基于L1范数的分块二维局部保持投影算法

针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 39; no. 3; pp. 519 - 523
Main Author 丁铭 贾维敏
Format Journal Article
LanguageChinese
Published 第二炮兵工程大学初级指挥学院,陕西西安,710025 2017
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2017.03.017

Cover

Abstract 针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。
AbstractList TP391.4; 针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1.传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维.理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性.通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少.
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。
Abstract_FL In order to solve the problem that high-dimensional input data may have singular value,as well as to improve the operation efficiency and robustness of the algorithm,we propose a new algorithm named block two dimensional locality preserving projections based on L1-norm (B2DLPP-L1).Traditional locality preserving projection (LPP) uses the principal component analysis (PCA) to project input data to PCA subspace to avoid singular value problem,however,input data can lose some effective information in this way.The B2DLPP-L1 algorithm chooses two dimensional data as input data,and it divides original input images into modular images and use the images which are divided into two types as the new input data afterwards.Then we apply the proposed algorithm to the sub-images to reduce the dimensionality.In theory,the B2DLPP-L1 algorithm can better reduce dimensionality,preserve effective information of input data,reduce computation,improve operation efficiency of the algorithm,and overcome the problem of low classification accuracy and improve algorithm robustness.Experimental results on face databases reveal that the B2DLPP-L1 algorithm utilizes less time to accomplish the nearestneighbor classification and obtain more accurate classification rate.
Author 丁铭 贾维敏
AuthorAffiliation 第二炮兵工程大学初级指挥学院,陕西西安710025
AuthorAffiliation_xml – name: 第二炮兵工程大学初级指挥学院,陕西西安,710025
Author_FL JIA Wei-min
DING Ming
Author_FL_xml – sequence: 1
  fullname: DING Ming
– sequence: 2
  fullname: JIA Wei-min
Author_xml – sequence: 1
  fullname: 丁铭 贾维敏
BookMark eNo9jztLA0EcxLeIYIz5EmJjced_s9lXKcEXHNiksAt7y915p240h2g6JSIiwS4EhGBrJQatIuKXuYd-C1ciNjMw_JhhllDFdE2A0CoGl0gm1xM3TlPjYgDuYAL7bgMwd4G41iqo-p8vonqaxj4Ao0xQjquI5o-zbHbv4a_hoBi9lA_X-e1NPhlns2H5_pZPL78HT9nnpBheFXej_GNaPo-L19EyWgjVURrU_7yG2lub7daO4-1t77Y2PEczzJ2QSi6BBkJSThi2g0EIQlDVZABKBbzhg6ZCcgJUC-JrIRgL_KbGIICHnNTQ2rz2XJlQmaiTdM96xg52kjSJdP_w4vcnECuWXZmz-qBrotPY0ie9-Fj1-h3GLdTEDUl-ABQeaDo
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1007-130X.2017.03.017
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate An algorithm for block two dimensional locality preserving projection based on L1 norm
DocumentTitle_FL An algorithm for block two dimensional locality preserving projection based on L1 norm
EndPage 523
ExternalDocumentID jsjgcykx201703017
671704129
GrantInformation_xml – fundername: 国家自然科学基金青年科学基金
  funderid: (61401471)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c617-f597905e8957361857ef0885a4600aae72b0c5897305c83bc8866eb4c10807f73
ISSN 1007-130X
IngestDate Thu May 29 04:04:00 EDT 2025
Wed Feb 14 10:02:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 流行学习
局部保持投影
dimensionality reduction
降维
locality preserving projections
face recognition
人脸识别
manifold learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c617-f597905e8957361857ef0885a4600aae72b0c5897305c83bc8866eb4c10807f73
Notes locality preserving projections ~ dimensionality reduction ; manifold learning ; face recognition
43-1258/TP
In order to solve the problem that high-dimensional input data may have singular value, as well as to improve the operation efficiency and robustness of the algorithm, we propose a new algorithm named block two dimensional locality preserving projections based on Ll-norm (B2DLPP-L1). Tradi- tional locality preserving projection (LPP) uses the principal component analysis (PCA) to project input data to PCA subspace to avoid singular value problem, however, input data can lose some effective in- formation in this way. The B2DLPP-L1 algorithm chooses two dimensional data as input data, and it di- vides original input images into modular images and use the images which are divided into two types as the new input data afterwards. Then we apply the proposed algorithm to the sub-images to reduce the dimensionality. In theory, the B2DLPP-L1 algorithm can better reduce dimensionality, preserve effec- tive informa
PageCount 5
ParticipantIDs wanfang_journals_jsjgcykx201703017
chongqing_primary_671704129
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机工程与科学
PublicationTitleAlternate Computer Engineering & Science
PublicationTitle_FL Computer Engineering and Science
PublicationYear 2017
Publisher 第二炮兵工程大学初级指挥学院,陕西西安,710025
Publisher_xml – name: 第二炮兵工程大学初级指挥学院,陕西西安,710025
SSID ssib006568571
ssib017479296
ssib001050383
ssib015938883
ssib001102936
ssib051375740
ssib023646326
ssib036438059
ssib000459496
Score 2.0860906
Snippet 针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投...
TP391.4; 针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1.传统的局...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 519
SubjectTerms 人脸识别
局部保持投影
流行学习
降维
Title 基于L1范数的分块二维局部保持投影算法
URI http://lib.cqvip.com/qk/94293X/201703/671704129.html
https://d.wanfangdata.com.cn/periodical/jsjgcykx201703017
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-130X
  databaseCode: ADMLS
  dateStart: 20130501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib015938883
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB9iCuJFFBVrVYp0TrI1m53P426yoUj0YoTcwn4lpUKqNgXtSamISPAWCkL16kkseoqI_0w-9L_wvdlNshUp6mWZzPz2zZt9m5nfPOa9JWQNk8AxO44srbiymAhiK7BDYcUqtBOlY2kHJtvnXbFxn91u8mah8C53amm3F65He3-MK_kfq0Id2BWjZP_BsnOhUAFlsC9cwcJw_SsbU59TXaOeS32GV-XXbeorqipUOdQXVHPqlagvqYZGhnAFrcLcV6Vazu6rIMbzqGcwno3nH3yNQlxlMDXEg0CUbJuCi8IRXEU83O76RqCgnkPTL1rOSC-qBK3ucZiuGMVBAlRy0wS6eaY7KPimBjS3EeNWqTv3Ic4gNuqoQcfqTewClPf83EDM8FUt79dIAzizSRjdp7C2NvOzdJryKHsbndyUy7MpN129eRq9_PvC4GihzcKAHazPO8CjfdIkuc36P556W8BeF_OR6VNkqYz-niJZcqt36vfyhFizXMJC26TXyUcql4BPLdqBPSu-IODAJR2lFnjYHkrgq3M8ZvcXOYINPx2VI8TcdiSXadTvbEynyVo24FsnDRdziWxudzuPgCGZgLVuO-h2ctyqcY6czTZFq276hp8nhb3NC4SP3w9Hwzd1-0d_fzL4NH37Yvzq5fjwYDTsT79-GR89-7n_YfT9cNJ_Pnk9GH87mn48mHweXCSNmt-obFjZRz6sCMiz1YYNrS5xmBa4dAQmJkvasPDxgAETD4JElsNSxJWGhYhHygkjpYRIQhbh2VjZls4lUuxud5PLZLVsvKpxDM8_YWEkdKIiHSdxyBwRMdZeJivzEbceprlcWnMTL5Mb2TNoZf_wndbWzlYnevrgCT42dB3IKyeKWCFnEJk66K6SYu_xbnINKGsvvJ69N78A_g9wRg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EL1%E8%8C%83%E6%95%B0%E7%9A%84%E5%88%86%E5%9D%97%E4%BA%8C%E7%BB%B4%E5%B1%80%E9%83%A8%E4%BF%9D%E6%8C%81%E6%8A%95%E5%BD%B1%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E4%B8%81%E9%93%AD+%E8%B4%BE%E7%BB%B4%E6%95%8F&rft.date=2017&rft.issn=1007-130X&rft.volume=39&rft.issue=3&rft.spage=519&rft.epage=523&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2017.03.017&rft.externalDocID=671704129
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg