Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We...
Saved in:
| Published in | Journal of pathology informatics Vol. 8; no. 1; p. 30 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
India
Elsevier Inc
01.01.2017
Wolters Kluwer India Pvt. Ltd Medknow Publications & Media Pvt. Ltd Medknow Publications & Media Pvt Ltd Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2153-3539 2229-5089 2153-3539 |
| DOI | 10.4103/jpi.jpi_34_17 |
Cover
| Abstract | Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization ofcolorectal polyps and in subsequent risk assessment and follow-up recommendations. |
|---|---|
| AbstractList | Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability.
We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis.
Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks.
Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards.
We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals.
Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%).
Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations. Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability.CONTEXTHistopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability.We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis.AIMSWe built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis.Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks.SETTING AND DESIGNOur method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks.Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards.SUBJECTS AND METHODSOur method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards.We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals.STATISTICAL ANALYSISWe evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals.Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%).RESULTSOur evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%).Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.CONCLUSIONSOur method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations. Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization ofcolorectal polyps and in subsequent risk assessment and follow-up recommendations. Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations. |
| ArticleNumber | 30 |
| Author | Suriawinata, Arief A. Torresani, Lorenzo Hassanpour, Saeed Nicka, Catherine M. Korbar, Bruno Olofson, Andrea M. Miraflor, Allen P Suriawinata, Matthew A. |
| AuthorAffiliation | 1 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA 3 Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA 4 Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA 2 Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA |
| AuthorAffiliation_xml | – name: 3 Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA – name: 2 Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA – name: 4 Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA – name: 1 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA |
| Author_xml | – sequence: 1 givenname: Bruno surname: Korbar fullname: Korbar, Bruno organization: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 2 givenname: Andrea M. surname: Olofson fullname: Olofson, Andrea M. organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 3 givenname: Allen P surname: Miraflor fullname: Miraflor, Allen P organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 4 givenname: Catherine M. surname: Nicka fullname: Nicka, Catherine M. organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 5 givenname: Matthew A. surname: Suriawinata fullname: Suriawinata, Matthew A. organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 6 givenname: Lorenzo surname: Torresani fullname: Torresani, Lorenzo organization: Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA – sequence: 7 givenname: Arief A. surname: Suriawinata fullname: Suriawinata, Arief A. organization: Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 – sequence: 8 givenname: Saeed surname: Hassanpour fullname: Hassanpour, Saeed email: saeed.hassanpour@dartmouth.edu organization: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28828201$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk2P0zAQjdAidln2yBVF4sIlxZ9Je0FCXT4qKsEBxNGaOpOuu64d7GSr_nvcplS7FQuRoliT955n3rzn2ZnzDrPsJSUjQQl_u2rNKL2KC0WrJ9kFo5IXXPLJ2b3zeXYV44qkh3NKyfhZds7GYzZmhF5kX64R23yOEJxxy7zxIZ9aiNE0RkNnvMt9k0-99QF1Bzb_5u22jXmq_7zxFotoTY35bA1LjC-ypw3YiFeH72X24-OH79PPxfzrp9n0_bzQJS2XBStrBN5ArZsx4O5MKQXayKoqF4ITRMJFqqOmyKUuJxNRQckmpWwWVcUJv8xmg27tYaXaYNYQtsqDUfuCD0sFoTPaompqqQXUFVAuBGPlgohKM6igWtSS0TJpjQat3rWw3YC1R0FK1M5ktTP4aHIivBsIbb9YY63RdQHsgy4e_nHmRi39nZJSpAl5EnhzEAj-V4-xU2sTNVoLDn0fFZ1wyoQs93e9PoGufB9c8jah0jiSslIk1Kv7HR1b-bPkBOADQAcfY8BGadPtl5saNPbRQYsT1v-MmQ74jbcdhnhr-w0GlTq6dX7zd5LiRO0CqOwhgEmlGlQwBejOJIGoDTqNtdklMG3YPHq_PGFqa1xKsb3F7T94vwFF7guK |
| CitedBy_id | crossref_primary_10_1038_s41467_024_49153_9 crossref_primary_10_21833_ijaas_2023_12_004 crossref_primary_10_1186_s12885_022_10488_5 crossref_primary_10_1080_10408363_2018_1561640 crossref_primary_10_1016_j_compbiomed_2024_108267 crossref_primary_10_32604_cmes_2023_028018 crossref_primary_10_1038_s44222_023_00096_8 crossref_primary_10_3748_wjg_v27_i16_1664 crossref_primary_10_3390_cancers14051159 crossref_primary_10_1117_1_JMI_7_1_012706 crossref_primary_10_1158_2159_8290_CD_21_0090 crossref_primary_10_1038_s41598_021_81352_y crossref_primary_10_1038_s41416_020_01122_x crossref_primary_10_1177_15330338211027901 crossref_primary_10_1002_cncy_22099 crossref_primary_10_25259_IJMS_98_2023 crossref_primary_10_3748_wjg_v27_i21_2818 crossref_primary_10_1007_s10462_021_10058_4 crossref_primary_10_1038_s41598_019_40041_7 crossref_primary_10_1007_s00432_022_04161_4 crossref_primary_10_3389_fonc_2023_1065402 crossref_primary_10_1016_j_bbcan_2020_188452 crossref_primary_10_3390_cancers12020507 crossref_primary_10_3390_jpm10040141 crossref_primary_10_1049_cit2_12231 crossref_primary_10_1038_s41598_020_58467_9 crossref_primary_10_3389_frai_2023_1227091 crossref_primary_10_4103_jpi_jpi_87_18 crossref_primary_10_1007_s11760_023_02507_0 crossref_primary_10_1136_gutjnl_2023_329512 crossref_primary_10_1038_s41598_021_87748_0 crossref_primary_10_1038_s41746_018_0057_x crossref_primary_10_1002_path_6027 crossref_primary_10_1038_s41573_019_0024_5 crossref_primary_10_4103_jpi_jpi_49_19 crossref_primary_10_1088_1741_2552_aceca3 crossref_primary_10_1111_nan_12710 crossref_primary_10_1038_s41598_018_21758_3 crossref_primary_10_1109_ACCESS_2020_2996770 crossref_primary_10_1038_s41598_020_66333_x crossref_primary_10_1088_1742_6596_1621_1_012055 crossref_primary_10_3390_cells10040787 crossref_primary_10_1158_2159_8290_CD_23_1199 crossref_primary_10_3389_fphar_2020_01177 crossref_primary_10_1038_s41598_023_35431_x crossref_primary_10_3390_cancers14194744 crossref_primary_10_1111_neup_12880 crossref_primary_10_1038_s41392_024_01953_7 crossref_primary_10_2147_IJGM_S268093 crossref_primary_10_1186_s40880_018_0325_9 crossref_primary_10_5217_ir_2023_00020 crossref_primary_10_1063_5_0133027 crossref_primary_10_3390_info12060245 crossref_primary_10_1002_jbmr_4879 crossref_primary_10_1109_ACCESS_2021_3061477 crossref_primary_10_1063_5_0172146 crossref_primary_10_1136_gutjnl_2020_322880 crossref_primary_10_1093_jjco_hyae066 crossref_primary_10_1007_s10489_022_03689_9 crossref_primary_10_1371_journal_pone_0275378 crossref_primary_10_1177_00037028221076170 crossref_primary_10_1080_08839514_2021_2018182 crossref_primary_10_1016_j_ajpath_2021_08_013 crossref_primary_10_1016_j_cag_2019_08_008 crossref_primary_10_1001_jamanetworkopen_2021_35271 crossref_primary_10_1002_cac2_12012 crossref_primary_10_1109_ACCESS_2020_3032164 crossref_primary_10_3389_frobt_2019_00024 crossref_primary_10_3390_cancers14153707 crossref_primary_10_1016_j_cmpb_2024_108112 crossref_primary_10_3390_diagnostics11112074 crossref_primary_10_3389_fmed_2022_1070072 crossref_primary_10_1016_j_jpi_2023_100357 crossref_primary_10_5009_gnl20224 crossref_primary_10_7717_peerj_cs_2059 crossref_primary_10_1016_j_semcancer_2021_04_013 crossref_primary_10_1145_3676282 crossref_primary_10_3390_cancers14153780 crossref_primary_10_1111_odi_15067 crossref_primary_10_1177_15330338221142674 crossref_primary_10_1038_s41598_023_46472_7 crossref_primary_10_7759_cureus_79570 crossref_primary_10_3390_app10186428 crossref_primary_10_3390_s20215982 crossref_primary_10_1038_s41598_023_35491_z crossref_primary_10_1049_ipr2_12495 crossref_primary_10_1109_ACCESS_2020_3008000 crossref_primary_10_1016_j_labinv_2024_102043 crossref_primary_10_1016_j_compeleceng_2022_108462 crossref_primary_10_1038_s41598_021_93746_z crossref_primary_10_1016_j_neucom_2020_04_154 crossref_primary_10_1007_s12272_019_01162_9 crossref_primary_10_35712_aig_v5_i2_91550 crossref_primary_10_1007_s00330_021_08014_5 crossref_primary_10_1016_j_compmedimag_2021_101861 crossref_primary_10_2217_fon_2020_0678 crossref_primary_10_3390_bioengineering10020173 crossref_primary_10_1016_j_csbj_2022_09_010 crossref_primary_10_5858_arpa_2020_0541_CP crossref_primary_10_1109_TCYB_2019_2935141 crossref_primary_10_3390_electronics10141662 crossref_primary_10_1038_s43856_022_00107_6 crossref_primary_10_1155_2021_9921095 crossref_primary_10_1016_j_dld_2024_11_001 crossref_primary_10_1038_s41598_022_16885_x crossref_primary_10_1016_j_clinbiochem_2022_02_011 crossref_primary_10_1007_s10620_024_08501_x crossref_primary_10_1371_journal_pone_0236452 crossref_primary_10_1038_s41598_021_87644_7 crossref_primary_10_3390_cancers14153803 crossref_primary_10_3390_cancers14215264 crossref_primary_10_1007_s10151_022_02602_3 crossref_primary_10_1016_j_cmpb_2023_107631 crossref_primary_10_3390_cancers11060756 crossref_primary_10_1038_s41467_021_21896_9 crossref_primary_10_1016_j_bspc_2023_105826 crossref_primary_10_1016_j_ejca_2021_07_012 crossref_primary_10_3390_bioengineering10080972 crossref_primary_10_3390_diagnostics11081398 crossref_primary_10_1016_j_ijmedinf_2023_105142 crossref_primary_10_1007_s00500_020_04933_5 crossref_primary_10_1155_2022_8007713 crossref_primary_10_5858_arpa_2019_0004_OA crossref_primary_10_1093_ecco_jcc_jjab169 crossref_primary_10_3748_wjg_v27_i27_4395 crossref_primary_10_1038_s41598_021_86540_4 crossref_primary_10_1109_ACCESS_2024_3483432 crossref_primary_10_1001_jamanetworkopen_2020_3398 crossref_primary_10_3390_jcm10225326 crossref_primary_10_1016_j_ajpath_2022_12_003 crossref_primary_10_1016_S2352_3026_20_30121_6 crossref_primary_10_3748_wjg_v27_i21_2758 crossref_primary_10_1038_s41598_022_11009_x crossref_primary_10_1016_j_anndiagpath_2018_05_006 crossref_primary_10_1093_bioinformatics_btaa056 crossref_primary_10_1177_10935266241299073 crossref_primary_10_1038_s41598_019_47281_7 crossref_primary_10_1016_j_cmpb_2023_107441 crossref_primary_10_3390_curroncol29030146 crossref_primary_10_1038_s41598_021_01929_5 crossref_primary_10_1111_his_15100 crossref_primary_10_2352_J_ImagingSci_Technol_2021_65_3_030401 crossref_primary_10_4103_jpi_jpi_31_18 crossref_primary_10_1155_2021_6683931 crossref_primary_10_1371_journal_pcbi_1006269 crossref_primary_10_35712_aig_v2_i6_141 crossref_primary_10_3748_wjg_v26_i34_5090 crossref_primary_10_1016_j_cmpb_2019_06_022 crossref_primary_10_1038_s41374_020_00514_0 crossref_primary_10_1016_j_jpi_2023_100320 crossref_primary_10_1016_j_imed_2024_05_003 crossref_primary_10_1016_j_array_2024_100370 crossref_primary_10_1038_s41598_021_99940_3 crossref_primary_10_1109_JBHI_2024_3407878 crossref_primary_10_2174_1386207322666190530102245 crossref_primary_10_3748_wjg_v27_i20_2545 crossref_primary_10_3390_electronics8030256 crossref_primary_10_3390_diagnostics12030768 crossref_primary_10_1016_j_gpb_2022_12_007 crossref_primary_10_1109_ACCESS_2023_3246730 crossref_primary_10_35712_aig_v3_i5_142 crossref_primary_10_3389_fnut_2022_869263 crossref_primary_10_1001_jamanetworkopen_2019_14645 crossref_primary_10_1016_j_ctrv_2022_102498 crossref_primary_10_32628_IJSRST24116172 crossref_primary_10_1016_j_modpat_2024_100636 crossref_primary_10_32628_IJSRST24116171 crossref_primary_10_1007_s10462_021_10121_0 crossref_primary_10_1109_TNNLS_2021_3054306 crossref_primary_10_1016_j_jpi_2022_100138 crossref_primary_10_3390_cancers13215368 crossref_primary_10_1007_s11760_024_03701_4 crossref_primary_10_1016_j_canlet_2023_216238 crossref_primary_10_1007_s00428_021_03241_z crossref_primary_10_3390_cancers14051349 crossref_primary_10_3389_fmed_2024_1447057 crossref_primary_10_1109_TNNLS_2017_2766168 crossref_primary_10_5858_arpa_2020_0520_OA crossref_primary_10_1016_j_compbiomed_2023_107034 crossref_primary_10_1155_2022_9541115 crossref_primary_10_1109_ACCESS_2023_3319068 crossref_primary_10_1038_s41379_020_00700_x crossref_primary_10_3390_cancers12071884 |
| Cites_doi | 10.4103/2153-3539.186902 10.1088/0031-9155/48/13/401 10.1007/s11263-015-0816-y 10.1016/j.gie.2014.04.064 10.1093/biomet/26.4.404 10.1109/TMI.2016.2525803 10.1016/j.media.2014.11.010 10.1053/j.gastro.2009.12.066 10.1016/j.media.2016.06.037 10.1109/RBME.2009.2034865 10.1002/cncr.21431 10.1002/rob.20276 10.1111/j.1365-2559.2009.03329.x 10.4103/2153-3539.112694 10.5858/2006-130-630-ERISP 10.1002/jbio.201200132 10.1053/j.gastro.2012.06.001 10.1016/j.humpath.2010.06.002 10.1007/s10620-014-3449-z 10.1016/S1092-9134(98)80036-1 10.1109/RBME.2013.2295804 10.1007/s11265-008-0201-y 10.1097/DCR.0b013e318228f8a9 10.1038/nature14539 10.1002/jemt.10182 10.1309/AGB1MJ9H5N43MEGX 10.1109/TMI.2015.2433900 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors Copyright Medknow Publications & Media Pvt. Ltd. 2017 Copyright: © 2017 Journal of Pathology Informatics 2017 |
| Copyright_xml | – notice: 2017 The Authors – notice: Copyright Medknow Publications & Media Pvt. Ltd. 2017 – notice: Copyright: © 2017 Journal of Pathology Informatics 2017 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. M0S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.4103/jpi.jpi_34_17 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 2153-3539 |
| EndPage | 30 |
| ExternalDocumentID | oai_doaj_org_article_fd5c4ad7a1344226b047c2a7a7bd5216 10.4103/jpi.jpi_34_17 PMC5545773 28828201 10_4103_jpi_jpi_34_17 10.4103/jpi.jpi_34_17_30_Deep learning S2153353922004345 |
| Genre | Journal Article |
| GroupedDBID | .1- .FO 0R~ 5VS 7X7 8FE 8FG 8FI 8FJ AAKDD AALRI AAXUO AAYWO ABDBF ABUWG ACGFS ACUHS ACVFH ADBBV ADCNI ADRAZ ADVLN AEGXH AEUPX AEXQZ AFJKZ AFKRA AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP ARAPS BAWUL BCNDV BENPR BGLVJ CCPQU DIK E3Z EBS EJD EOJEC ESX F5P FDB FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR IL9 IPNFZ ITC K6V K7- KQ8 M41 M48 M~E O5R O5S OBODZ OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC RIG RNS ROL RPM TUS UKHRP Z5R 6I. AAFTH ABXLX AFCTW RMW W3E ALIPV AAYXX CITATION PUEGO AAHOK NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ JQ2 K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c616g-26dea3fadcf8aedea3111a1f5776b430ee034edeec1e35c69947a62965fb77303 |
| IEDL.DBID | M48 |
| ISSN | 2153-3539 2229-5089 |
| IngestDate | Tue Oct 14 19:08:46 EDT 2025 Sun Oct 26 03:09:57 EDT 2025 Tue Sep 30 16:15:48 EDT 2025 Thu Oct 02 05:11:35 EDT 2025 Tue Oct 07 06:47:35 EDT 2025 Wed Feb 19 02:00:53 EST 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Oct 01 01:53:50 EDT 2025 Tue Jun 17 22:45:54 EDT 2025 Fri Feb 23 02:40:33 EST 2024 Tue Oct 14 19:36:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | histopathological characterization Colorectal polyps deep learning digital pathology |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. http://creativecommons.org/licenses/by-nc-sa/3.0 https://creativecommons.org/licenses/by-nc-sa/3.0 https://www.elsevier.com/tdm/userlicense/1.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c616g-26dea3fadcf8aedea3111a1f5776b430ee034edeec1e35c69947a62965fb77303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4103/jpi.jpi_34_17 |
| PMID | 28828201 |
| PQID | 1942251264 |
| PQPubID | 2035654 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fd5c4ad7a1344226b047c2a7a7bd5216 unpaywall_primary_10_4103_jpi_jpi_34_17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5545773 proquest_miscellaneous_1931245617 proquest_journals_1942251264 pubmed_primary_28828201 crossref_citationtrail_10_4103_jpi_jpi_34_17 crossref_primary_10_4103_jpi_jpi_34_17 wolterskluwer_medknow_10_4103_jpi_jpi_34_17_30_Deep_learning elsevier_sciencedirect_doi_10_4103_jpi_jpi_34_17 elsevier_clinicalkey_doi_10_4103_jpi_jpi_34_17 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 1 year: 2017 text: 20170101 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | India |
| PublicationPlace_xml | – name: India – name: Mumbai |
| PublicationTitle | Journal of pathology informatics |
| PublicationTitleAlternate | J Pathol Inform |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Wolters Kluwer India Pvt. Ltd Medknow Publications & Media Pvt. Ltd Medknow Publications & Media Pvt Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Wolters Kluwer India Pvt. Ltd – name: Medknow Publications & Media Pvt. Ltd – name: Medknow Publications & Media Pvt Ltd – name: Elsevier |
| References | Malon, Cosatto (bib34) 2013; 4 Naik, Doyle, Feldman, Tomaszewski, Madabhushi (bib14) 2007 Sirinukunwattana, Ahmed Raza, Yee-Wah, Snead, Cree, Rajpoot (bib30) 2016; 35 Abdeljawad, Vemulapalli, Kahi, Cummings, Snover, Rex (bib11) 2015; 81 Rajpoot, Rajpoot (bib22) 2004 Raab, Grzybicki, Janosky, Zarbo, Meier, Jensen (bib16) 2005; 104 Cruz-Roa, Ovalle, Madabhushi, Osorio (bib32) 2013 Wang, Cruz-Roa, Basavanhally, Gilmore, Shih, Feldman (bib35) 2014 He, Zhang, Ren, Sun (bib26) 2015 Society, American Cancer Society (bib48) 2016 Lieberman, Rex, Winawer, Giardiello, Johnson, Levin (bib2) 2012; 143 Sims, Bennett, Murray (bib24) 2003; 48 Le Cun, Denker, Henderson, Howard, Hubbard, Jackel (bib37) 1990 Vu, Lopez, Bennett, Burke (bib4) 2011; 54 Nakhleh (bib15) 2006; 130 Ertosun, Rubin (bib33) 2015; Vol. 2015 Simonyan, Vedaldi, Zisserman (bib42) 2013 Xie, Kong, Xing, Liu, Su, Yang (bib29) 2015 Krizhevsky, Sutskever, Hinton (bib38) 2012 Snover (bib10) 2011; 42 Kallenbach-Thieltges, Großerüschkamp, Mosig, Diem, Tannapfel, Gerwert (bib23) 2013; 6 Simonyan, Zisserman (bib40) 2014 Farabet, Couprie, Najman, LeCun (bib27) 2012 Bengio (bib39) 2009; Vol. 2 He, Zhang, Ren, Sun (bib43) 2016 Russakovsky, Deng, Su, Krause, Satheesh, Ma (bib44) 2015; 115 Janowczyk, Madabhushi (bib31) 2016; 7 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib41) 2015 Aptoula, Courty, Lefevre (bib7) 2013 Clopper, Pearson (bib47) 1934; 26 Biscotti, Dawson, Dziura, Galup, Darragh, Rahemtulla (bib5) 2005; 123 Hadsell, Sermanet, Ben, Erkan, Scoffier, Kavukcuoglu (bib28) 2009; 26 Powers (bib46) 2011; 2 Doyle, Hwang, Shah, Madabhushi, Feldman, Tomaszeweski (bib21) 2007 Irshad, Veillard, Roux, Racoceanu (bib8) 2014; 7 Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib12) 2009; 2 Sirinukunwattana, Snead, Rajpoot (bib36) 2015; 34 Malkin (bib17) 1998; 2 Gil, Wu, Wang (bib18) 2002; 59 Sertel, Kong, Catalyurek, Lozanski, Saltz, Gurcan (bib20) 2009; 55 Lin, Maire, Belongie, Hays, Perona, Ramanan (bib45) 2014 Wong, Hunt, Novelli, Shepherd, Warren (bib1) 2009; 55 Veta, van Diest, Willems, Wang, Madabhushi, Cruz-Roa (bib9) 2015; 20 Leggett, Whitehall (bib3) 2010; 138 Kahi (bib6) 2015; 60 Madabhushi, Lee (bib13) 2016; 33 Boucheron (bib19) 2008 LeCun, Bengio, Hinton (bib25) 2015; 521 Szegedy (10.4103/jpi.jpi_34_17_bib41) 2015 Leggett (10.4103/jpi.jpi_34_17_bib3) 2010; 138 Sertel (10.4103/jpi.jpi_34_17_bib20) 2009; 55 Naik (10.4103/jpi.jpi_34_17_bib14) 2007 LeCun (10.4103/jpi.jpi_34_17_bib25) 2015; 521 Malon (10.4103/jpi.jpi_34_17_bib34) 2013; 4 Le Cun (10.4103/jpi.jpi_34_17_bib37) 1990 Gurcan (10.4103/jpi.jpi_34_17_bib12) 2009; 2 He (10.4103/jpi.jpi_34_17_bib43) 2016 Rajpoot (10.4103/jpi.jpi_34_17_bib22) 2004 Hadsell (10.4103/jpi.jpi_34_17_bib28) 2009; 26 Lin (10.4103/jpi.jpi_34_17_bib45) 2014 Nakhleh (10.4103/jpi.jpi_34_17_bib15) 2006; 130 Wang (10.4103/jpi.jpi_34_17_bib35) 2014 Simonyan (10.4103/jpi.jpi_34_17_bib42) Vu (10.4103/jpi.jpi_34_17_bib4) 2011; 54 Snover (10.4103/jpi.jpi_34_17_bib10) 2011; 42 Russakovsky (10.4103/jpi.jpi_34_17_bib44) 2015; 115 Gil (10.4103/jpi.jpi_34_17_bib18) 2002; 59 Doyle (10.4103/jpi.jpi_34_17_bib21) 2007 Wong (10.4103/jpi.jpi_34_17_bib1) 2009; 55 Malkin (10.4103/jpi.jpi_34_17_bib17) 1998; 2 Kahi (10.4103/jpi.jpi_34_17_bib6) 2015; 60 Sims (10.4103/jpi.jpi_34_17_bib24) 2003; 48 Cruz-Roa (10.4103/jpi.jpi_34_17_bib32) 2013 Madabhushi (10.4103/jpi.jpi_34_17_bib13) 2016; 33 Powers (10.4103/jpi.jpi_34_17_bib46) 2011; 2 He (10.4103/jpi.jpi_34_17_bib26) 2015 Society (10.4103/jpi.jpi_34_17_bib48) 2016 Ertosun (10.4103/jpi.jpi_34_17_bib33) 2015; Vol. 2015 Sirinukunwattana (10.4103/jpi.jpi_34_17_bib36) 2015; 34 Krizhevsky (10.4103/jpi.jpi_34_17_bib38) 2012 Xie (10.4103/jpi.jpi_34_17_bib29) 2015 Janowczyk (10.4103/jpi.jpi_34_17_bib31) 2016; 7 Abdeljawad (10.4103/jpi.jpi_34_17_bib11) 2015; 81 Clopper (10.4103/jpi.jpi_34_17_bib47) 1934; 26 Raab (10.4103/jpi.jpi_34_17_bib16) 2005; 104 Farabet (10.4103/jpi.jpi_34_17_bib27) Irshad (10.4103/jpi.jpi_34_17_bib8) 2014; 7 Sirinukunwattana (10.4103/jpi.jpi_34_17_bib30) 2016; 35 Boucheron (10.4103/jpi.jpi_34_17_bib19) 2008 Kallenbach-Thieltges (10.4103/jpi.jpi_34_17_bib23) 2013; 6 Simonyan (10.4103/jpi.jpi_34_17_bib40) 2014 Lieberman (10.4103/jpi.jpi_34_17_bib2) 2012; 143 Aptoula (10.4103/jpi.jpi_34_17_bib7) 2013 Biscotti (10.4103/jpi.jpi_34_17_bib5) 2005; 123 Veta (10.4103/jpi.jpi_34_17_bib9) 2015; 20 Bengio (10.4103/jpi.jpi_34_17_bib39) 2009; Vol. 2 19614768 - Histopathology. 2009 Jul;55(1):63-6 23225612 - J Biophotonics. 2013 Jan;6(1):88-100 24998465 - Gastrointest Endosc. 2015 Mar;81(3):517-24 22763141 - Gastroenterology. 2012 Sep;143(3):844-857 27563488 - J Pathol Inform. 2016 Jul 26;7:29 15842055 - Am J Clin Pathol. 2005 Feb;123(2):281-7 26863654 - IEEE Trans Med Imaging. 2016 May;35(5):1196-1206 20420948 - Gastroenterology. 2010 Jun;138(6):2088-100 25993703 - IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78 12373721 - Microsc Res Tech. 2002 Oct 15;59(2):109-18 20869746 - Hum Pathol. 2011 Jan;42(1):1-10 12884936 - Phys Med Biol. 2003 Jul 7;48(13):N183-91 21904135 - Dis Colon Rectum. 2011 Oct;54(10):1216-23 16216029 - Cancer. 2005 Nov 15;104(10):2205-13 25547073 - Med Image Anal. 2015 Feb;20(1):237-48 24802905 - IEEE Rev Biomed Eng. 2014;7:97-114 20671804 - IEEE Rev Biomed Eng. 2009;2:147-71 26958289 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1899-908 25556584 - Dig Dis Sci. 2015 Mar;60(3):773-80 27423409 - Med Image Anal. 2016 Oct;33:170-175 23858384 - J Pathol Inform. 2013 May 30;4:9 9845724 - Ann Diagn Pathol. 1998 Feb;2(1):79-91 26017442 - Nature. 2015 May 28;521(7553):436-44 24579166 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10 16683877 - Arch Pathol Lab Med. 2006 May;130(5):630-2 |
| References_xml | – start-page: 1026 year: 2015 end-page: 1034 ident: bib26 article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib25 article-title: Deep learning publication-title: Nature – volume: 138 start-page: 2088 year: 2010 end-page: 2100 ident: bib3 article-title: Role of the serrated pathway in colorectal cancer pathogenesis publication-title: Gastroenterology – volume: 34 start-page: 2366 year: 2015 end-page: 2378 ident: bib36 article-title: A stochastic polygons model for glandular structures in colon histology images publication-title: IEEE Trans Med Imaging – start-page: 1097 year: 2012 end-page: 1105 ident: bib38 article-title: Imagenet Classification with Deep Convolutional Neural Networks publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: bib40 article-title: Very Deep Convolutional Networks for Large-scale Image Recognition – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: bib46 article-title: Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation publication-title: Int J Machine Learn Technol – volume: 104 start-page: 2205 year: 2005 end-page: 2213 ident: bib16 article-title: Clinical impact and frequency of anatomic pathology errors in cancer diagnoses publication-title: Cancer – year: 2012 ident: bib27 article-title: Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers – year: 1990 ident: bib37 article-title: Handwritten Digit Recognition with a Backpropagation Network publication-title: Advances in Neural Information Processing Systems – start-page: 403 year: 2013 end-page: 410 ident: bib32 article-title: A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-cell Carcinoma Cancer Detection publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 770 year: 2016 end-page: 778 ident: bib43 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib44 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – volume: 33 start-page: 170 year: 2016 end-page: 175 ident: bib13 article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities publication-title: Med Image Anal – start-page: 740 year: 2014 end-page: 755 ident: bib45 article-title: Microsoft coco: Common objects in context. InEuropean Conference on Computer Vision – volume: 55 start-page: 169 year: 2009 end-page: 183 ident: bib20 article-title: Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading publication-title: J Signal Process Syst – volume: 4 start-page: 9 year: 2013 ident: bib34 article-title: Classification of mitotic figures with convolutional neural networks and seeded blob features publication-title: J Pathol Inform – start-page: 1 year: 2013 end-page: 4 ident: bib7 article-title: Mitosis Detection in Breast Cancer Histological Images with Mathematical Morphology publication-title: 2013,21 – volume: 54 start-page: 1216 year: 2011 end-page: 1223 ident: bib4 article-title: Individuals with sessile serrated polyps express an aggressive colorectal phenotype publication-title: Dis Colon Rectum – volume: Vol. 2 start-page: 1 year: 2009 end-page: 127 ident: bib39 article-title: Foundations and trends in machine learning. Learning Deep Architectures for AI – volume: 35 start-page: 1196 year: 2016 end-page: 1206 ident: bib30 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: IEEE Trans Med Imaging – start-page: 1 year: 2007 end-page: 8 ident: bib14 article-title: Gland Segmentation and Computerized Gleason Grading of Prostate Histology by Integrating Low-, High-level and Domain Specific Information publication-title: MIAAB Workshop. Citeseer – volume: 81 start-page: 517 year: 2015 end-page: 524 ident: bib11 article-title: Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist publication-title: Gastrointest Endosc – volume: 2 start-page: 147 year: 2009 end-page: 171 ident: bib12 article-title: Histopathological image analysis: A review publication-title: IEEE Rev Biomed Eng – volume: 6 start-page: 88 year: 2013 end-page: 100 ident: bib23 article-title: Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections publication-title: J Biophotonics – start-page: 1284 year: 2007 end-page: 1287 ident: bib21 article-title: Automated Grading of Prostate Cancer Using Architectural and Textural Image Features publication-title: 2007 4 – volume: 7 start-page: 97 year: 2014 end-page: 114 ident: bib8 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential publication-title: IEEE Rev Biomed Eng – start-page: 1 year: 2015 end-page: 9 ident: bib41 article-title: Going Deeper with Convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2013 ident: bib42 article-title: Deep inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps – year: 2008 ident: bib19 article-title: Object-and spatial-level quantitative analysis of multispectral histopathology images for detection and characterization of cancer – year: 2014 ident: bib35 article-title: Cascaded Ensemble of Convolutional Neural Networks and Handcrafted Features for Mitosis Detection publication-title: SPIE Medical Imaging. International Society for Optics and Photonics – volume: 123 start-page: 281 year: 2005 end-page: 287 ident: bib5 article-title: Assisted primary screening using the automated ThinPrep Imaging System publication-title: Am J Clin Pathol – volume: Vol. 2015 year: 2015 ident: bib33 article-title: Automated Grading of Gliomas Using Deep Learning in Digital Pathology Images: A Modular Approach with Ensemble of Convolutional Neural Networks publication-title: AMIA Annual Symposium Proceedings – volume: 42 start-page: 1 year: 2011 end-page: 10 ident: bib10 article-title: Update on the serrated pathway to colorectal carcinoma publication-title: Hum Pathol – volume: 7 start-page: 29 year: 2016 ident: bib31 article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases publication-title: J Pathol Inform – volume: 48 start-page: N183 year: 2003 end-page: N191 ident: bib24 article-title: Image analysis can be used to detect spatial changes in the histopathology of pancreatic tumours publication-title: Phys Med Biol – volume: 20 start-page: 237 year: 2015 end-page: 248 ident: bib9 article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images publication-title: Med Image Anal – year: 2016 ident: bib48 article-title: Cancer Facts and Figures 2016 – volume: 130 start-page: 630 year: 2006 end-page: 632 ident: bib15 article-title: Error reduction in surgical pathology publication-title: Arch Pathol Lab Med – volume: 55 start-page: 63 year: 2009 end-page: 66 ident: bib1 article-title: Observer agreement in the diagnosis of serrated polyps of the large bowel publication-title: Histopathology – start-page: 829 year: 2004 end-page: 837 ident: bib22 article-title: SVM Optimization for Hyperspectral Colon Tissue Cell Classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 374 year: 2015 end-page: 382 ident: bib29 article-title: Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 2 start-page: 79 year: 1998 end-page: 91 ident: bib17 article-title: History of pathology: Comparison of the use of the microscope in pathology in Germany and the United States during the nineteenth century publication-title: Ann Diagn Pathol – volume: 26 start-page: 404 year: 1934 end-page: 413 ident: bib47 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika – volume: 59 start-page: 109 year: 2002 end-page: 118 ident: bib18 article-title: Image analysis and morphometry in the diagnosis of breast cancer publication-title: Microsc Res Tech – volume: 26 start-page: 120 year: 2009 end-page: 144 ident: bib28 article-title: Learning long-range vision for autonomous off-road driving publication-title: J Field Robot – volume: 143 start-page: 844 year: 2012 end-page: 857 ident: bib2 article-title: Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US MultiSociety Task Force on Colorectal Cancer publication-title: Gastroenterology – volume: 60 start-page: 773 year: 2015 end-page: 780 ident: bib6 article-title: How does the serrated polyp pathway alter CRC screening and surveillance? publication-title: Dig Dis Sci – ident: 10.4103/jpi.jpi_34_17_bib27 – start-page: 403 year: 2013 ident: 10.4103/jpi.jpi_34_17_bib32 article-title: A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-cell Carcinoma Cancer Detection – volume: 7 start-page: 29 year: 2016 ident: 10.4103/jpi.jpi_34_17_bib31 article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases publication-title: J Pathol Inform doi: 10.4103/2153-3539.186902 – ident: 10.4103/jpi.jpi_34_17_bib42 – start-page: 740 year: 2014 ident: 10.4103/jpi.jpi_34_17_bib45 – volume: 48 start-page: N183 year: 2003 ident: 10.4103/jpi.jpi_34_17_bib24 article-title: Image analysis can be used to detect spatial changes in the histopathology of pancreatic tumours publication-title: Phys Med Biol doi: 10.1088/0031-9155/48/13/401 – year: 2014 ident: 10.4103/jpi.jpi_34_17_bib35 article-title: Cascaded Ensemble of Convolutional Neural Networks and Handcrafted Features for Mitosis Detection – year: 1990 ident: 10.4103/jpi.jpi_34_17_bib37 article-title: Handwritten Digit Recognition with a Backpropagation Network – start-page: 1284 year: 2007 ident: 10.4103/jpi.jpi_34_17_bib21 article-title: Automated Grading of Prostate Cancer Using Architectural and Textural Image Features – volume: 115 start-page: 211 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib44 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – year: 2016 ident: 10.4103/jpi.jpi_34_17_bib48 – volume: 81 start-page: 517 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib11 article-title: Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2014.04.064 – year: 2014 ident: 10.4103/jpi.jpi_34_17_bib40 – volume: 26 start-page: 404 year: 1934 ident: 10.4103/jpi.jpi_34_17_bib47 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 35 start-page: 1196 year: 2016 ident: 10.4103/jpi.jpi_34_17_bib30 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2525803 – volume: Vol. 2015 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib33 article-title: Automated Grading of Gliomas Using Deep Learning in Digital Pathology Images: A Modular Approach with Ensemble of Convolutional Neural Networks – volume: 20 start-page: 237 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib9 article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images publication-title: Med Image Anal doi: 10.1016/j.media.2014.11.010 – volume: 138 start-page: 2088 year: 2010 ident: 10.4103/jpi.jpi_34_17_bib3 article-title: Role of the serrated pathway in colorectal cancer pathogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.12.066 – volume: 33 start-page: 170 year: 2016 ident: 10.4103/jpi.jpi_34_17_bib13 article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.037 – start-page: 1097 year: 2012 ident: 10.4103/jpi.jpi_34_17_bib38 article-title: Imagenet Classification with Deep Convolutional Neural Networks – start-page: 770 year: 2016 ident: 10.4103/jpi.jpi_34_17_bib43 article-title: Deep residual learning for image recognition – start-page: 1 year: 2007 ident: 10.4103/jpi.jpi_34_17_bib14 article-title: Gland Segmentation and Computerized Gleason Grading of Prostate Histology by Integrating Low-, High-level and Domain Specific Information – volume: 2 start-page: 147 year: 2009 ident: 10.4103/jpi.jpi_34_17_bib12 article-title: Histopathological image analysis: A review publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2034865 – volume: 2 start-page: 37 year: 2011 ident: 10.4103/jpi.jpi_34_17_bib46 article-title: Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation publication-title: Int J Machine Learn Technol – volume: Vol. 2 start-page: 1 year: 2009 ident: 10.4103/jpi.jpi_34_17_bib39 – volume: 104 start-page: 2205 year: 2005 ident: 10.4103/jpi.jpi_34_17_bib16 article-title: Clinical impact and frequency of anatomic pathology errors in cancer diagnoses publication-title: Cancer doi: 10.1002/cncr.21431 – volume: 26 start-page: 120 year: 2009 ident: 10.4103/jpi.jpi_34_17_bib28 article-title: Learning long-range vision for autonomous off-road driving publication-title: J Field Robot doi: 10.1002/rob.20276 – volume: 55 start-page: 63 year: 2009 ident: 10.4103/jpi.jpi_34_17_bib1 article-title: Observer agreement in the diagnosis of serrated polyps of the large bowel publication-title: Histopathology doi: 10.1111/j.1365-2559.2009.03329.x – volume: 4 start-page: 9 year: 2013 ident: 10.4103/jpi.jpi_34_17_bib34 article-title: Classification of mitotic figures with convolutional neural networks and seeded blob features publication-title: J Pathol Inform doi: 10.4103/2153-3539.112694 – volume: 130 start-page: 630 year: 2006 ident: 10.4103/jpi.jpi_34_17_bib15 article-title: Error reduction in surgical pathology publication-title: Arch Pathol Lab Med doi: 10.5858/2006-130-630-ERISP – volume: 6 start-page: 88 year: 2013 ident: 10.4103/jpi.jpi_34_17_bib23 article-title: Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections publication-title: J Biophotonics doi: 10.1002/jbio.201200132 – year: 2008 ident: 10.4103/jpi.jpi_34_17_bib19 – start-page: 374 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib29 article-title: Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images – volume: 143 start-page: 844 year: 2012 ident: 10.4103/jpi.jpi_34_17_bib2 article-title: Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US MultiSociety Task Force on Colorectal Cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.06.001 – start-page: 1 year: 2013 ident: 10.4103/jpi.jpi_34_17_bib7 article-title: Mitosis Detection in Breast Cancer Histological Images with Mathematical Morphology – volume: 42 start-page: 1 year: 2011 ident: 10.4103/jpi.jpi_34_17_bib10 article-title: Update on the serrated pathway to colorectal carcinoma publication-title: Hum Pathol doi: 10.1016/j.humpath.2010.06.002 – volume: 60 start-page: 773 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib6 article-title: How does the serrated polyp pathway alter CRC screening and surveillance? publication-title: Dig Dis Sci doi: 10.1007/s10620-014-3449-z – volume: 2 start-page: 79 year: 1998 ident: 10.4103/jpi.jpi_34_17_bib17 article-title: History of pathology: Comparison of the use of the microscope in pathology in Germany and the United States during the nineteenth century publication-title: Ann Diagn Pathol doi: 10.1016/S1092-9134(98)80036-1 – start-page: 829 year: 2004 ident: 10.4103/jpi.jpi_34_17_bib22 article-title: SVM Optimization for Hyperspectral Colon Tissue Cell Classification – volume: 7 start-page: 97 year: 2014 ident: 10.4103/jpi.jpi_34_17_bib8 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2013.2295804 – start-page: 1 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib41 article-title: Going Deeper with Convolutions – volume: 55 start-page: 169 year: 2009 ident: 10.4103/jpi.jpi_34_17_bib20 article-title: Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading publication-title: J Signal Process Syst doi: 10.1007/s11265-008-0201-y – volume: 54 start-page: 1216 year: 2011 ident: 10.4103/jpi.jpi_34_17_bib4 article-title: Individuals with sessile serrated polyps express an aggressive colorectal phenotype publication-title: Dis Colon Rectum doi: 10.1097/DCR.0b013e318228f8a9 – volume: 521 start-page: 436 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib25 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 59 start-page: 109 year: 2002 ident: 10.4103/jpi.jpi_34_17_bib18 article-title: Image analysis and morphometry in the diagnosis of breast cancer publication-title: Microsc Res Tech doi: 10.1002/jemt.10182 – start-page: 1026 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib26 article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification – volume: 123 start-page: 281 year: 2005 ident: 10.4103/jpi.jpi_34_17_bib5 article-title: Assisted primary screening using the automated ThinPrep Imaging System publication-title: Am J Clin Pathol doi: 10.1309/AGB1MJ9H5N43MEGX – volume: 34 start-page: 2366 year: 2015 ident: 10.4103/jpi.jpi_34_17_bib36 article-title: A stochastic polygons model for glandular structures in colon histology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2433900 – reference: 16216029 - Cancer. 2005 Nov 15;104(10):2205-13 – reference: 20869746 - Hum Pathol. 2011 Jan;42(1):1-10 – reference: 20671804 - IEEE Rev Biomed Eng. 2009;2:147-71 – reference: 25547073 - Med Image Anal. 2015 Feb;20(1):237-48 – reference: 21904135 - Dis Colon Rectum. 2011 Oct;54(10):1216-23 – reference: 24998465 - Gastrointest Endosc. 2015 Mar;81(3):517-24 – reference: 12884936 - Phys Med Biol. 2003 Jul 7;48(13):N183-91 – reference: 23858384 - J Pathol Inform. 2013 May 30;4:9 – reference: 19614768 - Histopathology. 2009 Jul;55(1):63-6 – reference: 27423409 - Med Image Anal. 2016 Oct;33:170-175 – reference: 20420948 - Gastroenterology. 2010 Jun;138(6):2088-100 – reference: 15842055 - Am J Clin Pathol. 2005 Feb;123(2):281-7 – reference: 9845724 - Ann Diagn Pathol. 1998 Feb;2(1):79-91 – reference: 23225612 - J Biophotonics. 2013 Jan;6(1):88-100 – reference: 27563488 - J Pathol Inform. 2016 Jul 26;7:29 – reference: 16683877 - Arch Pathol Lab Med. 2006 May;130(5):630-2 – reference: 26958289 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1899-908 – reference: 24802905 - IEEE Rev Biomed Eng. 2014;7:97-114 – reference: 25993703 - IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 12373721 - Microsc Res Tech. 2002 Oct 15;59(2):109-18 – reference: 22763141 - Gastroenterology. 2012 Sep;143(3):844-857 – reference: 24579166 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10 – reference: 26863654 - IEEE Trans Med Imaging. 2016 May;35(5):1196-1206 – reference: 25556584 - Dig Dis Sci. 2015 Mar;60(3):773-80 |
| SSID | ssj0000331108 |
| Score | 2.4832149 |
| Snippet | Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for... Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref wolterskluwer elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 30 |
| SubjectTerms | Cancer Classification Colonoscopy Colorectal cancer Colorectal polyps Computer science Confidence intervals Deep learning digital pathology Digitization Garlic Histology histopathological characterization Human performance Image analysis Image classification Information processing Laboratories Machine learning Medical screening Medicine Neural networks Original Pathology Pattern recognition Risk assessment Statistical analysis Surveillance Test procedures |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDwUJVeXZQEFBQnAhrRO_EokLr6oClROVerMc2ylLt0nU7WrVf8-M82CjUnrhsFLkTLwbz-fxN-vxDCGvPbMuFTZLKuVUwrliSW6VAFdFicpa5mgonXD0XR4e868n4mSt1BfGhHXpgbuB26-csNw4ZVLG8dRnSbmymVFGlQ6WnpBsm-bFmjMVbDBjGN-OleVgSidMsKJLsMlTyvZ_tbM9-GjGdShU9mdBCnn7J-vSdd55PXzy7rJuzdXKzOH6_qrBbe7FWYhyX1urDrbJVk8y4w_dyz0gd3z9kGwe9dvoj8i3z963cV8w4jQG3hpbZNEYNhQ0FTdVjOms0RxCR20zv2oXMbSvsJxuAtzU-Xh2DrZo8ZgcH3z58ekw6asqJFam8jTJpPOGVcbZKjcer8HcmbQSSsmSM-o9ZRzavU09E1YWBVdGZoUUVanAHrAnZKNuar9D4tJKo3LuRQWOVllSkwP5sEoC5bKi8DIi74ah1bZPOY6VL-YaXA_UhEYtjJqIyJtRvO1ybdwk-BH1NAphiuzQAMDRPXD0bcCJyN6gZT2cQgW7CR3NbvpWOj7Q05OOdvzrkd0BPrq3DQudFvBzgGdJHpFX422Y1bhVY2rfLFGGpbgljV087dA2vm0GThHytoioCQ4nwzG9U89-hszhwB1BzSwib0fE3jbS7yd41ufdIc2_S2tGNQJYDwB-9j8U9Zzcy5BLhf-9dsnG5cXSvwAmeFm-DJP-N_UqYCM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3_a9QwFA_zBiqIX-a36pQIor_YrW3S5AqKON0Yyg4RB_stpEl6nt7auttx7L_3vTbtLHPzh4OSpuk17-Xlk7yX9yHkpWPGxqlJwkJaGXIuWTg2MoWlikwLY5iNGuqEg4nYP-Sfj9KjNTLpzsJgWGVnExtDbSuDe-TbsNhOcC4W_H39O0TWKPSudhQa2lMr2HdNirFrZD3BzFgjsr6zO_n6rd91iRjDuHdknEuSLAR0krWJN3kcse2f9WwLfopx1RCYnU9UTT7_wXx1EY9eDKu8sSxrfbbSc7i-tarQ_b341US__zWH7d0ltz34pB9abblH1ly5Qe50xA7Uj_MNcv3Ae9zvky-fnKup55aYUoC41CDgxgijRqi0KihmvkbLCW3X1fysXlAoXyHzbggw1jo6OwaztXhADvd2v3_cDz0BQ2hELKZhIqzTrNDWFGPt8Boso46LVEqRcxY5FzEO5c7EjqVGZBmXWiSZSItcgulgD8morEr3mNDcCC3H3KUFrMnyPNJjwClGCkBnJs2cCMibrreV8dnJkSRjrmCVgsJRKJheOAF51Vev27Qcl1XcQdH1lTCbdlNQnUyVH5yqsKnh2kodM44ni_OIS5NoqWVuAd7An9vqBK-6A6tgYqGh2WVvjfoHPJJpEcpVj2x2GqW8GVmoc6UPyIv-NhgA9Oro0lVLrMNi9F5jE49aBey_NoH1E0K8gMiBag66Y3innP1okowDzAQxs4C87pX4fz39dqDi6rg9z_nv2opFChVYdQr85Orvf0puJgioms2vTTI6PVm6ZwAHT_Pnfoz_AcOrZHg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegkwAJ8TlGYKAgIXghJYm_GomXMagGaNMeqBhPluM4pVuXRLTVNP567hInWihjPESKnLMTn8_nn3PnO0JeWmqyiJs4yGUmA8YkDUZGctiqSJ4bQ7OwTp2wfyD2JuzzET9yTjR4FuaC_Z5FIX17XM2GcCnKVCSvkw3BAXIPyMbk4HDnOyaOgxkbUE6TJn7mep3eelOH5e8tO-uwct078uaqqPT5mZ7D_e2zEq3Yi5Paif3CUjS-S8ZtJxoPlJPhapkOza8_4jte2ct75I4Do_5OIz33yTVbPCA39p25_SH58sHaynchWKc-4Fu_TqKJ7kX1iPpl7u-C-kS1CQ0dlvPzauFD-TdMuxsAhs2s_-kUdNZik0zGH7_u7gUu-0JgRCSmQSwyq2muM5OPtMV7UIs6yrmUImU0tDakDMqtiSzlRiQJk1rEieB5KkFv0EdkUJSFfUz81AgtR8zyHDZkaRrqEYAUIwVAM8MTKzzyph0jZVxocsyQMVewRUEGKWROxyCPvOrIqyYmx2WE73HAOyIMpV0XAO-Vm5kqz7hhOpM6ogyPFachkybWUss0A2wDHzdsxUW1p1VBv0JDs8veGnYVHIxp4Mm_qmy3cqicDlmoKIHPATwmmEdedI9h9qNJRxe2XCENjdB0jU1sNWLb9TaGzRPiO4_InkD32NF_Usx-1BHGAWPCMFOPvO5E_ypOv-tNDHXaHOb8O7WioUIBVi4zyvTJf7_oKbkVI7Cqf4Jtk8Hy58o-A1i4TJ87pfAbcGVmpw priority: 102 providerName: Unpaywall |
| Title | Deep Learning for Classification of Colorectal Polyps on Whole-slide Images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2153353922004345 https://dx.doi.org/10.4103/jpi.jpi_34_17 http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=30;epage=30;aulast=Korbar;type=0 https://www.ncbi.nlm.nih.gov/pubmed/28828201 https://www.proquest.com/docview/1942251264 https://www.proquest.com/docview/1931245617 https://pubmed.ncbi.nlm.nih.gov/PMC5545773 https://doi.org/10.4103/jpi.jpi_34_17 https://doaj.org/article/fd5c4ad7a1344226b047c2a7a7bd5216 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals Online customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: AKRWK dateStart: 20100101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2153-3539 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2153-3539 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2153-3539 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M48 dateStart: 20121001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2153-3539 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbYJgESQryvMKogIfhCShI7diMhoW2sDFCrClHRfbIcx-kKXVLaVaP_njvnBaJuIPGhVeRcXNd3vnsc288R8txQnfihDtxUJMJlTFC3q0UIUxURplrTxLOpE_oDfjxiH8fh-DelUNmBy0undphParSYdX7-WL-FAQ_4tcN8j77-Np924CMpk77YIjsQpCLM4tAvkb51ypTihndMNRcEkQuwJCoYNzdrQH5gwJ0YGhvBynL6N2LWJibd3Fp5Y5XN1fpCzeD61kWOS-DL73YH_B9xrHeH3C4BqLNfWMxdcs1k98j1frnEfp98emfM3ClpVycOYFrHJs7ELUVWi06eOofgMtFVQkXDfLaeLx0o_4qpdl3ArYlxPpyBn1o-IKPe0ZfDY7fMuOBq7vOJG_DEKJqqRKddZfAaXKHy01AIHjPqGeNRBuVG-4aGmkcRE4oHEQ_TWICvoA_JdpZnZpc4seZKdJkJU5iExbGnugBMtOAAx3QYGd4ir6qulbqkI8esGDMJ0xJUikSF1EppkRe1-Lzg4bhK8AD1VAshfbYtyBcTWY5GmSahZioRyqcMjxLHHhM6UEKJOAE8A43rVFqW1QlV8KlQ0fSqX_XqB0roUkCSvz2yV5mPrMxe-hE0BzAYZy3yrL4NIx6XcVRm8hXKUB-Xq7GKR4W11f-2MtwWEQ07bHRH8042PbWs4oArQc20RV7WFvuvnn7TsGd5VhzgvFxaUk-iAcsyG8rk8X838Qm5GSC4si_C9sj2-WJlngI0PI_bZEuMBXx3e-_bZOfgaDD83LavWdrWHUDZaDDcP_kF4att6A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBgS4jJuhQFGAvZCtsR27EYCIWBMHV33tEl9M47jlEKXhHVV1T_Fb-Sc3EY1Np72UClyTpzG5_j4O76cj5BXjtskCC3zUpUoTwjFva5VIYQqKkyt5YlfUicMDmTvSHwdhsMV8rs5C4PbKhufWDrqJLc4R74NwTbDsViKD8UvD1mjcHW1odCozKLvFnMI2abv93ZAv68Z2_1y-Lnn1awCnpWBHHlMJs7w1CQ27RqH19DdTZCGSslYcN85nwsodzZwPLQyioQykkUyTGMF_YFDvdfIdZD0kTFBDVU7p-Nzjrvqkc-OscgD7BNVaT1F4PPtH8V4C36aC13So50NgyVbwNJoeB7tnt-0uTbLCrOYmwlc35rnuLg-_Vnurf9rhNy9S27X0JZ-rGzxHllx2Tq509BG0NqLrJMbg3o9_z7p7zhX0Jq5YkQBQFOLcB73L5UmQ_OUYl5t9MtQd5FPFsWUQvkceX09AMmJo-NjcIrTB-ToShTxkKxmeeYeExpbaVRXuDCFiC-OfdMFFGSVBOxnw8jJDnnbtLa2de5zpOCYaIiBUDkaFdMqp0PetOJFlfTjIsFPqLpWCHN1lwX5yUjXXV-nSWiFSZQJuMBzy7EvlGVGGRUnAJ7gz201itfNcVhw4FDR-KK3-u0DNU6q8M9lj2w0FqVrJzXVZ12qQ162t8G94JqRyVw-Qxke4No4VvGoMsD2axlEZwggO0QtmeZScyzfycbfyxTmAGJBzbxDNlsj_l9Lv1sycX1cnRb9t7TmvkYD1o0BP7n8-1-Qtd7hYF_v7x30n5KbDKFbOc22QVZPT2buGQDP0_h52dsp-XbV7uUP9HCb7w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegkwAJ8TlGYKAgIXghJYm_GomXMagGaNMeqBhPluM4pVuXRLTVNP567hInWihjPESKnLMTn8_nn3PnO0JeWmqyiJs4yGUmA8YkDUZGctiqSJ4bQ7OwTp2wfyD2JuzzET9yTjR4FuaC_Z5FIX17XM2GcCnKVCSvkw3BAXIPyMbk4HDnOyaOgxkbUE6TJn7mep3eelOH5e8tO-uwct078uaqqPT5mZ7D_e2zEq3Yi5Paif3CUjS-S8ZtJxoPlJPhapkOza8_4jte2ct75I4Do_5OIz33yTVbPCA39p25_SH58sHaynchWKc-4Fu_TqKJ7kX1iPpl7u-C-kS1CQ0dlvPzauFD-TdMuxsAhs2s_-kUdNZik0zGH7_u7gUu-0JgRCSmQSwyq2muM5OPtMV7UIs6yrmUImU0tDakDMqtiSzlRiQJk1rEieB5KkFv0EdkUJSFfUz81AgtR8zyHDZkaRrqEYAUIwVAM8MTKzzyph0jZVxocsyQMVewRUEGKWROxyCPvOrIqyYmx2WE73HAOyIMpV0XAO-Vm5kqz7hhOpM6ogyPFachkybWUss0A2wDHzdsxUW1p1VBv0JDs8veGnYVHIxp4Mm_qmy3cqicDlmoKIHPATwmmEdedI9h9qNJRxe2XCENjdB0jU1sNWLb9TaGzRPiO4_InkD32NF_Usx-1BHGAWPCMFOPvO5E_ypOv-tNDHXaHOb8O7WioUIBVi4zyvTJf7_oKbkVI7Cqf4Jtk8Hy58o-A1i4TJ87pfAbcGVmpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Classification+of+Colorectal+Polyps+on+Whole-slide+Images&rft.jtitle=Journal+of+pathology+informatics&rft.au=Korbar%2C+Bruno&rft.au=Olofson%2C+Andrea+M.&rft.au=Miraflor%2C+Allen+P.&rft.au=Nicka%2C+Catherine+M.&rft.date=2017-01-01&rft.pub=Medknow+Publications+%26+Media+Pvt+Ltd&rft.issn=2229-5089&rft.eissn=2153-3539&rft.volume=8&rft_id=info:doi/10.4103%2Fjpi.jpi_34_17&rft_id=info%3Apmid%2F28828201&rft.externalDocID=PMC5545773 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-3539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-3539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-3539&client=summon |