基于层次匹配下多种特征融合的蕾丝花边检索方法
针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速...
Saved in:
| Published in | 计算机工程与科学 Vol. 39; no. 9; pp. 1691 - 1699 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-130X |
| DOI | 10.3969/j.issn.1007-130X.2017.09.015 |
Cover
| Abstract | 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率。 |
|---|---|
| AbstractList | 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率。 TP391.41; 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法.通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率.实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率. |
| Abstract_FL | Since the efficiency of the lace retrieval method based on image texture features is low,and in order to extract the effective texture features for lace identification,we propose a lace retrieval algorithm containing multiple features fusion through hierarchical matching.Firstly,we process the texture image by the Canny operator and obtain the Canny color image and the gray level-gradient co-occurrence matrix (GGCM).Secondly,energy,average gradient,average grayscale,correlation and other statistical characteristics are used for texture description.Finally,the extracted texture features are matched with geometry features and speeded up robust features (SURF) hierarchically,so the fusion of multiple features under hierarchical matching is realized to compensate for the deficiency of any single matching method and verify the correct rate of the retieval method used in the lace library.Experimental results indicate that the performance of the proposed method is better than other methods,which has a stronger ability of texture identification,and can achieve lace retrieval effectively and improve the reliability and accuracy of image retrieval. |
| Author | 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲 |
| AuthorAffiliation | 江南大学教育部针织技术工程研究中心,江苏无锡214122 江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
| AuthorAffiliation_xml | – name: 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122 |
| Author_FL | LI Yue-yang CONG Hong-lian LUO Hai-chi CAO Xia JIANG Gao-ming |
| Author_FL_xml | – sequence: 1 fullname: CAO Xia – sequence: 2 fullname: LI Yue-yang – sequence: 3 fullname: LUO Hai-chi – sequence: 4 fullname: JIANG Gao-ming – sequence: 5 fullname: CONG Hong-lian |
| Author_xml | – sequence: 1 fullname: 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲 |
| BookMark | eNo9j7tKA0EYhaeIYIx5CbGx2PWfmd2dTKnBGwRsUtiF2cvEXXWjWUTTaVDwFrGJRUDFC9jYBC2yKfI02Ytv4UrE6sDh4xy-GZTzG76D0DwGlXKDL3qqGwS-igGYgilsqQQwU4GrgPUcyv_306gYBK4JYOhGSWc4j5ajp-F4eBv12_HHc3QTfp93xoPr6K2XvHeSyzAanaaPnejuIumdpd3RePCQXvXTURi_niRfL_F9GH92Z9GUFLuBU_zLAqqurlTL60plc22jvFRRLAPrChMlRsC2qdRsYYIhMXdsomsgKDNKYDqaYNKypSSWBC4pJdLEOnc0TkxJCaMFtDCZPRK-FH695jUOm352WPMCr261do5_pYFnyhk7N2Gt7YZfP3Azer_p7olmq2YwSnSmAac_xeZ0pw |
| ClassificationCodes | TP391.41 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1007-130X.2017.09.015 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | A lace retrieval method based on hierarchicalmatching and multiple features |
| DocumentTitle_FL | A lace retrieval method based on hierarchical matching and multiple features |
| EndPage | 1699 |
| ExternalDocumentID | jsjgcykx201709015 673257409 |
| GrantInformation_xml | – fundername: 江苏省产学研联合创新资金-前瞻性联合研究项目; 江苏高校优势学科建设工程资助项目; 中央高校基本科研业务费 funderid: (BY2015019-11,BY2014023-20); 江苏高校优势学科建设工程资助项目; (JUSRP51404A,JUSRP211A38) |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c615-7a8720dd3f4dab06f19ed2540a37680be4a7fcdff2cf09f332fb159e492bf3273 |
| ISSN | 1007-130X |
| IngestDate | Thu May 29 04:04:00 EDT 2025 Wed Feb 14 09:56:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | 特征融合 gray-level co-occurrence matrix 灰度共生矩阵 灰度梯度共生矩阵 特征匹配 local binary pattern(LBP) speeded up robust feature(SURF) SURF feature fusion gray level-gradient co-occurrence matrix 局部二值模式 hierarchical matching feature matching 层次匹配 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c615-7a8720dd3f4dab06f19ed2540a37680be4a7fcdff2cf09f332fb159e492bf3273 |
| Notes | 43-1258/TP hierarchical matching; feature fusion ; feature matching;gray-level co-occurrence matrix; gray level-gradient co-occurrence matrix ;local binary pattern(LBP) ;speeded up robust feature(SURF) Since the efficiency of the lace retrieval method based on image texture features is low, and in order to extract the effective texture features for lace identification, we propose a lace retrieval algorithm containing multiple features fusion through hierarchical matching. Firstly, we process the texture image by the Canny operator and obtain the Canny color image and the gray level-gradient co-occurrence matrix (GGCM). Secondly, energy, average gradient, average grayscale, correlation and other statistical characteristics are used for texture description. Finally, the extracted texture features are matched with geometry features and speeded up robust features (SURF) hierarchically, so the fusion of multiple features under hierarchical matching is realized to compensate for the deficiency of any single matching |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_jsjgcykx201709015 chongqing_primary_673257409 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机工程与科学 |
| PublicationTitleAlternate | Computer Engineering & Science |
| PublicationTitle_FL | Computer Engineering and Science |
| PublicationYear | 2017 |
| Publisher | 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122 |
| Publisher_xml | – name: 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122 |
| SSID | ssib006568571 ssib017479296 ssib001050383 ssib015938883 ssib001102936 ssib051375740 ssib023646326 ssib036438059 ssib000459496 |
| Score | 2.085944 |
| Snippet | 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,... TP391.41; 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法.通过运用图像纹理特征标... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 1691 |
| SubjectTerms | SURF 局部二值模式 层次匹配 灰度共生矩阵 灰度梯度共生矩阵 特征匹配 特征融合 |
| Title | 基于层次匹配下多种特征融合的蕾丝花边检索方法 |
| URI | http://lib.cqvip.com/qk/94293X/201709/673257409.html https://d.wanfangdata.com.cn/periodical/jsjgcykx201709015 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-130X databaseCode: ADMLS dateStart: 20130501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib015938883 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1BfEiioq1fhRpTsvWmUl2khwzu1OKWC9W6G2Zr7RU2KptQXtSUfCr4qUeCip-gBcvRQ_dHvrXdD_8L3wvM90OUop6CZn3XvI-MjP5JUzeEDIh4ywyMFFUEw5LFM6zuBorJ6lmUEouI7ircB9y5qY_fZtfn6vNDR27UvpqaXUlnkzWDj1X8j-jCjQYVzwl-w8jO-gUCFCH8YUSRhjKvxpjGtaomqKBpiHHUoZICVwqPRr6VNepdpEi6zRQNFRUQr1hhSWVAbI0pwqaC6qFZUGprDD0EwLMpKGkKrQs0OVQKVEGmkhuWVYs71A1kCI1GgAVoGM_YAbDzymgVcCptoYpv2AFjOY_v9zHx9hQh9ZsgRUlrHzd-gi6gFizrNz-3JGwsF9ZZ3WD6sF2o20dFN5DNyqsWFJjP1Ye2oA8MJhVrJWNQmtg9QFPQ0ScinXXs2qBFGAL7An1V_YjENh24Ka2oYAIeOVtlfz8aDEH4O4tTO1z5Ukiz7hUPAyq9MbHZEMl9ACX6rCZiSlf2ZkJVUwOVOC3hcIm2s0Ptf6R-9sXDF6pHA-ojni44TRMRnRj5satMiJXvJQx0bX5fcpHpR0AdAd8gO-ydrACADDLpDyQh_WpAMA8kMffC_glhA-XTJYQec1lAg203xQUPh0nE4XD145yF5OZLCy15u8BRLMn5lomas2XwN3sKXKyWJWN6_wRO02G1hbOkKDzcWdv501n60n3-6fO6_avZ-t72686Xzd739Z7L9qd3cf9D-udt897m0_7G7t72-_7L7f6u-3ul0e9n5-779rdHxtnyexUOFufrha_HKkmAO2rIpLCc9KUGZ5GseMbV2WpB4uaCOZh6cQZj4RJUmO8xDjKMOaZGEKYceXFhsFK4BwZbi21svNkvBaJyDC4OZgf8TgFFO-6wojU8WMnEzIaJWMD95t388wyzcF4j5KrRUCaxftmubm4vDifPLzzAGPoIIy_cGQXY-QESubbhRfJ8Mr91ewSAOiV-HJxE_0G8VmWnA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B1%82%E6%AC%A1%E5%8C%B9%E9%85%8D%E4%B8%8B%E5%A4%9A%E7%A7%8D%E7%89%B9%E5%BE%81%E8%9E%8D%E5%90%88%E7%9A%84%E8%95%BE%E4%B8%9D%E8%8A%B1%E8%BE%B9%E6%A3%80%E7%B4%A2%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E6%9B%B9%E9%9C%9E+%E6%9D%8E%E5%B2%B3%E9%98%B3+%E7%BD%97%E6%B5%B7%E9%A9%B0+%E8%92%8B%E9%AB%98%E6%98%8E+%E4%B8%9B%E6%B4%AA%E8%8E%B2&rft.date=2017&rft.issn=1007-130X&rft.volume=39&rft.issue=9&rft.spage=1691&rft.epage=1699&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2017.09.015&rft.externalDocID=673257409 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg |