primary_10_1016_j_ctarc_2020_100229 crossref_primary_10_1111_jnc_14892 crossref_primary_10_3389_fgene_2020_00930 crossref_primary_10_1038_srep41977 crossref_primary_10_1051_medsci_20163204009 crossref_primary_10_1016_j_canlet_2018_05_031 crossref_primary_10_1007_s11033_021_06334_9 crossref_primary_10_1002_jcp_26583 crossref_primary_10_1002_hep_29577 crossref_primary_10_1016_j_cytogfr_2021_01_007 crossref_primary_10_1124_mol_116_105171 crossref_primary_10_1007_s12032_023_02125_3 crossref_primary_10_1016_j_jaut_2019_102335 crossref_primary_10_1155_2022_4445293 crossref_primary_10_18632_oncotarget_11385 crossref_primary_10_3390_cancers12030562 crossref_primary_10_3390_cells11223691 crossref_primary_10_3390_ijms19113466 crossref_primary_10_1038_s41420_020_00294_y crossref_primary_10_1007_s00432_023_05514_3 crossref_primary_10_3389_fonc_2021_743780 crossref_primary_10_1080_15548627_2017_1338556 crossref_primary_10_1158_2159_8290_CD_22_0504 crossref_primary_10_1039_D2CS00624C crossref_primary_10_3389_fimmu_2021_746621 crossref_primary_10_1016_j_ejmech_2020_112922 crossref_primary_10_1038_s41419_021_04015_w crossref_primary_10_3389_fneur_2022_841394 crossref_primary_10_1038_s41598_021_02503_9 |
Cites_doi | 10.1056/NEJM200104053441401 10.1038/onc.2008.117 10.1158/0008-5472.CAN-05-4412 10.1073/pnas.96.1.214 10.1038/323643a0 10.1126/science.1720570 10.1056/NEJM199403173301105 10.1038/emboj.2013.133 10.1016/0092-8674(90)90149-9 10.1038/cdd.2014.137 10.1038/sj.emboj.7601689 10.1128/IAI.05308-11 10.1016/j.ccell.2014.09.015 10.1158/0008-5472.CAN-06-4149 10.1016/j.molcel.2013.12.014 10.1126/science.1196371 10.1016/j.semcancer.2013.05.008 10.4161/auto.26398 10.1038/ni.2224 10.1126/science.3798106 10.1158/1078-0432.CCR-08-0144 10.1038/35050500 10.1172/JCI37948 10.1016/j.molcel.2008.06.001 10.1016/j.ceb.2009.12.001 10.1016/j.humpath.2007.11.013 10.1126/science.1232227 10.1016/j.cell.2013.11.019 10.1016/j.cmet.2011.01.009 10.1038/ncb2069 10.1038/ncb1426 10.1158/2159-8290.CD-14-0049 10.1038/ncb1634 10.1038/ng0597-64 10.1101/gad.1599207 10.1002/path.4351 10.1073/pnas.1118193109 10.1084/jem.20130977 10.1016/j.chom.2014.03.012 10.1038/onc.2014.285 10.1074/jbc.M804705200 10.1038/ncomms4496 10.1016/j.ccr.2008.02.001 10.4161/cc.24128 10.1016/j.cmet.2012.12.002 10.1101/gad.1110003 10.1038/332268a0 10.1146/annurev-genet-102808-114910 10.1158/0008-5472.CAN-13-3470 10.1038/nature12865 10.1016/j.cell.2009.03.048 10.1634/theoncologist.2014-0086 10.1073/pnas.0503224102 10.1126/science.1095569 10.1016/j.molcel.2013.08.003 10.1091/mbc.E10-06-0500 10.1016/j.cell.2005.02.031 10.1038/cdd.2010.116 10.1016/j.cell.2005.07.002 10.4161/auto.29119 10.1038/cdd.2014.183 10.1146/annurev-immunol-032712-100008 10.1038/nrclinonc.2014.41 10.1038/ncomms4056 10.1038/onc.2014.244 10.1038/onc.2012.512 10.1101/gad.2016111 10.1038/onc.2014.264 10.1126/science.1250256 10.1038/45257 10.1016/j.cell.2013.08.015 10.1146/annurev-pharmtox-010611-134537 10.1038/nature10189 10.1038/nri3532 10.1126/science.2537532 10.1038/ncomms6637 10.1073/pnas.1407001111 10.1126/science.1218395 10.1128/MCB.02246-06 10.1016/j.cub.2009.08.042 10.1016/j.devcel.2011.12.027 10.1126/science.1201940 10.1158/1535-7163.MCT-10-0688 10.1126/science.7939630 10.1038/5971 10.1083/jcb.200712064 10.1200/JCO.2004.02.141 10.1101/gad.2016211 10.4161/auto.29165 10.1126/science.2543076 10.1182/blood-2013-12-543793 10.1016/j.cmet.2014.02.010 10.4161/auto.27867 10.1038/ni.1823 10.1158/0008-5472.CAN-10-1604 10.1101/gad.2051011 10.1074/jbc.M701194200 10.1038/5042 10.1158/1541-7786.MCR-13-0614 10.1126/science.1193497 10.1126/science.1978757 10.1093/hmg/ddt381 10.4161/cc.22778 10.1073/pnas.79.24.7824 10.1038/onc.2008.24 10.1016/j.cell.2007.10.035 10.1038/20459 10.1111/j.1600-0463.2007.00858.x 10.1126/science.1208347 10.4161/cc.11.1.18564 10.1038/nature13611 10.1038/nature06639 10.1038/nature12437 10.1158/1078-0432.CCR-11-1282 10.1073/pnas.1121572109 10.1016/j.cell.2012.03.017 10.1016/j.ccr.2012.02.019 10.1038/358080a0 10.1126/science.277.5327.805 10.1038/sj.onc.1206622 10.4161/auto.28984 10.1172/JCI62973 10.1038/cdd.2011.146 10.1016/j.molcel.2006.04.014 10.1016/j.ebiom.2015.01.008 10.1158/0008-5472.CAN-07-2069 10.1101/gad.521709 10.1016/j.cell.2012.01.058 10.1074/jbc.M110.118976 10.1074/jbc.M800102200 10.1038/cdd.2012.43 10.1101/gad.1565707 10.1182/blood-2011-08-373639 10.1016/j.ccr.2004.06.007 10.1038/sj.onc.1207539 10.1371/journal.pgen.1004626 10.4161/auto.29231 10.1101/gad.231894.113 10.1074/jbc.M113.529511 10.4161/auto.29568 10.1155/2011/865819 10.1038/nrd3802 10.1038/ncomms3130 10.1016/j.ccr.2014.06.025 10.1038/ncb839 10.1038/nature06030 10.1002/cncr.23323 10.1016/j.cell.2011.02.013 10.1002/cncr.23892 10.1038/nature00766 10.1053/j.gastro.2013.08.035 10.1016/j.cell.2013.05.039 10.1038/nrclinonc.2011.71 10.1016/j.cell.2011.10.026 10.1016/j.cell.2009.02.024 10.1101/gad.1545107 10.4161/auto.34398 10.1101/gad.219642.113 10.1126/science.1103966 10.1038/ncomms6276 10.1091/mbc.e08-12-1248 10.1038/cdd.2008.131 10.1073/pnas.1104361108 10.1038/nrd4145 10.1016/j.molcel.2011.02.009 10.1158/0008-5472.CAN-09-0910 10.1073/pnas.052713099 10.1016/j.ccr.2011.12.006 10.1016/j.tibs.2012.02.008 10.1038/nrm3696 10.1016/j.cell.2012.03.003 10.1158/0008-5472.CAN-12-4142 10.1111/nyas.12362 10.1158/2159-8290.CD-13-0397 10.1038/ncomms5706 10.1182/blood-2010-01-261040 10.1016/j.immuni.2012.04.008 10.1006/geno.1999.5851 10.1016/j.molcel.2010.09.023 10.1038/nn.3365 10.1038/cdd.2013.124 10.1126/science.1225967 10.1016/j.virol.2012.12.004 10.1038/sj.onc.1203597 10.1172/JCI69636 10.1158/2159-8290.CD-14-0362 10.4161/auto.29118 10.1158/2159-8290.CD-13-0011 10.1038/nature08221 10.1038/ncb2979 10.1002/humu.22556 10.1016/j.cell.2012.12.016 10.1038/cddis.2009.8 10.1126/scitranslmed.3005864 10.1038/nature13949 10.1146/annurev-biochem-052709-094552 10.1053/j.seminhematol.2014.05.008 10.1084/jem.20101145 10.1038/ncb2422 10.1016/j.cell.2007.06.009 10.1038/nrd4391 10.1038/sj.cdd.4401826 10.1038/34432 10.1084/jem.20130783 10.1083/jcb.201102031 10.1038/nrm3249 10.1172/JCI28833 10.1038/nature05933 10.1038/cdd.2011.32 10.1038/ng911 10.1073/pnas.0704014104 10.1016/j.molcel.2013.06.020 10.1038/ng0897-333 10.1038/nchembio.1681 10.1182/blood-2010-06-288589 10.1172/JCI70454 10.1101/gad.519709 10.1126/science.3460176 10.1371/journal.pone.0100819 10.1073/pnas.0406789102 10.1016/j.cell.2008.06.028 10.1038/cddis.2014.217 10.1016/j.bbamcr.2013.05.022 10.1089/ars.2010.3478 10.1158/0008-5472.CAN-06-0809 10.1038/nrm2395 10.4161/auto.29264 10.1073/pnas.1120193109 10.1038/ncb2329 10.1083/jcb.201402054 10.1128/MCB.25.3.1025-1040.2005 10.1038/onc.2012.277 10.1016/j.cell.2006.05.034 10.1038/cr.2011.200 10.1038/ni.1980 10.1128/MCB.00813-13 10.1016/j.bcp.2010.07.009 10.1186/bcr3576 10.1073/pnas.0911267106 10.1073/pnas.2436255100 10.4161/auto.7.4.14397 10.1172/JCI20039 10.1038/nrm2147 10.1073/pnas.1319661110 10.1126/science.1099314 10.1182/blood-2012-01-402578 10.1007/s00432-006-0174-9 10.1128/MCB.00166-09 10.4161/auto.4237 10.1101/gad.1699608 10.4161/auto.8.2.18554 10.1126/science.1204592 10.1002/jcp.1041160116 10.3892/ol.2014.2417 10.1016/j.ceb.2005.09.007 10.1038/nature04869 10.1038/onc.2012.252 10.1016/j.tcb.2014.09.001 10.1182/blood-2012-10-459826 10.1016/j.immuni.2013.07.017 10.1016/j.ccr.2014.05.004 10.1074/jbc.C100319200 10.1158/0008-5472.CAN-14-1420 10.1186/1471-2407-12-622 10.1038/431525b 10.1038/ncb3072 10.1038/ncb2788 10.1038/embor.2008.246 10.1038/ncb2708 10.1002/path.4244 10.1074/jbc.M702824200 10.1016/j.cell.2014.11.006 |
ContentType | Journal Article |
Copyright | The Authors 2015 2015 The Authors 2015 The Authors. 2015 EMBO 2015 The Authors 2015 |
Copyright_xml | – notice: The Authors 2015 – notice: 2015 The Authors – notice: 2015 The Authors. – notice: 2015 EMBO – notice: 2015 The Authors 2015 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201490784 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1460-2075 |
EndPage | 880 |
ExternalDocumentID | PMC4388596 3641290231 25712477 10_15252_embj_201490784 EMBJ201490784 ark_67375_WNG_46P3WC04_L |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Cancéropôle Ile‐de‐France – fundername: Fondo Europeo de Desarrollo Regional (FEDER) grantid: PI12/02248; FR2009‐0052; IT2009‐0053 – fundername: Fondation pour la Recherche Médicale (FRM) – fundername: SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE) – fundername: European Research Council (ERC) – fundername: Paris Alliance of Cancer Research Institutes (PACRI) – fundername: National Health and Medical Research Council of Australia Project Grant grantid: 1041807 – fundername: European Commission (MEL‐PLEX) – fundername: Fondation Bettencourt‐Schueller – fundername: Fondation de France – fundername: Institutional Research Grant funderid: IRG‐14‐192‐40 – fundername: Fondo Europeo de Desarrollo Regional (FEDER) funderid: PI12/02248; FR2009‐0052; IT2009‐0053 – fundername: Fundació La Marató de TV3 funderid: 20134031 – fundername: Cancer Research UK grantid: 15816 – fundername: Wellcome Trust grantid: 095317 – fundername: Wellcome Trust grantid: 100140 – fundername: NIGMS NIH HHS grantid: R01 GM111658 – fundername: NCI NIH HHS grantid: P50 CA127003 – fundername: NCI NIH HHS grantid: R01 CA169134 – fundername: NCI NIH HHS grantid: R01 CA159314 – fundername: NIGMS NIH HHS grantid: R01 GM079431 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AFBPY AFFNX AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BSCLL BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P G-S GROUPED_DOAJ GX1 H13 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ ABJNI .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AAYXX ABUWG ACKIV ACRPL ADNMO AEUYN AFKRA AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH HCIFZ HMCUK HVGLF H~9 LH4 LK8 M1P M2O M7P PCBAR PHGZM PHGZT PQQKQ PROAC PSQYO RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6174-68939535cb4e77e65529dad8960a5618593a4f4646f5b00d1fa191770588c61d3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:12:09 EDT 2025 Mon Sep 08 09:58:02 EDT 2025 Fri Jul 25 10:53:38 EDT 2025 Mon Jul 21 05:56:59 EDT 2025 Tue Jul 01 02:06:00 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Wed Jan 22 16:52:52 EST 2025 Fri Feb 21 02:37:33 EST 2025 Sun Sep 21 06:20:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | mitophagy KRAS adaptive stress responses inflammation Beclin 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6174-68939535cb4e77e65529dad8960a5618593a4f4646f5b00d1fa191770588c61d3 |
Notes | Institutional Research Grant - No. IRG-14-192-40 National Health and Medical Research Council of Australia Project Grant - No. 1041807 Fondation Bettencourt-Schueller Fondo Europeo de Desarrollo Regional (FEDER) - No. PI12/02248; No. FR2009-0052; No. IT2009-0053 European Commission (ArtForce) SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE) LabEx Immuno-Oncology European Commission (MEL-PLEX) American Cancer Society Fundación Mutua Madrileña - No. AP101042012 Ministry of Health of Italy ('Ricerca Corrente' and 'Ricerca Finalizzata') Spanish Ministry of Economy and Competitiveness (MINECO) istex:1DD0F6A1097CF6D38BD562148AEBD9804AA41BFD Paris Alliance of Cancer Research Institutes (PACRI) Institut National du Cancer (INCa) ark:/67375/WNG-46P3WC04-L Senior Principal Research Fellowship - No. 1002863 Association pour la recherche sur le cancer (ARC) SIRIC Cancer Research and Personalized Medicine (CARPEM) Cancéropôle Ile-de-France Swiss National Science Foundation Fundació La Marató de TV3 - No. 20134031 ArticleID:EMBJ201490784 Fondation pour la Recherche Médicale (FRM) Associazione Italiana per la Ricerca sul Cancro (AIRC) Fondation de France European Research Council (ERC) Agence National de la Recherche (ANR) Swiss Cancer League ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work These authors share senior co-authorship |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4388596 |
PMID | 25712477 |
PQID | 1667913222 |
PQPubID | 35985 |
PageCount | 25 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388596 proquest_miscellaneous_1682892885 proquest_journals_1667913222 pubmed_primary_25712477 crossref_citationtrail_10_15252_embj_201490784 crossref_primary_10_15252_embj_201490784 wiley_primary_10_15252_embj_201490784_EMBJ201490784 springer_journals_10_15252_embj_201490784 istex_primary_ark_67375_WNG_46P3WC04_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 1 April 2015 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Oxford, UK |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V BlackWell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: BlackWell Publishing Ltd |
References | Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13: 179-188 Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293 Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA et al (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122: 4621-4634 Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19: 2739-2744 Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439-444 Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22: 181-185 Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621-1635 van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805-808 Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056-2068 Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, Gibbings D (2014) Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun 5: 5276 Rote KV, Rechsteiner M (1983) Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy. J Cell Physiol 116: 103-110 Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-646 Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B (2013) EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154: 1269-1284 Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210: 2057-2069 Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112 Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126-1132 Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M, Vitale I, Maiuri MC, Kroemer G (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14: 2251-2269 Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55-62 Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917-3929 Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525-526 Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835-841 Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91-99 Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670 Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824-7827 Huang X, Wu Z, Mei Y, Wu M (2013) XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32: 2204-2216 Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH (2007) Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115: 1344-1349 Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10: 1712-1725 Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011: 865819 Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37: 230-236 Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119: 1359-1372 Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8: 275-283 Faderl S, Kantarjian HM, Manshouri T, Chan CY, Pierce S, Hays KJ, Cortes J, Thomas D, Estrov Z, Albitar M (1999) The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Clin Cancer Res 5: 1855-1861 Settembre C, Di MC, Polito VA, Garcia AM, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332: 1429-1433 Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21: 532-546 Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177-182 Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D et al (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: 268-269 Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 16: 108-111 Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12: 485-490 Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043-3053 Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36: 947-958 Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632 Christoph F, Hinz S, Kempkensteffen C, Weikert S, Krause H, Schostak M, Schrader M, Miller K (2007) A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133: 343-349 Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676 Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903 Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27: 4860-4864 Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075 Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187-190 Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobaya Cianfanelli, Fuoco, Lorente, Salazar, Quondamatteo, Gherardini, De Zio, Nazio, Antonioli, D'Orazio, Skobo, Bordi, Rohde, Dalla, Helmer‐Citterich, Gretzmeier, Dengjel, Fimia, Piacentini, Di (CR29) 2015; 17 Wu, Xue, Chen, Han, Huang, Zhu, Wang, Jin, Wang, Zhu, Liu, Chen (CR265) 2014; 10 Gong, Bauvy, Tonelli, Yue, Delomenie, Nicolas, Zhu, Domergue, Marin‐Esteban, Tharinger, Delbos, Gary‐Gouy, Morel, Ghavami, Song, Codogno, Mehrpour (CR72) 2013; 32 Shaw, Cantley (CR230) 2006; 441 Vara, Salazar, Olea‐Herrero, Guzman, Velasco, Diaz‐Laviada (CR249) 2011; 18 Wang, Yang, Huang, Huang, Gao, Zhao, Huang, Chen (CR254) 2014; 8 Ma, Chen, Erdjument‐Bromage, Tempst, Pandolfi (CR144) 2005; 121 Rao, Tortola, Perlot, Wirnsberger, Novatchkova, Nitsch, Sykacek, Frank, Schramek, Komnenovic, Sigl, Aumayr, Schmauss, Fellner, Handschuh, Glosmann, Pasierbek, Schlederer, Resch, Ma (CR205) 2014; 5 Shaw, Bardeesy, Manning, Lopez, Kosmatka, DePinho, Cantley (CR229) 2004; 6 Hara, Takamura, Kishi, Iemura, Natsume, Guan, Mizushima (CR84) 2008; 181 Yu, Xu, Peng, Fang, Zhao, Li, Cuevas, Kuo, Gray, Siciliano, Mills, Bast (CR272) 1999; 96 Budanov, Sablina, Feinstein, Koonin, Chumakov (CR19) 2004; 304 Yue, Jin, Yang, Levine, Heintz (CR273) 2003; 100 Strohecker, Guo, Karsli‐Uzunbas, Price, Chen, Mathew, McMahon, White (CR236) 2013; 3 Iannello, Thompson, Ardolino, Lowe, Raulet (CR96) 2013; 210 Madeo, Pietrocola, Eisenberg, Kroemer (CR148) 2014; 13 Belaid, Cerezo, Chargui, Corcelle‐Termeau, Pedeutour, Giuliano, Ilie, Rubera, Tauc, Barale, Bertolotto, Brest, Vouret‐Craviari, Klionsky, Carle, Hofman, Mograbi (CR12) 2013; 73 Abida, Gu (CR1) 2008; 68 McBride, Ballinger, Killick, Kirk, Tattersall, Eeles, Thomas, Mitchell (CR167) 2014; 11 Sen, Johnson (CR225) 2011; 2011 Hanahan, Weinberg (CR82) 2011; 144 Lee, Kawai, Fergusson, Rovira, Bishop, Motoyama, Cao, Finkel (CR126) 2012; 336 Artal‐Martinez de Narvajas, Gomez, Zhang, Mann, Taoda, Gorman, Herreros‐Villanueva, Gress, Ellenrieder, Bujanda, Kim, Kozikowski, Koenig, Billadeau (CR7) 2013; 33 Futreal, Liu, Shattuck‐Eidens, Cochran, Harshman, Tavtigian, Bennett, Haugen‐Strano, Swensen, Miki (CR65) 1994; 266 Lozy, Cai‐McRae, Teplova, Price, Reddy, Bhanot, Ganesan, Vazquez, Karantza (CR141) 2014; 10 Boya, Reggiori, Codogno (CR18) 2013; 15 Guo, Karsli‐Uzunbas, Mathew, Aisner, Kamphorst, Strohecker, Chen, Price, Lu, Teng, Snyder, Santanam, Dipaola, Jacks, Rabinowitz, White (CR79) 2013; 27 McAfee, Zhang, Samanta, Levi, Ma, Piao, Lynch, Uehara, Sepulveda, Davis, Winkler, Amaravadi (CR166) 2012; 109 Duran, Linares, Galvez, Wikenheiser, Flores, Diaz‐Meco, Moscat (CR52) 2008; 13 Levy, Thompson, Griesinger, Amani, Donson, Birks, Morgan, Mirsky, Handler, Foreman, Thorburn (CR128) 2014; 4 Seizinger, Rouleau, Ozelius, Lane, Farmer, Lamiell, Haines, Yuen, Collins, Majoor‐Krakauer (CR224) 1988; 332 Harrison, Strong, Sharp, Nelson, Astle, Flurkey, Nadon, Wilkinson, Frenkel, Carter, Pahor, Javors, Fernandez, Miller (CR85) 2009; 460 Elgendy, Ciro, Abdel‐Aziz, Belmonte, Zuffo, Mercurio, Miracco, Lanfrancone, Foiani, Minucci (CR57) 2014; 5 Morselli, Maiuri, Markaki, Megalou, Pasparaki, Palikaras, Criollo, Galluzzi, Malik, Vitale, Michaud, Madeo, Tavernarakis, Kroemer (CR177) 2010; 1 Galluzzi, Bravo‐San Pedro, Vitale, Aaronson, Abrams, Adam, Alnemri, Altucci, Andrews, Annicchiarico‐Petruzzelli, Baehrecke, Bazan, Bertrand, Bianchi, Blagosklonny, Blomgren, Borner, Bredesen, Brenner, Campanella (CR301) 2015; 22 Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell'antonio, Mautner, Tonon, Haigis, Shirihai, Doglioni, Bardeesy, Kimmelman (CR268) 2011; 25 Mizushima, Komatsu (CR175) 2011; 147 Gomez‐Manzano, Mitlianga, Fueyo, Lee, Hu, Spurgers, Glass, Koul, Liu, McDonnell, Yung (CR71) 2001; 61 Travassos, Carneiro, Ramjeet, Hussey, Kim, Magalhaes, Yuan, Soares, Chea, Le Bourhis, Boneca, Allaoui, Jones, Nunez, Girardin, Philpott (CR245) 2010; 11 Deretic, Saitoh, Akira (CR49) 2013; 13 Budanov, Karin (CR20) 2008; 134 Vousden, Lane (CR252) 2007; 8 Huang, Regan, Wang, Wang, Smith, van Deursen, Tindall (CR93) 2005; 102 Wei, Pattingre, Sinha, Bassik, Levine (CR259) 2008; 30 Zhao, Oh, Li, Ni, Pirooz, Lee, Yang, Lee, Ghozalli, Costanzo, Stark, Liang (CR279) 2012; 22 Hanning, Saini, Murray, Caffarel, van Dongen, Ward, Barker, Scarpini, Groves, Stanley, Enright, Pett, Coleman (CR83) 2013; 231 Pietrocola, Izzo, Niso‐Santano, Vacchelli, Galluzzi, Maiuri, Kroemer (CR197) 2013; 23 Mahalingam, Mita, Sarantopoulos, Wood, Amaravadi, Davis, Mita, Curiel, Espitia, Nawrocki, Giles, Carew (CR150) 2014; 10 Taguchi, Fujikawa, Komatsu, Ishii, Unno, Akaike, Motohashi, Yamamoto (CR237) 2012; 109 Nakagawa, Amano, Mizushima, Yamamoto, Yamaguchi, Kamimoto, Nara, Funao, Nakata, Tsuda, Hamada, Yoshimori (CR181) 2004; 306 Nardella, Chen, Salmena, Carracedo, Alimonti, Egia, Carver, Gerald, Cordon‐Cardo, Pandolfi (CR183) 2008; 22 Coussens, Zitvogel, Palucka (CR37) 2013; 339 Jain, Lamark, Sjottem, Larsen, Awuh, Overvatn, McMahon, Hayes, Johansen (CR104) 2010; 285 Jounai, Takeshita, Kobiyama, Sawano, Miyawaki, Xin, Ishii, Kawai, Akira, Suzuki, Okuda (CR110) 2007; 104 Ma, Piao, Dey, McAfee, Karakousis, Villanueva, Hart, Levi, Hu, Zhang, Lazova, Klump, Pawelek, Xu, Xu, Schuchter, Davies, Herlyn, Winkler, Koumenis (CR145) 2014; 124 Dang (CR41) 2012; 149 Rousselot, Hardas, Patel, Guidez, Gaken, Castaigne, Dejean, de The, Degos, Farzaneh (CR216) 1994; 9 Okamoto (CR186) 2014; 205 Luo, Solimini, Elledge (CR143) 2009; 136 Rodriguez, Choudhury, Kolukula, Vietsch, Catania, Preet, Reynoso, Bargonetti, Wellstein, Albanese, Avantaggiati (CR210) 2012; 11 Marsh, Dahia, Zheng, Liaw, Parsons, Gorlin, Eng (CR158) 1997; 16 Parkhitko, Myachina, Morrison, Hindi, Auricchio, Karbowniczek, Wu, Finkel, Kwiatkowski, Yu, Henske (CR191) 2011; 108 Vogl, Stadtmauer, Tan, Heitjan, Davis, Pontiggia, Rangwala, Piao, Chang, Scott, Paul, Nichols, Porter, Kaplan, Mallon, Bradner, Amaravadi (CR251) 2014; 10 Arico, Petiot, Bauvy, Dubbelhuis, Meijer, Codogno, Ogier‐Denis (CR6) 2001; 276 Dyson, Howley, Munger, Harlow (CR53) 1989; 243 Stolz, Ernst, Dikic (CR235) 2014; 16 de Freitas, Coimbra, Leitao Mda (CR43) 2014; 1845 Boya, Gonzalez‐Polo, Poncet, Andreau, Vieira, Roumier, Perfettini, Kroemer (CR16) 2003; 22 Chano, Kontani, Teramoto, Okabe, Ikegawa (CR24) 2002; 31 Kim, Kim, Fang, Russell, Kim, Fan, Liu, Zhong, Guan (CR114) 2013; 152 Wang, Wei, An, Zou, Xiao, Bhagat, White, Reichelt, Levine (CR255) 2012; 338 Liu, Lee, Wei, Tanabe, Engel, Morrison, Guan (CR135) 2010; 116 McKnight, Zhong, Wold, Gong, Phillips, Dou, Zhao, Heintz, Zong, Yue (CR168) 2014; 10 Park, Tougeron, Huang, Okamoto, Sinicrope (CR190) 2014; 9 Pattingre, Tassa, Qu, Garuti, Liang, Mizushima, Packer, Schneider, Levine (CR193) 2005; 122 Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata, Hamazaki, Nishito, Iemura, Natsume, Yanagawa, Uwayama, Warabi, Yoshida, Ishii, Kobayashi (CR117) 2007; 131 Denton, Shravage, Simin, Mills, Berry, Baehrecke, Kumar (CR46) 2009; 19 Jiang, Martin, Gomez‐Manzano, Johnson, Alonso, White, Xu, McDonnell, Shinojima, Fueyo (CR107) 2010; 70 Mortensen, Soilleux, Djordjevic, Tripp, Lutteropp, Sadighi‐Akha, Stranks, Glanville, Knight, Jacobsen, Kranc, Simon (CR179) 2011; 208 Qu, Yu, Bhagat, Furuya, Hibshoosh, Troxel, Rosen, Eskelinen, Mizushima, Ohsumi, Cattoretti, Levine (CR200) 2003; 112 Sharma, Tran, Liang, Sharma, Amin, Smith, Dong, Robertson (CR228) 2006; 66 Wilkinson, O'Prey, Fricker, Ryan (CR262) 2009; 23 Settembre, Di, Polito, Garcia, Vetrini, Erdin, Erdin, Huynh, Medina, Colella, Sardiello, Rubinsztein, Ballabio (CR227) 2011; 332 Stephens, Hunter, Bignell, Edkins, Davies, Teague, Stevens, O'Meara, Smith, Parker, Barthorpe, Blow, Brackenbury, Butler, Clarke, Cole, Dicks, Dike, Drozd, Edwards (CR234) 2004; 431 Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters, Vinckier, Vankelecom, Garmyn, Vion, Radtke, Boulanger, Gerhardt, Dejana, Dewerchin, Ghesquiere (CR149) 2014; 26 Moll, Wolff, Speidel, Deppert (CR176) 2005; 17 Barnard, Wittenburg, Amaravadi, Gustafson, Thorburn, Thamm (CR11) 2014; 10 Hall, Cost, Hegde, Kellner, Mikhaylova, Stratton, Ehmer, Abplanalp, Pandey, Biesiada, Harteneck, Plas, Meller, Czyzyk‐Krzeska (CR81) 2014; 26 Rosenfeld, Ye, Supko, Desideri, Grossman, Brem, Mikkelson, Wang, Chang, Hu, McAfee, Fisher, Troxel, Piao, Heitjan, Tan, Pontiggia, O'Dwyer, Davis, Amaravadi (CR213) 2014; 10 Ying, Kimmelman, Lyssiotis, Hua, Chu, Fletcher‐Sananikone, Locasale, Son, Zhang, Coloff, Yan, Wang, Chen, Viale, Zheng, Paik, Lim, Guimaraes, Martin, Chang (CR270) 2012; 149 Ma, Galluzzi, Zitvogel, Kroemer (CR146) 2013; 39 Ko, Kanehisa, Martins, Senovilla, Chargari, Dugue, Marino, Kepp, Michaud, Perfettini, Kroemer, Deutsch (CR116) 2014; 21 Zhang, Bosch‐Marce, Shimoda, Tan, Baek, Wesley, Gonzalez, Semenza (CR275) 2008; 283 Maskey, Yousefi, Schmid, Zlobec, Perren, Friis, Simon (CR160) 2013; 4 Maiuri, Criollo, Tasdemir, Vicencio, Tajeddine, Hickman, Geneste, Kroemer (CR151) 2007; 3 Christoph, Hinz, Kempkensteffen, Weikert, Krause, Schostak, Schrader, Miller (CR28) 2007; 133 Wolpin, Rubinson, Wang, Chan, Cleary, Enzinger, Fuchs, McCleary, Meyerhardt, Ng, Schrag, Sikora, Spicer, Killion, Mamon, Kimmelman (CR264) 2014; 19 Mathew, Kongara, Beaudoin, Karp, Bray, Degenhardt, Chen, Jin, White (CR161) 2007; 21 Codogno, Mehrpour, Proikas‐Cezanne (CR31) 2012; 13 Raveh, Droguett, Horwitz, DePinho, Kimchi (CR206) 2001; 3 CR241 Reef, Zalckvar, Shifman, Bialik, Sabanay, Oren, Kimchi (CR207) 2006; 22 Lopez‐Otin, Blasco, Partridge, Serrano, Kroemer (CR140) 2013; 153 Feng, Marquez, Lu, Liu, Lu, Issa, Fishman, Yu, Bast (CR59) 2008; 112 Inoki, Li, Zhu, Wu, Guan (CR99) 2002; 4 Elgendy, Sheridan, Brumatti, Martin (CR56) 2011; 42 Guo, Chitiprolu, Gagnon, Meng, Perez‐Iratxeta, Lagace, Gibbings (CR78) 2014; 5 Kenific, Debnath (CR113) 2015; 25 Bae, Sung, Oh, Lim, Lee, Park, Lee, Kang, Rhee (CR9) 2013; 17 Coppola, Khalil, Eschrich, Boulware, Yeatman, Wang (CR34) 2008; 113 Conway, Kuballa, Song, Patel, Castoreno, Yilmaz, Jijon, Zhang, Aldrich, Villablanca, Peloquin, Goel, Lee, Mizoguchi, Shi, Bha 2004; 22 2004; 23 2002; 99 2008; 39 2013; 123 2014a; 10 2004; 6 2012; 18 2013; 121 2008; 30 2012; 13 2007b; 26 2012; 11 2011; 475 1994; 266 2001; 61 2000; 19 2010; 1 1987; 235 2013; 51 1999; 59 2008; 27 1992; 358 2008; 118 2014; 1310 2008; 22 2013; 231 2008; 113 2008; 112 2012; 22 2012; 21 2006; 441 2009; 69 2007; 282 1999; 21 2010; 285 2002; 417 2012; 37 2012; 36 2004; 306 2004; 304 2011; 8 2011; 7 2001; 276 2004; 431 1998; 391 2011; 147 1989; 244 2013; 339 2012b; 19 2013; 73 1989; 243 2013; 210 2012b; 14 2008; 134 2011; 144 1994; 330 2001; 344 2013; 22 2013; 23 2008; 9 2007; 30 2013; 15 2014; 5 2011; 208 2013; 14 2014; 4 2013; 17 2014b; 10 2013; 16 2013; 13 2013; 12 2005; 146 2007; 133 2013; 437 2007; 131 2014; 59 2008; 68 2010; 70 2014; 9 2014; 51 2006; 126 2007; 21 2014; 8 2012; 336 2014; 53 2014; 289 2007; 27 2014; 514 1982; 79 2011; 334 2011; 333 2007; 129 2002; 31 2006; 13 2010; 80 2011; 332 2011; 331 2007; 115 2012a; 12 2012a; 19 1986; 323 2011; 108 2013; 39 2007; 117 2013; 33 2013; 32 2013; 31 1999; 399 2015 2014 2014; 74 2008; 451 2010; 12 2007; 104 2010; 11 2012; 120 2013; 3 2012; 122 2013; 4 1997; 277 2014; 26 2014; 28 2009; 119 2011; 193 2014; 21 2013; 9 2010; 22 2009; 10 2010; 116 2005; 102 2006; 22 2014; 16 2007; 8 2014; 15 2007; 9 1988; 332 2014; 13 2014; 19 2009; 19 2007; 67 2014; 12 2009; 16 2009; 15 2014; 11 2014; 10 2014; 124 2012a; 338 2007; 448 2013b; 155 2013; 504 1986; 233 2011; 80 2013; 501 2002; 4 2011; 79 2014; 1845 2010; 40 2014; 1843 2012; 109 2005; 121 2005; 122 2013a; 27 2010; 330 2014; 35 2009; 460 2005; 17 2003; 100 2012; 119 2003; 22 2009; 106 1983; 116 2009; 43 2007a; 3 2011; 10 2003; 17 2011; 13 2011; 12 2011; 14 1999; 402 2011; 18 2003; 112 2014; 211 2012; 52 2005; 25 2014; 205 2006; 66 2011; 22 1997; 16 2013; 152 1999; 96 2009; 284 2013; 154 2013; 153 2011; 25 1990; 250 2009; 23 2015; 17 2013b; 110 1991; 254 2009; 20 2013; 145 2006; 8 2013a; 5 2008; 13 2012b; 109 2014; 111 2012; 149 1999; 5 2009; 136 2009; 137 2008; 283 2009; 29 2014; 233 2008; 181 1994; 9 2011; 2011 1990; 63 2015; 25 2015; 22 2011; 42 2001; 3 2014; 345 2012; 8 1994; 54 e_1_2_10_271_1 e_1_2_10_40_1 e_1_2_10_109_1 Seok S (e_1_2_10_227_1) 2014; 16 e_1_2_10_210_1 e_1_2_10_256_1 e_1_2_10_279_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 Freitas AC (e_1_2_10_44_1) 2014; 1845 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 Miracco C (e_1_2_10_173_1) 2007; 30 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 Faderl S (e_1_2_10_59_1) 1999; 5 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_261_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 Gomez‐Manzano C (e_1_2_10_72_1) 2001; 61 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 Lu Z (e_1_2_10_143_1) 2008; 118 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_21_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_22_1 e_1_2_10_230_1 Martoriati A (e_1_2_10_160_1) 2005; 146 e_1_2_10_215_1 e_1_2_10_238_1 e_1_2_10_276_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 Rousselot P (e_1_2_10_217_1) 1994; 9 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_239_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_232_1 e_1_2_10_278_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 Shuin T (e_1_2_10_233_1) 1994; 54 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – reference: Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S, Dejean A, de The H, Degos L, Farzaneh F et al (1994) The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545-551 – reference: Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R (2014) The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 1310: 7-31 – reference: Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402-412 – reference: Chano T, Kontani K, Teramoto K, Okabe H, Ikegawa S (2002) Truncating mutations of RB1CC1 in human breast cancer. Nat Genet 31: 285-288 – reference: Lozy F, Cai-McRae X, Teplova I, Price S, Reddy A, Bhanot G, Ganesan S, Vazquez A, Karantza V (2014) ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss. Autophagy 10: 662-676 – reference: Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA 109: 13561-13566 – reference: Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L, Rangwala R, Piao S, Chang YC, Scott EC, Paul TM, Nichols CW, Porter DL, Kaplan J, Mallon G, Bradner JE, Amaravadi RK (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10: 1380-1390 – reference: Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208: 455-467 – reference: Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, Adams PD, Anderson KI, Gottlieb E, Sansom OJ, Ryan KM (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296-300 – reference: Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917-3929 – reference: Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439-444 – reference: Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55-62 – reference: Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51: 618-631 – reference: Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 16: 108-111 – reference: Gomez-Manzano C, Mitlianga P, Fueyo J, Lee HY, Hu M, Spurgers KB, Glass TL, Koul D, Liu TJ, McDonnell TJ, Yung WK (2001) Transfer of E2F-1 to human glioma cells results in transcriptional up-regulation of Bcl-2. Cancer Res 61: 6693-6697 – reference: Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293 – reference: Chinen Y, Kuroda J, Shimura Y, Nagoshi H, Kiyota M, Yamamoto-Sugitani M, Mizutani S, Sakamoto N, Ri M, Kawata E, Kobayashi T, Matsumoto Y, Horiike S, Iida S, Taniwaki M (2014) Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma. Cancer Res 74: 7418-7429 – reference: Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187-190 – reference: Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835-841 – reference: Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23: 3898-3904 – reference: Liu H, He Z, von Rutte T, Yousefi S, Hunger RE, Simon HU (2013a) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5: 202ra123 – reference: Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B (2013) EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154: 1269-1284 – reference: Hanning JE, Saini HK, Murray MJ, Caffarel MM, van Dongen S, Ward D, Barker EM, Scarpini CG, Groves IJ, Stanley MA, Enright AJ, Pett MR, Coleman N (2013) Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state. J Pathol 231: 354-366 – reference: Huang X, Wu Z, Mei Y, Wu M (2013) XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32: 2204-2216 – reference: Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH (2007) Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115: 1344-1349 – reference: Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13: 1016-1023 – reference: Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, Gibbings D (2014) Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun 5: 5276 – reference: Chen N, Eritja N, Lock R, Debnath J (2013) Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32: 2543-2554 – reference: Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678-688 – reference: Pattingre S, Levine B (2006) Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66: 2885-2888 – reference: Kim MS, Jeong EG, Ahn CH, Kim SS, Lee SH, Yoo NJ (2008) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39: 1059-1063 – reference: Cai Q, Yan L, Xu Y (2014) Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene doi: 10.1038/onc.2014.264 – reference: de Freitas AC, Coimbra EC, Leitao Mda C (2014) Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta 1845: 91-103 – reference: Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-646 – reference: Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688-699 – reference: Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11: 709-730 – reference: Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142-1151 – reference: Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330: 1344-1348 – reference: Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12: 829-846 – reference: Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326-336 – reference: Settembre C, Di MC, Polito VA, Garcia AM, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332: 1429-1433 – reference: Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91-99 – reference: Hock AK, Vousden KH (2014) The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta 1843: 137-149 – reference: Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT (2013) K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51: 283-296 – reference: Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343-354 – reference: Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, Kroemer G (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16: 87-93 – reference: Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: 665-675 – reference: Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981-1991 – reference: Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596-600 – reference: Wang Y, Wang XD, Lapi E, Sullivan A, Jia W, He YW, Ratnayaka I, Zhong S, Goldin RD, Goemans CG, Tolkovsky AM, Lu X (2012b) Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA 109: 13325-13330 – reference: Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon HU (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4: 2130 – reference: Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, Avantaggiati ML (2012) Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle 11: 4436-4446 – reference: Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26: 121-135 – reference: Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10: 285-292 – reference: Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY, Sullivan BA, Hahn WC, Loda M, Febbo PG (2009) MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 69: 7803-7810 – reference: Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A et al (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949-954 – reference: Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525-526 – reference: Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102: 1649-1654 – reference: Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Tang D (2011) Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARalpha oncoprotein. Autophagy 7: 401-411 – reference: Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112 – reference: Hervier B, Haroche J, Arnaud L, Charlotte F, Donadieu J, Neel A, Lifermann F, Villabona C, Graffin B, Hermine O, Rigolet A, Roubille C, Hachulla E, Carmoi T, Bezier M, Meignin V, Conrad M, Marie L, Kostrzewa E, Michot JM et al (2014) Association of both Langerhans cell histiocytosis and Erdheim-Chester disease linked to the BRAFV600E mutation. Blood 124: 1119-1126 – reference: Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13: 179-188 – reference: Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8: 275-283 – reference: Cosse JP, Rommelaere G, Ninane N, Arnould T, Michiels C (2010) BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochem Pharmacol 80: 1160-1169 – reference: Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809-1820 – reference: Choudhury S, Kolukula VK, Preet A, Albanese C, Avantaggiati ML (2013) Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle 12: 1022-1029 – reference: Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861-2873 – reference: Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16: 495-501 – reference: Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80-83 – reference: Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10: 1712-1725 – reference: Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025-1040 – reference: Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy LJ, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL, Thorburn A (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590 – reference: He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67-93 – reference: Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, Zhong H, Vazquez A, Kang Y, Karantza V (2014) Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy 10: 2036-2052 – reference: Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570-2581 – reference: Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30: 429-436 – reference: Shuin T, Kondo K, Torigoe S, Kishida T, Kubota Y, Hosaka M, Nagashima Y, Kitamura H, Latif F, Zbar B et al (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54: 2852-2855 – reference: Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136: 823-837 – reference: Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15: 713-720 – reference: Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T (2014) Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35: 756-765 – reference: Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-6242 – reference: Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16: 64-67 – reference: Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163 – reference: Vara D, Salazar M, Olea-Herrero N, Guzman M, Velasco G, Diaz-Laviada I (2011) Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ 18: 1099-1111 – reference: Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461 – reference: Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3: 1-7 – reference: Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22: 3927-3936 – reference: Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13: 727-740 – reference: Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21: 532-546 – reference: Sahni S, Bae DH, Lane DJ, Kovacevic Z, Kalinowski DS, Jansson PJ, Richardson DR (2014) The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J Biol Chem 289: 9692-9709 – reference: Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4: 905-913 – reference: Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA (2014) Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One 9: e100819 – reference: Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106: 20842-20846 – reference: Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y, Bast RC Jr (2008) Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112: 1489-1502 – reference: Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205: 435-445 – reference: Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB, Yilmaz OH, Jijon HB, Zhang M, Aldrich LN, Villablanca EJ, Peloquin JM, Goel G, Lee IA, Mizoguchi E, Shi HN, Bhan AK, Shaw SY, Schreiber SL, Virgin HW, Shamji AF et al (2013) Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145: 1347-1357 – reference: Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25: 37-45 – reference: Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22: 2954-2963 – reference: Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM, Nawrocki ST, Giles FJ, Carew JS (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10: 1403-1414 – reference: Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 59: 1263-1276 – reference: Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27: 2312-2319 – reference: Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G (2007a) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3: 374-376 – reference: Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367-1381 – reference: Denton D, Nicolson S, Kumar S (2012b) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19: 87-95 – reference: Zitvogel L, Kepp O, Galluzzi L, Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13: 343-351 – reference: Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031-1037 – reference: McBride KA, Ballinger ML, Killick E, Kirk J, Tattersall MH, Eeles RA, Thomas DM, Mitchell G (2014) Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11: 260-271 – reference: Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski DJ, Yu JJ, Henske EP (2011) Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 108: 12455-12460 – reference: Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119: 1490-1500 – reference: Christoph F, Hinz S, Kempkensteffen C, Weikert S, Krause H, Schostak M, Schrader M, Miller K (2007) A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133: 343-349 – reference: Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, Mills GB, Bast RC Jr (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA 96: 214-219 – reference: Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A (2006) A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22: 463-475 – reference: Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012a) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956-959 – reference: Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573-8578 – reference: Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179-193 – reference: Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795-800 – reference: Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19: 1741-1746 – reference: Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497-1500 – reference: Abida WM, Gu W (2008) p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res 68: 352-357 – reference: Anderson MA, Huang D, Roberts A (2014) Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol 51: 219-227 – reference: Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670 – reference: Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12: 222-230 – reference: Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, Shaw SY, Clarke PG, Puyal J, Levine B (2013b) Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 110: 20364-20371 – reference: Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16: 532-542 – reference: McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, Winkler JD, Amaravadi RK (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109: 8253-8258 – reference: Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254: 1371-1374 – reference: Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184-187 – reference: Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18: 370-379 – reference: Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104: 14050-14055 – reference: Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460: 392-395 – reference: Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE, Piacentini M (2014) Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ doi: 10.1038/cdd.2014.183 – reference: Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H, Liu J, Lemischka IR, Hung MC, Chiao PJ (2012) KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21: 105-120 – reference: Avivar-Valderas A, Bobrovnikova-Marjon E, Alan DJ, Bardeesy N, Debnath J, Aguirre-Ghiso JA (2013) Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32: 4932-4940 – reference: Faderl S, Kantarjian HM, Manshouri T, Chan CY, Pierce S, Hays KJ, Cortes J, Thomas D, Estrov Z, Albitar M (1999) The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Clin Cancer Res 5: 1855-1861 – reference: Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153: 1194-1217 – reference: Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14: 759-774 – reference: Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056-2068 – reference: Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077-15082 – reference: Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10: 1359-1368 – reference: Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674 – reference: McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10: e1004626 – reference: Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275-284 – reference: Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bujanda L, Kim DH, Kozikowski AP, Koenig A, Billadeau DD (2013) Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 33: 3983-3993 – reference: Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80: 125-156 – reference: Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J (2010) The RB-E2F1 pathway regulates autophagy. Cancer Res 70: 7882-7893 – reference: Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, Fuchs CS, McCleary NJ, Meyerhardt JA, Ng K, Schrag D, Sikora AL, Spicer BA, Killion L, Mamon H, Kimmelman AC (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19: 637-638 – reference: Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181: 497-510 – reference: Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, Sathirapongsasuti JF, Cervo M, Yao H, Chung AL, Mizumura K, An CH, Shan B, Franks JM, Haley KJ, Owen CA, Tesfaigzi Y, Washko GR, Quackenbush J, Silverman EK, Rahman I et al (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 123: 5212-5230 – reference: Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040 – reference: Wang HY, Yang GF, Huang YH, Huang QW, Gao J, Zhao XD, Huang LM, Chen HL (2014) Reduced expression of autophagy markers correlates with high-risk human papillomavirus infection in human cervical squamous cell carcinoma. Oncol Lett 8: 1492-1498 – reference: Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32: 2261-2272, 2272e 2261-2211 – reference: Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1: e10 – reference: Rote KV, Rechsteiner M (1983) Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy. J Cell Physiol 116: 103-110 – reference: Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3: 1272-1285 – reference: Perez E, Das G, Bergmann A, Baehrecke EH (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene doi: 10.1038/onc.2014.285 – reference: Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233-1238 – reference: Pimkina J, Humbey O, Zilfou JT, Jarnik M, Murphy ME (2009) ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem 284: 2803-2810 – reference: Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266: 120-122 – reference: Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37: 230-236 – reference: Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527 – reference: Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu Z, Liu D, Gao J, Lin B (2012a) Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer 12: 622 – reference: Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939 – reference: Cai-McRae X, Zhong H, Karantza V (2014) Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways. Oncogene doi: 10.1038/onc.2014.244 – reference: Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O'Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014b) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10: 1369-1379 – reference: Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22: 2172-2177 – reference: Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, Altman JK, Platanias LC (2012) Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 120: 3555-3562 – reference: Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12: 485-490 – reference: Wilkinson S, O'Prey J, Fricker M, Ryan KM (2009) Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev 23: 1283-1288 – reference: Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336: 225-228 – reference: Yasir M, Pachikara ND, Bao X, Pan Z, Fan H (2011) Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect Immun 79: 4019-4028 – reference: Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934-937 – reference: Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075 – reference: Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, Bachelot MF, Lamberton A, Mathieu M, Bertrand T, Marquette JP, El-Ahmad Y, Filoche-Romme B, Schio L, Garcia-Echeverria C, Goulaouic H, Pasquier B (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10: 1013-1019 – reference: Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31: 51-72 – reference: Guo JY, Xia B, White E (2013b) Autophagy-mediated tumor promotion. Cell 155: 1216-1219 – reference: Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274 – reference: Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631-636 – reference: Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381-400 – reference: Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD, Dong C, Robertson GP (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66: 8200-8209 – reference: Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276: 35243-35246 – reference: Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717-729 – reference: Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824-7827 – reference: de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J, Jacks T (2002) Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 99: 2948-2953 – reference: Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648-657 – reference: Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116: 4806-4814 – reference: Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59: 59-65 – reference: Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, Moustafa T, Sprenger A, Jany E, Buttner S, Carmona-Gutierrez D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19: 431-444 – reference: Takahashi Y, Hori T, Cooper TK, Liao J, Desai N, Serfass JM, Young MM, Park S, Izu Y, Wang HG (2013) Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy. Blood 121: 1622-1632 – reference: Cryns VL, Thor A, Xu HJ, Hu SX, Wierman ME, Vickery AL Jr, Benedict WF, Arnold A (1994) Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med 330: 757-761 – reference: Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177-182 – reference: Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573-18583 – reference: Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119: 1359-1372 – reference: Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152: 290-303 – reference: Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5: 3496 – reference: Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275 – reference: Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu TC, Heath RJ, Becker ML, Fagbami L, Horn H, Mercer J, Yilmaz OH, Jaffe JD, Shamji AF, Bhan AK, Carr SA, Daly MJ et al (2014) Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci USA 111: 7741-7746 – reference: Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99-102 – reference: Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M, Vitale I, Maiuri MC, Kroemer G (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14: 2251-2269 – reference: Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345: 1250256 – reference: Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, De Zio D, Nazio F, Antonioli M, D'Orazio M, Skobo T, Bordi M, Rohde M, Dalla VL, Helmer-Citterich M, Gretzmeier C, Dengjel J, Fimia GM, Piacentini M, Di BS et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17: 20-30 – reference: Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22: 432-435 – reference: Horikawa I, Fujita K, Jenkins LM, Hiyoshi Y, Mondal AM, Vojtesek B, Lane DP, Appella E, Harris CC (2014) Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53-mediated senescence. Nat Commun 5: 4706 – reference: Hall DP, Cost NG, Hegde S, Kellner E, Mikhaylova O, Stratton Y, Ehmer B, Abplanalp WA, Pandey R, Biesiada J, Harteneck C, Plas DR, Meller J, Czyzyk-Krzeska MF (2014) TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell 26: 738-753 – reference: Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676 – reference: Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212-214 – reference: Codogno P, Mehrpour M, Proikas-Cezanne T (2012) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13: 7-12 – reference: Elgendy M, Sheridan C, Brumatti G, Martin SJ (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42: 23-35 – reference: Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39: 211-227 – reference: Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210: 2057-2069 – reference: Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10: 1415-1425 – reference: Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424-430 – reference: Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632 – reference: Griffin LM, Cicchini L, Pyeon D (2013) Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology 437: 12-19 – reference: Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829-1834 – reference: Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17: 73-84 – reference: Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741 – reference: Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15: 406-416 – reference: Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22: 58-73 – reference: Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA et al (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122: 4621-4634 – reference: Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine JC (2005) dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24: 146: 1-1466 – reference: Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121-134 – reference: Rello-Varona S, Lissa D, Shen S, Niso-Santano M, Senovilla L, Marino G, Vitale I, Jemaa M, Harper F, Pierron G, Castedo M, Kroemer G (2012) Autophagic removal of micronuclei. Cell Cycle 11: 170-176 – reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903 – reference: Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23: 798-803 – reference: Denton D, Chang TK, Nicolson S, Shravage B, Simin R, Baehrecke EH, Kumar S (2012a) Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila. Cell Death Differ 19: 1299-1307 – reference: Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman NK, Thorburn A (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 4: 773-780 – reference: DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106-109 – reference: Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di VF, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334: 1573-1577 – reference: Elgendy M, Ciro M, Abdel-Aziz AK, Belmonte G, Zuffo RD, Mercurio C, Miracco C, Lanfrancone L, Foiani M, Minucci S (2014) Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat Commun 5: 5637 – reference: Isakson P, Bjoras M, Boe SO, Simonsen A (2010) Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116: 2324-2331 – reference: Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13: 722-737 – reference: Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y, Levine B (2015) Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine doi: 10.1016/j.ebiom.2015.01.008 – reference: Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfurst B, Walenta S, Mueller-Klieser W, Graler M, Hummel M, Keller U, Buck AK, Dorken B, Willmitzer L et al (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501: 421-425 – reference: Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22: 181-185 – reference: van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805-808 – reference: Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S et al (2012b) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14: 177-185 – reference: Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, Vinckier S, Vankelecom H, Garmyn M, Vion AC, Radtke F, Boulanger C, Gerhardt H, Dejana E, Dewerchin M, Ghesquiere B et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26: 190-206 – reference: Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36: 947-958 – reference: Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S, Barnard N, Ganesan S, Karantza V, White E, Xia B (2013) Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov 3: 894-907 – reference: Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8: 528-539 – reference: Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285: 22576-22591 – reference: Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Marino G, Kepp O, Michaud M, Perfettini JL, Kroemer G, Deutsch E (2014) Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 21: 92-99 – reference: Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075 – reference: Oh S, Xiaofei E, Ni D, Pirooz SD, Lee JY, Lee D, Zhao Z, Lee S, Lee H, Ku B, Kowalik T, Martin SE, Oh BH, Jung JU, Liang C (2011) Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis. Cell Death Differ 18: 452-464 – reference: Berres ML, Lim KP, Peters T, Price J, Takizawa H, Salmon H, Idoyaga J, Ruzo A, Lupo PJ, Hicks MJ, Shih A, Simko SJ, Abhyankar H, Chakraborty R, Leboeuf M, Beltrao M, Lira SA, Heym KM, Bigley V, Collin M et al (2014) BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med 211: 669-683 – reference: Dang CV (2012) MYC on the path to cancer. Cell 149: 22-35 – reference: Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola RS, Jacks T, Rabinowitz JD, White E (2013a) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461 – reference: Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, Lazova R, Klump V, Pawelek JM, Xu X, Xu W, Schuchter LM, Davies MA, Herlyn M, Winkler J, Koumenis C et al (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 124: 1406-1417 – reference: Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, Schuchter LM, Torigian DA, Panosian JT, Troxel AB, Tan KS, Heitjan DF, DeMichele AM, Vaughn DJ, Redlinger M, Alavi A, Kaiser J, Pontiggia L, Davis LE, O'Dwyer PJ et al (2014a) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10: 1391-1402 – reference: Garufi A, Pucci D, D'Orazi V, Cirone M, Bossi G, Avantaggiati ML, D'Orazi G (2014) Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis 5: e1271 – reference: Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23: 310-322 – reference: Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D et al (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: 268-269 – reference: Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451-460 – reference: Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22: 165-178 – reference: Fountain JW, Wallace MR, Bruce MA, Seizinger BR, Menon AG, Gusella JF, Michels VV, Schmidt MA, Dewald GW, Collins FS (1989) Physical mapping of a translocation breakpoint in neurofibromatosis. Science 244: 1085-1087 – reference: Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126-1132 – reference: Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007b) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527-2539 – reference: Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043-3053 – reference: Torres S, Lorente M, Rodriguez-Fornes F, Hernandez-Tiedra S, Salazar M, Garcia-Taboada E, Barcia J, Guzman M, Velasco G (2011) A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10: 90-103 – reference: Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011: 865819 – reference: Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19: 2739-2744 – reference: Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339: 286-291 – reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-24145 – reference: Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13: 119-120 – reference: Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN (2014) Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev 28: 689-707 – reference: Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27: 4860-4864 – reference: Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40: 280-293 – reference: Toh PP, Luo S, Menzies FM, Rasko T, Wanker EE, Rubinsztein DC (2013) Myc inhibition impairs autophagosome formation. Hum Mol Genet 22: 5237-5248 – reference: Randow F, Youle RJ (2014) Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15: 403-411 – reference: Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15: R109 – reference: Zhang L, Sung JJ, Yu J, Ng SC, Wong SH, Cho CH, Ng SS, Chan FK, Wu WK (2014) Xenophagy in Helicobacter pylori- and Epstein-Barr virus-induced gastric cancer. J Pathol 233: 103-112 – reference: Belaid A, Cerezo M, Chargui A, Corcelle-Termeau E, Pedeutour F, Giuliano S, Ilie M, Rubera I, Tauc M, Barale S, Bertolotto C, Brest P, Vouret-Craviari V, Klionsky DJ, Carle GF, Hofman P, Mograbi B (2013) Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res 73: 4311-4322 – reference: Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, Eng C (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16: 333-334 – reference: Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8: 200-212 – reference: Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, Sigl V, Aumayr K, Schmauss G, Fellner N, Handschuh S, Glosmann M, Pasierbek P, Schlederer M, Resch GP, Ma Y et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5: 3056 – reference: Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee JH, Yang S, Lee JY, Ghozalli I, Costanzo V, Stark JM, Liang C (2012) A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell 22: 1001-1016 – reference: Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L, Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807-810 – reference: Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG (2008) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113: 2665-2670 – reference: Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53: 167-178 – reference: Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621-1635 – ident: CR22 – volume: 26 start-page: 190 year: 2014 end-page: 206 ident: CR149 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell – volume: 119 start-page: 1490 year: 2012 end-page: 1500 ident: CR247 article-title: Mitochondrial dysfunction in ataxia‐telangiectasia publication-title: Blood – volume: 39 start-page: 1059 year: 2008 end-page: 1063 ident: CR115 article-title: Frameshift mutation of UVRAG, an autophagy‐related gene, in gastric carcinomas with microsatellite instability publication-title: Hum Pathol – ident: CR196 – volume: 460 start-page: 392 year: 2009 end-page: 395 ident: CR85 article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice publication-title: Nature – volume: 21 start-page: 105 year: 2012 end-page: 120 ident: CR133 article-title: KrasG12D‐induced IKK2/beta/NF‐kappaB activation by IL‐1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma publication-title: Cancer Cell – volume: 10 start-page: 1403 year: 2014 end-page: 1414 ident: CR150 article-title: Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors publication-title: Autophagy – volume: 13 start-page: 119 year: 2011 end-page: 120 ident: CR277 article-title: AMPK‐dependent phosphorylation of ULK1 induces autophagy publication-title: Cell Metab – volume: 96 start-page: 214 year: 1999 end-page: 219 ident: CR272 article-title: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 2543 year: 2013 end-page: 2554 ident: CR25 article-title: Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3‐kinase in three‐dimensional culture publication-title: Oncogene – volume: 6 start-page: 91 year: 2004 end-page: 99 ident: CR229 article-title: The LKB1 tumor suppressor negatively regulates mTOR signaling publication-title: Cancer Cell – volume: 14 start-page: 2251 year: 2011 end-page: 2269 ident: CR178 article-title: Oncosuppressive functions of autophagy publication-title: Antioxid Redox Signal – volume: 15 start-page: 406 year: 2013 end-page: 416 ident: CR184 article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self‐association and function through AMBRA1 and TRAF6 publication-title: Nat Cell Biol – volume: 11 start-page: 170 year: 2012 end-page: 176 ident: CR208 article-title: Autophagic removal of micronuclei publication-title: Cell Cycle – volume: 19 start-page: 431 year: 2014 end-page: 444 ident: CR55 article-title: Nucleocytosolic depletion of the energy metabolite acetyl‐coenzyme a stimulates autophagy and prolongs lifespan publication-title: Cell Metab – volume: 32 start-page: 2261 year: 2013 end-page: 2272 ident: CR72 article-title: Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem‐like/progenitor cells publication-title: Oncogene – volume: 417 start-page: 949 year: 2002 end-page: 954 ident: CR42 article-title: Mutations of the BRAF gene in human cancer publication-title: Nature – volume: 391 start-page: 184 year: 1998 end-page: 187 ident: CR88 article-title: A serine/threonine kinase gene defective in Peutz‐Jeghers syndrome publication-title: Nature – volume: 12 start-page: 665 year: 2010 end-page: 675 ident: CR278 article-title: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity publication-title: Nat Cell Biol – volume: 104 start-page: 14050 year: 2007 end-page: 14055 ident: CR110 article-title: The Atg5 Atg12 conjugate associates with innate antiviral immune responses publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 402 year: 2008 end-page: 412 ident: CR209 article-title: Transcriptional control of human p53‐regulated genes publication-title: Nat Rev Mol Cell Biol – volume: 59 start-page: 1263 year: 2014 end-page: 1276 ident: CR68 article-title: Metabolic control of autophagy publication-title: Cell – volume: 210 start-page: 2057 year: 2013 end-page: 2069 ident: CR96 article-title: p53‐dependent chemokine production by senescent tumor cells supports NKG2D‐dependent tumor elimination by natural killer cells publication-title: J Exp Med – volume: 80 start-page: 125 year: 2011 end-page: 156 ident: CR261 article-title: Biogenesis and cargo selectivity of autophagosomes publication-title: Annu Rev Biochem – volume: 67 start-page: 3043 year: 2007 end-page: 3053 ident: CR60 article-title: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF‐1‐AKT‐mTOR pathways publication-title: Cancer Res – volume: 15 start-page: 1126 year: 2009 end-page: 1132 ident: CR111 article-title: Bcl‐2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy publication-title: Clin Cancer Res – volume: 345 start-page: 1250256 year: 2014 ident: CR75 article-title: Cell biology. Metabolic control of cell death publication-title: Science – volume: 330 start-page: 757 year: 1994 end-page: 761 ident: CR39 article-title: Loss of the retinoblastoma tumor‐suppressor gene in parathyroid carcinoma publication-title: N Engl J Med – volume: 3 start-page: 374 year: 2007 end-page: 376 ident: CR151 article-title: BH3‐only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl‐2/Bcl‐X(L) publication-title: Autophagy – ident: CR241 – volume: 448 start-page: 807 year: 2007 end-page: 810 ident: CR106 article-title: LKB1 modulates lung cancer differentiation and metastasis publication-title: Nature – volume: 18 start-page: 452 year: 2011 end-page: 464 ident: CR185 article-title: Downregulation of autophagy by Bcl‐2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis publication-title: Cell Death Differ – volume: 250 start-page: 1233 year: 1990 end-page: 1238 ident: CR155 article-title: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms publication-title: Science – volume: 33 start-page: 3983 year: 2013 end-page: 3993 ident: CR7 article-title: Epigenetic regulation of autophagy by the methyltransferase G9a publication-title: Mol Cell Biol – volume: 29 start-page: 2570 year: 2009 end-page: 2581 ident: CR13 article-title: Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains publication-title: Mol Cell Biol – volume: 12 start-page: 485 year: 2014 end-page: 490 ident: CR120 article-title: Mutational landscape of the essential autophagy gene BECN1 in human cancers publication-title: Mol Cancer Res – volume: 117 start-page: 326 year: 2007 end-page: 336 ident: CR4 article-title: Autophagy inhibition enhances therapy‐induced apoptosis in a Myc‐induced model of lymphoma publication-title: J Clin Invest – volume: 25 start-page: 37 year: 2015 end-page: 45 ident: CR113 article-title: Cellular and metabolic functions for autophagy in cancer cells publication-title: Trends Cell Biol – volume: 358 start-page: 80 year: 1992 end-page: 83 ident: CR187 article-title: Amplification of a gene encoding a p53‐associated protein in human sarcomas publication-title: Nature – volume: 17 start-page: 1829 year: 2003 end-page: 1834 ident: CR100 article-title: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling publication-title: Genes Dev – volume: 16 start-page: 64 year: 1997 end-page: 67 ident: CR131 article-title: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome publication-title: Nat Genet – volume: 27 start-page: 4860 year: 2008 end-page: 4864 ident: CR199 article-title: E2F1 regulates autophagy and the transcription of autophagy genes publication-title: Oncogene – volume: 51 start-page: 283 year: 2013 end-page: 296 ident: CR132 article-title: K63 polyubiquitination and activation of mTOR by the p62‐TRAF6 complex in nutrient‐activated cells publication-title: Mol Cell – volume: 52 start-page: 381 year: 2012 end-page: 400 ident: CR101 article-title: AMPK and mTOR in cellular energy homeostasis and drug targets publication-title: Annu Rev Pharmacol Toxicol – volume: 514 start-page: 628 year: 2014 end-page: 632 ident: CR250 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 9 start-page: e100819 year: 2014 ident: CR190 article-title: Beclin 1 and UVRAG confer protection from radiation‐induced DNA damage and maintain centrosome stability in colorectal cancer cells publication-title: PLoS One – volume: 8 start-page: 1492 year: 2014 end-page: 1498 ident: CR254 article-title: Reduced expression of autophagy markers correlates with high‐risk human papillomavirus infection in human cervical squamous cell carcinoma publication-title: Oncol Lett – volume: 102 start-page: 8573 year: 2005 end-page: 8578 ident: CR109 article-title: The NF1 tumor suppressor critically regulates TSC2 and mTOR publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 4706 year: 2014 ident: CR91 article-title: Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53‐mediated senescence publication-title: Nat Commun – volume: 22 start-page: 3927 year: 2003 end-page: 3936 ident: CR16 article-title: Mitochondrial membrane permeabilization is a critical step of lysosome‐initiated apoptosis induced by hydroxychloroquine publication-title: Oncogene – volume: 332 start-page: 268 year: 1988 end-page: 269 ident: CR224 article-title: Von Hippel‐Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma publication-title: Nature – volume: 304 start-page: 1497 year: 2004 end-page: 1500 ident: CR188 article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy publication-title: Science – volume: 70 start-page: 7882 year: 2010 end-page: 7893 ident: CR107 article-title: The RB‐E2F1 pathway regulates autophagy publication-title: Cancer Res – volume: 19 start-page: 1299 year: 2012 end-page: 1307 ident: CR47 article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila publication-title: Cell Death Differ – volume: 193 start-page: 275 year: 2011 end-page: 284 ident: CR98 article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells publication-title: J Cell Biol – volume: 13 start-page: 343 year: 2012 end-page: 351 ident: CR280 article-title: Inflammasomes in carcinogenesis and anticancer immune responses publication-title: Nat Immunol – volume: 344 start-page: 1031 year: 2001 end-page: 1037 ident: CR51 article-title: Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia publication-title: N Engl J Med – volume: 10 start-page: 662 year: 2014 end-page: 676 ident: CR141 article-title: ERBB2 overexpression suppresses stress‐induced autophagy and renders ERBB2‐induced mammary tumorigenesis independent of monoallelic Becn1 loss publication-title: Autophagy – volume: 109 start-page: 13561 year: 2012 end-page: 13566 ident: CR237 article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis publication-title: Proc Natl Acad Sci USA – volume: 330 start-page: 1344 year: 2010 end-page: 1348 ident: CR201 article-title: Autophagy and metabolism publication-title: Science – volume: 323 start-page: 643 year: 1986 end-page: 646 ident: CR62 article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma publication-title: Nature – volume: 7 start-page: 401 year: 2011 end-page: 411 ident: CR257 article-title: Autophagy regulates myeloid cell differentiation by p62/SQSTM1‐mediated degradation of PML‐RARalpha oncoprotein publication-title: Autophagy – volume: 152 start-page: 290 year: 2013 end-page: 303 ident: CR114 article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy publication-title: Cell – volume: 17 start-page: 20 year: 2015 end-page: 30 ident: CR29 article-title: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c‐Myc dephosphorylation and degradation publication-title: Nat Cell Biol – volume: 8 start-page: 200 year: 2012 end-page: 212 ident: CR164 article-title: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy publication-title: Autophagy – volume: 277 start-page: 805 year: 1997 end-page: 808 ident: CR248 article-title: Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34 publication-title: Science – volume: 112 start-page: 1809 year: 2003 end-page: 1820 ident: CR200 article-title: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene publication-title: J Clin Invest – volume: 331 start-page: 456 year: 2011 end-page: 461 ident: CR54 article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy publication-title: Science – volume: 8 start-page: 688 year: 2006 end-page: 699 ident: CR129 article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG publication-title: Nat Cell Biol – volume: 16 start-page: 495 year: 2014 end-page: 501 ident: CR235 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat Cell Biol – volume: 18 start-page: 1099 year: 2011 end-page: 1111 ident: CR249 article-title: Anti‐tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK‐dependent activation of autophagy publication-title: Cell Death Differ – volume: 99 start-page: 2948 year: 2002 end-page: 2953 ident: CR44 article-title: Targeted point mutations of p53 lead to dominant‐negative inhibition of wild‐type p53 function publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: R109 year: 2013 ident: CR263 article-title: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem‐like phenotype publication-title: Breast Cancer Res – volume: 5 start-page: 3056 year: 2014 ident: CR205 article-title: A dual role for autophagy in a murine model of lung cancer publication-title: Nat Commun – volume: 28 start-page: 689 year: 2014 end-page: 707 ident: CR32 article-title: Stress‐induced cleavage of Myc promotes cancer cell survival publication-title: Genes Dev – volume: 5 start-page: 3496 year: 2014 ident: CR108 article-title: Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52 publication-title: Nat Commun – volume: 13 start-page: 722 year: 2013 end-page: 737 ident: CR49 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat Rev Immunol – volume: 12 start-page: 829 year: 2013 end-page: 846 ident: CR66 article-title: Metabolic targets for cancer therapy publication-title: Nat Rev Drug Discov – volume: 136 start-page: 823 year: 2009 end-page: 837 ident: CR143 article-title: Principles of cancer therapy: oncogene and non‐oncogene addiction publication-title: Cell – volume: 22 start-page: 2954 year: 2004 end-page: 2963 ident: CR222 article-title: The biology and clinical relevance of the PTEN tumor suppressor pathway publication-title: J Clin Oncol – volume: 22 start-page: 5237 year: 2013 end-page: 5248 ident: CR242 article-title: Myc inhibition impairs autophagosome formation publication-title: Hum Mol Genet – volume: 19 start-page: 637 year: 2014 end-page: 638 ident: CR264 article-title: Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma publication-title: Oncologist – volume: 61 start-page: 6693 year: 2001 end-page: 6697 ident: CR71 article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2 publication-title: Cancer Res – volume: 5 start-page: e1271 year: 2014 ident: CR69 article-title: Degradation of mutant p53H175 protein by Zn(II) through autophagy publication-title: Cell Death Dis – volume: 283 start-page: 10892 year: 2008 end-page: 10903 ident: CR275 article-title: Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 289 start-page: 9692 year: 2014 end-page: 9709 ident: CR218 article-title: The metastasis suppressor, N‐myc downstream‐regulated gene 1 (NDRG1), inhibits stress‐induced autophagy in cancer cells publication-title: J Biol Chem – volume: 66 start-page: 2885 year: 2006 end-page: 2888 ident: CR192 article-title: Bcl‐2 inhibition of autophagy: a new route to cancer? publication-title: Cancer Res – volume: 74 start-page: 7418 year: 2014 end-page: 7429 ident: CR26 article-title: Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma publication-title: Cancer Res – volume: 10 start-page: 1013 year: 2014 end-page: 1019 ident: CR212 article-title: A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy publication-title: Nat Chem Biol – volume: 51 start-page: 219 year: 2014 end-page: 227 ident: CR5 article-title: Targeting BCL2 for the treatment of lymphoid malignancies publication-title: Semin Hematol – volume: 20 start-page: 1981 year: 2009 end-page: 1991 ident: CR92 article-title: Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy publication-title: Mol Biol Cell – volume: 111 start-page: 7741 year: 2014 end-page: 7746 ident: CR124 article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense publication-title: Proc Natl Acad Sci USA – volume: 59 start-page: 59 year: 1999 end-page: 65 ident: CR3 article-title: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21 publication-title: Genomics – volume: 133 start-page: 343 year: 2007 end-page: 349 ident: CR28 article-title: A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer publication-title: J Cancer Res Clin Oncol – volume: 27 start-page: 2312 year: 2008 end-page: 2319 ident: CR63 article-title: FOXOs, cancer and regulation of apoptosis publication-title: Oncogene – volume: 18 start-page: 370 year: 2012 end-page: 379 ident: CR125 article-title: Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome publication-title: Clin Cancer Res – volume: 504 start-page: 296 year: 2013 end-page: 300 ident: CR214 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 126 start-page: 121 year: 2006 end-page: 134 ident: CR38 article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis publication-title: Cell – volume: 15 start-page: 403 year: 2014 end-page: 411 ident: CR202 article-title: Self and nonself: how autophagy targets mitochondria and bacteria publication-title: Cell Host Microbe – volume: 25 start-page: 717 year: 2011 end-page: 729 ident: CR268 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev – volume: 116 start-page: 2324 year: 2010 end-page: 2331 ident: CR103 article-title: Autophagy contributes to therapy‐induced degradation of the PML/RARA oncoprotein publication-title: Blood – volume: 30 start-page: 678 year: 2008 end-page: 688 ident: CR259 article-title: JNK1‐mediated phosphorylation of Bcl‐2 regulates starvation‐induced autophagy publication-title: Mol Cell – ident: CR21 – volume: 3 start-page: 894 year: 2013 end-page: 907 ident: CR95 article-title: Autophagy opposes p53‐mediated tumor barrier to facilitate tumorigenesis in a model of PALB2‐associated hereditary breast cancer publication-title: Cancer Discov – volume: 431 start-page: 525 year: 2004 end-page: 526 ident: CR234 article-title: Lung cancer: intragenic ERBB2 kinase mutations in tumours publication-title: Nature – volume: 66 start-page: 8200 year: 2006 end-page: 8209 ident: CR228 article-title: Targeting mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase in the mutant (V600E) B‐Raf signaling cascade effectively inhibits melanoma lung metastases publication-title: Cancer Res – volume: 122 start-page: 4621 year: 2012 end-page: 4634 ident: CR86 article-title: ER stress‐mediated autophagy promotes Myc‐dependent transformation and tumor growth publication-title: J Clin Invest – volume: 116 start-page: 4806 year: 2010 end-page: 4814 ident: CR135 article-title: FIP200 is required for the cell‐autonomous maintenance of fetal hematopoietic stem cells publication-title: Blood – volume: 11 start-page: 709 year: 2012 end-page: 730 ident: CR217 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases publication-title: Nat Rev Drug Discov – volume: 79 start-page: 7824 year: 1982 end-page: 7827 ident: CR40 article-title: Human c‐myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells publication-title: Proc Natl Acad Sci USA – volume: 231 start-page: 354 year: 2013 end-page: 366 ident: CR83 article-title: Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state publication-title: J Pathol – volume: 17 start-page: 73 year: 2013 end-page: 84 ident: CR9 article-title: Sestrins activate Nrf2 by promoting p62‐dependent autophagic degradation of Keap1 and prevent oxidative liver damage publication-title: Cell Metab – volume: 73 start-page: 4311 year: 2013 end-page: 4322 ident: CR12 article-title: Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability publication-title: Cancer Res – volume: 4 start-page: 648 year: 2002 end-page: 657 ident: CR99 article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling publication-title: Nat Cell Biol – volume: 1 start-page: e10 year: 2010 ident: CR177 article-title: Caloric restriction and resveratrol promote longevity through the Sirtuin‐1‐dependent induction of autophagy publication-title: Cell Death Dis – volume: 9 start-page: 545 year: 1994 end-page: 551 ident: CR216 article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells publication-title: Oncogene – volume: 43 start-page: 67 year: 2009 end-page: 93 ident: CR87 article-title: Regulation mechanisms and signaling pathways of autophagy publication-title: Annu Rev Genet – volume: 53 start-page: 167 year: 2014 end-page: 178 ident: CR211 article-title: Interactions between autophagy receptors and ubiquitin‐like proteins form the molecular basis for selective autophagy publication-title: Mol Cell – volume: 106 start-page: 20842 year: 2009 end-page: 20846 ident: CR219 article-title: Atg9a controls dsDNA‐driven dynamic translocation of STING and the innate immune response publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 121 year: 2014 end-page: 135 ident: CR246 article-title: Metabolic reprogramming of stromal fibroblasts through p62‐mTORC1 signaling promotes inflammation and tumorigenesis publication-title: Cancer Cell – volume: 211 start-page: 669 year: 2014 end-page: 683 ident: CR15 article-title: BRAF‐V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups publication-title: J Exp Med – volume: 10 start-page: e1004626 year: 2014 ident: CR168 article-title: Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG‐VPS34 complex publication-title: PLoS Genet – volume: 13 start-page: 1016 year: 2011 end-page: 1023 ident: CR170 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat Cell Biol – volume: 304 start-page: 596 year: 2004 end-page: 600 ident: CR19 article-title: Regeneration of peroxiredoxins by p53‐regulated sestrins, homologs of bacterial AhpD publication-title: Science – volume: 31 start-page: 285 year: 2002 end-page: 288 ident: CR24 article-title: Truncating mutations of RB1CC1 in human breast cancer publication-title: Nat Genet – volume: 154 start-page: 1269 year: 2013 end-page: 1284 ident: CR260 article-title: EGFR‐mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance publication-title: Cell – volume: 35 start-page: 756 year: 2014 end-page: 765 ident: CR127 article-title: Analysis of TP53 mutation status in human cancer cell lines: a reassessment publication-title: Hum Mutat – volume: 19 start-page: 1741 year: 2009 end-page: 1746 ident: CR46 article-title: Autophagy, not apoptosis, is essential for midgut cell death in Drosophila publication-title: Curr Biol – volume: 109 start-page: 8253 year: 2012 end-page: 8258 ident: CR166 article-title: Autophagy inhibitor Lys05 has single‐agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency publication-title: Proc Natl Acad Sci USA – volume: 284 start-page: 2803 year: 2009 end-page: 2810 ident: CR198 article-title: ARF induces autophagy by virtue of interaction with Bcl‐xl publication-title: J Biol Chem – volume: 276 start-page: 35243 year: 2001 end-page: 35246 ident: CR6 article-title: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3‐kinase/protein kinase B pathway publication-title: J Biol Chem – volume: 26 start-page: 2527 year: 2007 end-page: 2539 ident: CR152 article-title: Functional and physical interaction between Bcl‐X(L) and a BH3‐like domain in Beclin‐1 publication-title: EMBO J – volume: 208 start-page: 455 year: 2011 end-page: 467 ident: CR179 article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance publication-title: J Exp Med – volume: 11 start-page: 55 year: 2010 end-page: 62 ident: CR245 article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry publication-title: Nat Immunol – volume: 102 start-page: 1649 year: 2005 end-page: 1654 ident: CR93 article-title: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin‐mediated degradation publication-title: Proc Natl Acad Sci USA – volume: 233 start-page: 212 year: 1986 end-page: 214 ident: CR14 article-title: The chronic myelogenous leukemia‐specific P210 protein is the product of the bcr/abl hybrid gene publication-title: Science – volume: 243 start-page: 934 year: 1989 end-page: 937 ident: CR53 article-title: The human papilloma virus‐16 E7 oncoprotein is able to bind to the retinoblastoma gene product publication-title: Science – volume: 36 start-page: 947 year: 2012 end-page: 958 ident: CR194 article-title: Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF‐kappaB publication-title: Immunity – volume: 10 start-page: 1369 year: 2014 end-page: 1379 ident: CR204 article-title: Phase I trial of hydroxychloroquine with dose‐intense temozolomide in patients with advanced solid tumors and melanoma publication-title: Autophagy – volume: 9 start-page: 1142 year: 2007 end-page: 1151 ident: CR238 article-title: Bif‐1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis publication-title: Nat Cell Biol – volume: 146 start-page: 1 year: 2005 end-page: 1466 ident: CR159 article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53 publication-title: Oncogene 24: – volume: 131 start-page: 1149 year: 2007 end-page: 1163 ident: CR117 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice publication-title: Cell – volume: 155 start-page: 1216 year: 2013 end-page: 1219 ident: CR80 article-title: Autophagy‐mediated tumor promotion publication-title: Cell – volume: 5 start-page: 5637 year: 2014 ident: CR57 article-title: Beclin 1 restrains tumorigenesis through Mcl‐1 destabilization in an autophagy‐independent reciprocal manner publication-title: Nat Commun – volume: 21 start-page: 187 year: 1999 end-page: 190 ident: CR102 article-title: Activating SRC mutation in a subset of advanced human colon cancers publication-title: Nat Genet – volume: 10 start-page: 1391 year: 2014 end-page: 1402 ident: CR203 article-title: Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma publication-title: Autophagy – volume: 123 start-page: 5212 year: 2013 end-page: 5230 ident: CR121 article-title: Histone deacetylase 6‐mediated selective autophagy regulates COPD‐associated cilia dysfunction publication-title: J Clin Invest – volume: 14 start-page: 759 year: 2013 end-page: 774 ident: CR122 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nat Rev Mol Cell Biol – volume: 17 start-page: 631 year: 2005 end-page: 636 ident: CR176 article-title: Transcription‐independent pro‐apoptotic functions of p53 publication-title: Curr Opin Cell Biol – volume: 10 start-page: 1380 year: 2014 end-page: 1390 ident: CR251 article-title: Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma publication-title: Autophagy – volume: 4 start-page: 2130 year: 2013 ident: CR160 article-title: ATG5 is induced by DNA‐damaging agents and promotes mitotic catastrophe independent of autophagy publication-title: Nat Commun – volume: 10 start-page: 285 year: 2009 end-page: 292 ident: CR274 article-title: DAP‐kinase‐mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl‐XL and induction of autophagy publication-title: EMBO Rep – volume: 235 start-page: 177 year: 1987 end-page: 182 ident: CR233 article-title: Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene publication-title: Science – volume: 74 start-page: 2579 year: 2014 end-page: 2590 ident: CR165 article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious publication-title: Cancer Res – volume: 13 start-page: 7 year: 2012 end-page: 12 ident: CR31 article-title: Canonical and non‐canonical autophagy: variations on a common theme of self‐eating? publication-title: Nat Rev Mol Cell Biol – volume: 39 start-page: 211 year: 2013 end-page: 227 ident: CR146 article-title: Autophagy and cellular immune responses publication-title: Immunity – volume: 23 start-page: 310 year: 2013 end-page: 322 ident: CR197 article-title: Regulation of autophagy by stress‐responsive transcription factors publication-title: Semin Cancer Biol – volume: 10 start-page: 1359 year: 2014 end-page: 1368 ident: CR213 article-title: A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme publication-title: Autophagy – volume: 336 start-page: 225 year: 2012 end-page: 228 ident: CR126 article-title: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress publication-title: Science – volume: 14 start-page: 177 year: 2012 end-page: 185 ident: CR137 article-title: Mitochondrial outer‐membrane protein FUNDC1 mediates hypoxia‐induced mitophagy in mammalian cells publication-title: Nat Cell Biol – volume: 282 start-page: 18573 year: 2007 end-page: 18583 ident: CR157 article-title: Tissue‐specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin‐3 publication-title: J Biol Chem – volume: 116 start-page: 103 year: 1983 end-page: 110 ident: CR215 article-title: Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy publication-title: J Cell Physiol – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: CR82 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 3 start-page: 1 year: 2001 end-page: 7 ident: CR206 article-title: DAP kinase activates a p19ARF/p53‐mediated apoptotic checkpoint to suppress oncogenic transformation publication-title: Nat Cell Biol – volume: 21 start-page: 2861 year: 2007 end-page: 2873 ident: CR173 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 119 start-page: 1359 year: 2009 end-page: 1372 ident: CR220 article-title: Cannabinoid action induces autophagy‐mediated cell death through stimulation of ER stress in human glioma cells publication-title: J Clin Invest – volume: 16 start-page: 87 year: 2009 end-page: 93 ident: CR153 article-title: Control of autophagy by oncogenes and tumor suppressor genes publication-title: Cell Death Differ – volume: 5 start-page: 202ra123 year: 2013 ident: CR136 article-title: Down‐regulation of autophagy‐related protein 5 (ATG5) contributes to the pathogenesis of early‐stage cutaneous melanoma publication-title: Sci Transl Med – volume: 21 start-page: 99 year: 1999 end-page: 102 ident: CR231 article-title: PIK3CA is implicated as an oncogene in ovarian cancer publication-title: Nat Genet – volume: 22 start-page: 432 year: 2012 end-page: 435 ident: CR221 article-title: Autophagy is required for self‐renewal and differentiation of adult human stem cells publication-title: Cell Res – volume: 121 start-page: 179 year: 2005 end-page: 193 ident: CR144 article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis publication-title: Cell – volume: 108 start-page: 12455 year: 2011 end-page: 12460 ident: CR191 article-title: Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)‐dependent publication-title: Proc Natl Acad Sci USA – volume: 441 start-page: 424 year: 2006 end-page: 430 ident: CR230 article-title: Ras, PI(3)K and mTOR signalling controls tumour cell growth publication-title: Nature – volume: 306 start-page: 1037 year: 2004 end-page: 1040 ident: CR181 article-title: Autophagy defends cells against invading group A Streptococcus publication-title: Science – volume: 23 start-page: 798 year: 2009 end-page: 803 ident: CR271 article-title: Autophagy mediates the mitotic senescence transition publication-title: Genes Dev – volume: 80 start-page: 1160 year: 2010 end-page: 1169 ident: CR36 article-title: BNIP3 protects HepG2 cells against etoposide‐induced cell death under hypoxia by an autophagy‐independent pathway publication-title: Biochem Pharmacol – volume: 137 start-page: 1062 year: 2009 end-page: 1075 ident: CR162 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell – volume: 27 start-page: 6229 year: 2007 end-page: 6242 ident: CR244 article-title: BNIP3 is an RB/E2F target gene required for hypoxia‐induced autophagy publication-title: Mol Cell Biol – volume: 244 start-page: 1085 year: 1989 end-page: 1087 ident: CR61 article-title: Physical mapping of a translocation breakpoint in neurofibromatosis publication-title: Science – volume: 8 start-page: 275 year: 2007 end-page: 283 ident: CR252 article-title: p53 in health and disease publication-title: Nat Rev Mol Cell Biol – volume: 2011 start-page: 865819 year: 2011 ident: CR225 article-title: Regulation of SRC family kinases in human cancers publication-title: J Signal Transduct – volume: 333 start-page: 1109 year: 2011 end-page: 1112 ident: CR74 article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging publication-title: Science – volume: 30 start-page: 429 year: 2007 end-page: 436 ident: CR172 article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours publication-title: Int J Oncol – volume: 285 start-page: 22576 year: 2010 end-page: 22591 ident: CR104 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element‐driven gene transcription publication-title: J Biol Chem – volume: 25 start-page: 795 year: 2011 end-page: 800 ident: CR240 article-title: Autophagy‐deficient mice develop multiple liver tumors publication-title: Genes Dev – volume: 15 start-page: 713 year: 2013 end-page: 720 ident: CR18 article-title: Emerging regulation and functions of autophagy publication-title: Nat Cell Biol – volume: 54 start-page: 2852 year: 1994 end-page: 2855 ident: CR232 article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas publication-title: Cancer Res – volume: 149 start-page: 656 year: 2012 end-page: 670 ident: CR270 article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism publication-title: Cell – volume: 19 start-page: 2739 year: 2000 end-page: 2744 ident: CR147 article-title: PIK3CA as an oncogene in cervical cancer publication-title: Oncogene – volume: 3 start-page: 1272 year: 2013 end-page: 1285 ident: CR236 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E‐driven lung tumors publication-title: Cancer Discov – volume: 42 start-page: 23 year: 2011 end-page: 35 ident: CR56 article-title: Oncogenic Ras‐induced expression of Noxa and Beclin‐1 promotes autophagic cell death and limits clonogenic survival publication-title: Mol Cell – volume: 4 start-page: 773 year: 2014 end-page: 780 ident: CR128 article-title: Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors publication-title: Cancer Discov – volume: 4 start-page: 905 year: 2014 end-page: 913 ident: CR267 article-title: Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations publication-title: Cancer Discov – volume: 113 start-page: 2665 year: 2008 end-page: 2670 ident: CR34 article-title: Down‐regulation of Bax‐interacting factor‐1 in colorectal adenocarcinoma publication-title: Cancer – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: CR140 article-title: The hallmarks of aging publication-title: Cell – volume: 233 start-page: 103 year: 2014 end-page: 112 ident: CR276 article-title: Xenophagy in Helicobacter pylori‐ and Epstein‐Barr virus‐induced gastric cancer publication-title: J Pathol – volume: 22 start-page: 1001 year: 2012 end-page: 1016 ident: CR279 article-title: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy publication-title: Dev Cell – volume: 32 start-page: 4932 year: 2013 end-page: 4940 ident: CR8 article-title: Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK publication-title: Oncogene – volume: 181 start-page: 497 year: 2008 end-page: 510 ident: CR84 article-title: FIP200, a ULK‐interacting protein, is required for autophagosome formation in mammalian cells publication-title: J Cell Biol – volume: 147 start-page: 728 year: 2011 end-page: 741 ident: CR175 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 149 start-page: 22 year: 2012 end-page: 35 ident: CR41 article-title: MYC on the path to cancer publication-title: Cell – volume: 79 start-page: 4019 year: 2011 end-page: 4028 ident: CR269 article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase‐bearing organelles publication-title: Infect Immun – volume: 501 start-page: 421 year: 2013 end-page: 425 ident: CR50 article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy publication-title: Nature – volume: 149 start-page: 274 year: 2012 end-page: 293 ident: CR123 article-title: mTOR signaling in growth control and disease publication-title: Cell – volume: 37 start-page: 230 year: 2012 end-page: 236 ident: CR180 article-title: p62: a versatile multitasker takes on cancer publication-title: Trends Biochem Sci – volume: 118 start-page: 3917 year: 2008 end-page: 3929 ident: CR142 article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells publication-title: J Clin Invest – volume: 332 start-page: 1429 year: 2011 end-page: 1433 ident: CR227 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science – volume: 23 start-page: 1283 year: 2009 end-page: 1288 ident: CR262 article-title: Hypoxia‐selective macroautophagy and cell survival signaled by autocrine PDGFR activity publication-title: Genes Dev – volume: 475 start-page: 106 year: 2011 end-page: 109 ident: CR45 article-title: Oncogene‐induced Nrf2 transcription promotes ROS detoxification and tumorigenesis publication-title: Nature – volume: 16 start-page: 108 year: 2014 end-page: 111 ident: CR226 article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis publication-title: Nature – volume: 10 start-page: 90 year: 2011 end-page: 103 ident: CR243 article-title: A combined preclinical therapy of cannabinoids and temozolomide against glioma publication-title: Mol Cancer Ther – volume: 26 start-page: 738 year: 2014 end-page: 753 ident: CR81 article-title: TRPM3 and miR‐204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma publication-title: Cancer Cell – volume: 10 start-page: 1415 year: 2014 end-page: 1425 ident: CR11 article-title: Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma publication-title: Autophagy – volume: 1845 start-page: 91 year: 2014 end-page: 103 ident: CR43 article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis publication-title: Biochim Biophys Acta – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: CR189 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 22 start-page: 165 year: 2011 end-page: 178 ident: CR139 article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation publication-title: Mol Biol Cell – volume: 25 start-page: 1510 year: 2011 end-page: 1527 ident: CR258 article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis publication-title: Genes Dev – volume: 12 start-page: 1022 year: 2013 end-page: 1029 ident: CR27 article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? publication-title: Cell Cycle – volume: 437 start-page: 12 year: 2013 end-page: 19 ident: CR77 article-title: Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes publication-title: Virology – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: CR174 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature – volume: 402 start-page: 672 year: 1999 end-page: 676 ident: CR130 article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1 publication-title: Nature – volume: 134 start-page: 451 year: 2008 end-page: 460 ident: CR20 article-title: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling publication-title: Cell – volume: 13 start-page: 179 year: 2006 end-page: 188 ident: CR223 article-title: Targeting XIAP for the treatment of malignancy publication-title: Cell Death Differ – volume: 9 start-page: 2056 year: 2013 end-page: 2068 ident: CR195 article-title: Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells publication-title: Autophagy – volume: 122 start-page: 927 year: 2005 end-page: 939 ident: CR193 article-title: Bcl‐2 antiapoptotic proteins inhibit Beclin 1‐dependent autophagy publication-title: Cell – volume: 27 start-page: 1447 year: 2013 end-page: 1461 ident: CR79 article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis publication-title: Genes Dev – ident: CR35 – volume: 40 start-page: 280 year: 2010 end-page: 293 ident: CR118 article-title: Autophagy and the integrated stress response publication-title: Mol Cell – volume: 23 start-page: 3898 year: 2004 end-page: 3904 ident: CR64 article-title: Ras is involved in the negative control of autophagy through the class I PI3‐kinase publication-title: Oncogene – volume: 69 start-page: 7803 year: 2009 end-page: 7810 ident: CR10 article-title: MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E‐binding protein 1‐mediated inhibition of autophagy publication-title: Cancer Res – volume: 22 start-page: 58 year: 2015 end-page: 73 ident: CR301 article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 publication-title: Cell Death Differ – volume: 205 start-page: 435 year: 2014 end-page: 445 ident: CR186 article-title: Organellophagy: eliminating cellular building blocks via selective autophagy publication-title: J Cell Biol – volume: 12 start-page: 222 year: 2011 end-page: 230 ident: CR182 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat Immunol – volume: 22 start-page: 181 year: 2010 end-page: 185 ident: CR154 article-title: Autophagy regulation by p53 publication-title: Curr Opin Cell Biol – volume: 16 start-page: 532 year: 2013 end-page: 542 ident: CR253 article-title: FIP200 is required for maintenance and differentiation of postnatal neural stem cells publication-title: Nat Neurosci – volume: 5 start-page: 5276 year: 2014 ident: CR78 article-title: Autophagy supports genomic stability by degrading retrotransposon RNA publication-title: Nat Commun – volume: 19 start-page: 87 year: 2012 end-page: 95 ident: CR48 article-title: Cell death by autophagy: facts and apparent artefacts publication-title: Cell Death Differ – volume: 22 start-page: 2172 year: 2008 end-page: 2177 ident: CR183 article-title: Aberrant Rheb‐mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events publication-title: Genes Dev – volume: 448 start-page: 439 year: 2007 end-page: 444 ident: CR23 article-title: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer publication-title: Nature – volume: 112 start-page: 1489 year: 2008 end-page: 1502 ident: CR59 article-title: Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down‐regulated in human ovarian cancers by loss of heterozygosity and promoter methylation publication-title: Cancer – volume: 13 start-page: 343 year: 2008 end-page: 354 ident: CR52 article-title: The signaling adaptor p62 is an important NF‐kappaB mediator in tumorigenesis publication-title: Cancer Cell – volume: 51 start-page: 618 year: 2013 end-page: 631 ident: CR97 article-title: Phosphorylation of p62 activates the Keap1‐Nrf2 pathway during selective autophagy publication-title: Mol Cell – volume: 16 start-page: 333 year: 1997 end-page: 334 ident: CR158 article-title: Germline mutations in PTEN are present in Bannayan‐Zonana syndrome publication-title: Nat Genet – volume: 10 start-page: 1712 year: 2014 end-page: 1725 ident: CR265 article-title: The BCL2L1 and PGAM5 axis defines hypoxia‐induced receptor‐mediated mitophagy publication-title: Autophagy – volume: 63 start-page: 835 year: 1990 end-page: 841 ident: CR266 article-title: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae publication-title: Cell – volume: 334 start-page: 1573 year: 2011 end-page: 1577 ident: CR169 article-title: Autophagy‐dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science – volume: 11 start-page: 4436 year: 2012 end-page: 4446 ident: CR210 article-title: Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy publication-title: Cell Cycle – volume: 21 start-page: 1367 year: 2007 end-page: 1381 ident: CR161 article-title: Autophagy suppresses tumor progression by limiting chromosomal instability publication-title: Genes Dev – volume: 338 start-page: 956 year: 2012 end-page: 959 ident: CR255 article-title: Akt‐mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation publication-title: Science – volume: 109 start-page: 13325 year: 2012 end-page: 13330 ident: CR256 article-title: Autophagic activity dictates the cellular response to oncogenic RAS publication-title: Proc Natl Acad Sci USA – volume: 124 start-page: 1119 year: 2014 end-page: 1126 ident: CR89 article-title: Association of both Langerhans cell histiocytosis and Erdheim‐Chester disease linked to the BRAFV600E mutation publication-title: Blood – volume: 1310 start-page: 7 year: 2014 end-page: 31 ident: CR76 article-title: The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment publication-title: Ann N Y Acad Sci – volume: 115 start-page: 1344 year: 2007 end-page: 1349 ident: CR2 article-title: Expression of beclin‐1, an autophagy‐related protein, in gastric and colorectal cancers publication-title: APMIS – volume: 21 start-page: 532 year: 2012 end-page: 546 ident: CR171 article-title: VHL‐regulated MiR‐204 suppresses tumor growth through inhibition of LC3B‐mediated autophagy in renal clear cell carcinoma publication-title: Cancer Cell – volume: 10 start-page: 2036 year: 2014 end-page: 2052 ident: CR30 article-title: Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity publication-title: Autophagy – volume: 5 start-page: 1855 year: 1999 end-page: 1861 ident: CR58 article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia publication-title: Clin Cancer Res – volume: 399 start-page: 271 year: 1999 end-page: 275 ident: CR163 article-title: The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis publication-title: Nature – volume: 100 start-page: 15077 year: 2003 end-page: 15082 ident: CR273 article-title: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 1621 year: 2007 end-page: 1635 ident: CR112 article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis publication-title: Genes Dev – volume: 120 start-page: 3555 year: 2012 end-page: 3562 ident: CR73 article-title: Autophagic degradation of the BCR‐ABL oncoprotein and generation of antileukemic responses by arsenic trioxide publication-title: Blood – volume: 25 start-page: 1025 year: 2005 end-page: 1040 ident: CR17 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol Cell Biol – volume: 21 start-page: 92 year: 2014 end-page: 99 ident: CR116 article-title: Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling publication-title: Cell Death Differ – volume: 254 start-page: 1371 year: 1991 end-page: 1374 ident: CR70 article-title: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia publication-title: Science – volume: 8 start-page: 528 year: 2011 end-page: 539 ident: CR105 article-title: Autophagy as a target for anticancer therapy publication-title: Nat Rev Clin Oncol – volume: 32 start-page: 2204 year: 2013 end-page: 2216 ident: CR94 article-title: XIAP inhibits autophagy via XIAP‐Mdm2‐p53 signalling publication-title: EMBO J – volume: 129 start-page: 1261 year: 2007 end-page: 1274 ident: CR156 article-title: AKT/PKB signaling: navigating downstream publication-title: Cell – volume: 68 start-page: 352 year: 2008 end-page: 357 ident: CR1 article-title: p53‐Dependent and p53‐independent activation of autophagy by ARF publication-title: Cancer Res – volume: 266 start-page: 120 year: 1994 end-page: 122 ident: CR65 article-title: BRCA1 mutations in primary breast and ovarian carcinomas publication-title: Science – volume: 12 start-page: 622 year: 2012 ident: CR134 article-title: Autophagy‐independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors publication-title: BMC Cancer – volume: 11 start-page: 260 year: 2014 end-page: 271 ident: CR167 article-title: Li‐Fraumeni syndrome: cancer risk assessment and clinical management publication-title: Nat Rev Clin Oncol – volume: 121 start-page: 1622 year: 2013 end-page: 1632 ident: CR239 article-title: Bif‐1 haploinsufficiency promotes chromosomal instability and accelerates Myc‐driven lymphomagenesis via suppression of mitophagy publication-title: Blood – volume: 145 start-page: 1347 year: 2013 end-page: 1357 ident: CR33 article-title: Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection publication-title: Gastroenterology – volume: 1843 start-page: 137 year: 2014 end-page: 149 ident: CR90 article-title: The role of ubiquitin modification in the regulation of p53 publication-title: Biochim Biophys Acta – volume: 13 start-page: 727 year: 2014 end-page: 740 ident: CR148 article-title: Caloric restriction mimetics: towards a molecular definition publication-title: Nat Rev Drug Discov – volume: 22 start-page: 463 year: 2006 end-page: 475 ident: CR207 article-title: A short mitochondrial form of p19ARF induces autophagy and caspase‐independent cell death publication-title: Mol Cell – volume: 110 start-page: 20364 year: 2013 end-page: 20371 ident: CR138 article-title: Autosis is a Na , K ‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia publication-title: Proc Natl Acad Sci USA – volume: 124 start-page: 1406 year: 2014 end-page: 1417 ident: CR145 article-title: Targeting ER stress‐induced autophagy overcomes BRAF inhibitor resistance in melanoma publication-title: J Clin Invest – volume: 339 start-page: 286 year: 2013 end-page: 291 ident: CR37 article-title: Neutralizing tumor‐promoting chronic inflammation: a magic bullet? publication-title: Science – volume: 31 start-page: 51 year: 2013 end-page: 72 ident: CR119 article-title: Immunogenic cell death in cancer therapy publication-title: Annu Rev Immunol – volume: 22 start-page: 3927 year: 2003 end-page: 3936 article-title: Mitochondrial membrane permeabilization is a critical step of lysosome‐initiated apoptosis induced by hydroxychloroquine publication-title: Oncogene – volume: 254 start-page: 1371 year: 1991 end-page: 1374 article-title: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia publication-title: Science – volume: 153 start-page: 1194 year: 2013 end-page: 1217 article-title: The hallmarks of aging publication-title: Cell – volume: 10 start-page: e1004626 year: 2014 article-title: Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG‐VPS34 complex publication-title: PLoS Genet – volume: 25 start-page: 37 year: 2015 end-page: 45 article-title: Cellular and metabolic functions for autophagy in cancer cells publication-title: Trends Cell Biol – volume: 10 start-page: 1712 year: 2014 end-page: 1725 article-title: The BCL2L1 and PGAM5 axis defines hypoxia‐induced receptor‐mediated mitophagy publication-title: Autophagy – volume: 30 start-page: 429 year: 2007 end-page: 436 article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours publication-title: Int J Oncol – volume: 104 start-page: 14050 year: 2007 end-page: 14055 article-title: The Atg5 Atg12 conjugate associates with innate antiviral immune responses publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 717 year: 2011 end-page: 729 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev – volume: 277 start-page: 805 year: 1997 end-page: 808 article-title: Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34 publication-title: Science – volume: 448 start-page: 439 year: 2007 end-page: 444 article-title: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer publication-title: Nature – volume: 10 start-page: 1415 year: 2014 end-page: 1425 article-title: Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma publication-title: Autophagy – volume: 116 start-page: 2324 year: 2010 end-page: 2331 article-title: Autophagy contributes to therapy‐induced degradation of the PML/RARA oncoprotein publication-title: Blood – volume: 210 start-page: 2057 year: 2013 end-page: 2069 article-title: p53‐dependent chemokine production by senescent tumor cells supports NKG2D‐dependent tumor elimination by natural killer cells publication-title: J Exp Med – volume: 155 start-page: 1216 year: 2013b end-page: 1219 article-title: Autophagy‐mediated tumor promotion publication-title: Cell – volume: 1 start-page: e10 year: 2010 article-title: Caloric restriction and resveratrol promote longevity through the Sirtuin‐1‐dependent induction of autophagy publication-title: Cell Death Dis – volume: 13 start-page: 343 year: 2008 end-page: 354 article-title: The signaling adaptor p62 is an important NF‐kappaB mediator in tumorigenesis publication-title: Cancer Cell – volume: 123 start-page: 5212 year: 2013 end-page: 5230 article-title: Histone deacetylase 6‐mediated selective autophagy regulates COPD‐associated cilia dysfunction publication-title: J Clin Invest – volume: 6 start-page: 91 year: 2004 end-page: 99 article-title: The LKB1 tumor suppressor negatively regulates mTOR signaling publication-title: Cancer Cell – volume: 115 start-page: 1344 year: 2007 end-page: 1349 article-title: Expression of beclin‐1, an autophagy‐related protein, in gastric and colorectal cancers publication-title: APMIS – volume: 3 start-page: 374 year: 2007a end-page: 376 article-title: BH3‐only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl‐2/Bcl‐X(L) publication-title: Autophagy – volume: 250 start-page: 1233 year: 1990 end-page: 1238 article-title: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms publication-title: Science – volume: 284 start-page: 2803 year: 2009 end-page: 2810 article-title: ARF induces autophagy by virtue of interaction with Bcl‐xl publication-title: J Biol Chem – volume: 51 start-page: 219 year: 2014 end-page: 227 article-title: Targeting BCL2 for the treatment of lymphoid malignancies publication-title: Semin Hematol – volume: 15 start-page: 403 year: 2014 end-page: 411 article-title: Self and nonself: how autophagy targets mitochondria and bacteria publication-title: Cell Host Microbe – volume: 11 start-page: 709 year: 2012 end-page: 730 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases publication-title: Nat Rev Drug Discov – volume: 266 start-page: 120 year: 1994 end-page: 122 article-title: BRCA1 mutations in primary breast and ovarian carcinomas publication-title: Science – volume: 10 start-page: 1391 year: 2014a end-page: 1402 article-title: Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma publication-title: Autophagy – volume: 15 start-page: 406 year: 2013 end-page: 416 article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self‐association and function through AMBRA1 and TRAF6 publication-title: Nat Cell Biol – volume: 26 start-page: 2527 year: 2007b end-page: 2539 article-title: Functional and physical interaction between Bcl‐X(L) and a BH3‐like domain in Beclin‐1 publication-title: EMBO J – volume: 8 start-page: 275 year: 2007 end-page: 283 article-title: p53 in health and disease publication-title: Nat Rev Mol Cell Biol – volume: 11 start-page: 260 year: 2014 end-page: 271 article-title: Li‐Fraumeni syndrome: cancer risk assessment and clinical management publication-title: Nat Rev Clin Oncol – volume: 129 start-page: 1261 year: 2007 end-page: 1274 article-title: AKT/PKB signaling: navigating downstream publication-title: Cell – volume: 27 start-page: 1447 year: 2013a end-page: 1461 article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis publication-title: Genes Dev – volume: 332 start-page: 1429 year: 2011 end-page: 1433 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science – volume: 116 start-page: 103 year: 1983 end-page: 110 article-title: Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy publication-title: J Cell Physiol – volume: 99 start-page: 2948 year: 2002 end-page: 2953 article-title: Targeted point mutations of p53 lead to dominant‐negative inhibition of wild‐type p53 function publication-title: Proc Natl Acad Sci USA – volume: 29 start-page: 2570 year: 2009 end-page: 2581 article-title: Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains publication-title: Mol Cell Biol – volume: 1843 start-page: 137 year: 2014 end-page: 149 article-title: The role of ubiquitin modification in the regulation of p53 publication-title: Biochim Biophys Acta – volume: 391 start-page: 184 year: 1998 end-page: 187 article-title: A serine/threonine kinase gene defective in Peutz‐Jeghers syndrome publication-title: Nature – volume: 4 start-page: 2130 year: 2013 article-title: ATG5 is induced by DNA‐damaging agents and promotes mitotic catastrophe independent of autophagy publication-title: Nat Commun – volume: 233 start-page: 212 year: 1986 end-page: 214 article-title: The chronic myelogenous leukemia‐specific P210 protein is the product of the bcr/abl hybrid gene publication-title: Science – volume: 15 start-page: 1126 year: 2009 end-page: 1132 article-title: Bcl‐2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy publication-title: Clin Cancer Res – volume: 10 start-page: 1403 year: 2014 end-page: 1414 article-title: Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors publication-title: Autophagy – volume: 106 start-page: 20842 year: 2009 end-page: 20846 article-title: Atg9a controls dsDNA‐driven dynamic translocation of STING and the innate immune response publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 1492 year: 2014 end-page: 1498 article-title: Reduced expression of autophagy markers correlates with high‐risk human papillomavirus infection in human cervical squamous cell carcinoma publication-title: Oncol Lett – volume: 32 start-page: 2543 year: 2013 end-page: 2554 article-title: Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3‐kinase in three‐dimensional culture publication-title: Oncogene – volume: 32 start-page: 2204 year: 2013 end-page: 2216 article-title: XIAP inhibits autophagy via XIAP‐Mdm2‐p53 signalling publication-title: EMBO J – volume: 16 start-page: 495 year: 2014 end-page: 501 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat Cell Biol – volume: 345 start-page: 1250256 year: 2014 article-title: Cell biology. Metabolic control of cell death publication-title: Science – volume: 8 start-page: 200 year: 2012 end-page: 212 article-title: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy publication-title: Autophagy – volume: 51 start-page: 618 year: 2013 end-page: 631 article-title: Phosphorylation of p62 activates the Keap1‐Nrf2 pathway during selective autophagy publication-title: Mol Cell – volume: 21 start-page: 92 year: 2014 end-page: 99 article-title: Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling publication-title: Cell Death Differ – volume: 5 start-page: 4706 year: 2014 article-title: Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53‐mediated senescence publication-title: Nat Commun – volume: 40 start-page: 280 year: 2010 end-page: 293 article-title: Autophagy and the integrated stress response publication-title: Mol Cell – volume: 27 start-page: 4860 year: 2008 end-page: 4864 article-title: E2F1 regulates autophagy and the transcription of autophagy genes publication-title: Oncogene – volume: 13 start-page: 1016 year: 2011 end-page: 1023 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat Cell Biol – volume: 119 start-page: 1490 year: 2012 end-page: 1500 article-title: Mitochondrial dysfunction in ataxia‐telangiectasia publication-title: Blood – volume: 10 start-page: 1380 year: 2014 end-page: 1390 article-title: Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma publication-title: Autophagy – volume: 21 start-page: 187 year: 1999 end-page: 190 article-title: Activating SRC mutation in a subset of advanced human colon cancers publication-title: Nat Genet – volume: 19 start-page: 87 year: 2012b end-page: 95 article-title: Cell death by autophagy: facts and apparent artefacts publication-title: Cell Death Differ – volume: 344 start-page: 1031 year: 2001 end-page: 1037 article-title: Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia publication-title: N Engl J Med – volume: 124 start-page: 1406 year: 2014 end-page: 1417 article-title: Targeting ER stress‐induced autophagy overcomes BRAF inhibitor resistance in melanoma publication-title: J Clin Invest – volume: 9 start-page: 2056 year: 2013 end-page: 2068 article-title: Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells publication-title: Autophagy – volume: 22 start-page: 463 year: 2006 end-page: 475 article-title: A short mitochondrial form of p19ARF induces autophagy and caspase‐independent cell death publication-title: Mol Cell – volume: 13 start-page: 343 year: 2012 end-page: 351 article-title: Inflammasomes in carcinogenesis and anticancer immune responses publication-title: Nat Immunol – volume: 149 start-page: 22 year: 2012 end-page: 35 article-title: MYC on the path to cancer publication-title: Cell – volume: 19 start-page: 637 year: 2014 end-page: 638 article-title: Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma publication-title: Oncologist – volume: 16 start-page: 87 year: 2009 end-page: 93 article-title: Control of autophagy by oncogenes and tumor suppressor genes publication-title: Cell Death Differ – volume: 451 start-page: 1069 year: 2008 end-page: 1075 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature – volume: 15 start-page: R109 year: 2013 article-title: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem‐like phenotype publication-title: Breast Cancer Res – volume: 10 start-page: 285 year: 2009 end-page: 292 article-title: DAP‐kinase‐mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl‐XL and induction of autophagy publication-title: EMBO Rep – volume: 32 start-page: 4932 year: 2013 end-page: 4940 article-title: Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK publication-title: Oncogene – volume: 23 start-page: 310 year: 2013 end-page: 322 article-title: Regulation of autophagy by stress‐responsive transcription factors publication-title: Semin Cancer Biol – volume: 110 start-page: 20364 year: 2013b end-page: 20371 article-title: Autosis is a Na , K ‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia publication-title: Proc Natl Acad Sci USA – volume: 112 start-page: 1809 year: 2003 end-page: 1820 article-title: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene publication-title: J Clin Invest – volume: 19 start-page: 431 year: 2014 end-page: 444 article-title: Nucleocytosolic depletion of the energy metabolite acetyl‐coenzyme a stimulates autophagy and prolongs lifespan publication-title: Cell Metab – volume: 2011 start-page: 865819 year: 2011 article-title: Regulation of SRC family kinases in human cancers publication-title: J Signal Transduct – volume: 514 start-page: 628 year: 2014 end-page: 632 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 1845 start-page: 91 year: 2014 end-page: 103 article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis publication-title: Biochim Biophys Acta – volume: 102 start-page: 8573 year: 2005 end-page: 8578 article-title: The NF1 tumor suppressor critically regulates TSC2 and mTOR publication-title: Proc Natl Acad Sci USA – volume: 118 start-page: 3917 year: 2008 end-page: 3929 article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells publication-title: J Clin Invest – volume: 63 start-page: 835 year: 1990 end-page: 841 article-title: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae publication-title: Cell – volume: 80 start-page: 125 year: 2011 end-page: 156 article-title: Biogenesis and cargo selectivity of autophagosomes publication-title: Annu Rev Biochem – volume: 74 start-page: 7418 year: 2014 end-page: 7429 article-title: Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma publication-title: Cancer Res – volume: 231 start-page: 354 year: 2013 end-page: 366 article-title: Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state publication-title: J Pathol – volume: 154 start-page: 1269 year: 2013 end-page: 1284 article-title: EGFR‐mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance publication-title: Cell – year: 2014 article-title: Sequestosome 1/p62 facilitates HER2‐induced mammary tumorigenesis through multiple signaling pathways publication-title: Oncogene – volume: 22 start-page: 58 year: 2015 end-page: 73 article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 publication-title: Cell Death Differ – volume: 460 start-page: 392 year: 2009 end-page: 395 article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice publication-title: Nature – volume: 68 start-page: 352 year: 2008 end-page: 357 article-title: p53‐Dependent and p53‐independent activation of autophagy by ARF publication-title: Cancer Res – volume: 4 start-page: 905 year: 2014 end-page: 913 article-title: Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations publication-title: Cancer Discov – volume: 323 start-page: 643 year: 1986 end-page: 646 article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma publication-title: Nature – volume: 119 start-page: 1359 year: 2009 end-page: 1372 article-title: Cannabinoid action induces autophagy‐mediated cell death through stimulation of ER stress in human glioma cells publication-title: J Clin Invest – volume: 20 start-page: 1981 year: 2009 end-page: 1991 article-title: Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy publication-title: Mol Biol Cell – volume: 14 start-page: 177 year: 2012b end-page: 185 article-title: Mitochondrial outer‐membrane protein FUNDC1 mediates hypoxia‐induced mitophagy in mammalian cells publication-title: Nat Cell Biol – volume: 26 start-page: 190 year: 2014 end-page: 206 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell – volume: 9 start-page: 545 year: 1994 end-page: 551 article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells publication-title: Oncogene – volume: 12 start-page: 665 year: 2010 end-page: 675 article-title: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity publication-title: Nat Cell Biol – volume: 333 start-page: 1109 year: 2011 end-page: 1112 article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging publication-title: Science – volume: 8 start-page: 688 year: 2006 end-page: 699 article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG publication-title: Nat Cell Biol – volume: 18 start-page: 1099 year: 2011 end-page: 1111 article-title: Anti‐tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK‐dependent activation of autophagy publication-title: Cell Death Differ – volume: 244 start-page: 1085 year: 1989 end-page: 1087 article-title: Physical mapping of a translocation breakpoint in neurofibromatosis publication-title: Science – volume: 282 start-page: 24131 year: 2007 end-page: 24145 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 17 start-page: 20 year: 2015 end-page: 30 article-title: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c‐Myc dephosphorylation and degradation publication-title: Nat Cell Biol – volume: 3 start-page: 1272 year: 2013 end-page: 1285 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E‐driven lung tumors publication-title: Cancer Discov – volume: 402 start-page: 672 year: 1999 end-page: 676 article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1 publication-title: Nature – volume: 10 start-page: 1369 year: 2014b end-page: 1379 article-title: Phase I trial of hydroxychloroquine with dose‐intense temozolomide in patients with advanced solid tumors and melanoma publication-title: Autophagy – volume: 181 start-page: 497 year: 2008 end-page: 510 article-title: FIP200, a ULK‐interacting protein, is required for autophagosome formation in mammalian cells publication-title: J Cell Biol – volume: 19 start-page: 2739 year: 2000 end-page: 2744 article-title: PIK3CA as an oncogene in cervical cancer publication-title: Oncogene – volume: 21 start-page: 2861 year: 2007 end-page: 2873 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 69 start-page: 7803 year: 2009 end-page: 7810 article-title: MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E‐binding protein 1‐mediated inhibition of autophagy publication-title: Cancer Res – volume: 19 start-page: 1299 year: 2012a end-page: 1307 article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila publication-title: Cell Death Differ – volume: 205 start-page: 435 year: 2014 end-page: 445 article-title: Organellophagy: eliminating cellular building blocks via selective autophagy publication-title: J Cell Biol – volume: 59 start-page: 1263 year: 2014 end-page: 1276 article-title: Metabolic control of autophagy publication-title: Cell – volume: 4 start-page: 773 year: 2014 end-page: 780 article-title: Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors publication-title: Cancer Discov – volume: 13 start-page: 179 year: 2006 end-page: 188 article-title: Targeting XIAP for the treatment of malignancy publication-title: Cell Death Differ – volume: 18 start-page: 452 year: 2011 end-page: 464 article-title: Downregulation of autophagy by Bcl‐2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis publication-title: Cell Death Differ – volume: 5 start-page: e1271 year: 2014 article-title: Degradation of mutant p53H175 protein by Zn(II) through autophagy publication-title: Cell Death Dis – volume: 147 start-page: 728 year: 2011 end-page: 741 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 5 start-page: 3496 year: 2014 article-title: Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52 publication-title: Nat Commun – volume: 102 start-page: 1649 year: 2005 end-page: 1654 article-title: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin‐mediated degradation publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 222 year: 2011 end-page: 230 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat Immunol – volume: 66 start-page: 8200 year: 2006 end-page: 8209 article-title: Targeting mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase in the mutant (V600E) B‐Raf signaling cascade effectively inhibits melanoma lung metastases publication-title: Cancer Res – volume: 21 start-page: 1367 year: 2007 end-page: 1381 article-title: Autophagy suppresses tumor progression by limiting chromosomal instability publication-title: Genes Dev – volume: 23 start-page: 1283 year: 2009 end-page: 1288 article-title: Hypoxia‐selective macroautophagy and cell survival signaled by autocrine PDGFR activity publication-title: Genes Dev – volume: 10 start-page: 2036 year: 2014 end-page: 2052 article-title: Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity publication-title: Autophagy – volume: 27 start-page: 2312 year: 2008 end-page: 2319 article-title: FOXOs, cancer and regulation of apoptosis publication-title: Oncogene – volume: 74 start-page: 2579 year: 2014 end-page: 2590 article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious publication-title: Cancer Res – volume: 16 start-page: 108 year: 2014 end-page: 111 article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis publication-title: Nature – volume: 15 start-page: 713 year: 2013 end-page: 720 article-title: Emerging regulation and functions of autophagy publication-title: Nat Cell Biol – volume: 124 start-page: 1119 year: 2014 end-page: 1126 article-title: Association of both Langerhans cell histiocytosis and Erdheim‐Chester disease linked to the BRAFV600E mutation publication-title: Blood – volume: 28 start-page: 689 year: 2014 end-page: 707 article-title: Stress‐induced cleavage of Myc promotes cancer cell survival publication-title: Genes Dev – volume: 113 start-page: 2665 year: 2008 end-page: 2670 article-title: Down‐regulation of Bax‐interacting factor‐1 in colorectal adenocarcinoma publication-title: Cancer – volume: 100 start-page: 15077 year: 2003 end-page: 15082 article-title: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor publication-title: Proc Natl Acad Sci USA – volume: 417 start-page: 949 year: 2002 end-page: 954 article-title: Mutations of the BRAF gene in human cancer publication-title: Nature – volume: 437 start-page: 12 year: 2013 end-page: 19 article-title: Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes publication-title: Virology – volume: 233 start-page: 103 year: 2014 end-page: 112 article-title: Xenophagy in Helicobacter pylori‐ and Epstein‐Barr virus‐induced gastric cancer publication-title: J Pathol – volume: 43 start-page: 67 year: 2009 end-page: 93 article-title: Regulation mechanisms and signaling pathways of autophagy publication-title: Annu Rev Genet – volume: 13 start-page: 7 year: 2012 end-page: 12 article-title: Canonical and non‐canonical autophagy: variations on a common theme of self‐eating? publication-title: Nat Rev Mol Cell Biol – volume: 475 start-page: 106 year: 2011 end-page: 109 article-title: Oncogene‐induced Nrf2 transcription promotes ROS detoxification and tumorigenesis publication-title: Nature – volume: 243 start-page: 934 year: 1989 end-page: 937 article-title: The human papilloma virus‐16 E7 oncoprotein is able to bind to the retinoblastoma gene product publication-title: Science – volume: 14 start-page: 2251 year: 2011 end-page: 2269 article-title: Oncosuppressive functions of autophagy publication-title: Antioxid Redox Signal – volume: 306 start-page: 1037 year: 2004 end-page: 1040 article-title: Autophagy defends cells against invading group A Streptococcus publication-title: Science – volume: 36 start-page: 947 year: 2012 end-page: 958 article-title: Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF‐kappaB publication-title: Immunity – volume: 441 start-page: 424 year: 2006 end-page: 430 article-title: Ras, PI(3)K and mTOR signalling controls tumour cell growth publication-title: Nature – volume: 108 start-page: 12455 year: 2011 end-page: 12460 article-title: Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)‐dependent publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 5276 year: 2014 article-title: Autophagy supports genomic stability by degrading retrotransposon RNA publication-title: Nat Commun – volume: 109 start-page: 13561 year: 2012 end-page: 13566 article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis publication-title: Proc Natl Acad Sci USA – volume: 338 start-page: 956 year: 2012a end-page: 959 article-title: Akt‐mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation publication-title: Science – volume: 5 start-page: 5637 year: 2014 article-title: Beclin 1 restrains tumorigenesis through Mcl‐1 destabilization in an autophagy‐independent reciprocal manner publication-title: Nat Commun – volume: 35 start-page: 756 year: 2014 end-page: 765 article-title: Analysis of TP53 mutation status in human cancer cell lines: a reassessment publication-title: Hum Mutat – volume: 51 start-page: 283 year: 2013 end-page: 296 article-title: K63 polyubiquitination and activation of mTOR by the p62‐TRAF6 complex in nutrient‐activated cells publication-title: Mol Cell – volume: 26 start-page: 121 year: 2014 end-page: 135 article-title: Metabolic reprogramming of stromal fibroblasts through p62‐mTORC1 signaling promotes inflammation and tumorigenesis publication-title: Cancer Cell – year: 2014 article-title: Autophagy regulates tissue overgrowth in a context‐dependent manner publication-title: Oncogene – volume: 17 start-page: 73 year: 2013 end-page: 84 article-title: Sestrins activate Nrf2 by promoting p62‐dependent autophagic degradation of Keap1 and prevent oxidative liver damage publication-title: Cell Metab – volume: 25 start-page: 1510 year: 2011 end-page: 1527 article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis publication-title: Genes Dev – volume: 126 start-page: 121 year: 2006 end-page: 134 article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis publication-title: Cell – volume: 25 start-page: 795 year: 2011 end-page: 800 article-title: Autophagy‐deficient mice develop multiple liver tumors publication-title: Genes Dev – volume: 12 start-page: 485 year: 2014 end-page: 490 article-title: Mutational landscape of the essential autophagy gene BECN1 in human cancers publication-title: Mol Cancer Res – volume: 80 start-page: 1160 year: 2010 end-page: 1169 article-title: BNIP3 protects HepG2 cells against etoposide‐induced cell death under hypoxia by an autophagy‐independent pathway publication-title: Biochem Pharmacol – volume: 22 start-page: 2172 year: 2008 end-page: 2177 article-title: Aberrant Rheb‐mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events publication-title: Genes Dev – volume: 23 start-page: 3898 year: 2004 end-page: 3904 article-title: Ras is involved in the negative control of autophagy through the class I PI3‐kinase publication-title: Oncogene – volume: 12 start-page: 1022 year: 2013 end-page: 1029 article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? publication-title: Cell Cycle – volume: 17 start-page: 631 year: 2005 end-page: 636 article-title: Transcription‐independent pro‐apoptotic functions of p53 publication-title: Curr Opin Cell Biol – volume: 37 start-page: 230 year: 2012 end-page: 236 article-title: p62: a versatile multitasker takes on cancer publication-title: Trends Biochem Sci – volume: 211 start-page: 669 year: 2014 end-page: 683 article-title: BRAF‐V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups publication-title: J Exp Med – volume: 17 start-page: 1829 year: 2003 end-page: 1834 article-title: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling publication-title: Genes Dev – volume: 8 start-page: 528 year: 2011 end-page: 539 article-title: Autophagy as a target for anticancer therapy publication-title: Nat Rev Clin Oncol – volume: 11 start-page: 55 year: 2010 end-page: 62 article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry publication-title: Nat Immunol – volume: 33 start-page: 3983 year: 2013 end-page: 3993 article-title: Epigenetic regulation of autophagy by the methyltransferase G9a publication-title: Mol Cell Biol – year: 2015 article-title: Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor‐negative subtypes and poor prognosis publication-title: EBioMedicine – volume: 208 start-page: 455 year: 2011 end-page: 467 article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance publication-title: J Exp Med – volume: 9 start-page: e100819 year: 2014 article-title: Beclin 1 and UVRAG confer protection from radiation‐induced DNA damage and maintain centrosome stability in colorectal cancer cells publication-title: PLoS One – volume: 21 start-page: 105 year: 2012 end-page: 120 article-title: KrasG12D‐induced IKK2/beta/NF‐kappaB activation by IL‐1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma publication-title: Cancer Cell – volume: 42 start-page: 23 year: 2011 end-page: 35 article-title: Oncogenic Ras‐induced expression of Noxa and Beclin‐1 promotes autophagic cell death and limits clonogenic survival publication-title: Mol Cell – volume: 52 start-page: 381 year: 2012 end-page: 400 article-title: AMPK and mTOR in cellular energy homeostasis and drug targets publication-title: Annu Rev Pharmacol Toxicol – volume: 22 start-page: 181 year: 2010 end-page: 185 article-title: Autophagy regulation by p53 publication-title: Curr Opin Cell Biol – volume: 235 start-page: 177 year: 1987 end-page: 182 article-title: Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene publication-title: Science – volume: 73 start-page: 4311 year: 2013 end-page: 4322 article-title: Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability publication-title: Cancer Res – volume: 283 start-page: 10892 year: 2008 end-page: 10903 article-title: Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 21 start-page: 532 year: 2012 end-page: 546 article-title: VHL‐regulated MiR‐204 suppresses tumor growth through inhibition of LC3B‐mediated autophagy in renal clear cell carcinoma publication-title: Cancer Cell – volume: 39 start-page: 211 year: 2013 end-page: 227 article-title: Autophagy and cellular immune responses publication-title: Immunity – volume: 122 start-page: 4621 year: 2012 end-page: 4634 article-title: ER stress‐mediated autophagy promotes Myc‐dependent transformation and tumor growth publication-title: J Clin Invest – volume: 112 start-page: 1489 year: 2008 end-page: 1502 article-title: Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down‐regulated in human ovarian cancers by loss of heterozygosity and promoter methylation publication-title: Cancer – volume: 11 start-page: 4436 year: 2012 end-page: 4446 article-title: Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy publication-title: Cell Cycle – volume: 16 start-page: 532 year: 2013 end-page: 542 article-title: FIP200 is required for maintenance and differentiation of postnatal neural stem cells publication-title: Nat Neurosci – volume: 16 start-page: 64 year: 1997 end-page: 67 article-title: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome publication-title: Nat Genet – volume: 31 start-page: 51 year: 2013 end-page: 72 article-title: Immunogenic cell death in cancer therapy publication-title: Annu Rev Immunol – volume: 53 start-page: 167 year: 2014 end-page: 178 article-title: Interactions between autophagy receptors and ubiquitin‐like proteins form the molecular basis for selective autophagy publication-title: Mol Cell – volume: 11 start-page: 170 year: 2012 end-page: 176 article-title: Autophagic removal of micronuclei publication-title: Cell Cycle – volume: 54 start-page: 2852 year: 1994 end-page: 2855 article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas publication-title: Cancer Res – volume: 193 start-page: 275 year: 2011 end-page: 284 article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells publication-title: J Cell Biol – volume: 3 start-page: 894 year: 2013 end-page: 907 article-title: Autophagy opposes p53‐mediated tumor barrier to facilitate tumorigenesis in a model of PALB2‐associated hereditary breast cancer publication-title: Cancer Discov – volume: 120 start-page: 3555 year: 2012 end-page: 3562 article-title: Autophagic degradation of the BCR‐ABL oncoprotein and generation of antileukemic responses by arsenic trioxide publication-title: Blood – volume: 137 start-page: 1062 year: 2009 end-page: 1075 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell – volume: 79 start-page: 4019 year: 2011 end-page: 4028 article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase‐bearing organelles publication-title: Infect Immun – volume: 4 start-page: 648 year: 2002 end-page: 657 article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling publication-title: Nat Cell Biol – volume: 111 start-page: 7741 year: 2014 end-page: 7746 article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 829 year: 2013 end-page: 846 article-title: Metabolic targets for cancer therapy publication-title: Nat Rev Drug Discov – volume: 61 start-page: 6693 year: 2001 end-page: 6697 article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2 publication-title: Cancer Res – volume: 117 start-page: 326 year: 2007 end-page: 336 article-title: Autophagy inhibition enhances therapy‐induced apoptosis in a Myc‐induced model of lymphoma publication-title: J Clin Invest – volume: 12 start-page: 622 year: 2012a article-title: Autophagy‐independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors publication-title: BMC Cancer – volume: 70 start-page: 7882 year: 2010 end-page: 7893 article-title: The RB‐E2F1 pathway regulates autophagy publication-title: Cancer Res – volume: 131 start-page: 1149 year: 2007 end-page: 1163 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice publication-title: Cell – volume: 144 start-page: 646 year: 2011 end-page: 674 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 121 start-page: 1622 year: 2013 end-page: 1632 article-title: Bif‐1 haploinsufficiency promotes chromosomal instability and accelerates Myc‐driven lymphomagenesis via suppression of mitophagy publication-title: Blood – volume: 285 start-page: 22576 year: 2010 end-page: 22591 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element‐driven gene transcription publication-title: J Biol Chem – volume: 136 start-page: 823 year: 2009 end-page: 837 article-title: Principles of cancer therapy: oncogene and non‐oncogene addiction publication-title: Cell – volume: 3 start-page: 1 year: 2001 end-page: 7 article-title: DAP kinase activates a p19ARF/p53‐mediated apoptotic checkpoint to suppress oncogenic transformation publication-title: Nat Cell Biol – volume: 96 start-page: 214 year: 1999 end-page: 219 article-title: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 722 year: 2013 end-page: 737 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat Rev Immunol – volume: 10 start-page: 90 year: 2011 end-page: 103 article-title: A combined preclinical therapy of cannabinoids and temozolomide against glioma publication-title: Mol Cancer Ther – volume: 1310 start-page: 7 year: 2014 end-page: 31 article-title: The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment publication-title: Ann N Y Acad Sci – volume: 10 start-page: 662 year: 2014 end-page: 676 article-title: ERBB2 overexpression suppresses stress‐induced autophagy and renders ERBB2‐induced mammary tumorigenesis independent of monoallelic Becn1 loss publication-title: Autophagy – volume: 30 start-page: 678 year: 2008 end-page: 688 article-title: JNK1‐mediated phosphorylation of Bcl‐2 regulates starvation‐induced autophagy publication-title: Mol Cell – volume: 79 start-page: 7824 year: 1982 end-page: 7827 article-title: Human c‐myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells publication-title: Proc Natl Acad Sci USA – volume: 336 start-page: 225 year: 2012 end-page: 228 article-title: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress publication-title: Science – year: 2014 article-title: Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma publication-title: Cell Death Differ – volume: 59 start-page: 59 year: 1999 end-page: 65 article-title: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21 publication-title: Genomics – volume: 22 start-page: 1001 year: 2012 end-page: 1016 article-title: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy publication-title: Dev Cell – volume: 21 start-page: 99 year: 1999 end-page: 102 article-title: PIK3CA is implicated as an oncogene in ovarian cancer publication-title: Nat Genet – volume: 5 start-page: 1855 year: 1999 end-page: 1861 article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia publication-title: Clin Cancer Res – volume: 22 start-page: 165 year: 2011 end-page: 178 article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation publication-title: Mol Biol Cell – volume: 109 start-page: 8253 year: 2012 end-page: 8258 article-title: Autophagy inhibitor Lys05 has single‐agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 759 year: 2013 end-page: 774 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nat Rev Mol Cell Biol – volume: 282 start-page: 18573 year: 2007 end-page: 18583 article-title: Tissue‐specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin‐3 publication-title: J Biol Chem – volume: 25 start-page: 1025 year: 2005 end-page: 1040 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol Cell Biol – year: 2014 article-title: Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells publication-title: Oncogene – volume: 39 start-page: 1059 year: 2008 end-page: 1063 article-title: Frameshift mutation of UVRAG, an autophagy‐related gene, in gastric carcinomas with microsatellite instability publication-title: Hum Pathol – volume: 10 start-page: 1013 year: 2014 end-page: 1019 article-title: A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy publication-title: Nat Chem Biol – volume: 149 start-page: 656 year: 2012 end-page: 670 article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism publication-title: Cell – volume: 19 start-page: 1741 year: 2009 end-page: 1746 article-title: Autophagy, not apoptosis, is essential for midgut cell death in Drosophila publication-title: Curr Biol – volume: 13 start-page: 727 year: 2014 end-page: 740 article-title: Caloric restriction mimetics: towards a molecular definition publication-title: Nat Rev Drug Discov – volume: 21 start-page: 1621 year: 2007 end-page: 1635 article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis publication-title: Genes Dev – volume: 149 start-page: 274 year: 2012 end-page: 293 article-title: mTOR signaling in growth control and disease publication-title: Cell – volume: 26 start-page: 738 year: 2014 end-page: 753 article-title: TRPM3 and miR‐204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma publication-title: Cancer Cell – volume: 145 start-page: 1347 year: 2013 end-page: 1357 article-title: Atg16 l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection publication-title: Gastroenterology – volume: 7 start-page: 401 year: 2011 end-page: 411 article-title: Autophagy regulates myeloid cell differentiation by p62/SQSTM1‐mediated degradation of PML‐RARalpha oncoprotein publication-title: Autophagy – volume: 501 start-page: 421 year: 2013 end-page: 425 article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy publication-title: Nature – volume: 133 start-page: 343 year: 2007 end-page: 349 article-title: A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer publication-title: J Cancer Res Clin Oncol – volume: 18 start-page: 370 year: 2012 end-page: 379 article-title: Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome publication-title: Clin Cancer Res – volume: 304 start-page: 596 year: 2004 end-page: 600 article-title: Regeneration of peroxiredoxins by p53‐regulated sestrins, homologs of bacterial AhpD publication-title: Science – volume: 134 start-page: 451 year: 2008 end-page: 460 article-title: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling publication-title: Cell – volume: 31 start-page: 285 year: 2002 end-page: 288 article-title: Truncating mutations of RB1CC1 in human breast cancer publication-title: Nat Genet – volume: 289 start-page: 9692 year: 2014 end-page: 9709 article-title: The metastasis suppressor, N‐myc downstream‐regulated gene 1 (NDRG1), inhibits stress‐induced autophagy in cancer cells publication-title: J Biol Chem – volume: 13 start-page: 119 year: 2011 end-page: 120 article-title: AMPK‐dependent phosphorylation of ULK1 induces autophagy publication-title: Cell Metab – volume: 276 start-page: 35243 year: 2001 end-page: 35246 article-title: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3‐kinase/protein kinase B pathway publication-title: J Biol Chem – volume: 67 start-page: 3043 year: 2007 end-page: 3053 article-title: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF‐1‐AKT‐mTOR pathways publication-title: Cancer Res – volume: 5 start-page: 3056 year: 2014 article-title: A dual role for autophagy in a murine model of lung cancer publication-title: Nat Commun – volume: 10 start-page: 1359 year: 2014 end-page: 1368 article-title: A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme publication-title: Autophagy – volume: 22 start-page: 2954 year: 2004 end-page: 2963 article-title: The biology and clinical relevance of the PTEN tumor suppressor pathway publication-title: J Clin Oncol – volume: 304 start-page: 1497 year: 2004 end-page: 1500 article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy publication-title: Science – volume: 332 start-page: 268 year: 1988 end-page: 269 article-title: Von Hippel‐Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma publication-title: Nature – volume: 448 start-page: 807 year: 2007 end-page: 810 article-title: LKB1 modulates lung cancer differentiation and metastasis publication-title: Nature – volume: 146 start-page: 1 year: 2005 end-page: 1466 article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53 publication-title: Oncogene 24: – volume: 358 start-page: 80 year: 1992 end-page: 83 article-title: Amplification of a gene encoding a p53‐associated protein in human sarcomas publication-title: Nature – volume: 9 start-page: 1142 year: 2007 end-page: 1151 article-title: Bif‐1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis publication-title: Nat Cell Biol – volume: 334 start-page: 1573 year: 2011 end-page: 1577 article-title: Autophagy‐dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science – volume: 431 start-page: 525 year: 2004 end-page: 526 article-title: Lung cancer: intragenic ERBB2 kinase mutations in tumours publication-title: Nature – volume: 16 start-page: 333 year: 1997 end-page: 334 article-title: Germline mutations in PTEN are present in Bannayan‐Zonana syndrome publication-title: Nat Genet – volume: 339 start-page: 286 year: 2013 end-page: 291 article-title: Neutralizing tumor‐promoting chronic inflammation: a magic bullet? publication-title: Science – volume: 32 start-page: 2261 year: 2013 end-page: 2272 article-title: Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem‐like/progenitor cells publication-title: Oncogene – volume: 66 start-page: 2885 year: 2006 end-page: 2888 article-title: Bcl‐2 inhibition of autophagy: a new route to cancer? publication-title: Cancer Res – volume: 22 start-page: 5237 year: 2013 end-page: 5248 article-title: Myc inhibition impairs autophagosome formation publication-title: Hum Mol Genet – volume: 121 start-page: 179 year: 2005 end-page: 193 article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis publication-title: Cell – volume: 23 start-page: 798 year: 2009 end-page: 803 article-title: Autophagy mediates the mitotic senescence transition publication-title: Genes Dev – volume: 330 start-page: 1344 year: 2010 end-page: 1348 article-title: Autophagy and metabolism publication-title: Science – volume: 27 start-page: 6229 year: 2007 end-page: 6242 article-title: BNIP3 is an RB/E2F target gene required for hypoxia‐induced autophagy publication-title: Mol Cell Biol – volume: 22 start-page: 432 year: 2012 end-page: 435 article-title: Autophagy is required for self‐renewal and differentiation of adult human stem cells publication-title: Cell Res – volume: 109 start-page: 13325 year: 2012b end-page: 13330 article-title: Autophagic activity dictates the cellular response to oncogenic RAS publication-title: Proc Natl Acad Sci USA – volume: 504 start-page: 296 year: 2013 end-page: 300 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 5 start-page: 202ra123 year: 2013a article-title: Down‐regulation of autophagy‐related protein 5 (ATG5) contributes to the pathogenesis of early‐stage cutaneous melanoma publication-title: Sci Transl Med – volume: 399 start-page: 271 year: 1999 end-page: 275 article-title: The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis publication-title: Nature – volume: 330 start-page: 757 year: 1994 end-page: 761 article-title: Loss of the retinoblastoma tumor‐suppressor gene in parathyroid carcinoma publication-title: N Engl J Med – volume: 116 start-page: 4806 year: 2010 end-page: 4814 article-title: FIP200 is required for the cell‐autonomous maintenance of fetal hematopoietic stem cells publication-title: Blood – volume: 331 start-page: 456 year: 2011 end-page: 461 article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy publication-title: Science – volume: 9 start-page: 402 year: 2008 end-page: 412 article-title: Transcriptional control of human p53‐regulated genes publication-title: Nat Rev Mol Cell Biol – volume: 152 start-page: 290 year: 2013 end-page: 303 article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy publication-title: Cell – volume: 122 start-page: 927 year: 2005 end-page: 939 article-title: Bcl‐2 antiapoptotic proteins inhibit Beclin 1‐dependent autophagy publication-title: Cell – ident: e_1_2_10_52_1 doi: 10.1056/NEJM200104053441401 – ident: e_1_2_10_200_1 doi: 10.1038/onc.2008.117 – ident: e_1_2_10_193_1 doi: 10.1158/0008-5472.CAN-05-4412 – ident: e_1_2_10_273_1 doi: 10.1073/pnas.96.1.214 – ident: e_1_2_10_63_1 doi: 10.1038/323643a0 – ident: e_1_2_10_71_1 doi: 10.1126/science.1720570 – ident: e_1_2_10_40_1 doi: 10.1056/NEJM199403173301105 – ident: e_1_2_10_95_1 doi: 10.1038/emboj.2013.133 – ident: e_1_2_10_267_1 doi: 10.1016/0092-8674(90)90149-9 – ident: e_1_2_10_69_1 doi: 10.1038/cdd.2014.137 – ident: e_1_2_10_153_1 doi: 10.1038/sj.emboj.7601689 – ident: e_1_2_10_270_1 doi: 10.1128/IAI.05308-11 – ident: e_1_2_10_82_1 doi: 10.1016/j.ccell.2014.09.015 – ident: e_1_2_10_61_1 doi: 10.1158/0008-5472.CAN-06-4149 – ident: e_1_2_10_212_1 doi: 10.1016/j.molcel.2013.12.014 – ident: e_1_2_10_55_1 doi: 10.1126/science.1196371 – ident: e_1_2_10_198_1 doi: 10.1016/j.semcancer.2013.05.008 – ident: e_1_2_10_196_1 doi: 10.4161/auto.26398 – volume: 1845 start-page: 91 year: 2014 ident: e_1_2_10_44_1 article-title: Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis publication-title: Biochim Biophys Acta – ident: e_1_2_10_281_1 doi: 10.1038/ni.2224 – ident: e_1_2_10_234_1 doi: 10.1126/science.3798106 – ident: e_1_2_10_112_1 doi: 10.1158/1078-0432.CCR-08-0144 – ident: e_1_2_10_207_1 doi: 10.1038/35050500 – ident: e_1_2_10_221_1 doi: 10.1172/JCI37948 – ident: e_1_2_10_260_1 doi: 10.1016/j.molcel.2008.06.001 – ident: e_1_2_10_155_1 doi: 10.1016/j.ceb.2009.12.001 – ident: e_1_2_10_116_1 doi: 10.1016/j.humpath.2007.11.013 – ident: e_1_2_10_38_1 doi: 10.1126/science.1232227 – ident: e_1_2_10_81_1 doi: 10.1016/j.cell.2013.11.019 – ident: e_1_2_10_278_1 doi: 10.1016/j.cmet.2011.01.009 – volume: 5 start-page: 1855 year: 1999 ident: e_1_2_10_59_1 article-title: The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia publication-title: Clin Cancer Res – ident: e_1_2_10_279_1 doi: 10.1038/ncb2069 – ident: e_1_2_10_130_1 doi: 10.1038/ncb1426 – ident: e_1_2_10_129_1 doi: 10.1158/2159-8290.CD-14-0049 – ident: e_1_2_10_239_1 doi: 10.1038/ncb1634 – ident: e_1_2_10_132_1 doi: 10.1038/ng0597-64 – ident: e_1_2_10_174_1 doi: 10.1101/gad.1599207 – volume: 9 start-page: 545 year: 1994 ident: e_1_2_10_217_1 article-title: The PML‐RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid‐induced granulocytic differentiation and mediated transactivation in human myeloid cells publication-title: Oncogene – ident: e_1_2_10_277_1 doi: 10.1002/path.4351 – ident: e_1_2_10_167_1 doi: 10.1073/pnas.1118193109 – ident: e_1_2_10_16_1 doi: 10.1084/jem.20130977 – ident: e_1_2_10_203_1 doi: 10.1016/j.chom.2014.03.012 – ident: e_1_2_10_197_1 doi: 10.1038/onc.2014.285 – ident: e_1_2_10_199_1 doi: 10.1074/jbc.M804705200 – ident: e_1_2_10_109_1 doi: 10.1038/ncomms4496 – ident: e_1_2_10_53_1 doi: 10.1016/j.ccr.2008.02.001 – ident: e_1_2_10_28_1 doi: 10.4161/cc.24128 – ident: e_1_2_10_10_1 doi: 10.1016/j.cmet.2012.12.002 – ident: e_1_2_10_101_1 doi: 10.1101/gad.1110003 – ident: e_1_2_10_225_1 doi: 10.1038/332268a0 – ident: e_1_2_10_88_1 doi: 10.1146/annurev-genet-102808-114910 – ident: e_1_2_10_166_1 doi: 10.1158/0008-5472.CAN-13-3470 – ident: e_1_2_10_215_1 doi: 10.1038/nature12865 – ident: e_1_2_10_163_1 doi: 10.1016/j.cell.2009.03.048 – ident: e_1_2_10_265_1 doi: 10.1634/theoncologist.2014-0086 – ident: e_1_2_10_110_1 doi: 10.1073/pnas.0503224102 – ident: e_1_2_10_20_1 doi: 10.1126/science.1095569 – ident: e_1_2_10_98_1 doi: 10.1016/j.molcel.2013.08.003 – ident: e_1_2_10_140_1 doi: 10.1091/mbc.E10-06-0500 – ident: e_1_2_10_145_1 doi: 10.1016/j.cell.2005.02.031 – ident: e_1_2_10_186_1 doi: 10.1038/cdd.2010.116 – ident: e_1_2_10_194_1 doi: 10.1016/j.cell.2005.07.002 – ident: e_1_2_10_204_1 doi: 10.4161/auto.29119 – ident: e_1_2_10_36_1 doi: 10.1038/cdd.2014.183 – ident: e_1_2_10_120_1 doi: 10.1146/annurev-immunol-032712-100008 – ident: e_1_2_10_168_1 doi: 10.1038/nrclinonc.2014.41 – ident: e_1_2_10_206_1 doi: 10.1038/ncomms4056 – ident: e_1_2_10_22_1 doi: 10.1038/onc.2014.244 – ident: e_1_2_10_9_1 doi: 10.1038/onc.2012.512 – ident: e_1_2_10_269_1 doi: 10.1101/gad.2016111 – ident: e_1_2_10_23_1 doi: 10.1038/onc.2014.264 – ident: e_1_2_10_76_1 doi: 10.1126/science.1250256 – ident: e_1_2_10_131_1 doi: 10.1038/45257 – ident: e_1_2_10_261_1 doi: 10.1016/j.cell.2013.08.015 – ident: e_1_2_10_102_1 doi: 10.1146/annurev-pharmtox-010611-134537 – ident: e_1_2_10_46_1 doi: 10.1038/nature10189 – ident: e_1_2_10_50_1 doi: 10.1038/nri3532 – ident: e_1_2_10_54_1 doi: 10.1126/science.2537532 – ident: e_1_2_10_58_1 doi: 10.1038/ncomms6637 – ident: e_1_2_10_125_1 doi: 10.1073/pnas.1407001111 – ident: e_1_2_10_127_1 doi: 10.1126/science.1218395 – ident: e_1_2_10_245_1 doi: 10.1128/MCB.02246-06 – ident: e_1_2_10_47_1 doi: 10.1016/j.cub.2009.08.042 – ident: e_1_2_10_280_1 doi: 10.1016/j.devcel.2011.12.027 – volume: 118 start-page: 3917 year: 2008 ident: e_1_2_10_143_1 article-title: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells publication-title: J Clin Invest – ident: e_1_2_10_75_1 doi: 10.1126/science.1201940 – ident: e_1_2_10_244_1 doi: 10.1158/1535-7163.MCT-10-0688 – ident: e_1_2_10_66_1 doi: 10.1126/science.7939630 – ident: e_1_2_10_103_1 doi: 10.1038/5971 – ident: e_1_2_10_85_1 doi: 10.1083/jcb.200712064 – ident: e_1_2_10_223_1 doi: 10.1200/JCO.2004.02.141 – ident: e_1_2_10_241_1 doi: 10.1101/gad.2016211 – ident: e_1_2_10_12_1 doi: 10.4161/auto.29165 – ident: e_1_2_10_62_1 doi: 10.1126/science.2543076 – ident: e_1_2_10_90_1 doi: 10.1182/blood-2013-12-543793 – ident: e_1_2_10_56_1 doi: 10.1016/j.cmet.2014.02.010 – ident: e_1_2_10_142_1 doi: 10.4161/auto.27867 – ident: e_1_2_10_246_1 doi: 10.1038/ni.1823 – ident: e_1_2_10_108_1 doi: 10.1158/0008-5472.CAN-10-1604 – ident: e_1_2_10_259_1 doi: 10.1101/gad.2051011 – ident: e_1_2_10_158_1 doi: 10.1074/jbc.M701194200 – ident: e_1_2_10_232_1 doi: 10.1038/5042 – ident: e_1_2_10_121_1 doi: 10.1158/1541-7786.MCR-13-0614 – ident: e_1_2_10_202_1 doi: 10.1126/science.1193497 – ident: e_1_2_10_156_1 doi: 10.1126/science.1978757 – ident: e_1_2_10_243_1 doi: 10.1093/hmg/ddt381 – ident: e_1_2_10_211_1 doi: 10.4161/cc.22778 – ident: e_1_2_10_41_1 doi: 10.1073/pnas.79.24.7824 – ident: e_1_2_10_64_1 doi: 10.1038/onc.2008.24 – ident: e_1_2_10_118_1 doi: 10.1016/j.cell.2007.10.035 – ident: e_1_2_10_164_1 doi: 10.1038/20459 – ident: e_1_2_10_3_1 doi: 10.1111/j.1600-0463.2007.00858.x – ident: e_1_2_10_170_1 doi: 10.1126/science.1208347 – ident: e_1_2_10_209_1 doi: 10.4161/cc.11.1.18564 – ident: e_1_2_10_251_1 doi: 10.1038/nature13611 – ident: e_1_2_10_175_1 doi: 10.1038/nature06639 – ident: e_1_2_10_51_1 doi: 10.1038/nature12437 – ident: e_1_2_10_126_1 doi: 10.1158/1078-0432.CCR-11-1282 – ident: e_1_2_10_238_1 doi: 10.1073/pnas.1121572109 – ident: e_1_2_10_124_1 doi: 10.1016/j.cell.2012.03.017 – ident: e_1_2_10_172_1 doi: 10.1016/j.ccr.2012.02.019 – ident: e_1_2_10_188_1 doi: 10.1038/358080a0 – ident: e_1_2_10_249_1 doi: 10.1126/science.277.5327.805 – ident: e_1_2_10_17_1 doi: 10.1038/sj.onc.1206622 – ident: e_1_2_10_214_1 doi: 10.4161/auto.28984 – ident: e_1_2_10_87_1 doi: 10.1172/JCI62973 – ident: e_1_2_10_49_1 doi: 10.1038/cdd.2011.146 – ident: e_1_2_10_208_1 doi: 10.1016/j.molcel.2006.04.014 – ident: e_1_2_10_242_1 doi: 10.1016/j.ebiom.2015.01.008 – ident: e_1_2_10_2_1 doi: 10.1158/0008-5472.CAN-07-2069 – ident: e_1_2_10_263_1 doi: 10.1101/gad.521709 – ident: e_1_2_10_271_1 doi: 10.1016/j.cell.2012.01.058 – ident: e_1_2_10_105_1 doi: 10.1074/jbc.M110.118976 – ident: e_1_2_10_276_1 doi: 10.1074/jbc.M800102200 – volume: 30 start-page: 429 year: 2007 ident: e_1_2_10_173_1 article-title: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours publication-title: Int J Oncol – ident: e_1_2_10_48_1 doi: 10.1038/cdd.2012.43 – ident: e_1_2_10_113_1 doi: 10.1101/gad.1565707 – ident: e_1_2_10_248_1 doi: 10.1182/blood-2011-08-373639 – ident: e_1_2_10_230_1 doi: 10.1016/j.ccr.2004.06.007 – ident: e_1_2_10_65_1 doi: 10.1038/sj.onc.1207539 – ident: e_1_2_10_169_1 doi: 10.1371/journal.pgen.1004626 – ident: e_1_2_10_151_1 doi: 10.4161/auto.29231 – ident: e_1_2_10_33_1 doi: 10.1101/gad.231894.113 – ident: e_1_2_10_219_1 doi: 10.1074/jbc.M113.529511 – ident: e_1_2_10_266_1 doi: 10.4161/auto.29568 – ident: e_1_2_10_226_1 doi: 10.1155/2011/865819 – ident: e_1_2_10_218_1 doi: 10.1038/nrd3802 – ident: e_1_2_10_161_1 doi: 10.1038/ncomms3130 – ident: e_1_2_10_150_1 doi: 10.1016/j.ccr.2014.06.025 – ident: e_1_2_10_100_1 doi: 10.1038/ncb839 – ident: e_1_2_10_107_1 doi: 10.1038/nature06030 – ident: e_1_2_10_60_1 doi: 10.1002/cncr.23323 – ident: e_1_2_10_83_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_10_35_1 doi: 10.1002/cncr.23892 – ident: e_1_2_10_43_1 doi: 10.1038/nature00766 – ident: e_1_2_10_34_1 doi: 10.1053/j.gastro.2013.08.035 – ident: e_1_2_10_141_1 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_2_10_106_1 doi: 10.1038/nrclinonc.2011.71 – ident: e_1_2_10_176_1 doi: 10.1016/j.cell.2011.10.026 – ident: e_1_2_10_144_1 doi: 10.1016/j.cell.2009.02.024 – ident: e_1_2_10_162_1 doi: 10.1101/gad.1545107 – ident: e_1_2_10_31_1 doi: 10.4161/auto.34398 – ident: e_1_2_10_80_1 doi: 10.1101/gad.219642.113 – ident: e_1_2_10_182_1 doi: 10.1126/science.1103966 – ident: e_1_2_10_79_1 doi: 10.1038/ncomms6276 – ident: e_1_2_10_93_1 doi: 10.1091/mbc.e08-12-1248 – ident: e_1_2_10_154_1 doi: 10.1038/cdd.2008.131 – ident: e_1_2_10_192_1 doi: 10.1073/pnas.1104361108 – ident: e_1_2_10_67_1 doi: 10.1038/nrd4145 – ident: e_1_2_10_57_1 doi: 10.1016/j.molcel.2011.02.009 – ident: e_1_2_10_11_1 doi: 10.1158/0008-5472.CAN-09-0910 – ident: e_1_2_10_45_1 doi: 10.1073/pnas.052713099 – ident: e_1_2_10_134_1 doi: 10.1016/j.ccr.2011.12.006 – ident: e_1_2_10_181_1 doi: 10.1016/j.tibs.2012.02.008 – ident: e_1_2_10_123_1 doi: 10.1038/nrm3696 – ident: e_1_2_10_42_1 doi: 10.1016/j.cell.2012.03.003 – ident: e_1_2_10_13_1 doi: 10.1158/0008-5472.CAN-12-4142 – ident: e_1_2_10_77_1 doi: 10.1111/nyas.12362 – ident: e_1_2_10_237_1 doi: 10.1158/2159-8290.CD-13-0397 – ident: e_1_2_10_92_1 doi: 10.1038/ncomms5706 – ident: e_1_2_10_104_1 doi: 10.1182/blood-2010-01-261040 – ident: e_1_2_10_195_1 doi: 10.1016/j.immuni.2012.04.008 – ident: e_1_2_10_4_1 doi: 10.1006/geno.1999.5851 – ident: e_1_2_10_119_1 doi: 10.1016/j.molcel.2010.09.023 – ident: e_1_2_10_254_1 doi: 10.1038/nn.3365 – ident: e_1_2_10_117_1 doi: 10.1038/cdd.2013.124 – ident: e_1_2_10_256_1 doi: 10.1126/science.1225967 – ident: e_1_2_10_78_1 doi: 10.1016/j.virol.2012.12.004 – ident: e_1_2_10_148_1 doi: 10.1038/sj.onc.1203597 – ident: e_1_2_10_122_1 doi: 10.1172/JCI69636 – ident: e_1_2_10_268_1 doi: 10.1158/2159-8290.CD-14-0362 – ident: e_1_2_10_205_1 doi: 10.4161/auto.29118 – ident: e_1_2_10_96_1 doi: 10.1158/2159-8290.CD-13-0011 – ident: e_1_2_10_86_1 doi: 10.1038/nature08221 – ident: e_1_2_10_236_1 doi: 10.1038/ncb2979 – ident: e_1_2_10_128_1 doi: 10.1002/humu.22556 – ident: e_1_2_10_115_1 doi: 10.1016/j.cell.2012.12.016 – ident: e_1_2_10_178_1 doi: 10.1038/cddis.2009.8 – ident: e_1_2_10_137_1 doi: 10.1126/scitranslmed.3005864 – volume: 16 start-page: 108 year: 2014 ident: e_1_2_10_227_1 article-title: Transcriptional regulation of autophagy by an FXR‐CREB axis publication-title: Nature doi: 10.1038/nature13949 – ident: e_1_2_10_262_1 doi: 10.1146/annurev-biochem-052709-094552 – ident: e_1_2_10_6_1 doi: 10.1053/j.seminhematol.2014.05.008 – volume: 54 start-page: 2852 year: 1994 ident: e_1_2_10_233_1 article-title: Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinomas publication-title: Cancer Res – ident: e_1_2_10_180_1 doi: 10.1084/jem.20101145 – ident: e_1_2_10_138_1 doi: 10.1038/ncb2422 – ident: e_1_2_10_157_1 doi: 10.1016/j.cell.2007.06.009 – ident: e_1_2_10_149_1 doi: 10.1038/nrd4391 – ident: e_1_2_10_224_1 doi: 10.1038/sj.cdd.4401826 – volume: 146 start-page: 1 year: 2005 ident: e_1_2_10_160_1 article-title: dapk1, encoding an activator of a p19ARF‐p53‐mediated apoptotic checkpoint, is a transcription target of p53 publication-title: Oncogene 24: – ident: e_1_2_10_89_1 doi: 10.1038/34432 – ident: e_1_2_10_97_1 doi: 10.1084/jem.20130783 – ident: e_1_2_10_99_1 doi: 10.1083/jcb.201102031 – ident: e_1_2_10_32_1 doi: 10.1038/nrm3249 – ident: e_1_2_10_5_1 doi: 10.1172/JCI28833 – ident: e_1_2_10_24_1 doi: 10.1038/nature05933 – ident: e_1_2_10_250_1 doi: 10.1038/cdd.2011.32 – ident: e_1_2_10_25_1 doi: 10.1038/ng911 – ident: e_1_2_10_111_1 doi: 10.1073/pnas.0704014104 – ident: e_1_2_10_133_1 doi: 10.1016/j.molcel.2013.06.020 – ident: e_1_2_10_159_1 doi: 10.1038/ng0897-333 – ident: e_1_2_10_213_1 doi: 10.1038/nchembio.1681 – ident: e_1_2_10_136_1 doi: 10.1182/blood-2010-06-288589 – ident: e_1_2_10_146_1 doi: 10.1172/JCI70454 – ident: e_1_2_10_272_1 doi: 10.1101/gad.519709 – ident: e_1_2_10_15_1 doi: 10.1126/science.3460176 – ident: e_1_2_10_191_1 doi: 10.1371/journal.pone.0100819 – ident: e_1_2_10_94_1 doi: 10.1073/pnas.0406789102 – ident: e_1_2_10_21_1 doi: 10.1016/j.cell.2008.06.028 – ident: e_1_2_10_70_1 doi: 10.1038/cddis.2014.217 – ident: e_1_2_10_91_1 doi: 10.1016/j.bbamcr.2013.05.022 – ident: e_1_2_10_179_1 doi: 10.1089/ars.2010.3478 – ident: e_1_2_10_229_1 doi: 10.1158/0008-5472.CAN-06-0809 – ident: e_1_2_10_210_1 doi: 10.1038/nrm2395 – ident: e_1_2_10_252_1 doi: 10.4161/auto.29264 – ident: e_1_2_10_257_1 doi: 10.1073/pnas.1120193109 – ident: e_1_2_10_171_1 doi: 10.1038/ncb2329 – ident: e_1_2_10_187_1 doi: 10.1083/jcb.201402054 – ident: e_1_2_10_18_1 doi: 10.1128/MCB.25.3.1025-1040.2005 – ident: e_1_2_10_26_1 doi: 10.1038/onc.2012.277 – ident: e_1_2_10_39_1 doi: 10.1016/j.cell.2006.05.034 – ident: e_1_2_10_222_1 doi: 10.1038/cr.2011.200 – ident: e_1_2_10_183_1 doi: 10.1038/ni.1980 – ident: e_1_2_10_8_1 doi: 10.1128/MCB.00813-13 – ident: e_1_2_10_37_1 doi: 10.1016/j.bcp.2010.07.009 – ident: e_1_2_10_264_1 doi: 10.1186/bcr3576 – volume: 61 start-page: 6693 year: 2001 ident: e_1_2_10_72_1 article-title: Transfer of E2F‐1 to human glioma cells results in transcriptional up‐regulation of Bcl‐2 publication-title: Cancer Res – ident: e_1_2_10_220_1 doi: 10.1073/pnas.0911267106 – ident: e_1_2_10_274_1 doi: 10.1073/pnas.2436255100 – ident: e_1_2_10_258_1 doi: 10.4161/auto.7.4.14397 – ident: e_1_2_10_201_1 doi: 10.1172/JCI20039 – ident: e_1_2_10_253_1 doi: 10.1038/nrm2147 – ident: e_1_2_10_139_1 doi: 10.1073/pnas.1319661110 – ident: e_1_2_10_189_1 doi: 10.1126/science.1099314 – ident: e_1_2_10_74_1 doi: 10.1182/blood-2012-01-402578 – ident: e_1_2_10_29_1 doi: 10.1007/s00432-006-0174-9 – ident: e_1_2_10_14_1 doi: 10.1128/MCB.00166-09 – ident: e_1_2_10_152_1 doi: 10.4161/auto.4237 – ident: e_1_2_10_184_1 doi: 10.1101/gad.1699608 – ident: e_1_2_10_165_1 doi: 10.4161/auto.8.2.18554 – ident: e_1_2_10_228_1 doi: 10.1126/science.1204592 – ident: e_1_2_10_216_1 doi: 10.1002/jcp.1041160116 – ident: e_1_2_10_255_1 doi: 10.3892/ol.2014.2417 – ident: e_1_2_10_177_1 doi: 10.1016/j.ceb.2005.09.007 – ident: e_1_2_10_231_1 doi: 10.1038/nature04869 – ident: e_1_2_10_73_1 doi: 10.1038/onc.2012.252 – ident: e_1_2_10_114_1 doi: 10.1016/j.tcb.2014.09.001 – ident: e_1_2_10_240_1 doi: 10.1182/blood-2012-10-459826 – ident: e_1_2_10_147_1 doi: 10.1016/j.immuni.2013.07.017 – ident: e_1_2_10_247_1 doi: 10.1016/j.ccr.2014.05.004 – ident: e_1_2_10_7_1 doi: 10.1074/jbc.C100319200 – ident: e_1_2_10_27_1 doi: 10.1158/0008-5472.CAN-14-1420 – ident: e_1_2_10_135_1 doi: 10.1186/1471-2407-12-622 – ident: e_1_2_10_235_1 doi: 10.1038/431525b – ident: e_1_2_10_30_1 doi: 10.1038/ncb3072 – ident: e_1_2_10_19_1 doi: 10.1038/ncb2788 – ident: e_1_2_10_275_1 doi: 10.1038/embor.2008.246 – ident: e_1_2_10_185_1 doi: 10.1038/ncb2708 – ident: e_1_2_10_84_1 doi: 10.1002/path.4244 – ident: e_1_2_10_190_1 doi: 10.1074/jbc.M702824200 – ident: e_1_2_10_68_1 doi: 10.1016/j.cell.2014.11.006 |
SSID | ssj0005871 |
Score | 2.6600745 |
SecondaryResourceType | review_article |
Snippet | Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 856 |
SubjectTerms | adaptive stress responses Animals Autophagy Beclin 1 Cancer therapies Cell Transformation, Neoplastic - immunology Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Cellular biology EMBO03 EMBO07 Environmental stress Humans inflammation KRAS mitophagy Neoplasms - immunology Neoplasms - metabolism Neoplasms - pathology Neoplasms - therapy Review Reviews Tumor Escape Tumor Suppressor Proteins - immunology Tumor Suppressor Proteins - metabolism |
Title | Autophagy in malignant transformation and cancer progression |
URI | https://api.istex.fr/ark:/67375/WNG-46P3WC04-L/fulltext.pdf https://link.springer.com/article/10.15252/embj.201490784 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201490784 https://www.ncbi.nlm.nih.gov/pubmed/25712477 https://www.proquest.com/docview/1667913222 https://www.proquest.com/docview/1682892885 https://pubmed.ncbi.nlm.nih.gov/PMC4388596 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4oxOiLEfxBBUlNCNGH6l07u90mvGADEgKEBwm8bXa3W0SkZ867RP57Z7a9ehchxrc2u91tZ2Z3v9mdfgOwhVaooSHj9bS6JJjVRWJTlElq3UDWXjrreGvg-EQenOHhhbjoSJL4X5j583uRivSjv7HfOAILyYtT-BCWBc26bMqlLP_EcqjgWYXNFByqouPwuaOBheVnmSX56y5s-XeIZH9OuohiwzK0_wyedvgx3m0VvgIPfLMKj9qMkrer8LicJXB7Dju7U2YNMJe38VUT3xDgvuSol3gyh1VHTWyaKnas-3EcgrVaoo4XcLa_96U8SLpkCYkjEIKJJOBRiEw4iz7PvRQiLSpTKfJQDGEkpjUzWKNEWQsaatWwNuyq5SQ7RS1U2UtYakaNX4PYo2MW_NR4a1AaWzhhBmmtyFkktFhlEXyYyVC7jkmcE1p81-xRsNA1C133Qo_gXf_Aj5ZE4_6q20EpfT0zvubYs1zo85PPGuVpdl4OUB9FsDHTmu6G3U89lDIvwuFRBG_7YhI7n4KYxo-mXIedzFQpEcGrVsl9ZzR_Ed7J8wjyBfX3FZiMe7GkufoaSLkxoxYLGcH7maHMvdZ935oFS_qXTPTe8afD_u71f_SwDk_oWrSRRhuwNBlP_RsCURO7GQbQb1FpEJE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4gxOCLEVSsINTEGH2o3rW7223iCzbgiXcXHyDwttndbgGVnjnuEvj3zGx75S5AjI9tp7vtzG73m53pNwDvmOGyq3HwOlxdIpaUWWRiJqLY2I4onbDG0tbAYCh6R-zghJ80JEn0L8x8_J7HPP7sLswvysBi6MVJ9ghWKGxJJPm5yG9zOaT3rPxmCuvKrOHwuaeBheVnhTR5dR-2vJsi2cZJF1GsX4b2n8HTBj-Gu7XB12DJVevwuK4oeb0Oq_msgNtz-LI7JdYAfXodnlfhBQLuU8p6CSdzWHVUhboqQku2H4c-Wasm6ngBR_t7h3kvaoolRBZBCIsEAo-MJ9wa5tLUCc7jrNCFRA9FI0YiWjPNSiaYKDlOtaJbanLVUtSdxBaK5CUsV6PKvYLQMUss-LF2RjOhTWa57sSlRGcR0WKRBPBppkNlGyZxKmjxR5FHQUpXpHTVKj2AD-0Nf2sSjYdF33ujtHJ6_Jtyz1KujoffFBM_k-O8w1Q_gK2Z1VQz7S5VV4g088GjAN62l1HtFAXRlRtNSYaczFhKHsBGbeS2M_x-Id5J0wDSBfO3AkTGvXilOj_zpNwswRYzEcDH2UCZe6yH3jXxI-lfOlF7g68H7dHr_-hhB1Z7h4O-6n8f_tiEJ3ie11lHW7A8GU_dGwRUE7PtJ9MNS2gTgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CVVxeEIzLwgYECSF4yNYmtmNLvJSyMspWTYJpe7Nsxxm7pVPXStu_55zcWMUmxGMSx06Oj-Pv2F--A_COWS57Bp3X4-wSsSRXkY2ZiGLruiL3wllHSwM7Y7G1x0YH_KDm5lw0bPdmS7L6p4FUmorZxnmWN_l64g1_Zo-Jl8UwtpPsLnQkVwpjr06_P_ox-sPxkGXEVS6ysJ5UtbbPDVUsTEsdsvDlTZjzb-pku3-6iG7L6Wn4GB7VuDLsV47wBO74YhnuVZkmr5bhwaBJ7PYUPvXnpCZgDq_CoyI8QyB-SGyYcHYNw06K0BRZ6MgnpmFJ4qoEPJ7B3nDz52ArqpMoRA7BCYsEAhLFE-4s82nqBeexykwmMXIxiJ1I7sywnAkmco5DMOvlhkK4FG0nsYYseQ5LxaTwKxB65kgdPzbeGiaMVY6bbpxLDCIRRWZJAOuNDbWrFcYp0cWppkiDjK7J6Lo1egAf2hvOK3GN24u-LzulLWemJ8RJS7neH3_VTOwm-4Mu09sBrDW9puvheKF7QqSq3FQK4G17Gc1OuyOm8JM5laHgM5aSB_Ci6uS2MfyuIQ5K0wDShe5vC5BI9-KV4uhXKdbNEqxRiQA-No5y7bFue9ek9KR_2URv7nwetUcv_6OFN3B_98tQb38bf1-Fh3iaV2SkNViaTef-FeKsmX1dj6bfAAsdPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+malignant+transformation+and+cancer+progression&rft.jtitle=The+EMBO+journal&rft.au=Galluzzi%2C+Lorenzo&rft.au=Pietrocola%2C+Federico&rft.au=Bravo-San+Pedro%2C+Jos%C3%A9+Manuel&rft.au=Amaravadi%2C+Ravi+K&rft.date=2015-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=34&rft.issue=7&rft.spage=856&rft_id=info:doi/10.15252%2Fembj.201490784&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3641290231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |