Gut mycobiome as a potential non-invasive tool in early detection of lung adenocarcinoma: a cross-sectional study
Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. Methods In total, 299 fecal samples from Beiji...
Saved in:
| Published in | BMC medicine Vol. 21; no. 1; pp. 1 - 10 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
31.10.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-7015 1741-7015 |
| DOI | 10.1186/s12916-023-03095-z |
Cover
| Abstract | Background
The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis.
Methods
In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy.
Results
Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD.
Candida
and
Saccharomyces
were the dominant genera, with a reduction in
Candida
and an increase in
Saccharomyces
,
Aspergillus
, and
Apiotrichum
in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively.
Conclusions
For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. |
|---|---|
| AbstractList | The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis.BACKGROUNDThe gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis.In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy.METHODSIn total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy.Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively.RESULTSFungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively.For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis.CONCLUSIONSFor the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. Methods In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy. Results Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively. Conclusions For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. Keywords: Gut mycobiome, Lung adenocarcinoma, Early-stage diagnosis, Supervised machine learning, Fungal signature, Non-invasive biomarker BackgroundThe gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis.MethodsIn total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy.ResultsFungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively.ConclusionsFor the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy. Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively. For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. Abstract Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. Methods In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy. Results Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively. Conclusions For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. Methods In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy. Results Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces , Aspergillus , and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively. Conclusions For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis. |
| ArticleNumber | 409 |
| Audience | Academic |
| Author | Liu, Qingyan Li, Rong Jia, Xiaodong Tao, Haitao Hu, Yi Zhang, Weidong Wang, Lijie Liu, Yang Shen, Leilei Ma, Junxun Pei, Yanbin Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Qingyan surname: Liu fullname: Liu, Qingyan organization: Graduate School, Chinese People’s Liberation Army Medical School, Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 2 givenname: Weidong surname: Zhang fullname: Zhang, Weidong organization: Graduate School, Chinese People’s Liberation Army Medical School, Department of Thoracic Surgery, First Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 3 givenname: Yanbin surname: Pei fullname: Pei, Yanbin organization: Graduate School, Chinese People’s Liberation Army Medical School – sequence: 4 givenname: Haitao surname: Tao fullname: Tao, Haitao organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 5 givenname: Junxun surname: Ma fullname: Ma, Junxun organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 6 givenname: Rong surname: Li fullname: Li, Rong organization: Department of Health Medicine, Second Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 7 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 8 givenname: Lijie surname: Wang fullname: Wang, Lijie organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 9 givenname: Leilei surname: Shen fullname: Shen, Leilei organization: Department of Thoracic Surgery, Hainan Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 10 givenname: Yang surname: Liu fullname: Liu, Yang email: sunny301x@sina.com organization: Department of Thoracic Surgery, First Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 11 givenname: Xiaodong surname: Jia fullname: Jia, Xiaodong email: feixiang.5420@163.com organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital – sequence: 12 givenname: Yi surname: Hu fullname: Hu, Yi email: huyi301zlxb@sina.com organization: Department of Oncology, Fifth Medical Center of the Chinese People’s Liberation Army General Hospital |
| BookMark | eNqNks1q3DAUhU1JaX7aF-hKUCjdOJUsS7K7KSG0aSDQTbsWGlmeUZCliSRPmDx9r8dDmgklFINt5O-cK5-j0-LIB2-K4j3B54Q0_HMiVUt4iStaYopbVj68Kk6IqEkpMGFHT96Pi9OUbjGumBD1m-KYihbXhLYnxd3VmNGw1WFhw2CQSkihdcjGZ6scgoGl9RuV7MagHIJD1iOjotuizmSjsw0ehR650S-R6owPWkVtfRjUFzDSMaRUppkDu5THbvu2eN0rl8y7_fOs-P3926_LH-XNz6vry4ubUnPCc8n7nrO-F6IiohGVMEr03aKFjS84p7RhlAmmuTGcGsY6DkhlakaJ5u2C8JaeFdezbxfUrVxHO6i4lUFZuVsIcSlVzFY7I2lrWl51nWaiqXVFFOkFwU1dw50RpsGLzl6jX6vtvXLu0ZBgOZUh5zIklCF3ZcgHUH2dVetxMZhOQ6hRuYOtHH7xdiWXYQOenAhS1eDwae8Qw91oUpaDTdo4p7wJY5JV09Rc1BAGoB-eobdhjJD6RLUYQ46APVJLBf9tfR9gsJ5M5YUQsG2M64k6_wcFV2cGq-EQ9hbWDwQfnwhWRrm8SsGNU-_pEGxmcHc0oumltllNGEyw7uU0q2fS_6pgX1wC2C9N_JvKC6o_EPcIlw |
| CitedBy_id | crossref_primary_10_3389_fmed_2024_1488377 crossref_primary_10_1128_mmbr_00261_24 crossref_primary_10_1093_oxfimm_iqae008 crossref_primary_10_1016_j_bbcan_2025_189287 |
| Cites_doi | 10.1002/emmm.201100159 10.1080/21505594.2016.1247140 10.1056/NEJMra0802714 10.1038/s41579-018-0116-y 10.1038/s41385-019-0160-6 10.1136/gutjnl-2015-310746 10.1186/s12934-022-01973-4 10.1053/j.gastro.2022.06.038 10.1016/j.ccell.2022.01.003 10.1016/j.cell.2022.09.015 10.3389/fmicb.2014.00587 10.1038/nrmicro.2016.142 10.1111/j.1530-0277.2000.tb02068.x 10.1158/2159-8290.CD-21-1059 10.1098/rsob.170070 10.1001/jama.2017.14585 10.1038/nri2939 10.1038/nrgastro.2014.188 10.1038/s41591-018-0300-7 10.1038/embor.2012.32 10.3390/cancers12051326 10.1186/s40168-017-0373-4 10.1177/17562848211047130 10.1111/apt.16272 10.1111/cas.14927 10.1053/j.gastro.2020.09.014 10.1080/19490976.2022.2121576 10.1038/nmeth.2604 10.1038/ncomms12474 10.1038/s41586-019-1608-2 10.1126/science.abc4552 10.1126/scitranslmed.aab2271 10.1172/JCI90562 10.1053/j.gastro.2020.06.048 10.1136/gutjnl-2014-308514 10.1016/j.jhep.2019.09.029 10.1371/journal.pone.0040863 10.1371/journal.pone.0066019 10.1128/IAI.73.1.30-38.2005 10.1016/j.ebiom.2021.103557 10.1038/nmeth.f.303 10.1016/S2666-5247(22)00203-8 10.1038/nri3684 10.1016/j.jaci.2014.06.027 10.3389/fmicb.2015.01085 10.1016/j.ccm.2019.10.001 10.3389/fcimb.2018.00060 10.3322/caac.21552 10.1038/s41591-019-0377-7 10.1016/j.cell.2012.01.035 10.1159/000525925 10.1164/rccm.201302-0341OC 10.4049/jimmunol.1100972 10.1136/gutjnl-2018-317178 10.1097/ALN.0000000000002186 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU COVID DWQXO FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12916-023-03095-z |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-7015 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_39e962ddc5784c21a1f710844710515c 10.1186/s12916-023-03095-z PMC10617124 A770950045 10_1186_s12916_023_03095_z |
| GeographicLocations | China Beijing China United States--US |
| GeographicLocations_xml | – name: China – name: Beijing China – name: United States--US |
| GrantInformation_xml | – fundername: China National Scientific Research Project grantid: GWJJ2021100304 – fundername: ; grantid: GWJJ2021100304 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX CITATION ALIPV 3V. 7QL 7U9 7XB 8FK AZQEC C1K COVID DWQXO H94 K9. M7N PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c616t-6ff65ff772178727ea7fdb9790b6633853575c6ee63e55d67272e4531c69b1693 |
| IEDL.DBID | M48 |
| ISSN | 1741-7015 |
| IngestDate | Fri Oct 03 12:50:57 EDT 2025 Sun Oct 26 03:12:18 EDT 2025 Tue Sep 30 17:11:28 EDT 2025 Fri Sep 05 13:12:45 EDT 2025 Wed Oct 08 14:30:57 EDT 2025 Mon Oct 20 23:17:24 EDT 2025 Mon Oct 20 17:24:52 EDT 2025 Thu May 22 21:31:20 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Wed Oct 01 03:31:55 EDT 2025 Sat Sep 06 07:24:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Early-stage diagnosis Supervised machine learning Lung adenocarcinoma Fungal signature Non-invasive biomarker Gut mycobiome |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c616t-6ff65ff772178727ea7fdb9790b6633853575c6ee63e55d67272e4531c69b1693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12916-023-03095-z |
| PMID | 37904139 |
| PQID | 2890072185 |
| PQPubID | 42775 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39e962ddc5784c21a1f710844710515c unpaywall_primary_10_1186_s12916_023_03095_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_10617124 proquest_miscellaneous_2884674853 proquest_journals_2890072185 gale_infotracmisc_A770950045 gale_infotracacademiconefile_A770950045 gale_healthsolutions_A770950045 crossref_citationtrail_10_1186_s12916_023_03095_z crossref_primary_10_1186_s12916_023_03095_z springer_journals_10_1186_s12916_023_03095_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-31 |
| PublicationDateYYYYMMDD | 2023-10-31 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC medicine |
| PublicationTitleAbbrev | BMC Med |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | EJ Topol (3095_CR50) 2019; 25 BA Helmink (3095_CR15) 2019; 25 T Zuo (3095_CR48) 2020; 159 DM Underhill (3095_CR18) 2014; 14 Y Lin (3095_CR19) 2022; 163 KF Budden (3095_CR7) 2017; 15 L Romani (3095_CR35) 2011; 11 DR Samuelson (3095_CR10) 2015; 6 OO Coker (3095_CR22) 2019; 68 P Li (3095_CR28) 2022; 21 J Amar (3095_CR6) 2011; 3 JC Clemente (3095_CR4) 2012; 148 RH Nilsson (3095_CR34) 2019; 17 PL Molyneaux (3095_CR9) 2013; 188 GD Sepich-Poore (3095_CR17) 2021; 371 RC Edgar (3095_CR33) 2013; 10 SL Russell (3095_CR11) 2012; 13 SL Russell (3095_CR12) 2015; 135 CK Lee (3095_CR55) 2018; 129 N Begum (3095_CR20) 2022; 14 D Hanahan (3095_CR16) 2022; 12 S Blandin Knight (3095_CR3) 2017; 7 KH Yu (3095_CR52) 2016; 7 Y Sun (3095_CR57) 2021; 160 MC Noverr (3095_CR14) 2005; 73 C Hoffmann (3095_CR41) 2013; 8 AB Dohlman (3095_CR25) 2022; 185 WK Leung (3095_CR26) 2021; 53 SJ Van Dyken (3095_CR47) 2011; 187 RS Herbst (3095_CR2) 2008; 359 WP Liew (3095_CR38) 2018; 8 HE Hallen-Adams (3095_CR40) 2017; 8 JG Caporaso (3095_CR32) 2010; 7 BC Bade (3095_CR1) 2020; 41 AK Nash (3095_CR42) 2017; 5 B Aykut (3095_CR23) 2019; 574 MH McLean (3095_CR5) 2015; 64 A Alam (3095_CR24) 2022; 40 L Zhang (3095_CR21) 2021; 14 R Core Team (3095_CR30) 2020 AT Dang (3095_CR8) 2019; 12 H Chu (3095_CR45) 2020; 72 S Shah (3095_CR49) 2021; 71 WL Bi (3095_CR53) 2019; 69 K Kaźmierczak-Siedlecka (3095_CR39) 2020; 12 S Chen (3095_CR27) 2021; 112 H Sokol (3095_CR44) 2017; 66 H Toju (3095_CR31) 2012; 7 S Väkeväinen (3095_CR37) 2000; 24 A Andoh (3095_CR43) 2023; 104 F Zhang (3095_CR56) 2022; 3 B Ehteshami Bejnordi (3095_CR51) 2017; 318 S Quercia (3095_CR29) 2014; 5 C Xu (3095_CR54) 2022; 18 MC Arrieta (3095_CR13) 2015; 7 PK Mukherjee (3095_CR36) 2015; 12 AM Yang (3095_CR46) 2017; 127 |
| References_xml | – volume: 3 start-page: 559 issue: 9 year: 2011 ident: 3095_CR6 publication-title: EMBO Mol Med doi: 10.1002/emmm.201100159 – volume: 8 start-page: 352 issue: 3 year: 2017 ident: 3095_CR40 publication-title: Virulence doi: 10.1080/21505594.2016.1247140 – volume: 359 start-page: 1367 issue: 13 year: 2008 ident: 3095_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMra0802714 – volume: 17 start-page: 95 issue: 2 year: 2019 ident: 3095_CR34 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0116-y – volume: 12 start-page: 843 issue: 4 year: 2019 ident: 3095_CR8 publication-title: Mucosal Immunol doi: 10.1038/s41385-019-0160-6 – volume: 66 start-page: 1039 issue: 6 year: 2017 ident: 3095_CR44 publication-title: Gut doi: 10.1136/gutjnl-2015-310746 – volume: 21 start-page: 241 issue: 1 year: 2022 ident: 3095_CR28 publication-title: Microb Cell Fact doi: 10.1186/s12934-022-01973-4 – volume: 163 start-page: 908 issue: 4 year: 2022 ident: 3095_CR19 publication-title: Gastroenterology doi: 10.1053/j.gastro.2022.06.038 – volume: 40 start-page: 153 issue: 2 year: 2022 ident: 3095_CR24 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.01.003 – volume: 185 start-page: 3807 issue: 20 year: 2022 ident: 3095_CR25 publication-title: Cell doi: 10.1016/j.cell.2022.09.015 – volume: 5 start-page: 587 year: 2014 ident: 3095_CR29 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00587 – volume: 15 start-page: 55 issue: 1 year: 2017 ident: 3095_CR7 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.142 – volume: 24 start-page: 873 issue: 6 year: 2000 ident: 3095_CR37 publication-title: Alcohol Clin Exp Res doi: 10.1111/j.1530-0277.2000.tb02068.x – volume: 12 start-page: 31 issue: 1 year: 2022 ident: 3095_CR16 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-21-1059 – volume: 7 start-page: 170070 issue: 9 year: 2017 ident: 3095_CR3 publication-title: Open biol doi: 10.1098/rsob.170070 – volume: 318 start-page: 2199 issue: 22 year: 2017 ident: 3095_CR51 publication-title: Jama. doi: 10.1001/jama.2017.14585 – volume: 11 start-page: 275 issue: 4 year: 2011 ident: 3095_CR35 publication-title: Nat Rev Immunol doi: 10.1038/nri2939 – volume: 12 start-page: 77 issue: 2 year: 2015 ident: 3095_CR36 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2014.188 – volume: 25 start-page: 44 issue: 1 year: 2019 ident: 3095_CR50 publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 13 start-page: 440 issue: 5 year: 2012 ident: 3095_CR11 publication-title: EMBO Rep doi: 10.1038/embor.2012.32 – volume: 12 start-page: 1326 issue: 5 year: 2020 ident: 3095_CR39 publication-title: Cancers. doi: 10.3390/cancers12051326 – volume: 5 start-page: 153 issue: 1 year: 2017 ident: 3095_CR42 publication-title: Microbiome doi: 10.1186/s40168-017-0373-4 – volume: 14 start-page: 175628482110471 year: 2021 ident: 3095_CR21 publication-title: Therap Adv Gastroenterol doi: 10.1177/17562848211047130 – volume: 53 start-page: 864 issue: 8 year: 2021 ident: 3095_CR26 publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.16272 – volume: 112 start-page: 2905 issue: 7 year: 2021 ident: 3095_CR27 publication-title: Cancer Sci doi: 10.1111/cas.14927 – volume: 160 start-page: 272 issue: 1 year: 2021 ident: 3095_CR57 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.09.014 – volume-title: R: a language and environment for statistical computing year: 2020 ident: 3095_CR30 – volume: 14 start-page: 2121576 issue: 1 year: 2022 ident: 3095_CR20 publication-title: Gut microbes doi: 10.1080/19490976.2022.2121576 – volume: 10 start-page: 996 issue: 10 year: 2013 ident: 3095_CR33 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 7 start-page: 12474 year: 2016 ident: 3095_CR52 publication-title: Nat Commun doi: 10.1038/ncomms12474 – volume: 574 start-page: 264 issue: 7777 year: 2019 ident: 3095_CR23 publication-title: Nature doi: 10.1038/s41586-019-1608-2 – volume: 371 start-page: eabc4552 issue: 6536 year: 2021 ident: 3095_CR17 publication-title: Science. doi: 10.1126/science.abc4552 – volume: 7 start-page: 307ra152 issue: 307 year: 2015 ident: 3095_CR13 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aab2271 – volume: 127 start-page: 2829 issue: 7 year: 2017 ident: 3095_CR46 publication-title: J Clin Invest doi: 10.1172/JCI90562 – volume: 159 start-page: 1302 issue: 4 year: 2020 ident: 3095_CR48 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.06.048 – volume: 64 start-page: 332 issue: 2 year: 2015 ident: 3095_CR5 publication-title: Gut doi: 10.1136/gutjnl-2014-308514 – volume: 72 start-page: 391 issue: 3 year: 2020 ident: 3095_CR45 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.09.029 – volume: 7 start-page: e40863 issue: 7 year: 2012 ident: 3095_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0040863 – volume: 8 start-page: e66019 issue: 6 year: 2013 ident: 3095_CR41 publication-title: PLoS One doi: 10.1371/journal.pone.0066019 – volume: 73 start-page: 30 issue: 1 year: 2005 ident: 3095_CR14 publication-title: Infect Immun doi: 10.1128/IAI.73.1.30-38.2005 – volume: 71 start-page: 103557 year: 2021 ident: 3095_CR49 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103557 – volume: 18 start-page: 1208 issue: 5 year: 2022 ident: 3095_CR54 publication-title: Arch Med Sci – volume: 7 start-page: 335 issue: 5 year: 2010 ident: 3095_CR32 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 3 start-page: e969 issue: 12 year: 2022 ident: 3095_CR56 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(22)00203-8 – volume: 14 start-page: 405 issue: 6 year: 2014 ident: 3095_CR18 publication-title: Nat Rev Immunol doi: 10.1038/nri3684 – volume: 135 start-page: 100 issue: 1 year: 2015 ident: 3095_CR12 publication-title: J Allergy Clin Immunol Glob doi: 10.1016/j.jaci.2014.06.027 – volume: 6 start-page: 1085 year: 2015 ident: 3095_CR10 publication-title: Front Microbiol doi: 10.3389/fmicb.2015.01085 – volume: 41 start-page: 1 issue: 1 year: 2020 ident: 3095_CR1 publication-title: Clin Chest Med doi: 10.1016/j.ccm.2019.10.001 – volume: 8 start-page: 60 year: 2018 ident: 3095_CR38 publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2018.00060 – volume: 69 start-page: 127 issue: 2 year: 2019 ident: 3095_CR53 publication-title: CA Cancer J Clin doi: 10.3322/caac.21552 – volume: 25 start-page: 377 issue: 3 year: 2019 ident: 3095_CR15 publication-title: Nat Med doi: 10.1038/s41591-019-0377-7 – volume: 148 start-page: 1258 issue: 6 year: 2012 ident: 3095_CR4 publication-title: Cell doi: 10.1016/j.cell.2012.01.035 – volume: 104 start-page: 16 issue: 1 year: 2023 ident: 3095_CR43 publication-title: Digestion doi: 10.1159/000525925 – volume: 188 start-page: 1224 issue: 10 year: 2013 ident: 3095_CR9 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201302-0341OC – volume: 187 start-page: 2261 issue: 5 year: 2011 ident: 3095_CR47 publication-title: J Immunol doi: 10.4049/jimmunol.1100972 – volume: 68 start-page: 654 issue: 4 year: 2019 ident: 3095_CR22 publication-title: Gut doi: 10.1136/gutjnl-2018-317178 – volume: 129 start-page: 649 issue: 4 year: 2018 ident: 3095_CR55 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002186 |
| SSID | ssj0025774 |
| Score | 2.4419303 |
| Snippet | Background
The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients... Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients... The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and... BackgroundThe gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with... Abstract Background The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adenocarcinoma Algorithms Analysis Antibiotics Biodiversity Bioinformatics Biological diversity Biological markers Biomarkers Biomedicine Cancer therapies Candida Care and treatment Composition Confounding (Statistics) Cross-sectional studies Data mining Diagnosis Early-stage diagnosis Feces Fungal signature Fungi Gender Genera Gut mycobiome Health aspects Health care Invasiveness Lung adenocarcinoma Lung cancer Lung diseases Lungs Machine learning Medical diagnosis Medical prognosis Medicine Medicine & Public Health Methods Microbiota Microbiota (Symbiotic organisms) Non-invasive biomarker Performance prediction Prediction models Research Article Saccharomyces Software Somatotropin Statistical analysis Supervised learning Supervised machine learning Tumors Veganism |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHgocUMtDhBYwEhIHajVPO-FWKkqFVE5U6s1yHFuslCbbbhbU_vrOOA8aVSocOCYeO2vPez3-DPA-zDBOsGHBXRU5ngrtuM5dyNEeo8OROq08SNLJd3F8mn47y85uXfVFNWE9PHC_cPtJYQsRV5VB0UpNHOnIoVPMUzSqdD2JIesb5sWYTA2pVoZRzXhEJhf7K_RqERXbJpy2FDJ-PXNDHq3_rk2-Wyc5bZY-hofrZqmvfuu6vuWPjrbgyRBIsoN-AtvwwDZPYfNk2Cp_Bhdf1x07vzKtP2DP9Ipptmw7Kg7Cbpj080XzS1PxOuvatmaLhlkCO2aV7Xx5VsNax2q0BUyjbUKXd4kDt-f6Ew7kJ8VXPR0O50Fqn8Pp0Zcfh8d8uF-BGxGJjgvnROYcxtcRqm0srZauKgtZhCXGIQk6cozljLBWJDbLKr9na1NUWiOKkkBcXsAG_lz7EpgUqcZUNzK48mmVFDrOnLWlk9bIEJ8DiMblVmYAH6c7MGrlk5BcqJ5FClmkPIvUdQAfpz7LHnrjXurPxMWJkmCz_QsUJjUIk_qbMAXwlmRA9WdQJ-VXB1LiRyj8DeCDpyD1xwkYPZxiwGUgIK0Z5e6MEtXWzJtHOVOD2Vgp2vUlwLocm99NzdSTSuEa266JJvc3xGRJAPlMPmdzn7c0i58eOpz-AJAY0gWwN4ryn6_ft7h7k7j_Ay9e_Q9e7MCjmBTWxwm7sNFdru1rDAC78o3X9RvK6FM0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEB_qFXx8EJ-4WjWC4Acbus_sriDSSmsReohY6LeQyyZ6sN293u0p7V_vTPZRl8Lhx7tMsptkXtmZ_AbgrZ-gn2D8nNsisDwWynKVWZ-jPkaDk6q4cCBJJ1NxfBp_PUvOtmDa34WhtMpeJzpFXdSavpHvUUCMsLyy5NPiglPVKIqu9iU0VFdaofjoIMZuwXZIyFgT2D44nH77PhzBEvR2-qszmdhbobULKAk34hRqSPjVyDw5FP-buvpm_uQQRL0Hd9bVQl3-UWX5j506egD3OweT7bcc8RC2TPUIbp90IfTHcPFl3bDzS127i_dMrZhii7qhpCHsVtUVn1e_FSW1s6auSzavmCEQZFaYxqVtVay2rEQdwRTqLDSFSxy4PlcfcCA3Kb5q6XA4B177BE6PDn98PuZd3QWuRSAaLqwVibXodwcozmFqVGqLWZ7m_gz9kwgNPPp4WhgjIpMkhYvlmhiFWYt8RuAuT2GCr2ueAUtFrPAIHGhc-biIchUm1piZTY1OffztQdAvt9QdKDnVxiilO5xkQrZbJHGLpNsieeXB-6HPooXk2Eh9QLs4UBKctvujXv6UnXTKKDe5CItCo_6KdRiowKLnlcVouakGjvbgNfGAbO-mDkpB7qcpPoTcYg_eOQpSCzgBrbrbDbgMBLA1otwZUaI463Fzz2eyUycrec38HrwZmqknpchVpl4TTeYqxySRB9mIP0dzH7dU818OUpw-DKTo6nmw27Py9dM3Le7uwO7_sRfPN8_tBdwNSRSdZ7ADk2a5Ni_R5Wtmrzo5_gszgVKf priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEE8RKGAkJA7UIs7DTriVilIhlROVerMcx1ZXSpOlmwW1v54ZJxsaFVVw3PXYSTwzns-a8WeAt3GOOMHFJfe18DyTxnNT-JjjeowBR5msDiRJh9_kwVH29Tg_Hmly6CzM5fy9KOSHFcYjQWWyKadkQM4vbsItDFIyJGbl3rS5yhHHbA7F_LXfLPAEfv6rq_DVysgpPXoP7qzbpTn_ZZrmUgTafwD3R-jIdgddP4Qbrn0Etw_H5Phj-PFl3bPTc9uFI_XMrJhhy66nciDshtt8vmh_GipXZ33XNWzRMkf0xqx2fSjIalnnWYPezwyuRhjkznDg7tR8xIHCR_HVIIfDBVraJ3C0__n73gEfb1TgVgrZc-m9zL1HRC3QURPljPJ1VaoyrhB5pBi6Eb1Z6ZxMXZ7XIUvrMnRTK8uKaFuewha-rnsGTMnM4OZWWJz5rE5Lk-TeucorZ1WMvyMQm-nWdqQbp1svGh22HYXUg4o0qkgHFemLCN5PfZYD2ca10p9Ii5MkEWWHP9B-9Oh3Oi1dKZO6trgyZTYRRnjEVEWGMZlut7ERvCYb0MOp08nd9a5S-BACvBG8CxLk8PgB1oznFnAaiDprJrk9k0RHtfPmjZ3pcaFYacrzEkVdgc1vpmbqScVvrevWJFOEO2HyNIJiZp-zb5-3tIuTQBZOW36FIC6CnY0p_3n6dZO7M5n7P-ji-f-N_gLuJuSaAQNsw1Z_tnYvEdz11avg1b8B1xtFew priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagk7g8cEcEBhgJiQfmrrnZCW8FMSakTTxQaTxZjmNDRZqUNgWtv55znAsLQxNIPLY-tusT-_OX-pzPhDyfxMATzCRlNvcti7iyTCV2wgCPYcMRKsqdSNLRMT-cRe9P4pM2PRpzYbKF7g6Vx2cT0IsmvwHvTzCr_WVum-We8P017Fg-BtKGDI8LYra9THZ4DMx8RHZmxx-mn5qcSJ8J2Pq6vJk_VhzsTU7C_zxQnw-e7E9Qr5Orm3KpTn-oojizSR3cJItueE1sytfxps7Gevub8uP_Gv8tcqNls3TaTL_b5JIp75ArR23Td8m3d5uaLk515Tqhak0VXVY1RihBtbIq2bz8rjCCntZVVdB5SQ0qLtPc1C5GrKSVpQUAElUAkLDvrqDhaqFeQUPOiWzd2EFzTin3HpkdvP345pC1lzwwzX1eM24tj60Fku8DdgTCKGHzLBXpJAMyFAKbAEKpuTE8NHGcu4NjEwFyaJ5mqCRzn4zg55oHhAoeKXjf9jXAUJSHqQpia0xmhdFiAp894nePV-pWAR0v4iikexNKuGx8KcGX0vlSbj3ysq-zbPQ_LrR-jbOmt0TtbvdFtfosWyiQYWpSHuS5BrCMdOAr3wLNSyKgCXjhjvbIU5xzskmE7RFIToWATpCDe-SFs0AMggFo1aZSgBtQzWtguTuwBOzQw-JuXssWu9YSj55RNS-B4md9MdbEeLzSVBu0Sdw1NXHokWSwHgZjH5aU8y9Ovxz_hRDAKz2y1y2dX71f5Ny9fnn9xbN4-G_mj8i1ANeQoyW7ZFSvNuYx8M06e9LCyE89rnj8 priority: 102 providerName: Unpaywall |
| Title | Gut mycobiome as a potential non-invasive tool in early detection of lung adenocarcinoma: a cross-sectional study |
| URI | https://link.springer.com/article/10.1186/s12916-023-03095-z https://www.proquest.com/docview/2890072185 https://www.proquest.com/docview/2884674853 https://pubmed.ncbi.nlm.nih.gov/PMC10617124 https://bmcmedicine.biomedcentral.com/counter/pdf/10.1186/s12916-023-03095-z https://doaj.org/article/39e962ddc5784c21a1f710844710515c |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: KQ8 dateStart: 20031101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1741-7015 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: M48 dateStart: 20031101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: AAJSJ dateStart: 20031201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: C6C dateStart: 20030112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0NqHNMYD4lMERjESEg8s0DSJnSAh1FYbE1KraaJS4cVyHBsqZUnXpkD367lzk0C0aUK8REp8dmLfp3PnO0JedkOwE3Q3dk3qGTdg0rgyMl0X5DEoHC6D1CZJGo3ZyST4NA2nW6Qud1Qt4PLarR3Wk5ossje_LtYfgOHfW4aP2Nsl6CwPQ2l9Fx0GoXu5TXZBU8VYymEUNF4FoE4e1Adnru23T_Z8HndBsMctPWXT-V8V2lcDKRtv6m1ya5XP5fqnzLK_FNbxXXKnsjRpf0Ma98iWzu-TvVHlS39ALj6uSnq-VoU9gU_lkko6L0qMHoJueZG7s_yHxOh2WhZFRmc51ZgNmaa6tPFbOS0MzUBYUAnCC3TiAgYuzuU7GMhOyl1u4GA4m8X2IZkcH30enrhVAQZXMY-VLjOGhcaAAe4BX_e4ltykSQwrlICh4oOmB2NPMa2Zr8MwtU5dHQBXKxYnmOXlEdmBz9WPCeUskLAX9hQgIUj9WPZCo3ViuFa8C_cO8erlFqrKTo5FMjJhdykRExtsCcCWsNgSlw553fSZb3Jz3Ag9QCw2kJhX2z4oFt9ExabCj3XMemmqQJAFqudJz4AJFgWgwrEYjnLIc6QBsTmk2kgH0eccXoL2sUNeWQikWJiAktUxB1gGzLTVgjxoQQJfq3ZzTWeiZguBbmHMaBdB84umGXtirFyuixXCRLaETOg7JGrRZ2vu7ZZ89t3mFsc_BBxsPocc1qT85-03Le5hQ-7_gIsn__9hT8l-DznWmg8HZKdcrPQzsAvLpEO2-ZR3yO7gaHx6BndDNuzYfywdKwbgejb4Cu2T8Wn_y29R-WQW |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPgUgcGMBOKBRWu-nARpQhtsdGydENqkvXmuY0OlLunalKn74_jbuHOTjGhSxcseW5-d2Hf-3Tl3vgN424nQTtCd1DWZZ9yQS-PKxHRcxGNUOLEMM5skqXfEuyfht9PodAn-1HdhKKyyxkQL1Fmh6Bv5JjnEKJdXEn0aXbhUNYq8q3UJDVmVVsi2bIqx6mLHgZ5d4hFusrX_Bfn9zvf3do8_d92qyoCruMdLlxvDI2PQyvRQeP1Yy9hk_TROO33UxgGqM7RoFNeaBzqKMuu51CGKruJpn1KZ4Lh3YCUMwhQPfys7u0fffzRHvgitq_qqTsI3J6hdPQr6DVxybUTuVUsd2qoBN3XDzXjNxml7H1an-UjOLuVw-I9e3HsIDyqDlm3PJfARLOn8MdztVS77J3DxdVqy85kq7EV_JidMslFRUpASdsuL3B3kvyUF0bOyKIZskDNNSZdZpksbJpazwrAhYhKTiJGoesc4cHEuP-JAdlLuZE6Hw9lkuU_h5FY48AyW8XX1c2AxDyUeuT2FKx9mQSr9yGjdN7FWcQd_O-DVyy1UlQSdanEMhT0MJVzMWSSQRcKySFw58KHpM5qnAFlIvUNcbCgpfbf9oxj_FBUaiCDVKfezTCFehsr3pGfQ0ktCtBSo5o5yYJ1kQMzvwjYgJLbjGB9CZrgD7y0FwRBOQMnqNgUuAyX0alGutSgRPlS7uZYzUcHXRFxvNgfeNM3Uk0Lycl1MiSaxlWqiwIGkJZ-tubdb8sEvm8KcPkTEaFo6sFGL8vXTFy3uRiPu_8GLF4vntg6r3ePeoTjcPzp4Cfd82pbWKlmD5XI81a_Q3Cz7r6s9zeDstmHkL3akjY8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkQocEK-KQKFGQuJArSabxEm4lYWlPFpxoFJvluPYsFKaLLtZUPvrmXEeNCqq4Jh47KzteXln5jPACz9GP8H4GbdFYHkklOUqtT5HfYwGJ1FR4UCSDo_EwXH08SQ-uVDF77Ld-5BkW9NAKE1Vs7cobCviqdhboZUKKHk25BQiiPn5dbgRoXWjOwymYjocuWL0bvpSmb_2G5kjh9p_WTdfzpccgqa34ea6WqizX6osL9il2V240zmUbL_lgHtwzVT3YfOwC5k_gB_v1w07PdO1K7RnasUUW9Q0V-Q8hod_Pq9-KkpiZ01dl2xeMUOgx6wwjUvTqlhtWYk6gSnUUWj6ljhwfape40BuUnzV0uFwDqz2IRzP3n2dHvDungWuRSAaLqwVsbXoZwcovpPEqMQWeZZkfo7-SIgGHX06LYwRoYnjwsVuTYTCq0WWE5jLFmzgzzWPgCUiUnjkDTSufFSEmZrE1pjcJkYnPj57EPTLLXUHQk53YZTSHUZSIdstkrhF0m2RPPfg1dBn0UJwXEn9hnZxoCT4bPeiXn6TnTTKMDOZmBSFRn0V6UmgAoueVhqhpaY7b7QHO8QDsq1FHZSA3E8S_Ai5wR68dBSkBnACWnXVDLgMBKg1otweUaL46nFzz2eyUx8rSdFfAq5Lsfn50Ew9KSWuMvWaaFJ3U0wcepCO-HM093FLNf_uIMTpj4AEXTsPdntW_vP1qxZ3d2D3f9iLx_83-g5sfnk7k58_HH16ArcmJKXOSdiGjWa5Nk_R-2vyZ07AfwPg7FCx |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagk7g8cEcEBhgJiQfmrrnZCW8FMSakTTxQaTxZjmNDRZqUNgWtv55znAsLQxNIPLY-tusT-_OX-pzPhDyfxMATzCRlNvcti7iyTCV2wgCPYcMRKsqdSNLRMT-cRe9P4pM2PRpzYbKF7g6Vx2cT0IsmvwHvTzCr_WVum-We8P017Fg-BtKGDI8LYra9THZ4DMx8RHZmxx-mn5qcSJ8J2Pq6vJk_VhzsTU7C_zxQnw-e7E9Qr5Orm3KpTn-oojizSR3cJItueE1sytfxps7Gevub8uP_Gv8tcqNls3TaTL_b5JIp75ArR23Td8m3d5uaLk515Tqhak0VXVY1RihBtbIq2bz8rjCCntZVVdB5SQ0qLtPc1C5GrKSVpQUAElUAkLDvrqDhaqFeQUPOiWzd2EFzTin3HpkdvP345pC1lzwwzX1eM24tj60Fku8DdgTCKGHzLBXpJAMyFAKbAEKpuTE8NHGcu4NjEwFyaJ5mqCRzn4zg55oHhAoeKXjf9jXAUJSHqQpia0xmhdFiAp894nePV-pWAR0v4iikexNKuGx8KcGX0vlSbj3ysq-zbPQ_LrR-jbOmt0TtbvdFtfosWyiQYWpSHuS5BrCMdOAr3wLNSyKgCXjhjvbIU5xzskmE7RFIToWATpCDe-SFs0AMggFo1aZSgBtQzWtguTuwBOzQw-JuXssWu9YSj55RNS-B4md9MdbEeLzSVBu0Sdw1NXHokWSwHgZjH5aU8y9Ovxz_hRDAKz2y1y2dX71f5Ny9fnn9xbN4-G_mj8i1ANeQoyW7ZFSvNuYx8M06e9LCyE89rnj8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+mycobiome+as+a+potential+non-invasive+tool+in+early+detection+of+lung+adenocarcinoma%3A+a+cross-sectional+study&rft.jtitle=BMC+medicine&rft.au=Liu%2C+Qingyan&rft.au=Zhang%2C+Weidong&rft.au=Pei%2C+Yanbin&rft.au=Tao%2C+Haitao&rft.date=2023-10-31&rft.pub=BioMed+Central&rft.eissn=1741-7015&rft.volume=21&rft_id=info:doi/10.1186%2Fs12916-023-03095-z&rft_id=info%3Apmid%2F37904139&rft.externalDocID=PMC10617124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon |