基于层次匹配下多种特征融合的蕾丝花边检索方法

针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 39; no. 9; pp. 1691 - 1699
Main Author 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲
Format Journal Article
LanguageChinese
Published 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122 2017
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2017.09.015

Cover

Abstract 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率。
AbstractList 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率。实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率。
TP391.41; 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法.通过运用图像纹理特征标识图像,利用Canny算子处理纹理图像,得到彩色Canny图像及其灰度梯度共生矩阵GGCM,采用能量、梯度平均、灰度平均、相关等二次统计特征参数描述图像的纹理特征,将上述提取纹理特征结合形状特征和SURF特征进行逐层匹配,实现层次匹配下多种特征的融合,弥补单个匹配方法的不足,同时在蕾丝花边库中验证所提检索方法的正确率.实验结果表明,与其他匹配方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,能较好地实现蕾丝花边检索,有效地提高了检索方法的速率和准确率.
Abstract_FL Since the efficiency of the lace retrieval method based on image texture features is low,and in order to extract the effective texture features for lace identification,we propose a lace retrieval algorithm containing multiple features fusion through hierarchical matching.Firstly,we process the texture image by the Canny operator and obtain the Canny color image and the gray level-gradient co-occurrence matrix (GGCM).Secondly,energy,average gradient,average grayscale,correlation and other statistical characteristics are used for texture description.Finally,the extracted texture features are matched with geometry features and speeded up robust features (SURF) hierarchically,so the fusion of multiple features under hierarchical matching is realized to compensate for the deficiency of any single matching method and verify the correct rate of the retieval method used in the lace library.Experimental results indicate that the performance of the proposed method is better than other methods,which has a stronger ability of texture identification,and can achieve lace retrieval effectively and improve the reliability and accuracy of image retrieval.
Author 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲
AuthorAffiliation 江南大学教育部针织技术工程研究中心,江苏无锡214122 江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
AuthorAffiliation_xml – name: 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122
Author_FL LI Yue-yang
CONG Hong-lian
LUO Hai-chi
CAO Xia
JIANG Gao-ming
Author_FL_xml – sequence: 1
  fullname: CAO Xia
– sequence: 2
  fullname: LI Yue-yang
– sequence: 3
  fullname: LUO Hai-chi
– sequence: 4
  fullname: JIANG Gao-ming
– sequence: 5
  fullname: CONG Hong-lian
Author_xml – sequence: 1
  fullname: 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲
BookMark eNo9j7tKA0EYhaeIYIx5CbGx2PWfmd2dTKnBGwRsUtiF2cvEXXWjWUTTaVDwFrGJRUDFC9jYBC2yKfI02Ytv4UrE6sDh4xy-GZTzG76D0DwGlXKDL3qqGwS-igGYgilsqQQwU4GrgPUcyv_306gYBK4JYOhGSWc4j5ajp-F4eBv12_HHc3QTfp93xoPr6K2XvHeSyzAanaaPnejuIumdpd3RePCQXvXTURi_niRfL_F9GH92Z9GUFLuBU_zLAqqurlTL60plc22jvFRRLAPrChMlRsC2qdRsYYIhMXdsomsgKDNKYDqaYNKypSSWBC4pJdLEOnc0TkxJCaMFtDCZPRK-FH695jUOm352WPMCr261do5_pYFnyhk7N2Gt7YZfP3Azer_p7olmq2YwSnSmAac_xeZ0pw
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1007-130X.2017.09.015
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate A lace retrieval method based on hierarchicalmatching and multiple features
DocumentTitle_FL A lace retrieval method based on hierarchical matching and multiple features
EndPage 1699
ExternalDocumentID jsjgcykx201709015
673257409
GrantInformation_xml – fundername: 江苏省产学研联合创新资金-前瞻性联合研究项目; 江苏高校优势学科建设工程资助项目; 中央高校基本科研业务费
  funderid: (BY2015019-11,BY2014023-20); 江苏高校优势学科建设工程资助项目; (JUSRP51404A,JUSRP211A38)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c615-7a8720dd3f4dab06f19ed2540a37680be4a7fcdff2cf09f332fb159e492bf3273
ISSN 1007-130X
IngestDate Thu May 29 04:04:00 EDT 2025
Wed Feb 14 09:56:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 特征融合
gray-level co-occurrence matrix
灰度共生矩阵
灰度梯度共生矩阵
特征匹配
local binary pattern(LBP)
speeded up robust feature(SURF)
SURF
feature fusion
gray level-gradient co-occurrence matrix
局部二值模式
hierarchical matching
feature matching
层次匹配
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c615-7a8720dd3f4dab06f19ed2540a37680be4a7fcdff2cf09f332fb159e492bf3273
Notes 43-1258/TP
hierarchical matching; feature fusion ; feature matching;gray-level co-occurrence matrix; gray level-gradient co-occurrence matrix ;local binary pattern(LBP) ;speeded up robust feature(SURF)
Since the efficiency of the lace retrieval method based on image texture features is low, and in order to extract the effective texture features for lace identification, we propose a lace retrieval algorithm containing multiple features fusion through hierarchical matching. Firstly, we process the texture image by the Canny operator and obtain the Canny color image and the gray level-gradient co-occurrence matrix (GGCM). Secondly, energy, average gradient, average grayscale, correlation and other statistical characteristics are used for texture description. Finally, the extracted texture features are matched with geometry features and speeded up robust features (SURF) hierarchically, so the fusion of multiple features under hierarchical matching is realized to compensate for the deficiency of any single matching
PageCount 9
ParticipantIDs wanfang_journals_jsjgcykx201709015
chongqing_primary_673257409
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机工程与科学
PublicationTitleAlternate Computer Engineering & Science
PublicationTitle_FL Computer Engineering and Science
PublicationYear 2017
Publisher 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122
Publisher_xml – name: 江南大学教育部针织技术工程研究中心,江苏无锡,214122%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122
SSID ssib006568571
ssib017479296
ssib001050383
ssib015938883
ssib001102936
ssib051375740
ssib023646326
ssib036438059
ssib000459496
Score 2.085944
Snippet 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法。通过运用图像纹理特征标识图像,...
TP391.41; 针对基于图像纹理特征的蕾丝花边检索方法效率低下问题,为提高蕾丝花边检索效率,提出一种基于层次匹配下多种特征融合的蕾丝花边检索方法.通过运用图像纹理特征标...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1691
SubjectTerms SURF
局部二值模式
层次匹配
灰度共生矩阵
灰度梯度共生矩阵
特征匹配
特征融合
Title 基于层次匹配下多种特征融合的蕾丝花边检索方法
URI http://lib.cqvip.com/qk/94293X/201709/673257409.html
https://d.wanfangdata.com.cn/periodical/jsjgcykx201709015
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-130X
  databaseCode: ADMLS
  dateStart: 20130501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib015938883
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1BfEiioq1fhRpTsvWmUl2khwzu1OKWC9W6G2Zr7RU2KptQXtSUfCr4qUeCip-gBcvRQ_dHvrXdD_8L3wvM90OUop6CZn3XvI-MjP5JUzeEDIh4ywyMFFUEw5LFM6zuBorJ6lmUEouI7ircB9y5qY_fZtfn6vNDR27UvpqaXUlnkzWDj1X8j-jCjQYVzwl-w8jO-gUCFCH8YUSRhjKvxpjGtaomqKBpiHHUoZICVwqPRr6VNepdpEi6zRQNFRUQr1hhSWVAbI0pwqaC6qFZUGprDD0EwLMpKGkKrQs0OVQKVEGmkhuWVYs71A1kCI1GgAVoGM_YAbDzymgVcCptoYpv2AFjOY_v9zHx9hQh9ZsgRUlrHzd-gi6gFizrNz-3JGwsF9ZZ3WD6sF2o20dFN5DNyqsWFJjP1Ye2oA8MJhVrJWNQmtg9QFPQ0ScinXXs2qBFGAL7An1V_YjENh24Ka2oYAIeOVtlfz8aDEH4O4tTO1z5Ukiz7hUPAyq9MbHZEMl9ACX6rCZiSlf2ZkJVUwOVOC3hcIm2s0Ptf6R-9sXDF6pHA-ojni44TRMRnRj5satMiJXvJQx0bX5fcpHpR0AdAd8gO-ydrACADDLpDyQh_WpAMA8kMffC_glhA-XTJYQec1lAg203xQUPh0nE4XD145yF5OZLCy15u8BRLMn5lomas2XwN3sKXKyWJWN6_wRO02G1hbOkKDzcWdv501n60n3-6fO6_avZ-t72686Xzd739Z7L9qd3cf9D-udt897m0_7G7t72-_7L7f6u-3ul0e9n5-779rdHxtnyexUOFufrha_HKkmAO2rIpLCc9KUGZ5GseMbV2WpB4uaCOZh6cQZj4RJUmO8xDjKMOaZGEKYceXFhsFK4BwZbi21svNkvBaJyDC4OZgf8TgFFO-6wojU8WMnEzIaJWMD95t388wyzcF4j5KrRUCaxftmubm4vDifPLzzAGPoIIy_cGQXY-QESubbhRfJ8Mr91ewSAOiV-HJxE_0G8VmWnA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B1%82%E6%AC%A1%E5%8C%B9%E9%85%8D%E4%B8%8B%E5%A4%9A%E7%A7%8D%E7%89%B9%E5%BE%81%E8%9E%8D%E5%90%88%E7%9A%84%E8%95%BE%E4%B8%9D%E8%8A%B1%E8%BE%B9%E6%A3%80%E7%B4%A2%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E6%9B%B9%E9%9C%9E+%E6%9D%8E%E5%B2%B3%E9%98%B3+%E7%BD%97%E6%B5%B7%E9%A9%B0+%E8%92%8B%E9%AB%98%E6%98%8E+%E4%B8%9B%E6%B4%AA%E8%8E%B2&rft.date=2017&rft.issn=1007-130X&rft.volume=39&rft.issue=9&rft.spage=1691&rft.epage=1699&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2017.09.015&rft.externalDocID=673257409
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg