Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier

Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach f...

Full description

Saved in:
Bibliographic Details
Published inBrain informatics Vol. 11; no. 1; pp. 7 - 13
Main Authors Patel, Pragati, Balasubramanian, Sivarenjani, Annavarapu, Ramesh Naidu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2198-4018
2198-4026
2198-4026
DOI10.1186/s40708-024-00220-3

Cover

Abstract Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F -score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q  = 3. In addition, the highest accuracy and F -score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements. Highlights Subject independent human emotion identification is studied using SEED data set. Tsallis entropy is employed as feature and performance variation with Tsallis parameter ( q  =  2, 3, 4) is examined. Performance of kNN classifier is examined with Tsallis entropy feature. Emotion identification at various levels is studied, brain region, EEG rhythms, brain hemisphere. Prospects of TsEn-based real-time emotion recognition framework is canvassed.
AbstractList Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F -score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q  = 3. In addition, the highest accuracy and F -score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements. Highlights Subject independent human emotion identification is studied using SEED data set. Tsallis entropy is employed as feature and performance variation with Tsallis parameter ( q  =  2, 3, 4) is examined. Performance of kNN classifier is examined with Tsallis entropy feature. Emotion identification at various levels is studied, brain region, EEG rhythms, brain hemisphere. Prospects of TsEn-based real-time emotion recognition framework is canvassed.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.HighlightsSubject independent human emotion identification is studied using SEED data set.Tsallis entropy is employed as feature and performance variation with Tsallis parameter (q = 2, 3, 4) is examined.Performance of kNN classifier is examined with Tsallis entropy feature.Emotion identification at various levels is studied, brain region, EEG rhythms, brain hemisphere.Prospects of TsEn-based real-time emotion recognition framework is canvassed.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements. Subject independent human emotion identification is studied using SEED data set.Tsallis entropy is employed as feature and performance variation with Tsallis parameter (q = 2, 3, 4) is examined.Performance of kNN classifier is examined with Tsallis entropy feature.Emotion identification at various levels is studied, brain region, EEG rhythms, brain hemisphere.Prospects of TsEn-based real-time emotion recognition framework is canvassed.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F -score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q  = 3. In addition, the highest accuracy and F -score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-[theta] (4-7 Hz), alpha-[alpha] (8-15 Hz), beta- (16-31 Hz), gamma-[gamma] (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
Abstract Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
ArticleNumber 7
Audience Academic
Author Patel, Pragati
Annavarapu, Ramesh Naidu
Balasubramanian, Sivarenjani
Author_xml – sequence: 1
  givenname: Pragati
  surname: Patel
  fullname: Patel, Pragati
  organization: Department of Physics, Pondicherry University
– sequence: 2
  givenname: Sivarenjani
  surname: Balasubramanian
  fullname: Balasubramanian, Sivarenjani
  organization: Department of Physics, Pondicherry University
– sequence: 3
  givenname: Ramesh Naidu
  surname: Annavarapu
  fullname: Annavarapu, Ramesh Naidu
  email: rameshnaidu.phy@pondiuni.edu.in
  organization: Department of Physics, Pondicherry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38441825$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAUjFARLaU_wAFZ4gKHFDu2E-eEqtVSVlRFgnK2HMdJvUrsxU6A_XveJsvC9lChHBI7M2PPzHuenDjvTJK8JPiSEJG_iwwXWKQ4YynGWYZT-iQ5y0gpUoaz_OTwTcRpchHjGmNMcoxpmT9LTqlgjIiMnyXjIvgYURyrtdEDMr0frHfI1sYNtrFaTcsm-B71YzdYfa-cMx1aLq93pLRSro5ojNa16C6qrrMRATX4zRY1Rg1jMAgg6NPtLdKdihFETXiRPG1UF83F_n2efPuwvFt8TG8-X68WVzepzgkb0obWutSEsYozraqcVVVBKl0q0pS6EiXH4KiAY0whctWURFSEZpyxmmFIQdHzZDXr1l6t5SbYXoWt9MrKacOHVqoApjojiWBUGJ41nBOGOVO4qIQgtdYKZw3loEVnrdFt1PYnWD0IEix3nci5EwmdyKkTSYH1fmZtxqo3td5lo7qjqxz_cfZetv4HCFIuOC9A4c1eIfjvo4mD7G3UpuuUM36MMitpUWCSYQHQ1w-gaz8GBwlPKE7yfDJyOaNaBb6tazwcrOGpTW81TFljYf-qEBCkoCQHwtsjAmAG82to1RijXH39cox99a_fg9E_EwcAMQP0bvCCaaS2wzRlcAvbPZ5l9oD6XwXsa4sAdq0JfzN5hPUbOFYJpg
CitedBy_id crossref_primary_10_3390_app14146175
crossref_primary_10_1109_ACCESS_2024_3422228
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_3390_biomimetics9120761
crossref_primary_10_3390_e27010096
crossref_primary_10_1002_ffj_3808
Cites_doi 10.1007/BF02344719
10.1016/j.jneumeth.2020.108904
10.1177/0539018405058216
10.1023/B:BRAT.0000006333.93597.9d
10.3390/s19071631
10.3389/fninf.2019.00040
10.48047/nq.2023.21.01.NQ20009
10.1016/j.measurement.2019.107003
10.1002/int.23096
10.1155/2018/5238028
10.1093/oso/9780195159769.001.0001
10.1186/s40708-021-00141-5
10.1016/S0378-4371(02)00958-5
10.1109/JSEN.2020.3027181
10.1016/j.jneumeth.2022.109483
10.1136/jnnp.74.1.9
10.1037/0003-066X.50.5.372
10.3390/sym11050683
10.1007/BF01016429
10.1007/s00521-015-2149-8
10.1007/s00521-018-3620-0
10.1186/s12991-017-0157-z
10.3390/e19030130
10.1016/j.eplepsyres.2007.08.002
10.3906/elk-1805-126
10.1016/j.knosys.2013.02.014
10.3390/s18082739
10.1016/j.jneumeth.2021.109209
10.1523/JNEUROSCI.17-03-01179.1997
10.3390/e19050196
10.1037/0022-3514.53.4.712
10.3390/e23080984
10.1016/S0013-4694(97)00111-9
10.1016/S0378-4371(98)00471-3
10.1007/s40815-018-0567-3
10.1114/1.1541013
10.1016/S0375-9601(03)00949-6
10.3390/e18060221
10.1590/S0103-97331999000100002
10.1109/TSMCB.2005.854502
10.1016/j.knosys.2015.08.004
10.1002/j.1538-7305.1948.tb01338.x
10.1007/s10111-017-0450-2
10.1142/S0129065718500387
10.1007/978-3-642-29305-4_133
10.1109/CW.2010.37
10.21437/ICSLP.2002-559
10.1109/NER.2009.5109347
10.1109/CNE.2007.369753
10.1109/ICAwST.2017.8256518
10.1109/BSEC.2010.5510813
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s40708-024-00220-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 2198-4026
EndPage 13
ExternalDocumentID oai_doaj_org_article_18438e52f5514054a07b881dcca02f35
10.1186/s40708-024-00220-3
PMC11358557
A785448316
38441825
10_1186_s40708_024_00220_3
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
ADRAZ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARAPS
ASPBG
AVWKF
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
IAO
IPNFZ
ISR
ITC
K6V
K7-
KQ8
M0N
M48
M~E
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSYQQ
RIG
RPM
RSV
SOJ
AASML
AAYXX
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c614t-f3dc9c144b54cab64bb71bc9a1f9cb89506007feae786af918b132544d40402a3
IEDL.DBID M48
ISSN 2198-4018
2198-4026
IngestDate Tue Oct 14 19:04:26 EDT 2025
Sun Oct 26 04:02:34 EDT 2025
Tue Sep 30 17:09:18 EDT 2025
Thu Sep 04 17:48:32 EDT 2025
Wed Oct 08 02:45:39 EDT 2025
Mon Oct 20 16:58:16 EDT 2025
Thu Oct 16 16:21:26 EDT 2025
Mon Jul 21 05:14:03 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Wed Oct 01 03:17:23 EDT 2025
Fri Feb 21 02:39:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Emotion identification
KNN classifier
Brain region
Tsallis entropy
SEED data set
EEG channel selection
EEG signal
Feature engineering
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-f3dc9c144b54cab64bb71bc9a1f9cb89506007feae786af918b132544d40402a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s40708-024-00220-3
PMID 38441825
PQID 2937516635
PQPubID 2046126
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_18438e52f5514054a07b881dcca02f35
unpaywall_primary_10_1186_s40708_024_00220_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11358557
proquest_miscellaneous_2937701208
proquest_journals_2937516635
gale_infotracacademiconefile_A785448316
gale_incontextgauss_ISR_A785448316
pubmed_primary_38441825
crossref_citationtrail_10_1186_s40708_024_00220_3
crossref_primary_10_1186_s40708_024_00220_3
springer_journals_10_1186_s40708_024_00220_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Brain informatics
PublicationTitleAbbrev Brain Inf
PublicationTitleAlternate Brain Inform
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Zhang, Bi, Sun (CR49) 2013
Guo, Chai, Candra (CR35) 2019; 21
Shannon (CR15) 1948; 27
Herwig, Satrapi, Schönfeldt-Lecuona (CR8) 2003; 16
Gao, Wang, Potter (CR10) 2020; 346
Lotfalinezhad, Maleki (CR26) 2019; 27
Contreras, Destexhe, Sejnowski, Steriade (CR43) 1997; 17
Tong, Bezerianos, Malhotra (CR45) 2003; 314
Zheng, Hu, Zheng (CR56) 2022; 37
Acharya, Sree, Swapna (CR18) 2013; 45
Coronel, Garn, Waser (CR20) 2017; 19
Chu, Huang, Jian, Cheng (CR51) 2017; 16
Chen, Miao, Yang (CR33) 2019; 19
Lang (CR3) 1995; 50
Acharya, Fujita, Sudarshan (CR11) 2015; 88
Ekman, Friesen, O’sullivan (CR2) 1987; 53
CR4
CR6
Cai, Chen, Yin (CR31) 2019; 11
Haas (CR7) 2003; 74
Yao, Wang, Lu (CR54) 2021; 23
Tsallis (CR38) 1999; 29
CR47
CR46
Bezerianos, Tong, Thakor (CR48) 2003; 31
Mohammadi, Frounchi, Amiri (CR25) 2017; 28
Martínez-Rodrigo, García-Martínez, Zunino (CR36) 2019; 13
Capurro, Diambra, Lorenzo (CR44) 1999; 265
Martínez-Rodrigo, García-Martínez, Alcaraz (CR34) 2019; 29
Rosso, Martin, Plastino (CR42) 2002; 313
García-Martínez, Martínez-Rodrigo, Zangróniz Cantabrana (CR52) 2016; 18
Alazrai, Homoud, Alwanni, Daoud (CR30) 2018; 18
Cai, Han, Chen (CR23) 2018; 2018
Zhao, Van-Eetvelt, Goh (CR19) 2007; 1
CR12
Cherian, Kanaga (CR16) 2022; 369
Gell-Mann, Tsallis (CR40) 2004
CR55
Anderson, McOwan (CR5) 2006; 36
Tsallis (CR39) 1988; 52
CR50
Li, Ouyang, Richards (CR17) 2007; 77
Patel, Annavarapu (CR13) 2021; 8
García-Martínez, Martínez-Rodrigo, Fernández-Caballero (CR32) 2020; 32
Lu, Wang, Wu (CR53) 2020; 150
CR27
Patel, Balasubramanian, Annavarapu (CR14) 2023; 21
CR21
Yin, Liu, Liu (CR29) 2017; 19
Schaul (CR41) 1998; 106
Kim, Bang, Kim (CR9) 2004; 42
Bhattacharyya, Tripathy, Garg, Pachori (CR37) 2020; 21
Scherer (CR1) 2005; 44
Movahed, Jahromi, Shahyad, Meftahi (CR22) 2021; 358
Bos (CR24) 2006; 56
García-Martínez, Martínez-Rodrigo, Zangróniz (CR28) 2017; 19
A Martínez-Rodrigo (220_CR34) 2019; 29
C Coronel (220_CR20) 2017; 19
A Capurro (220_CR44) 1999; 265
F Zheng (220_CR56) 2022; 37
220_CR12
RA Movahed (220_CR22) 2021; 358
220_CR55
220_CR50
U Herwig (220_CR8) 2003; 16
R Alazrai (220_CR30) 2018; 18
220_CR47
220_CR46
P Patel (220_CR14) 2023; 21
A Bezerianos (220_CR48) 2003; 31
C Tsallis (220_CR39) 1988; 52
UR Acharya (220_CR18) 2013; 45
J Cai (220_CR31) 2019; 11
R Cherian (220_CR16) 2022; 369
H Cai (220_CR23) 2018; 2018
Y Gao (220_CR10) 2020; 346
A Martínez-Rodrigo (220_CR36) 2019; 13
KR Scherer (220_CR1) 2005; 44
PJ Lang (220_CR3) 1995; 50
S Tong (220_CR45) 2003; 314
L Yao (220_CR54) 2021; 23
P Zhao (220_CR19) 2007; 1
Z Mohammadi (220_CR25) 2017; 28
D-W Chen (220_CR33) 2019; 19
LF Haas (220_CR7) 2003; 74
B García-Martínez (220_CR28) 2017; 19
W-L Chu (220_CR51) 2017; 16
220_CR6
DO Bos (220_CR24) 2006; 56
C Tsallis (220_CR38) 1999; 29
KH Kim (220_CR9) 2004; 42
A Bhattacharyya (220_CR37) 2020; 21
220_CR4
P Patel (220_CR13) 2021; 8
P Ekman (220_CR2) 1987; 53
OA Rosso (220_CR42) 2002; 313
X Li (220_CR17) 2007; 77
220_CR27
N Schaul (220_CR41) 1998; 106
M Gell-Mann (220_CR40) 2004
220_CR21
CE Shannon (220_CR15) 1948; 27
Y Lu (220_CR53) 2020; 150
B García-Martínez (220_CR32) 2020; 32
Z Yin (220_CR29) 2017; 19
A Zhang (220_CR49) 2013
UR Acharya (220_CR11) 2015; 88
D Contreras (220_CR43) 1997; 17
K Anderson (220_CR5) 2006; 36
K Guo (220_CR35) 2019; 21
B García-Martínez (220_CR52) 2016; 18
H Lotfalinezhad (220_CR26) 2019; 27
References_xml – volume: 42
  start-page: 419
  year: 2004
  end-page: 427
  ident: CR9
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02344719
– volume: 346
  start-page: 108904
  year: 2020
  ident: CR10
  article-title: Single-trial EEG emotion recognition using granger causality/transfer entropy analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108904
– volume: 44
  start-page: 695
  year: 2005
  end-page: 729
  ident: CR1
  article-title: What are emotions? And how can they be measured?
  publication-title: Soc Sci Inf
  doi: 10.1177/0539018405058216
– volume: 16
  start-page: 95
  year: 2003
  end-page: 99
  ident: CR8
  article-title: Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation
  publication-title: Brain Topogr
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– volume: 19
  start-page: 1631
  year: 2019
  ident: CR33
  article-title: A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition
  publication-title: Sensors
  doi: 10.3390/s19071631
– volume: 13
  start-page: 40
  year: 2019
  ident: CR36
  article-title: Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2019.00040
– volume: 21
  start-page: 135
  year: 2023
  end-page: 149
  ident: CR14
  article-title: Tsallis entropy as biomarker to assess and identify human emotion via EEG rhythm analysis
  publication-title: NeuroQuantology
  doi: 10.48047/nq.2023.21.01.NQ20009
– ident: CR4
– volume: 150
  start-page: 107003
  year: 2020
  ident: CR53
  article-title: Dynamic entropy-based pattern learning to identify emotions from EEG signals across individuals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107003
– ident: CR12
– volume: 37
  start-page: 12511
  year: 2022
  end-page: 12533
  ident: CR56
  article-title: Dynamic differential entropy and brain connectivity features based EEG emotion recognition
  publication-title: Int J Intell Syst
  doi: 10.1002/int.23096
– volume: 2018
  start-page: 1
  year: 2018
  ident: CR23
  article-title: A pervasive approach to EEG-based depression detection
  publication-title: Complexity
  doi: 10.1155/2018/5238028
– year: 2004
  ident: CR40
  publication-title: Nonextensive entropy: interdisciplinary applications
  doi: 10.1093/oso/9780195159769.001.0001
– volume: 8
  start-page: 1
  year: 2021
  end-page: 13
  ident: CR13
  article-title: EEG-based human emotion recognition using entropy as a feature extraction measure
  publication-title: Brain Informatics
  doi: 10.1186/s40708-021-00141-5
– volume: 313
  start-page: 587
  year: 2002
  end-page: 608
  ident: CR42
  article-title: Brain electrical activity analysis using wavelet-based informational tools
  publication-title: Phys A Stat Mech its Appl
  doi: 10.1016/S0378-4371(02)00958-5
– volume: 21
  start-page: 3579
  year: 2020
  end-page: 3591
  ident: CR37
  article-title: A novel multivariate-multiscale approach for computing EEG spectral and temporal complexity for human emotion recognition
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3027181
– volume: 369
  start-page: 109483
  year: 2022
  ident: CR16
  article-title: Theoretical and methodological analysis of EEG based seizure detection and prediction: an exhaustive review
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109483
– volume: 74
  start-page: 9
  year: 2003
  end-page: LP9
  ident: CR7
  article-title: Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography
  publication-title: J Neurol Neurosurg; Psychiatry
  doi: 10.1136/jnnp.74.1.9
– volume: 50
  start-page: 372
  year: 1995
  ident: CR3
  article-title: The emotion probe: studies of motivation and attention
  publication-title: Am Psychol
  doi: 10.1037/0003-066X.50.5.372
– ident: CR21
– volume: 11
  start-page: 683
  year: 2019
  ident: CR31
  article-title: Multiple transferable recursive feature elimination technique for emotion recognition based on EEG signals
  publication-title: Symmetry
  doi: 10.3390/sym11050683
– ident: CR46
– volume: 52
  start-page: 479
  year: 1988
  end-page: 487
  ident: CR39
  article-title: Possible generalization of Boltzmann-Gibbs statistics
  publication-title: J Stat Phys
  doi: 10.1007/BF01016429
– ident: CR50
– volume: 28
  start-page: 1985
  year: 2017
  end-page: 1990
  ident: CR25
  article-title: Wavelet-based emotion recognition system using EEG signal
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2149-8
– volume: 32
  start-page: 13221
  year: 2020
  end-page: 13231
  ident: CR32
  article-title: Nonlinear predictability analysis of brain dynamics for automatic recognition of negative stress
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3620-0
– volume: 16
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR51
  article-title: Analysis of EEG entropy during visual evocation of emotion in schizophrenia
  publication-title: Ann Gen Psychiatry
  doi: 10.1186/s12991-017-0157-z
– volume: 19
  start-page: 130
  year: 2017
  ident: CR20
  article-title: Quantitative EEG markers of entropy and auto mutual information in relation to MMSE scores of probable Alzheimer’s disease patients
  publication-title: Entropy
  doi: 10.3390/e19030130
– volume: 77
  start-page: 70
  year: 2007
  end-page: 74
  ident: CR17
  article-title: Predictability analysis of absence seizures with permutation entropy
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2007.08.002
– volume: 27
  start-page: 4070
  year: 2019
  end-page: 4081
  ident: CR26
  article-title: Application of multiscale fuzzy entropy features for multilevel subject-dependent emotion recognition
  publication-title: Turkish J Electr Eng Comput Sci
  doi: 10.3906/elk-1805-126
– volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: CR18
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.02.014
– ident: CR47
– volume: 18
  start-page: 2739
  year: 2018
  ident: CR30
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
  doi: 10.3390/s18082739
– volume: 358
  start-page: 109209
  year: 2021
  ident: CR22
  article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109209
– volume: 17
  start-page: 1179
  year: 1997
  end-page: 1196
  ident: CR43
  article-title: Spatiotemporal patterns of spindle oscillations in cortex and thalamus
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-03-01179.1997
– volume: 19
  start-page: 196
  year: 2017
  ident: CR28
  article-title: Symbolic analysis of brain dynamics detects negative stress
  publication-title: Entropy
  doi: 10.3390/e19050196
– volume: 1
  start-page: 5127
  year: 2007
  ident: CR19
  article-title: Characterization of EEGs in Alzheimer’s disease using information theoretic methods
  publication-title: IEEE Eng Med Biol Mag
– ident: CR6
– volume: 53
  start-page: 712
  year: 1987
  ident: CR2
  article-title: Universals and cultural differences in the judgments of facial expressions of emotion
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.53.4.712
– volume: 23
  start-page: 984
  year: 2021
  ident: CR54
  article-title: EEG-based emotion recognition by exploiting fused network entropy measures of complex networks across subjects
  publication-title: Entropy
  doi: 10.3390/e23080984
– volume: 106
  start-page: 101
  year: 1998
  end-page: 107
  ident: CR41
  article-title: The fundamental neural mechanisms of electroencephalography
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00111-9
– volume: 265
  start-page: 235
  year: 1999
  end-page: 254
  ident: CR44
  article-title: Human brain dynamics: the analysis of EEG signals with Tsallis information measure
  publication-title: Phys A Stat Mech its Appl
  doi: 10.1016/S0378-4371(98)00471-3
– ident: CR27
– volume: 21
  start-page: 263
  year: 2019
  end-page: 273
  ident: CR35
  article-title: A hybrid fuzzy cognitive map/support vector machine approach for EEG-based emotion classification using compressed sensing
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-018-0567-3
– volume: 56
  start-page: 1
  year: 2006
  end-page: 17
  ident: CR24
  article-title: EEG-based emotion recognition
  publication-title: Influ Vis Audit Stimuli
– volume: 31
  start-page: 221
  year: 2003
  end-page: 232
  ident: CR48
  article-title: Time-dependent entropy estimation of EEG rhythm changes following brain ischemia
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1541013
– volume: 314
  start-page: 354
  year: 2003
  end-page: 361
  ident: CR45
  article-title: Parameterized entropy analysis of EEG following hypoxic–ischemic brain injury
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(03)00949-6
– volume: 18
  start-page: 221
  year: 2016
  ident: CR52
  article-title: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings
  publication-title: Entropy
  doi: 10.3390/e18060221
– volume: 29
  start-page: 1
  year: 1999
  end-page: 35
  ident: CR38
  article-title: Nonextensive statistics: theoretical, experimental and computational evidences and connections
  publication-title: Brazilian J Phys
  doi: 10.1590/S0103-97331999000100002
– volume: 36
  start-page: 96
  year: 2006
  end-page: 105
  ident: CR5
  article-title: A real-time automated system for the recognition of human facial expressions
  publication-title: IEEE Trans Syst Man, Cybern Part B
  doi: 10.1109/TSMCB.2005.854502
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: CR11
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2015.08.004
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: CR15
  article-title: A mathematical theory of communication
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: CR55
– volume: 19
  start-page: 667
  year: 2017
  end-page: 685
  ident: CR29
  article-title: Dynamical recursive feature elimination technique for neurophysiological signal-based emotion recognition
  publication-title: Cogn Technol Work
  doi: 10.1007/s10111-017-0450-2
– volume: 29
  start-page: 1850038
  year: 2019
  ident: CR34
  article-title: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065718500387
– start-page: 505
  year: 2013
  end-page: 508
  ident: CR49
  article-title: A method for drowsiness detection based on Tsallis entropy of EEG
  publication-title: World congress on medical physics and biomedical engineering, May 26–31, 2012, Beijing China
  doi: 10.1007/978-3-642-29305-4_133
– volume: 32
  start-page: 13221
  year: 2020
  ident: 220_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3620-0
– volume: 88
  start-page: 85
  year: 2015
  ident: 220_CR11
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2015.08.004
– volume: 265
  start-page: 235
  year: 1999
  ident: 220_CR44
  publication-title: Phys A Stat Mech its Appl
  doi: 10.1016/S0378-4371(98)00471-3
– volume: 369
  start-page: 109483
  year: 2022
  ident: 220_CR16
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109483
– volume: 21
  start-page: 3579
  year: 2020
  ident: 220_CR37
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3027181
– volume: 74
  start-page: 9
  year: 2003
  ident: 220_CR7
  publication-title: J Neurol Neurosurg; Psychiatry
  doi: 10.1136/jnnp.74.1.9
– volume: 21
  start-page: 263
  year: 2019
  ident: 220_CR35
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-018-0567-3
– volume: 29
  start-page: 1
  year: 1999
  ident: 220_CR38
  publication-title: Brazilian J Phys
  doi: 10.1590/S0103-97331999000100002
– volume: 17
  start-page: 1179
  year: 1997
  ident: 220_CR43
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-03-01179.1997
– volume: 16
  start-page: 95
  year: 2003
  ident: 220_CR8
  publication-title: Brain Topogr
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– volume: 52
  start-page: 479
  year: 1988
  ident: 220_CR39
  publication-title: J Stat Phys
  doi: 10.1007/BF01016429
– volume: 56
  start-page: 1
  year: 2006
  ident: 220_CR24
  publication-title: Influ Vis Audit Stimuli
– start-page: 505
  volume-title: World congress on medical physics and biomedical engineering, May 26–31, 2012, Beijing China
  year: 2013
  ident: 220_CR49
  doi: 10.1007/978-3-642-29305-4_133
– volume: 106
  start-page: 101
  year: 1998
  ident: 220_CR41
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00111-9
– volume: 19
  start-page: 196
  year: 2017
  ident: 220_CR28
  publication-title: Entropy
  doi: 10.3390/e19050196
– volume: 44
  start-page: 695
  year: 2005
  ident: 220_CR1
  publication-title: Soc Sci Inf
  doi: 10.1177/0539018405058216
– ident: 220_CR12
– volume: 23
  start-page: 984
  year: 2021
  ident: 220_CR54
  publication-title: Entropy
  doi: 10.3390/e23080984
– ident: 220_CR4
  doi: 10.1109/CW.2010.37
– volume: 27
  start-page: 379
  year: 1948
  ident: 220_CR15
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 220_CR6
  doi: 10.21437/ICSLP.2002-559
– volume: 45
  start-page: 147
  year: 2013
  ident: 220_CR18
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.02.014
– volume: 36
  start-page: 96
  year: 2006
  ident: 220_CR5
  publication-title: IEEE Trans Syst Man, Cybern Part B
  doi: 10.1109/TSMCB.2005.854502
– volume: 19
  start-page: 667
  year: 2017
  ident: 220_CR29
  publication-title: Cogn Technol Work
  doi: 10.1007/s10111-017-0450-2
– volume: 37
  start-page: 12511
  year: 2022
  ident: 220_CR56
  publication-title: Int J Intell Syst
  doi: 10.1002/int.23096
– ident: 220_CR47
  doi: 10.1109/NER.2009.5109347
– volume: 2018
  start-page: 1
  year: 2018
  ident: 220_CR23
  publication-title: Complexity
  doi: 10.1155/2018/5238028
– volume: 346
  start-page: 108904
  year: 2020
  ident: 220_CR10
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108904
– volume: 19
  start-page: 130
  year: 2017
  ident: 220_CR20
  publication-title: Entropy
  doi: 10.3390/e19030130
– volume: 18
  start-page: 221
  year: 2016
  ident: 220_CR52
  publication-title: Entropy
  doi: 10.3390/e18060221
– volume: 29
  start-page: 1850038
  year: 2019
  ident: 220_CR34
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065718500387
– volume: 11
  start-page: 683
  year: 2019
  ident: 220_CR31
  publication-title: Symmetry
  doi: 10.3390/sym11050683
– volume: 27
  start-page: 4070
  year: 2019
  ident: 220_CR26
  publication-title: Turkish J Electr Eng Comput Sci
  doi: 10.3906/elk-1805-126
– volume: 77
  start-page: 70
  year: 2007
  ident: 220_CR17
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2007.08.002
– ident: 220_CR55
– volume: 50
  start-page: 372
  year: 1995
  ident: 220_CR3
  publication-title: Am Psychol
  doi: 10.1037/0003-066X.50.5.372
– volume: 42
  start-page: 419
  year: 2004
  ident: 220_CR9
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02344719
– volume: 8
  start-page: 1
  year: 2021
  ident: 220_CR13
  publication-title: Brain Informatics
  doi: 10.1186/s40708-021-00141-5
– volume: 28
  start-page: 1985
  year: 2017
  ident: 220_CR25
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2149-8
– volume: 358
  start-page: 109209
  year: 2021
  ident: 220_CR22
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109209
– ident: 220_CR50
  doi: 10.1109/CNE.2007.369753
– volume: 150
  start-page: 107003
  year: 2020
  ident: 220_CR53
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107003
– ident: 220_CR46
– volume: 19
  start-page: 1631
  year: 2019
  ident: 220_CR33
  publication-title: Sensors
  doi: 10.3390/s19071631
– volume: 21
  start-page: 135
  year: 2023
  ident: 220_CR14
  publication-title: NeuroQuantology
  doi: 10.48047/nq.2023.21.01.NQ20009
– ident: 220_CR27
  doi: 10.1109/ICAwST.2017.8256518
– volume-title: Nonextensive entropy: interdisciplinary applications
  year: 2004
  ident: 220_CR40
  doi: 10.1093/oso/9780195159769.001.0001
– volume: 18
  start-page: 2739
  year: 2018
  ident: 220_CR30
  publication-title: Sensors
  doi: 10.3390/s18082739
– volume: 13
  start-page: 40
  year: 2019
  ident: 220_CR36
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2019.00040
– volume: 53
  start-page: 712
  year: 1987
  ident: 220_CR2
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.53.4.712
– volume: 1
  start-page: 5127
  year: 2007
  ident: 220_CR19
  publication-title: IEEE Eng Med Biol Mag
– volume: 314
  start-page: 354
  year: 2003
  ident: 220_CR45
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(03)00949-6
– ident: 220_CR21
  doi: 10.1109/BSEC.2010.5510813
– volume: 31
  start-page: 221
  year: 2003
  ident: 220_CR48
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1541013
– volume: 16
  start-page: 1
  year: 2017
  ident: 220_CR51
  publication-title: Ann Gen Psychiatry
  doi: 10.1186/s12991-017-0157-z
– volume: 313
  start-page: 587
  year: 2002
  ident: 220_CR42
  publication-title: Phys A Stat Mech its Appl
  doi: 10.1016/S0378-4371(02)00958-5
SSID ssj0001600396
Score 2.3570945
Snippet Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces,...
Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces,...
Abstract Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain–computer interfaces,...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Artificial Intelligence
Brain region
Classifiers
Cognitive Psychology
Computation by Abstract Devices
Computer Science
Datasets
EEG channel selection
EEG signal
Electroencephalography
Emotion identification
Emotion recognition
Emotional factors
Emotions
Entropy
Feature engineering
Frequency ranges
Health Informatics
Human-computer interface
Neurophysiology
Neurosciences
Parameters
Performance enhancement
Tsallis entropy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hvQAPCBgfgYEMQvDAosWJEzuPZeoYIPoAm7Q3y3adUamk1dII9b_nzklDC9LggcfGF9f2Xe7DvvsZ4FVSFRa56WKPUU4sZJ7HZZladORQFUpsUgHs-fOkOD0XHy_yi62rvignrIMH7hbuiO4jUdhRRaYd_QuTSKvQycJ_TtIqC-iliSq3gqmwu1JQ0Wm4WQ6jagySuNpUzKjiqMEohk79UxGTDUNFtGOVAnj_nyp6y0b9nj85HKLehpttvTTrH2Y-37JTJ3fhTu9gslE3sXtww9f3YX9UY3D9fc1es5DyGfbS96E9ptGwprW0G8N8d6UPm037FKLANUYVKCwkHlKVcO3nbDx-Ty_FluqEGaXOX7KzBgczaxgNdrFcs8oHyFCGJOzTZMIcuenYqb96AOcn47Pj07i_hyF2aLxXcZVNXekw8rK5cMYWwlrJrSsNr0pnVUkYhYnEbr1UhalKrizGuLkQU4EqIjXZQ9irF7V_DAx_oYp1SCqU4GgLs7QSeW6sraTBBxHwDR-060HK6a6MuQ7Biip0xzuNvNOBdzqL4O3wzrKD6LiW-h2xd6AkeO3wAIVO90Kn_yZ0Ebwk4dAEoFFThs6laZtGf_j6RY-kwpmrjBcRvOmJqgXOwZm-4AFXgjC3digPNkKmexXSaFwbmXNyCCN4MTTjx08nOqb2i7ajkVT-rCJ41MnkMLFMoaeL8X8Eakdad2a-21LPvgWAcc4zjCJzGcHhRrB_jeu6pT0chP8fOPHkf3DiKdxK6TsOCUYHsLe6av0zdBNX9nnQCD8BZL1cHw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4QMBgBAYyCMEDi9Z82nlAqJs6BogKjU3am2W7SVepS0rTCPW_58756ApSxWOSS2Tnzvdh3_0O4G0_izVy07gpRjluyKPITRJfoyOHqpDjI2HBnr-P4rPL8OtVdLUDo7YWhtIqW51oFfW4MLRHfoRmiUce2cdP818udY2i09W2hYZqWiuMP1qIsTuw6xMyVg92j4ejH-frXZeYilFtxzmMtjF48kRbSSPioxKjG8oG8EOXbBsqqA1rZUH9_1Xdt2zX33mV3eHqfbhb5XO1-q1ms1v26_QhPGgcTzaoJeUR7KT5Y9gb5Bh036zYO2ZTQe0e-x5UJzQaVlaadmlYWrf6YdNxk1pkucmoMoXZhESqHs7TGRsOP9NLrqb6YUYp9RN2UeJgpiWjwRbzFctSCyXKkIR9G42YIfcdP5ounsDl6fDi5Mxt-jO4Bo360s2CsUkMRmQ6Co3Scag197RJlJclRouEsAv7HD-bchGrLPGExtg3CsNxiKrDV8FT6OVFnj4Dhleoeg2ShiL00EYGfhZGkdI64wpvOOC1fJCmAS-nHhozaYMYEcuadxJ5Jy3vZODAh-6deQ3dsZX6mNjbURLstr1RLCayWcWSmuMIlOqM_Ex0dlWfa4EePy6Dvp8FkQNvSDgkAWvklLkzUVVZyi8_z-WAC5y5CLzYgfcNUVbgHIxqCiHwTxAW1wblQStkslEtpVwvBAded49RKdBJj8rToqppOJVFCwf2a5nsJhYI9ICFj2-LDWndmPnmk3x6bYHHPS_A6DLiDhy2gr0e17Zfe9gJ_39w4vn2Wb-Aez6tUJtSdAC95aJKX6JjuNSvmtX-B6hZW0Y
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8ATjAXjgY2MQGMggBA8sokmc2HksVccA0QfYpL1ZtpuUSiWtmkao_547xwkroAkeE58t23e-D_s-AF4OyswgNm1YoJUTcpGmYZ7HBhU5ZIUCm6RL9vx5kp2e848X6YUPCqs7b_fuSdJxanesZfa2RtODnupjHpLgQe5xHW6g_hFTwYaRj3FwNysZBZy6qnJoUaOBFMkuWuavw-xIJJe4_0_2fEk-_e472T-g3oabTbXS2x96sbgko07uwR2vXLJhSw334VpR7cPBsELD-vuWvWLO3dPdo-_D3a6eA_PH-wCaEU2Q1Y2hyxlWtBV-2HzqPYocEhkFpDDnh0hBw1WxYOPxe-oUGgobZuRJP2NnNc5vXjOa_3K1ZWXhMogyBGGfJhNmSWvHQYv1Azg_GZ-NTkNfliG0KMs3YZlMbW7REDMpt9pk3BgRGZvrqMytkTmlLBwIHLYQMtNlHkmDJm_K-ZQjx4h1cgh71bIqHgHDL-S4FkG55BGKxiQueZpqY0qh8UcAUYcaZX3OciqdsVDOdpGZatGpEJ3KoVMlAbzp-6zajB1XQr8jjPeQlG3b_ViuZ8ofXkU1cSQSc0nqJeq4eiCMREUfqX8Ql0kawAuiF0X5NCpy2Jnppq7Vh69f1FBIXLlMoiyA1x6oXOIarPbxD7gTlIJrB_KoozvlOUqtcG9EGpF-GMDzvhl5AT3w6KpYNi2MoGhoGcDDlkz7hSUSFV8ZY2-5Q8A7K99tqebfXL7xKErQqExFAMcdrf-a11Vbe9yfh3_AxOP_G_0J3IrpEDvPoiPY26yb4inqhxvzzLGDn5JIV6M
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1db9Mw8DS6B-CBr_ERGMggBA8sXfPtPJapY4CoJlil7cmy3bhUlLQ0jVD59dw5H6wDTSDxlsRnKz7fne_s-wB43jOxwtXUboZWjhsmUeSmqa9QkUNRmGATt8mePwzjo1H47jQ63YLjJhZGVYURaoVNF93mepKKSVUxDlRDIVvuL8amYnke7xdoltA1vh-6tCmhZLkC23GE2nkHtkfD4_4Z1ZhD-xrNJXvkVz_7cRNH88dBNvYqm9L_d8F9bue66FXZXq1eh6tlvpDr73I2O7d7Hd6Eb828K6eVL91ypbr6x4WUkP8TMbfgRq3qsn5Fm7dhK8vvwE4_RzP_65q9YNb51J7q70B5QBhgRanoXIhlVXEhNh3XzkyWfhjFwjDrAknxynk2Y4PBG-rkKopYZuTEP2EnBSJgWjBC0HyxZiazyUsZgrD3wyHTZDDgoNnyLowOBycHR25dEcLVqEasXBOMdarRBlRRqKWKQ6UST-lUeibViqeULbGX4LBZwmNpUo8rtLajMByHKKx8GdyDTj7PswfA8A2FvUbQkIce7sqBb8IokkqZROIHB7xm7YWu06VT1Y6ZsGYTj0WFW4G4FRa3InDgVdtnUSULuRT6NZFUC0mJvu2H-XIiarkhqBwPRz4ypNmiei17ieJoYyDj9XwTRA48I4IUlMojJ1-hiSyLQrz99FH0E44z54EXO_CyBjJznIOWdegFYoKyf21A7jaELWphVgjETRJ5pJo68LRtRjFEd0syz-ZlBZNQIDZ34H7FB-3EAo46N_exN9_gkI2Zb7bk08821bnnBWjPRokDew29__qvy1C71zLcX6zEw38DfwTXfOIo69S0C53Vssweo2q6Uk9qafMTZJqEFw
  priority: 102
  providerName: Unpaywall
Title Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier
URI https://link.springer.com/article/10.1186/s40708-024-00220-3
https://www.ncbi.nlm.nih.gov/pubmed/38441825
https://www.proquest.com/docview/2937516635
https://www.proquest.com/docview/2937701208
https://pubmed.ncbi.nlm.nih.gov/PMC11358557
https://braininformatics.springeropen.com/counter/pdf/10.1186/s40708-024-00220-3
https://doaj.org/article/18438e52f5514054a07b881dcca02f35
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: ADMLS
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: 8FG
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: M48
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LSPB-ABAeMjMCqDEDywQJM4ifOAUFe1G6BV01il8WTZaVIqhbQ0jaD_njvngxWmCV4iJT5Htu98H_Z9ALzopoFGbMZ2glaOzUPft6PI1ajIISsMsUmYZM8no-B4zD9e-Bdb0JQ7qhewuNK0o3pS42X25uf39Xvc8O_MhhfB2wKNErrEd7lNIgn5yjbsoqSKqJTDSa3umzOXgEJRTb05tLXRdHJEE0dz5W82ZJVJ6f83474kuf70qmyvVm_BjTJfqPUPlWWXpNfwDtyu1U7Wq-jkLmwl-T3Y6-Vocn9bs5fMOIKaE_Y9KPs0GlaUms5oWFIV-mGzSe1YZHDJKC6FGXdEih3Ok4wNBkfUydYUPczIoX7KzgsczKxgNNj5Ys3SxCQSZQjCPo1GLCblHX-aLO_DeDg47x_bdXUGO0aRvrJTbxJHMdpj2uex0gHXOnR0HCknjWItIspc2A3xt0koApVGjtBo-fqcTzgyDld5D2Ann-fJI2D4how3RlAuuIMS0nNT7vtK6zRU-MECp8GDjOvU5VRBI5PGhBGBrHAnEXfS4E56Frxu-yyqxB3XQh8SeltISrptPsyXU1nvYUmlcQTSdEpaJqq6qhtqgfo-boKum3q-Bc-JOCSl1cjJb2eqyqKQHz6fyV4ocObCcwILXtVA6RznEKs6DAJXgjJxbUDuN0Qmm30hcW1C3yE10YJnbTOyBLrnUXkyLyuYkIKihQUPK5psJ-YJ1H-Fi73FBrVuzHyzJZ99NWnHHcdD29IPLThoCPv3uK5b2oOW-P8BE4__C29P4KZLG9b4F-3DzmpZJk9RS1zpDmyL4VEHdg8Ho9MzfOu7nJ5Bv2POXTqGNWD7eHTa-_ILPwRiWw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QMD4CAwwiI8HFq1JnMR5mFA3Olq2VWh00t6M7SalUklK02jqP8ffxp3z0RWkipc9JjlHtu985599H4S8aSWBAm5qOwaUY7PQ9-0ochVs5EAVhvCJm2TPZ_2ge8G-XPqXG-R3HQuDbpW1TjSKephpPCPfB7MU-g7ax4_TXzZWjcLb1bqEhqxKKwwPTIqxKrDjJF5cAYTLD3qfgN9vXfe4Mzjq2lWVAVuDaZrbiTfUkQZcoXympQqYUqGjdCSdJNKKR5iBrxUmsYxDHsgkcrgCBOczNmSwAFzpwX9vkS3msQjA39Zhp__1fHnKE2Dwq6lwB-gewJrD68gdHuzngKbQ-8BlNtpSUIgr1tEUEfjXVFyzlX_7cTaXuXfIdpFO5eJKTibX7OXxPXK32ujSdimZ98lGnD4gO-0UQP7PBX1HjeupOdPfIcUR9obmhcJTIRqXpYXoeFi5MhnpoRgJQ40DJEYrp_GEdjqfsZGtMF6Zogv_iA5y6Mw4p9jZbLqgMKV4SUKBhJ70-1QjXICfxrOH5OJGOPWIbKZZGj8hFJ5A1WsgZZw5YJM9N2G-L5VKQgkvLOLUfBC6SpaONTsmwoAmHoiSdwJ4JwzvhGeRD02baZkqZC31IbK3ocQ03-ZFNhuJSmsILMbDYRUluK-FzbVshYoDwoBl13ITz7fIaxQOgYk8UvQUGskiz0Xv27lohxxGzj0nsMj7iijJYAxaVoEXMBOY-2uFcrcWMlGpslwsF55FXjWfQQnhzZJM46woaUIMw-YWeVzKZDMwj8OOm7vQmq9I68rIV7-k4x8m0bnjeIBm_dAie7VgL_u1bmr3GuH_D048XT_ql2S7Ozg7Fae9_skzctvF1WrcmXbJ5nxWxM9hUzpXL6qVT8n3m1Y2fwDXU5hE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1rb9Mw0IIh8fjAY-MRGGAQYh9YtCZxYudjKS0bgwrBJu2bZbtxqVSSqmmE-u-5cx60gCb4mPhs2b63fXcm5FXPJhqwafwMvByf8Tj20zTUYMiBKOTQJFyx50_j5PicfbiILzay-F20e3slWec0YJWmfHW0mNiaxUVyVIIbgtf2IfNRCYEkuUquMdBuyJqDJt_BnbIkmHzqXpgD7xqcpUC0mTN_HWZLO7ki_n-K6g1d9XscZXeZeovcqPKFWv9Q8_mGvhrdJbcbQ5P2a8q4R65k-S7Z6-fgZH9f09fUhX66M_Vdcqd924E2rL5HqgFOkJaVxoMamtWv_dDZpIkucgilmJxCXUwiJhDn2ZwOh--xk68xhZhiVP2UnpUwv1lJcf7FYk1t5qqJUgChp-MxNWjBw6DZ8j45Hw3PBsd-80SDb0Cvr3wbTUxqwCnTMTNKJ0xrHmiTqsCmRosUyxf2OAybcZEomwZCg_sbMzZhID1CFT0gO3mRZ48IhS-QvgZAmWABqMkotCyOldaWK_jhkaBFjTRN_XJ8RmMunR8jElmjUwI6pUOnjDzypuuzqKt3XAr9FjHeQWLlbfejWE5lw8gS38cRQNgWTU2wd1WPawFGP3BCL7RR7JGXSC8Sa2vkGLwzVVVZypOvX2SfC1i5iILEIwcNkC1gDUY1uRCwE1iOawtyv6U72UiXUsLe8DhAW9EjL7pmkAt42aPyrKhqGI6Z0cIjD2sy7RYWCTCCRQi9xRYBb618uyWffXO1x4MgAgcz5h45bGn917wu29rDjh_-AROP_2_05-T653cj-fFkfPqE3AyRn13A0T7ZWS2r7CmYjSv9zEmGnzg0Xs0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1db9Mw8DS6B-CBr_ERGMggBA8sXfPtPJapY4CoJlil7cmy3bhUlLQ0jVD59dw5H6wDTSDxlsRnKz7fne_s-wB43jOxwtXUboZWjhsmUeSmqa9QkUNRmGATt8mePwzjo1H47jQ63YLjJhZGVYURaoVNF93mepKKSVUxDlRDIVvuL8amYnke7xdoltA1vh-6tCmhZLkC23GE2nkHtkfD4_4Z1ZhD-xrNJXvkVz_7cRNH88dBNvYqm9L_d8F9bue66FXZXq1eh6tlvpDr73I2O7d7Hd6Eb828K6eVL91ypbr6x4WUkP8TMbfgRq3qsn5Fm7dhK8vvwE4_RzP_65q9YNb51J7q70B5QBhgRanoXIhlVXEhNh3XzkyWfhjFwjDrAknxynk2Y4PBG-rkKopYZuTEP2EnBSJgWjBC0HyxZiazyUsZgrD3wyHTZDDgoNnyLowOBycHR25dEcLVqEasXBOMdarRBlRRqKWKQ6UST-lUeibViqeULbGX4LBZwmNpUo8rtLajMByHKKx8GdyDTj7PswfA8A2FvUbQkIce7sqBb8IokkqZROIHB7xm7YWu06VT1Y6ZsGYTj0WFW4G4FRa3InDgVdtnUSULuRT6NZFUC0mJvu2H-XIiarkhqBwPRz4ypNmiei17ieJoYyDj9XwTRA48I4IUlMojJ1-hiSyLQrz99FH0E44z54EXO_CyBjJznIOWdegFYoKyf21A7jaELWphVgjETRJ5pJo68LRtRjFEd0syz-ZlBZNQIDZ34H7FB-3EAo46N_exN9_gkI2Zb7bk08821bnnBWjPRokDew29__qvy1C71zLcX6zEw38DfwTXfOIo69S0C53Vssweo2q6Uk9qafMTZJqEFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+subject+emotion+identification+from+multichannel+EEG+sub-bands+using+Tsallis+entropy+feature+and+KNN+classifier&rft.jtitle=Brain+informatics&rft.au=Patel%2C+Pragati&rft.au=Balasubramanian%2C+Sivarenjani&rft.au=Annavarapu%2C+Ramesh+Naidu&rft.date=2024-12-01&rft.issn=2198-4018&rft.eissn=2198-4026&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40708-024-00220-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40708_024_00220_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-4018&client=summon