DNA barcode analysis: a comparison of phylogenetic and statistical classification methods

Background DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphi...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 10; no. Suppl 14; p. S10
Main Authors Austerlitz, Frederic, David, Olivier, Schaeffer, Brigitte, Bleakley, Kevin, Olteanu, Madalina, Leblois, Raphael, Veuille, Michel, Laredo, Catherine
Format Journal Article
LanguageEnglish
Published London BioMed Central 10.11.2009
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-10-S14-S10

Cover

More Information
Summary:Background DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods). These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. Results No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci - nuclear genes - improved the predictive performance of most methods. Conclusion The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-10-S14-S10