Deep Learning for Classification of Colorectal Polyps on Whole-slide Images

Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We...

Full description

Saved in:
Bibliographic Details
Published inJournal of pathology informatics Vol. 8; no. 1; p. 30
Main Authors Korbar, Bruno, Olofson, Andrea M., Miraflor, Allen P, Nicka, Catherine M., Suriawinata, Matthew A., Torresani, Lorenzo, Suriawinata, Arief A., Hassanpour, Saeed
Format Journal Article
LanguageEnglish
Published India Elsevier Inc 01.01.2017
Wolters Kluwer India Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Medknow Publications & Media Pvt Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN2153-3539
2229-5089
2153-3539
DOI10.4103/jpi.jpi_34_17

Cover

Abstract Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization ofcolorectal polyps and in subsequent risk assessment and follow-up recommendations.
AbstractList Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.
Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability.CONTEXTHistopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability.We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis.AIMSWe built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis.Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks.SETTING AND DESIGNOur method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks.Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards.SUBJECTS AND METHODSOur method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards.We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals.STATISTICAL ANALYSISWe evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals.Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%).RESULTSOur evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%).Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.CONCLUSIONSOur method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.
Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization ofcolorectal polyps and in subsequent risk assessment and follow-up recommendations.
Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.
ArticleNumber 30
Author Suriawinata, Arief A.
Torresani, Lorenzo
Hassanpour, Saeed
Nicka, Catherine M.
Korbar, Bruno
Olofson, Andrea M.
Miraflor, Allen P
Suriawinata, Matthew A.
AuthorAffiliation 1 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
3 Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
4 Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
2 Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
AuthorAffiliation_xml – name: 3 Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
– name: 2 Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
– name: 4 Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
– name: 1 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
Author_xml – sequence: 1
  givenname: Bruno
  surname: Korbar
  fullname: Korbar, Bruno
  organization: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 2
  givenname: Andrea M.
  surname: Olofson
  fullname: Olofson, Andrea M.
  organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 3
  givenname: Allen P
  surname: Miraflor
  fullname: Miraflor, Allen P
  organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 4
  givenname: Catherine M.
  surname: Nicka
  fullname: Nicka, Catherine M.
  organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 5
  givenname: Matthew A.
  surname: Suriawinata
  fullname: Suriawinata, Matthew A.
  organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 6
  givenname: Lorenzo
  surname: Torresani
  fullname: Torresani, Lorenzo
  organization: Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
– sequence: 7
  givenname: Arief A.
  surname: Suriawinata
  fullname: Suriawinata, Arief A.
  organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
– sequence: 8
  givenname: Saeed
  surname: Hassanpour
  fullname: Hassanpour, Saeed
  email: saeed.hassanpour@dartmouth.edu
  organization: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28828201$$D View this record in MEDLINE/PubMed
BookMark eNqFUk2P0zAQjdAidln2yBVF4sIlxZ9Je0FCXT4qKsEBxNGaOpOuu64d7GSr_nvcplS7FQuRoliT955n3rzn2ZnzDrPsJSUjQQl_u2rNKL2KC0WrJ9kFo5IXXPLJ2b3zeXYV44qkh3NKyfhZds7GYzZmhF5kX64R23yOEJxxy7zxIZ9aiNE0RkNnvMt9k0-99QF1Bzb_5u22jXmq_7zxFotoTY35bA1LjC-ypw3YiFeH72X24-OH79PPxfzrp9n0_bzQJS2XBStrBN5ArZsx4O5MKQXayKoqF4ITRMJFqqOmyKUuJxNRQckmpWwWVcUJv8xmg27tYaXaYNYQtsqDUfuCD0sFoTPaompqqQXUFVAuBGPlgohKM6igWtSS0TJpjQat3rWw3YC1R0FK1M5ktTP4aHIivBsIbb9YY63RdQHsgy4e_nHmRi39nZJSpAl5EnhzEAj-V4-xU2sTNVoLDn0fFZ1wyoQs93e9PoGufB9c8jah0jiSslIk1Kv7HR1b-bPkBOADQAcfY8BGadPtl5saNPbRQYsT1v-MmQ74jbcdhnhr-w0GlTq6dX7zd5LiRO0CqOwhgEmlGlQwBejOJIGoDTqNtdklMG3YPHq_PGFqa1xKsb3F7T94vwFF7guK
CitedBy_id crossref_primary_10_1038_s41467_024_49153_9
crossref_primary_10_21833_ijaas_2023_12_004
crossref_primary_10_1186_s12885_022_10488_5
crossref_primary_10_1080_10408363_2018_1561640
crossref_primary_10_1016_j_compbiomed_2024_108267
crossref_primary_10_32604_cmes_2023_028018
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_3748_wjg_v27_i16_1664
crossref_primary_10_3390_cancers14051159
crossref_primary_10_1117_1_JMI_7_1_012706
crossref_primary_10_1158_2159_8290_CD_21_0090
crossref_primary_10_1038_s41598_021_81352_y
crossref_primary_10_1038_s41416_020_01122_x
crossref_primary_10_1177_15330338211027901
crossref_primary_10_1002_cncy_22099
crossref_primary_10_25259_IJMS_98_2023
crossref_primary_10_3748_wjg_v27_i21_2818
crossref_primary_10_1007_s10462_021_10058_4
crossref_primary_10_1038_s41598_019_40041_7
crossref_primary_10_1007_s00432_022_04161_4
crossref_primary_10_3389_fonc_2023_1065402
crossref_primary_10_1016_j_bbcan_2020_188452
crossref_primary_10_3390_cancers12020507
crossref_primary_10_3390_jpm10040141
crossref_primary_10_1049_cit2_12231
crossref_primary_10_1038_s41598_020_58467_9
crossref_primary_10_3389_frai_2023_1227091
crossref_primary_10_4103_jpi_jpi_87_18
crossref_primary_10_1007_s11760_023_02507_0
crossref_primary_10_1136_gutjnl_2023_329512
crossref_primary_10_1038_s41598_021_87748_0
crossref_primary_10_1038_s41746_018_0057_x
crossref_primary_10_1002_path_6027
crossref_primary_10_1038_s41573_019_0024_5
crossref_primary_10_4103_jpi_jpi_49_19
crossref_primary_10_1088_1741_2552_aceca3
crossref_primary_10_1111_nan_12710
crossref_primary_10_1038_s41598_018_21758_3
crossref_primary_10_1109_ACCESS_2020_2996770
crossref_primary_10_1038_s41598_020_66333_x
crossref_primary_10_1088_1742_6596_1621_1_012055
crossref_primary_10_3390_cells10040787
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_3389_fphar_2020_01177
crossref_primary_10_1038_s41598_023_35431_x
crossref_primary_10_3390_cancers14194744
crossref_primary_10_1111_neup_12880
crossref_primary_10_1038_s41392_024_01953_7
crossref_primary_10_2147_IJGM_S268093
crossref_primary_10_1186_s40880_018_0325_9
crossref_primary_10_5217_ir_2023_00020
crossref_primary_10_1063_5_0133027
crossref_primary_10_3390_info12060245
crossref_primary_10_1002_jbmr_4879
crossref_primary_10_1109_ACCESS_2021_3061477
crossref_primary_10_1063_5_0172146
crossref_primary_10_1136_gutjnl_2020_322880
crossref_primary_10_1093_jjco_hyae066
crossref_primary_10_1007_s10489_022_03689_9
crossref_primary_10_1371_journal_pone_0275378
crossref_primary_10_1177_00037028221076170
crossref_primary_10_1080_08839514_2021_2018182
crossref_primary_10_1016_j_ajpath_2021_08_013
crossref_primary_10_1016_j_cag_2019_08_008
crossref_primary_10_1001_jamanetworkopen_2021_35271
crossref_primary_10_1002_cac2_12012
crossref_primary_10_1109_ACCESS_2020_3032164
crossref_primary_10_3389_frobt_2019_00024
crossref_primary_10_3390_cancers14153707
crossref_primary_10_1016_j_cmpb_2024_108112
crossref_primary_10_3390_diagnostics11112074
crossref_primary_10_3389_fmed_2022_1070072
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_5009_gnl20224
crossref_primary_10_7717_peerj_cs_2059
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_1145_3676282
crossref_primary_10_3390_cancers14153780
crossref_primary_10_1111_odi_15067
crossref_primary_10_1177_15330338221142674
crossref_primary_10_1038_s41598_023_46472_7
crossref_primary_10_7759_cureus_79570
crossref_primary_10_3390_app10186428
crossref_primary_10_3390_s20215982
crossref_primary_10_1038_s41598_023_35491_z
crossref_primary_10_1049_ipr2_12495
crossref_primary_10_1109_ACCESS_2020_3008000
crossref_primary_10_1016_j_labinv_2024_102043
crossref_primary_10_1016_j_compeleceng_2022_108462
crossref_primary_10_1038_s41598_021_93746_z
crossref_primary_10_1016_j_neucom_2020_04_154
crossref_primary_10_1007_s12272_019_01162_9
crossref_primary_10_35712_aig_v5_i2_91550
crossref_primary_10_1007_s00330_021_08014_5
crossref_primary_10_1016_j_compmedimag_2021_101861
crossref_primary_10_2217_fon_2020_0678
crossref_primary_10_3390_bioengineering10020173
crossref_primary_10_1016_j_csbj_2022_09_010
crossref_primary_10_5858_arpa_2020_0541_CP
crossref_primary_10_1109_TCYB_2019_2935141
crossref_primary_10_3390_electronics10141662
crossref_primary_10_1038_s43856_022_00107_6
crossref_primary_10_1155_2021_9921095
crossref_primary_10_1016_j_dld_2024_11_001
crossref_primary_10_1038_s41598_022_16885_x
crossref_primary_10_1016_j_clinbiochem_2022_02_011
crossref_primary_10_1007_s10620_024_08501_x
crossref_primary_10_1371_journal_pone_0236452
crossref_primary_10_1038_s41598_021_87644_7
crossref_primary_10_3390_cancers14153803
crossref_primary_10_3390_cancers14215264
crossref_primary_10_1007_s10151_022_02602_3
crossref_primary_10_1016_j_cmpb_2023_107631
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1038_s41467_021_21896_9
crossref_primary_10_1016_j_bspc_2023_105826
crossref_primary_10_1016_j_ejca_2021_07_012
crossref_primary_10_3390_bioengineering10080972
crossref_primary_10_3390_diagnostics11081398
crossref_primary_10_1016_j_ijmedinf_2023_105142
crossref_primary_10_1007_s00500_020_04933_5
crossref_primary_10_1155_2022_8007713
crossref_primary_10_5858_arpa_2019_0004_OA
crossref_primary_10_1093_ecco_jcc_jjab169
crossref_primary_10_3748_wjg_v27_i27_4395
crossref_primary_10_1038_s41598_021_86540_4
crossref_primary_10_1109_ACCESS_2024_3483432
crossref_primary_10_1001_jamanetworkopen_2020_3398
crossref_primary_10_3390_jcm10225326
crossref_primary_10_1016_j_ajpath_2022_12_003
crossref_primary_10_1016_S2352_3026_20_30121_6
crossref_primary_10_3748_wjg_v27_i21_2758
crossref_primary_10_1038_s41598_022_11009_x
crossref_primary_10_1016_j_anndiagpath_2018_05_006
crossref_primary_10_1093_bioinformatics_btaa056
crossref_primary_10_1177_10935266241299073
crossref_primary_10_1038_s41598_019_47281_7
crossref_primary_10_1016_j_cmpb_2023_107441
crossref_primary_10_3390_curroncol29030146
crossref_primary_10_1038_s41598_021_01929_5
crossref_primary_10_1111_his_15100
crossref_primary_10_2352_J_ImagingSci_Technol_2021_65_3_030401
crossref_primary_10_4103_jpi_jpi_31_18
crossref_primary_10_1155_2021_6683931
crossref_primary_10_1371_journal_pcbi_1006269
crossref_primary_10_35712_aig_v2_i6_141
crossref_primary_10_3748_wjg_v26_i34_5090
crossref_primary_10_1016_j_cmpb_2019_06_022
crossref_primary_10_1038_s41374_020_00514_0
crossref_primary_10_1016_j_jpi_2023_100320
crossref_primary_10_1016_j_imed_2024_05_003
crossref_primary_10_1016_j_array_2024_100370
crossref_primary_10_1038_s41598_021_99940_3
crossref_primary_10_1109_JBHI_2024_3407878
crossref_primary_10_2174_1386207322666190530102245
crossref_primary_10_3748_wjg_v27_i20_2545
crossref_primary_10_3390_electronics8030256
crossref_primary_10_3390_diagnostics12030768
crossref_primary_10_1016_j_gpb_2022_12_007
crossref_primary_10_1109_ACCESS_2023_3246730
crossref_primary_10_35712_aig_v3_i5_142
crossref_primary_10_3389_fnut_2022_869263
crossref_primary_10_1001_jamanetworkopen_2019_14645
crossref_primary_10_1016_j_ctrv_2022_102498
crossref_primary_10_32628_IJSRST24116172
crossref_primary_10_1016_j_modpat_2024_100636
crossref_primary_10_32628_IJSRST24116171
crossref_primary_10_1007_s10462_021_10121_0
crossref_primary_10_1109_TNNLS_2021_3054306
crossref_primary_10_1016_j_jpi_2022_100138
crossref_primary_10_3390_cancers13215368
crossref_primary_10_1007_s11760_024_03701_4
crossref_primary_10_1016_j_canlet_2023_216238
crossref_primary_10_1007_s00428_021_03241_z
crossref_primary_10_3390_cancers14051349
crossref_primary_10_3389_fmed_2024_1447057
crossref_primary_10_1109_TNNLS_2017_2766168
crossref_primary_10_5858_arpa_2020_0520_OA
crossref_primary_10_1016_j_compbiomed_2023_107034
crossref_primary_10_1155_2022_9541115
crossref_primary_10_1109_ACCESS_2023_3319068
crossref_primary_10_1038_s41379_020_00700_x
crossref_primary_10_3390_cancers12071884
Cites_doi 10.4103/2153-3539.186902
10.1088/0031-9155/48/13/401
10.1007/s11263-015-0816-y
10.1016/j.gie.2014.04.064
10.1093/biomet/26.4.404
10.1109/TMI.2016.2525803
10.1016/j.media.2014.11.010
10.1053/j.gastro.2009.12.066
10.1016/j.media.2016.06.037
10.1109/RBME.2009.2034865
10.1002/cncr.21431
10.1002/rob.20276
10.1111/j.1365-2559.2009.03329.x
10.4103/2153-3539.112694
10.5858/2006-130-630-ERISP
10.1002/jbio.201200132
10.1053/j.gastro.2012.06.001
10.1016/j.humpath.2010.06.002
10.1007/s10620-014-3449-z
10.1016/S1092-9134(98)80036-1
10.1109/RBME.2013.2295804
10.1007/s11265-008-0201-y
10.1097/DCR.0b013e318228f8a9
10.1038/nature14539
10.1002/jemt.10182
10.1309/AGB1MJ9H5N43MEGX
10.1109/TMI.2015.2433900
ContentType Journal Article
Copyright 2017 The Authors
Copyright Medknow Publications & Media Pvt. Ltd. 2017
Copyright: © 2017 Journal of Pathology Informatics 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright Medknow Publications & Media Pvt. Ltd. 2017
– notice: Copyright: © 2017 Journal of Pathology Informatics 2017
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
M0S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.4103/jpi.jpi_34_17
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2153-3539
EndPage 30
ExternalDocumentID oai_doaj_org_article_fd5c4ad7a1344226b047c2a7a7bd5216
10.4103/jpi.jpi_34_17
PMC5545773
28828201
10_4103_jpi_jpi_34_17
10.4103/jpi.jpi_34_17_30_Deep learning
S2153353922004345
Genre Journal Article
GroupedDBID .1-
.FO
0R~
5VS
7X7
8FE
8FG
8FI
8FJ
AAKDD
AALRI
AAXUO
AAYWO
ABDBF
ABUWG
ACGFS
ACUHS
ACVFH
ADBBV
ADCNI
ADRAZ
ADVLN
AEGXH
AEUPX
AEXQZ
AFJKZ
AFKRA
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
ARAPS
BAWUL
BCNDV
BENPR
BGLVJ
CCPQU
DIK
E3Z
EBS
EJD
EOJEC
ESX
F5P
FDB
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IL9
IPNFZ
ITC
K6V
K7-
KQ8
M41
M48
M~E
O5R
O5S
OBODZ
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RIG
RNS
ROL
RPM
TUS
UKHRP
Z5R
6I.
AAFTH
ABXLX
AFCTW
RMW
W3E
ALIPV
AAYXX
CITATION
PUEGO
AAHOK
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c616g-26dea3fadcf8aedea3111a1f5776b430ee034edeec1e35c69947a62965fb77303
IEDL.DBID M48
ISSN 2153-3539
2229-5089
IngestDate Tue Oct 14 19:08:46 EDT 2025
Sun Oct 26 03:09:57 EDT 2025
Tue Sep 30 16:15:48 EDT 2025
Thu Oct 02 05:11:35 EDT 2025
Tue Oct 07 06:47:35 EDT 2025
Wed Feb 19 02:00:53 EST 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Oct 01 01:53:50 EDT 2025
Tue Jun 17 22:45:54 EDT 2025
Fri Feb 23 02:40:33 EST 2024
Tue Oct 14 19:36:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords histopathological characterization
Colorectal polyps
deep learning
digital pathology
Language English
License This is an open access article under the CC BY-NC-ND license.
http://creativecommons.org/licenses/by-nc-sa/3.0
https://creativecommons.org/licenses/by-nc-sa/3.0
https://www.elsevier.com/tdm/userlicense/1.0
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c616g-26dea3fadcf8aedea3111a1f5776b430ee034edeec1e35c69947a62965fb77303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.4103/jpi.jpi_34_17
PMID 28828201
PQID 1942251264
PQPubID 2035654
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_fd5c4ad7a1344226b047c2a7a7bd5216
unpaywall_primary_10_4103_jpi_jpi_34_17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5545773
proquest_miscellaneous_1931245617
proquest_journals_1942251264
pubmed_primary_28828201
crossref_citationtrail_10_4103_jpi_jpi_34_17
crossref_primary_10_4103_jpi_jpi_34_17
wolterskluwer_medknow_10_4103_jpi_jpi_34_17_30_Deep_learning
elsevier_sciencedirect_doi_10_4103_jpi_jpi_34_17
elsevier_clinicalkey_doi_10_4103_jpi_jpi_34_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170101
  day: 01
PublicationDecade 2010
PublicationPlace India
PublicationPlace_xml – name: India
– name: Mumbai
PublicationTitle Journal of pathology informatics
PublicationTitleAlternate J Pathol Inform
PublicationYear 2017
Publisher Elsevier Inc
Wolters Kluwer India Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Medknow Publications & Media Pvt Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Wolters Kluwer India Pvt. Ltd
– name: Medknow Publications & Media Pvt. Ltd
– name: Medknow Publications & Media Pvt Ltd
– name: Elsevier
References Malon, Cosatto (bib34) 2013; 4
Naik, Doyle, Feldman, Tomaszewski, Madabhushi (bib14) 2007
Sirinukunwattana, Ahmed Raza, Yee-Wah, Snead, Cree, Rajpoot (bib30) 2016; 35
Abdeljawad, Vemulapalli, Kahi, Cummings, Snover, Rex (bib11) 2015; 81
Rajpoot, Rajpoot (bib22) 2004
Raab, Grzybicki, Janosky, Zarbo, Meier, Jensen (bib16) 2005; 104
Cruz-Roa, Ovalle, Madabhushi, Osorio (bib32) 2013
Wang, Cruz-Roa, Basavanhally, Gilmore, Shih, Feldman (bib35) 2014
He, Zhang, Ren, Sun (bib26) 2015
Society, American Cancer Society (bib48) 2016
Lieberman, Rex, Winawer, Giardiello, Johnson, Levin (bib2) 2012; 143
Sims, Bennett, Murray (bib24) 2003; 48
Le Cun, Denker, Henderson, Howard, Hubbard, Jackel (bib37) 1990
Vu, Lopez, Bennett, Burke (bib4) 2011; 54
Nakhleh (bib15) 2006; 130
Ertosun, Rubin (bib33) 2015; Vol. 2015
Simonyan, Vedaldi, Zisserman (bib42) 2013
Xie, Kong, Xing, Liu, Su, Yang (bib29) 2015
Krizhevsky, Sutskever, Hinton (bib38) 2012
Snover (bib10) 2011; 42
Kallenbach-Thieltges, Großerüschkamp, Mosig, Diem, Tannapfel, Gerwert (bib23) 2013; 6
Simonyan, Zisserman (bib40) 2014
Farabet, Couprie, Najman, LeCun (bib27) 2012
Bengio (bib39) 2009; Vol. 2
He, Zhang, Ren, Sun (bib43) 2016
Russakovsky, Deng, Su, Krause, Satheesh, Ma (bib44) 2015; 115
Janowczyk, Madabhushi (bib31) 2016; 7
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib41) 2015
Aptoula, Courty, Lefevre (bib7) 2013
Clopper, Pearson (bib47) 1934; 26
Biscotti, Dawson, Dziura, Galup, Darragh, Rahemtulla (bib5) 2005; 123
Hadsell, Sermanet, Ben, Erkan, Scoffier, Kavukcuoglu (bib28) 2009; 26
Powers (bib46) 2011; 2
Doyle, Hwang, Shah, Madabhushi, Feldman, Tomaszeweski (bib21) 2007
Irshad, Veillard, Roux, Racoceanu (bib8) 2014; 7
Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib12) 2009; 2
Sirinukunwattana, Snead, Rajpoot (bib36) 2015; 34
Malkin (bib17) 1998; 2
Gil, Wu, Wang (bib18) 2002; 59
Sertel, Kong, Catalyurek, Lozanski, Saltz, Gurcan (bib20) 2009; 55
Lin, Maire, Belongie, Hays, Perona, Ramanan (bib45) 2014
Wong, Hunt, Novelli, Shepherd, Warren (bib1) 2009; 55
Veta, van Diest, Willems, Wang, Madabhushi, Cruz-Roa (bib9) 2015; 20
Leggett, Whitehall (bib3) 2010; 138
Kahi (bib6) 2015; 60
Madabhushi, Lee (bib13) 2016; 33
Boucheron (bib19) 2008
LeCun, Bengio, Hinton (bib25) 2015; 521
Szegedy (10.4103/jpi.jpi_34_17_bib41) 2015
Leggett (10.4103/jpi.jpi_34_17_bib3) 2010; 138
Sertel (10.4103/jpi.jpi_34_17_bib20) 2009; 55
Naik (10.4103/jpi.jpi_34_17_bib14) 2007
LeCun (10.4103/jpi.jpi_34_17_bib25) 2015; 521
Malon (10.4103/jpi.jpi_34_17_bib34) 2013; 4
Le Cun (10.4103/jpi.jpi_34_17_bib37) 1990
Gurcan (10.4103/jpi.jpi_34_17_bib12) 2009; 2
He (10.4103/jpi.jpi_34_17_bib43) 2016
Rajpoot (10.4103/jpi.jpi_34_17_bib22) 2004
Hadsell (10.4103/jpi.jpi_34_17_bib28) 2009; 26
Lin (10.4103/jpi.jpi_34_17_bib45) 2014
Nakhleh (10.4103/jpi.jpi_34_17_bib15) 2006; 130
Wang (10.4103/jpi.jpi_34_17_bib35) 2014
Simonyan (10.4103/jpi.jpi_34_17_bib42)
Vu (10.4103/jpi.jpi_34_17_bib4) 2011; 54
Snover (10.4103/jpi.jpi_34_17_bib10) 2011; 42
Russakovsky (10.4103/jpi.jpi_34_17_bib44) 2015; 115
Gil (10.4103/jpi.jpi_34_17_bib18) 2002; 59
Doyle (10.4103/jpi.jpi_34_17_bib21) 2007
Wong (10.4103/jpi.jpi_34_17_bib1) 2009; 55
Malkin (10.4103/jpi.jpi_34_17_bib17) 1998; 2
Kahi (10.4103/jpi.jpi_34_17_bib6) 2015; 60
Sims (10.4103/jpi.jpi_34_17_bib24) 2003; 48
Cruz-Roa (10.4103/jpi.jpi_34_17_bib32) 2013
Madabhushi (10.4103/jpi.jpi_34_17_bib13) 2016; 33
Powers (10.4103/jpi.jpi_34_17_bib46) 2011; 2
He (10.4103/jpi.jpi_34_17_bib26) 2015
Society (10.4103/jpi.jpi_34_17_bib48) 2016
Ertosun (10.4103/jpi.jpi_34_17_bib33) 2015; Vol. 2015
Sirinukunwattana (10.4103/jpi.jpi_34_17_bib36) 2015; 34
Krizhevsky (10.4103/jpi.jpi_34_17_bib38) 2012
Xie (10.4103/jpi.jpi_34_17_bib29) 2015
Janowczyk (10.4103/jpi.jpi_34_17_bib31) 2016; 7
Abdeljawad (10.4103/jpi.jpi_34_17_bib11) 2015; 81
Clopper (10.4103/jpi.jpi_34_17_bib47) 1934; 26
Raab (10.4103/jpi.jpi_34_17_bib16) 2005; 104
Farabet (10.4103/jpi.jpi_34_17_bib27)
Irshad (10.4103/jpi.jpi_34_17_bib8) 2014; 7
Sirinukunwattana (10.4103/jpi.jpi_34_17_bib30) 2016; 35
Boucheron (10.4103/jpi.jpi_34_17_bib19) 2008
Kallenbach-Thieltges (10.4103/jpi.jpi_34_17_bib23) 2013; 6
Simonyan (10.4103/jpi.jpi_34_17_bib40) 2014
Lieberman (10.4103/jpi.jpi_34_17_bib2) 2012; 143
Aptoula (10.4103/jpi.jpi_34_17_bib7) 2013
Biscotti (10.4103/jpi.jpi_34_17_bib5) 2005; 123
Veta (10.4103/jpi.jpi_34_17_bib9) 2015; 20
Bengio (10.4103/jpi.jpi_34_17_bib39) 2009; Vol. 2
19614768 - Histopathology. 2009 Jul;55(1):63-6
23225612 - J Biophotonics. 2013 Jan;6(1):88-100
24998465 - Gastrointest Endosc. 2015 Mar;81(3):517-24
22763141 - Gastroenterology. 2012 Sep;143(3):844-857
27563488 - J Pathol Inform. 2016 Jul 26;7:29
15842055 - Am J Clin Pathol. 2005 Feb;123(2):281-7
26863654 - IEEE Trans Med Imaging. 2016 May;35(5):1196-1206
20420948 - Gastroenterology. 2010 Jun;138(6):2088-100
25993703 - IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78
12373721 - Microsc Res Tech. 2002 Oct 15;59(2):109-18
20869746 - Hum Pathol. 2011 Jan;42(1):1-10
12884936 - Phys Med Biol. 2003 Jul 7;48(13):N183-91
21904135 - Dis Colon Rectum. 2011 Oct;54(10):1216-23
16216029 - Cancer. 2005 Nov 15;104(10):2205-13
25547073 - Med Image Anal. 2015 Feb;20(1):237-48
24802905 - IEEE Rev Biomed Eng. 2014;7:97-114
20671804 - IEEE Rev Biomed Eng. 2009;2:147-71
26958289 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1899-908
25556584 - Dig Dis Sci. 2015 Mar;60(3):773-80
27423409 - Med Image Anal. 2016 Oct;33:170-175
23858384 - J Pathol Inform. 2013 May 30;4:9
9845724 - Ann Diagn Pathol. 1998 Feb;2(1):79-91
26017442 - Nature. 2015 May 28;521(7553):436-44
24579166 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10
16683877 - Arch Pathol Lab Med. 2006 May;130(5):630-2
References_xml – start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib26
  article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib25
  article-title: Deep learning
  publication-title: Nature
– volume: 138
  start-page: 2088
  year: 2010
  end-page: 2100
  ident: bib3
  article-title: Role of the serrated pathway in colorectal cancer pathogenesis
  publication-title: Gastroenterology
– volume: 34
  start-page: 2366
  year: 2015
  end-page: 2378
  ident: bib36
  article-title: A stochastic polygons model for glandular structures in colon histology images
  publication-title: IEEE Trans Med Imaging
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib38
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: bib40
  article-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: bib46
  article-title: Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation
  publication-title: Int J Machine Learn Technol
– volume: 104
  start-page: 2205
  year: 2005
  end-page: 2213
  ident: bib16
  article-title: Clinical impact and frequency of anatomic pathology errors in cancer diagnoses
  publication-title: Cancer
– year: 2012
  ident: bib27
  article-title: Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers
– year: 1990
  ident: bib37
  article-title: Handwritten Digit Recognition with a Backpropagation Network
  publication-title: Advances in Neural Information Processing Systems
– start-page: 403
  year: 2013
  end-page: 410
  ident: bib32
  article-title: A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-cell Carcinoma Cancer Detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib43
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib44
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  ident: bib13
  article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities
  publication-title: Med Image Anal
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib45
  article-title: Microsoft coco: Common objects in context. InEuropean Conference on Computer Vision
– volume: 55
  start-page: 169
  year: 2009
  end-page: 183
  ident: bib20
  article-title: Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading
  publication-title: J Signal Process Syst
– volume: 4
  start-page: 9
  year: 2013
  ident: bib34
  article-title: Classification of mitotic figures with convolutional neural networks and seeded blob features
  publication-title: J Pathol Inform
– start-page: 1
  year: 2013
  end-page: 4
  ident: bib7
  article-title: Mitosis Detection in Breast Cancer Histological Images with Mathematical Morphology
  publication-title: 2013,21
– volume: 54
  start-page: 1216
  year: 2011
  end-page: 1223
  ident: bib4
  article-title: Individuals with sessile serrated polyps express an aggressive colorectal phenotype
  publication-title: Dis Colon Rectum
– volume: Vol. 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib39
  article-title: Foundations and trends in machine learning. Learning Deep Architectures for AI
– volume: 35
  start-page: 1196
  year: 2016
  end-page: 1206
  ident: bib30
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: IEEE Trans Med Imaging
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib14
  article-title: Gland Segmentation and Computerized Gleason Grading of Prostate Histology by Integrating Low-, High-level and Domain Specific Information
  publication-title: MIAAB Workshop. Citeseer
– volume: 81
  start-page: 517
  year: 2015
  end-page: 524
  ident: bib11
  article-title: Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist
  publication-title: Gastrointest Endosc
– volume: 2
  start-page: 147
  year: 2009
  end-page: 171
  ident: bib12
  article-title: Histopathological image analysis: A review
  publication-title: IEEE Rev Biomed Eng
– volume: 6
  start-page: 88
  year: 2013
  end-page: 100
  ident: bib23
  article-title: Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections
  publication-title: J Biophotonics
– start-page: 1284
  year: 2007
  end-page: 1287
  ident: bib21
  article-title: Automated Grading of Prostate Cancer Using Architectural and Textural Image Features
  publication-title: 2007 4
– volume: 7
  start-page: 97
  year: 2014
  end-page: 114
  ident: bib8
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential
  publication-title: IEEE Rev Biomed Eng
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib41
  article-title: Going Deeper with Convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2013
  ident: bib42
  article-title: Deep inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
– year: 2008
  ident: bib19
  article-title: Object-and spatial-level quantitative analysis of multispectral histopathology images for detection and characterization of cancer
– year: 2014
  ident: bib35
  article-title: Cascaded Ensemble of Convolutional Neural Networks and Handcrafted Features for Mitosis Detection
  publication-title: SPIE Medical Imaging. International Society for Optics and Photonics
– volume: 123
  start-page: 281
  year: 2005
  end-page: 287
  ident: bib5
  article-title: Assisted primary screening using the automated ThinPrep Imaging System
  publication-title: Am J Clin Pathol
– volume: Vol. 2015
  year: 2015
  ident: bib33
  article-title: Automated Grading of Gliomas Using Deep Learning in Digital Pathology Images: A Modular Approach with Ensemble of Convolutional Neural Networks
  publication-title: AMIA Annual Symposium Proceedings
– volume: 42
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib10
  article-title: Update on the serrated pathway to colorectal carcinoma
  publication-title: Hum Pathol
– volume: 7
  start-page: 29
  year: 2016
  ident: bib31
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: J Pathol Inform
– volume: 48
  start-page: N183
  year: 2003
  end-page: N191
  ident: bib24
  article-title: Image analysis can be used to detect spatial changes in the histopathology of pancreatic tumours
  publication-title: Phys Med Biol
– volume: 20
  start-page: 237
  year: 2015
  end-page: 248
  ident: bib9
  article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images
  publication-title: Med Image Anal
– year: 2016
  ident: bib48
  article-title: Cancer Facts and Figures 2016
– volume: 130
  start-page: 630
  year: 2006
  end-page: 632
  ident: bib15
  article-title: Error reduction in surgical pathology
  publication-title: Arch Pathol Lab Med
– volume: 55
  start-page: 63
  year: 2009
  end-page: 66
  ident: bib1
  article-title: Observer agreement in the diagnosis of serrated polyps of the large bowel
  publication-title: Histopathology
– start-page: 829
  year: 2004
  end-page: 837
  ident: bib22
  article-title: SVM Optimization for Hyperspectral Colon Tissue Cell Classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 374
  year: 2015
  end-page: 382
  ident: bib29
  article-title: Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 2
  start-page: 79
  year: 1998
  end-page: 91
  ident: bib17
  article-title: History of pathology: Comparison of the use of the microscope in pathology in Germany and the United States during the nineteenth century
  publication-title: Ann Diagn Pathol
– volume: 26
  start-page: 404
  year: 1934
  end-page: 413
  ident: bib47
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
– volume: 59
  start-page: 109
  year: 2002
  end-page: 118
  ident: bib18
  article-title: Image analysis and morphometry in the diagnosis of breast cancer
  publication-title: Microsc Res Tech
– volume: 26
  start-page: 120
  year: 2009
  end-page: 144
  ident: bib28
  article-title: Learning long-range vision for autonomous off-road driving
  publication-title: J Field Robot
– volume: 143
  start-page: 844
  year: 2012
  end-page: 857
  ident: bib2
  article-title: Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US MultiSociety Task Force on Colorectal Cancer
  publication-title: Gastroenterology
– volume: 60
  start-page: 773
  year: 2015
  end-page: 780
  ident: bib6
  article-title: How does the serrated polyp pathway alter CRC screening and surveillance?
  publication-title: Dig Dis Sci
– ident: 10.4103/jpi.jpi_34_17_bib27
– start-page: 403
  year: 2013
  ident: 10.4103/jpi.jpi_34_17_bib32
  article-title: A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-cell Carcinoma Cancer Detection
– volume: 7
  start-page: 29
  year: 2016
  ident: 10.4103/jpi.jpi_34_17_bib31
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.186902
– ident: 10.4103/jpi.jpi_34_17_bib42
– start-page: 740
  year: 2014
  ident: 10.4103/jpi.jpi_34_17_bib45
– volume: 48
  start-page: N183
  year: 2003
  ident: 10.4103/jpi.jpi_34_17_bib24
  article-title: Image analysis can be used to detect spatial changes in the histopathology of pancreatic tumours
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/48/13/401
– year: 2014
  ident: 10.4103/jpi.jpi_34_17_bib35
  article-title: Cascaded Ensemble of Convolutional Neural Networks and Handcrafted Features for Mitosis Detection
– year: 1990
  ident: 10.4103/jpi.jpi_34_17_bib37
  article-title: Handwritten Digit Recognition with a Backpropagation Network
– start-page: 1284
  year: 2007
  ident: 10.4103/jpi.jpi_34_17_bib21
  article-title: Automated Grading of Prostate Cancer Using Architectural and Textural Image Features
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib44
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– year: 2016
  ident: 10.4103/jpi.jpi_34_17_bib48
– volume: 81
  start-page: 517
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib11
  article-title: Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2014.04.064
– year: 2014
  ident: 10.4103/jpi.jpi_34_17_bib40
– volume: 26
  start-page: 404
  year: 1934
  ident: 10.4103/jpi.jpi_34_17_bib47
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 35
  start-page: 1196
  year: 2016
  ident: 10.4103/jpi.jpi_34_17_bib30
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: Vol. 2015
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib33
  article-title: Automated Grading of Gliomas Using Deep Learning in Digital Pathology Images: A Modular Approach with Ensemble of Convolutional Neural Networks
– volume: 20
  start-page: 237
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib9
  article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.11.010
– volume: 138
  start-page: 2088
  year: 2010
  ident: 10.4103/jpi.jpi_34_17_bib3
  article-title: Role of the serrated pathway in colorectal cancer pathogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.12.066
– volume: 33
  start-page: 170
  year: 2016
  ident: 10.4103/jpi.jpi_34_17_bib13
  article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.037
– start-page: 1097
  year: 2012
  ident: 10.4103/jpi.jpi_34_17_bib38
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
– start-page: 770
  year: 2016
  ident: 10.4103/jpi.jpi_34_17_bib43
  article-title: Deep residual learning for image recognition
– start-page: 1
  year: 2007
  ident: 10.4103/jpi.jpi_34_17_bib14
  article-title: Gland Segmentation and Computerized Gleason Grading of Prostate Histology by Integrating Low-, High-level and Domain Specific Information
– volume: 2
  start-page: 147
  year: 2009
  ident: 10.4103/jpi.jpi_34_17_bib12
  article-title: Histopathological image analysis: A review
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2009.2034865
– volume: 2
  start-page: 37
  year: 2011
  ident: 10.4103/jpi.jpi_34_17_bib46
  article-title: Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation
  publication-title: Int J Machine Learn Technol
– volume: Vol. 2
  start-page: 1
  year: 2009
  ident: 10.4103/jpi.jpi_34_17_bib39
– volume: 104
  start-page: 2205
  year: 2005
  ident: 10.4103/jpi.jpi_34_17_bib16
  article-title: Clinical impact and frequency of anatomic pathology errors in cancer diagnoses
  publication-title: Cancer
  doi: 10.1002/cncr.21431
– volume: 26
  start-page: 120
  year: 2009
  ident: 10.4103/jpi.jpi_34_17_bib28
  article-title: Learning long-range vision for autonomous off-road driving
  publication-title: J Field Robot
  doi: 10.1002/rob.20276
– volume: 55
  start-page: 63
  year: 2009
  ident: 10.4103/jpi.jpi_34_17_bib1
  article-title: Observer agreement in the diagnosis of serrated polyps of the large bowel
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2009.03329.x
– volume: 4
  start-page: 9
  year: 2013
  ident: 10.4103/jpi.jpi_34_17_bib34
  article-title: Classification of mitotic figures with convolutional neural networks and seeded blob features
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.112694
– volume: 130
  start-page: 630
  year: 2006
  ident: 10.4103/jpi.jpi_34_17_bib15
  article-title: Error reduction in surgical pathology
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/2006-130-630-ERISP
– volume: 6
  start-page: 88
  year: 2013
  ident: 10.4103/jpi.jpi_34_17_bib23
  article-title: Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201200132
– year: 2008
  ident: 10.4103/jpi.jpi_34_17_bib19
– start-page: 374
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib29
  article-title: Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images
– volume: 143
  start-page: 844
  year: 2012
  ident: 10.4103/jpi.jpi_34_17_bib2
  article-title: Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US MultiSociety Task Force on Colorectal Cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.06.001
– start-page: 1
  year: 2013
  ident: 10.4103/jpi.jpi_34_17_bib7
  article-title: Mitosis Detection in Breast Cancer Histological Images with Mathematical Morphology
– volume: 42
  start-page: 1
  year: 2011
  ident: 10.4103/jpi.jpi_34_17_bib10
  article-title: Update on the serrated pathway to colorectal carcinoma
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2010.06.002
– volume: 60
  start-page: 773
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib6
  article-title: How does the serrated polyp pathway alter CRC screening and surveillance?
  publication-title: Dig Dis Sci
  doi: 10.1007/s10620-014-3449-z
– volume: 2
  start-page: 79
  year: 1998
  ident: 10.4103/jpi.jpi_34_17_bib17
  article-title: History of pathology: Comparison of the use of the microscope in pathology in Germany and the United States during the nineteenth century
  publication-title: Ann Diagn Pathol
  doi: 10.1016/S1092-9134(98)80036-1
– start-page: 829
  year: 2004
  ident: 10.4103/jpi.jpi_34_17_bib22
  article-title: SVM Optimization for Hyperspectral Colon Tissue Cell Classification
– volume: 7
  start-page: 97
  year: 2014
  ident: 10.4103/jpi.jpi_34_17_bib8
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2013.2295804
– start-page: 1
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib41
  article-title: Going Deeper with Convolutions
– volume: 55
  start-page: 169
  year: 2009
  ident: 10.4103/jpi.jpi_34_17_bib20
  article-title: Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-008-0201-y
– volume: 54
  start-page: 1216
  year: 2011
  ident: 10.4103/jpi.jpi_34_17_bib4
  article-title: Individuals with sessile serrated polyps express an aggressive colorectal phenotype
  publication-title: Dis Colon Rectum
  doi: 10.1097/DCR.0b013e318228f8a9
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib25
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 59
  start-page: 109
  year: 2002
  ident: 10.4103/jpi.jpi_34_17_bib18
  article-title: Image analysis and morphometry in the diagnosis of breast cancer
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.10182
– start-page: 1026
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib26
  article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
– volume: 123
  start-page: 281
  year: 2005
  ident: 10.4103/jpi.jpi_34_17_bib5
  article-title: Assisted primary screening using the automated ThinPrep Imaging System
  publication-title: Am J Clin Pathol
  doi: 10.1309/AGB1MJ9H5N43MEGX
– volume: 34
  start-page: 2366
  year: 2015
  ident: 10.4103/jpi.jpi_34_17_bib36
  article-title: A stochastic polygons model for glandular structures in colon histology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2433900
– reference: 16216029 - Cancer. 2005 Nov 15;104(10):2205-13
– reference: 20869746 - Hum Pathol. 2011 Jan;42(1):1-10
– reference: 20671804 - IEEE Rev Biomed Eng. 2009;2:147-71
– reference: 25547073 - Med Image Anal. 2015 Feb;20(1):237-48
– reference: 21904135 - Dis Colon Rectum. 2011 Oct;54(10):1216-23
– reference: 24998465 - Gastrointest Endosc. 2015 Mar;81(3):517-24
– reference: 12884936 - Phys Med Biol. 2003 Jul 7;48(13):N183-91
– reference: 23858384 - J Pathol Inform. 2013 May 30;4:9
– reference: 19614768 - Histopathology. 2009 Jul;55(1):63-6
– reference: 27423409 - Med Image Anal. 2016 Oct;33:170-175
– reference: 20420948 - Gastroenterology. 2010 Jun;138(6):2088-100
– reference: 15842055 - Am J Clin Pathol. 2005 Feb;123(2):281-7
– reference: 9845724 - Ann Diagn Pathol. 1998 Feb;2(1):79-91
– reference: 23225612 - J Biophotonics. 2013 Jan;6(1):88-100
– reference: 27563488 - J Pathol Inform. 2016 Jul 26;7:29
– reference: 16683877 - Arch Pathol Lab Med. 2006 May;130(5):630-2
– reference: 26958289 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1899-908
– reference: 24802905 - IEEE Rev Biomed Eng. 2014;7:97-114
– reference: 25993703 - IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
– reference: 12373721 - Microsc Res Tech. 2002 Oct 15;59(2):109-18
– reference: 22763141 - Gastroenterology. 2012 Sep;143(3):844-857
– reference: 24579166 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10
– reference: 26863654 - IEEE Trans Med Imaging. 2016 May;35(5):1196-1206
– reference: 25556584 - Dig Dis Sci. 2015 Mar;60(3):773-80
SSID ssj0000331108
Score 2.4832149
Snippet Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for...
Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
wolterskluwer
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Cancer
Classification
Colonoscopy
Colorectal cancer
Colorectal polyps
Computer science
Confidence intervals
Deep learning
digital pathology
Digitization
Garlic
Histology
histopathological characterization
Human performance
Image analysis
Image classification
Information processing
Laboratories
Machine learning
Medical screening
Medicine
Neural networks
Original
Pathology
Pattern recognition
Risk assessment
Statistical analysis
Surveillance
Test procedures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDwUJVeXZQEFBQnAhrRO_EokLr6oClROVerMc2ylLt0nU7WrVf8-M82CjUnrhsFLkTLwbz-fxN-vxDCGvPbMuFTZLKuVUwrliSW6VAFdFicpa5mgonXD0XR4e868n4mSt1BfGhHXpgbuB26-csNw4ZVLG8dRnSbmymVFGlQ6WnpBsm-bFmjMVbDBjGN-OleVgSidMsKJLsMlTyvZ_tbM9-GjGdShU9mdBCnn7J-vSdd55PXzy7rJuzdXKzOH6_qrBbe7FWYhyX1urDrbJVk8y4w_dyz0gd3z9kGwe9dvoj8i3z963cV8w4jQG3hpbZNEYNhQ0FTdVjOms0RxCR20zv2oXMbSvsJxuAtzU-Xh2DrZo8ZgcH3z58ekw6asqJFam8jTJpPOGVcbZKjcer8HcmbQSSsmSM-o9ZRzavU09E1YWBVdGZoUUVanAHrAnZKNuar9D4tJKo3LuRQWOVllSkwP5sEoC5bKi8DIi74ah1bZPOY6VL-YaXA_UhEYtjJqIyJtRvO1ybdwk-BH1NAphiuzQAMDRPXD0bcCJyN6gZT2cQgW7CR3NbvpWOj7Q05OOdvzrkd0BPrq3DQudFvBzgGdJHpFX422Y1bhVY2rfLFGGpbgljV087dA2vm0GThHytoioCQ4nwzG9U89-hszhwB1BzSwib0fE3jbS7yd41ufdIc2_S2tGNQJYDwB-9j8U9Zzcy5BLhf-9dsnG5cXSvwAmeFm-DJP-N_UqYCM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3_a9QwFA_zBiqIX-a36pQIor_YrW3S5AqKON0Yyg4RB_stpEl6nt7auttx7L_3vTbtLHPzh4OSpuk17-Xlk7yX9yHkpWPGxqlJwkJaGXIuWTg2MoWlikwLY5iNGuqEg4nYP-Sfj9KjNTLpzsJgWGVnExtDbSuDe-TbsNhOcC4W_H39O0TWKPSudhQa2lMr2HdNirFrZD3BzFgjsr6zO_n6rd91iRjDuHdknEuSLAR0krWJN3kcse2f9WwLfopx1RCYnU9UTT7_wXx1EY9eDKu8sSxrfbbSc7i-tarQ_b341US__zWH7d0ltz34pB9abblH1ly5Qe50xA7Uj_MNcv3Ae9zvky-fnKup55aYUoC41CDgxgijRqi0KihmvkbLCW3X1fysXlAoXyHzbggw1jo6OwaztXhADvd2v3_cDz0BQ2hELKZhIqzTrNDWFGPt8Boso46LVEqRcxY5FzEO5c7EjqVGZBmXWiSZSItcgulgD8morEr3mNDcCC3H3KUFrMnyPNJjwClGCkBnJs2cCMibrreV8dnJkSRjrmCVgsJRKJheOAF51Vev27Qcl1XcQdH1lTCbdlNQnUyVH5yqsKnh2kodM44ni_OIS5NoqWVuAd7An9vqBK-6A6tgYqGh2WVvjfoHPJJpEcpVj2x2GqW8GVmoc6UPyIv-NhgA9Oro0lVLrMNi9F5jE49aBey_NoH1E0K8gMiBag66Y3innP1okowDzAQxs4C87pX4fz39dqDi6rg9z_nv2opFChVYdQr85Orvf0puJgioms2vTTI6PVm6ZwAHT_Pnfoz_AcOrZHg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegkwAJ8TlGYKAgIXghJYm_GomXMagGaNMeqBhPluM4pVuXRLTVNP567hInWihjPESKnLMTn8_nn3PnO0JeWmqyiJs4yGUmA8YkDUZGctiqSJ4bQ7OwTp2wfyD2JuzzET9yTjR4FuaC_Z5FIX17XM2GcCnKVCSvkw3BAXIPyMbk4HDnOyaOgxkbUE6TJn7mep3eelOH5e8tO-uwct078uaqqPT5mZ7D_e2zEq3Yi5Paif3CUjS-S8ZtJxoPlJPhapkOza8_4jte2ct75I4Do_5OIz33yTVbPCA39p25_SH58sHaynchWKc-4Fu_TqKJ7kX1iPpl7u-C-kS1CQ0dlvPzauFD-TdMuxsAhs2s_-kUdNZik0zGH7_u7gUu-0JgRCSmQSwyq2muM5OPtMV7UIs6yrmUImU0tDakDMqtiSzlRiQJk1rEieB5KkFv0EdkUJSFfUz81AgtR8zyHDZkaRrqEYAUIwVAM8MTKzzyph0jZVxocsyQMVewRUEGKWROxyCPvOrIqyYmx2WE73HAOyIMpV0XAO-Vm5kqz7hhOpM6ogyPFachkybWUss0A2wDHzdsxUW1p1VBv0JDs8veGnYVHIxp4Mm_qmy3cqicDlmoKIHPATwmmEdedI9h9qNJRxe2XCENjdB0jU1sNWLb9TaGzRPiO4_InkD32NF_Usx-1BHGAWPCMFOPvO5E_ypOv-tNDHXaHOb8O7WioUIBVi4zyvTJf7_oKbkVI7Cqf4Jtk8Hy58o-A1i4TJ87pfAbcGVmpw
  priority: 102
  providerName: Unpaywall
Title Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2153353922004345
https://dx.doi.org/10.4103/jpi.jpi_34_17
http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=30;epage=30;aulast=Korbar;type=0
https://www.ncbi.nlm.nih.gov/pubmed/28828201
https://www.proquest.com/docview/1942251264
https://www.proquest.com/docview/1931245617
https://pubmed.ncbi.nlm.nih.gov/PMC5545773
https://doi.org/10.4103/jpi.jpi_34_17
https://doaj.org/article/fd5c4ad7a1344226b047c2a7a7bd5216
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals Online
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: AKRWK
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2153-3539
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M48
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbYJgESQryvMKogIfhCShI7diMhoW2sDFCrClHRfbIcx-kKXVLaVaP_njvnBaJuIPGhVeRcXNd3vnsc288R8txQnfihDtxUJMJlTFC3q0UIUxURplrTxLOpE_oDfjxiH8fh-DelUNmBy0undphParSYdX7-WL-FAQ_4tcN8j77-Np924CMpk77YIjsQpCLM4tAvkb51ypTihndMNRcEkQuwJCoYNzdrQH5gwJ0YGhvBynL6N2LWJibd3Fp5Y5XN1fpCzeD61kWOS-DL73YH_B9xrHeH3C4BqLNfWMxdcs1k98j1frnEfp98emfM3ClpVycOYFrHJs7ELUVWi06eOofgMtFVQkXDfLaeLx0o_4qpdl3ArYlxPpyBn1o-IKPe0ZfDY7fMuOBq7vOJG_DEKJqqRKddZfAaXKHy01AIHjPqGeNRBuVG-4aGmkcRE4oHEQ_TWICvoA_JdpZnZpc4seZKdJkJU5iExbGnugBMtOAAx3QYGd4ir6qulbqkI8esGDMJ0xJUikSF1EppkRe1-Lzg4bhK8AD1VAshfbYtyBcTWY5GmSahZioRyqcMjxLHHhM6UEKJOAE8A43rVFqW1QlV8KlQ0fSqX_XqB0roUkCSvz2yV5mPrMxe-hE0BzAYZy3yrL4NIx6XcVRm8hXKUB-Xq7GKR4W11f-2MtwWEQ07bHRH8042PbWs4oArQc20RV7WFvuvnn7TsGd5VhzgvFxaUk-iAcsyG8rk8X838Qm5GSC4si_C9sj2-WJlngI0PI_bZEuMBXx3e-_bZOfgaDD83LavWdrWHUDZaDDcP_kF4att6A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBgS4jJuhQFGAvZCtsR27EYCIWBMHV33tEl9M47jlEKXhHVV1T_Fb-Sc3EY1Np72UClyTpzG5_j4O76cj5BXjtskCC3zUpUoTwjFva5VIYQqKkyt5YlfUicMDmTvSHwdhsMV8rs5C4PbKhufWDrqJLc4R74NwTbDsViKD8UvD1mjcHW1odCozKLvFnMI2abv93ZAv68Z2_1y-Lnn1awCnpWBHHlMJs7w1CQ27RqH19DdTZCGSslYcN85nwsodzZwPLQyioQykkUyTGMF_YFDvdfIdZD0kTFBDVU7p-Nzjrvqkc-OscgD7BNVaT1F4PPtH8V4C36aC13So50NgyVbwNJoeB7tnt-0uTbLCrOYmwlc35rnuLg-_Vnurf9rhNy9S27X0JZ-rGzxHllx2Tq509BG0NqLrJMbg3o9_z7p7zhX0Jq5YkQBQFOLcB73L5UmQ_OUYl5t9MtQd5FPFsWUQvkceX09AMmJo-NjcIrTB-ToShTxkKxmeeYeExpbaVRXuDCFiC-OfdMFFGSVBOxnw8jJDnnbtLa2de5zpOCYaIiBUDkaFdMqp0PetOJFlfTjIsFPqLpWCHN1lwX5yUjXXV-nSWiFSZQJuMBzy7EvlGVGGRUnAJ7gz201itfNcVhw4FDR-KK3-u0DNU6q8M9lj2w0FqVrJzXVZ12qQ162t8G94JqRyVw-Qxke4No4VvGoMsD2axlEZwggO0QtmeZScyzfycbfyxTmAGJBzbxDNlsj_l9Lv1sycX1cnRb9t7TmvkYD1o0BP7n8-1-Qtd7hYF_v7x30n5KbDKFbOc22QVZPT2buGQDP0_h52dsp-XbV7uUP9HCb7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegkwAJ8TlGYKAgIXghJYm_GomXMagGaNMeqBhPluM4pVuXRLTVNP567hInWihjPESKnLMTn8_nn3PnO0JeWmqyiJs4yGUmA8YkDUZGctiqSJ4bQ7OwTp2wfyD2JuzzET9yTjR4FuaC_Z5FIX17XM2GcCnKVCSvkw3BAXIPyMbk4HDnOyaOgxkbUE6TJn7mep3eelOH5e8tO-uwct078uaqqPT5mZ7D_e2zEq3Yi5Paif3CUjS-S8ZtJxoPlJPhapkOza8_4jte2ct75I4Do_5OIz33yTVbPCA39p25_SH58sHaynchWKc-4Fu_TqKJ7kX1iPpl7u-C-kS1CQ0dlvPzauFD-TdMuxsAhs2s_-kUdNZik0zGH7_u7gUu-0JgRCSmQSwyq2muM5OPtMV7UIs6yrmUImU0tDakDMqtiSzlRiQJk1rEieB5KkFv0EdkUJSFfUz81AgtR8zyHDZkaRrqEYAUIwVAM8MTKzzyph0jZVxocsyQMVewRUEGKWROxyCPvOrIqyYmx2WE73HAOyIMpV0XAO-Vm5kqz7hhOpM6ogyPFachkybWUss0A2wDHzdsxUW1p1VBv0JDs8veGnYVHIxp4Mm_qmy3cqicDlmoKIHPATwmmEdedI9h9qNJRxe2XCENjdB0jU1sNWLb9TaGzRPiO4_InkD32NF_Usx-1BHGAWPCMFOPvO5E_ypOv-tNDHXaHOb8O7WioUIBVi4zyvTJf7_oKbkVI7Cqf4Jtk8Hy58o-A1i4TJ87pfAbcGVmpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Classification+of+Colorectal+Polyps+on+Whole-slide+Images&rft.jtitle=Journal+of+pathology+informatics&rft.au=Korbar%2C+Bruno&rft.au=Olofson%2C+Andrea+M.&rft.au=Miraflor%2C+Allen+P.&rft.au=Nicka%2C+Catherine+M.&rft.date=2017-01-01&rft.pub=Medknow+Publications+%26+Media+Pvt+Ltd&rft.issn=2229-5089&rft.eissn=2153-3539&rft.volume=8&rft_id=info:doi/10.4103%2Fjpi.jpi_34_17&rft_id=info%3Apmid%2F28828201&rft.externalDocID=PMC5545773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-3539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-3539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-3539&client=summon