Effect of dietary components on renal inorganic phosphate (Pi) excretion induced by a Pi-depleted diet
Dietary inorganic phosphate (Pi) is the most important factor in the regulation of renal Pi excretion. Recent studies suggest the presence of an enteric-renal signaling axis for dietary Pi as well as the existence of a mechanism by which the intestine detects changes in luminal Pi concentrations. Th...
Saved in:
| Published in | The Journal of Medical Investigation Vol. 61; no. 1.2; pp. 162 - 170 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Japan
The University of Tokushima Faculty of Medicine
2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1343-1420 1349-6867 1349-6867 |
| DOI | 10.2152/jmi.61.162 |
Cover
| Abstract | Dietary inorganic phosphate (Pi) is the most important factor in the regulation of renal Pi excretion. Recent studies suggest the presence of an enteric-renal signaling axis for dietary Pi as well as the existence of a mechanism by which the intestine detects changes in luminal Pi concentrations. The mechanisms of intestinal Pi sensing, however, are unknown. In the present study, we focused on Pi depletion signals and investigated the effects of dietary components on intestinal Pi sensing. After feeding rats experimental diets for 3 days, we investigated urinary Pi excretion and plasma biochemical parameters. Renal Pi excretion was suppressed in rats fed a low-Pi diet (0.02% Pi). Elimination of dietary calcium (Ca) completely blocked the suppression of Pi excretion, suggesting that the presence of Ca is essential for the Pi depletion signal. Furthermore, a minimum Ca content of more than 0.02% was necessary for the Pi depletion signal. Magnesium, lanthanum, and strontium, which are agonists of calcium sensing receptor, instead of Ca, reduced Pi excretion. Therefore, dietary Ca appears to be important for the Pi depletion-sensing mechanism in the gastrointestinal tract. In addition, the calcium sensing receptor may be involved in the Pi depletion signal. J. Med. Invest. 61: 162-170, February, 2014 |
|---|---|
| AbstractList | Dietary inorganic phosphate (Pi) is the most important factor in the regulation of renal Pi excretion. Recent studies suggest the presence of an enteric-renal signaling axis for dietary Pi as well as the existence of a mechanism by which the intestine detects changes in luminal Pi concentrations. The mechanisms of intestinal Pi sensing, however, are unknown. In the present study, we focused on Pi depletion signals and investigated the effects of dietary components on intestinal Pi sensing. After feeding rats experimental diets for 3 days, we investigated urinary Pi excretion and plasma biochemical parameters. Renal Pi excretion was suppressed in rats fed a low-Pi diet (0.02% Pi). Elimination of dietary calcium (Ca) completely blocked the suppression of Pi excretion, suggesting that the presence of Ca is essential for the Pi depletion signal. Furthermore, a minimum Ca content of more than 0.02% was necessary for the Pi depletion signal. Magnesium, lanthanum, and strontium, which are agonists of calcium sensing receptor, instead of Ca, reduced Pi excretion. Therefore, dietary Ca appears to be important for the Pi depletion-sensing mechanism in the gastrointestinal tract. In addition, the calcium sensing receptor may be involved in the Pi depletion signal. Dietary inorganic phosphate (Pi) is the most important factor in the regulation of renal Pi excretion. Recent studies suggest the presence of an enteric-renal signaling axis for dietary Pi as well as the existence of a mechanism by which the intestine detects changes in luminal Pi concentrations. The mechanisms of intestinal Pi sensing, however, are unknown. In the present study, we focused on Pi depletion signals and investigated the effects of dietary components on intestinal Pi sensing. After feeding rats experimental diets for 3 days, we investigated urinary Pi excretion and plasma biochemical parameters. Renal Pi excretion was suppressed in rats fed a low-Pi diet (0.02% Pi). Elimination of dietary calcium (Ca) completely blocked the suppression of Pi excretion, suggesting that the presence of Ca is essential for the Pi depletion signal. Furthermore, a minimum Ca content of more than 0.02% was necessary for the Pi depletion signal. Magnesium, lanthanum, and strontium, which are agonists of calcium sensing receptor, instead of Ca, reduced Pi excretion. Therefore, dietary Ca appears to be important for the Pi depletion-sensing mechanism in the gastrointestinal tract. In addition, the calcium sensing receptor may be involved in the Pi depletion signal. J. Med. Invest. 61: 162-170, February, 2014 |
| Author | Ohmoto, Tomoyo Ikuta, Kayo Sasaki, Shohei Mori, Ayaka Hanazaki, Ai Kawakami, Eri Furutani, Junya Tatsumi, Sawako Ohnishi, Ritsuko Hamada, Yasuhiro Miyamoto, Ken-ichi Segawa, Hiroko |
| Author_xml | – sequence: 1 fullname: Ohmoto, Tomoyo organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Hamada, Yasuhiro organization: Department of Therapeutic Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Tatsumi, Sawako organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Hanazaki, Ai organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Ikuta, Kayo organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Sasaki, Shohei organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Mori, Ayaka organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Furutani, Junya organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Miyamoto, Ken-ichi organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Ohnishi, Ritsuko organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Segawa, Hiroko organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School – sequence: 1 fullname: Kawakami, Eri organization: Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24705762$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kFtLwzAYhoMo7qA3_gDJpQc6m7RNuyuRMQ8wcBd6XdLky5bRpiXN0P17Mzt7IeJVPpLnfT_yjNCxqQ0gdEHCCSUJvdtUesLIhDB6hIYkiqcBy1h6_D1HAYlpOECjtt2EYRQlSXKKBjROwyRldIjUXCkQDtcKSw2O2x0WddX4Bca1uDbYguEl1qa2K260wM26bps1d4Cvlvoaw6ew4LQHtZFbARIXO8zxUgcSmhKcv9j3nqETxcsWzg_nGL0_zt9mz8Hi9ell9rAIBCOxC1IKEc1IIQuRsVhxwZjys2QJxFOZZBlNuAinTDIqp0UkMpEBKOqRlKm4UNEY3Xa9W9Pw3Qcvy7yxuvLfykmY723l3lbOSO5tefqyo5ttUYHs0R89HrjpAGHrtrWg_m8Lf8FCO7534yzX5d-R-y6yaR1fQd_OrdOihB7N6SHRv4g1tzmY6AuT_J7Y |
| CitedBy_id | crossref_primary_10_1016_j_mce_2020_110891 crossref_primary_10_1093_function_zqad063 |
| Cites_doi | 10.1152/ajprenal.00508.2009 10.1073/pnas.1009078107 10.1172/JCI109562 10.1152/ajpgi.1980.239.6.G493 10.1111/j.1525-139X.2010.00750.x 10.1111/j.1469-7793.1997.031bl.x 10.1038/nrneph.2010.17 10.1152/ajpgi.00342.2010 10.1152/ajprenal.00375.2003 10.1172/JCI108363 10.1002/jcb.10330 10.1056/NEJM199403313301301 10.1038/ki.2011.380 10.1093/ajcn/47.1.153 10.1159/000346786 10.2527/jas.2012-5906 10.1111/j.1753-4887.2011.00395.x 10.1097/MNH.0b013e32832b5094 10.1016/j.semnephrol.2012.12.012 10.1053/j.ajkd.2013.04.013 10.1152/ajpgi.00504.2006 10.1073/pnas.0704446104 10.1053/j.ajkd.2011.07.020 10.1113/jphysiol.2011.223800 10.1124/mol.109.058784 10.1159/000107069 10.2152/jmi.54.366 10.1681/ASN.2004070602 10.1038/nrneph.2011.112 10.1172/JCI108602 10.1038/ki.1986.49 10.1152/ajprenal.00663.2010 10.1046/j.1523-1755.2001.060002412.x 10.1152/ajpendo.00065.2005 10.1042/bj3330175 10.1038/ki.1996.264 10.1002/jps.22614 10.1016/S0022-2143(97)90137-2 10.2170/jjphysiol.54.93 10.1152/ajpgi.1998.274.1.G122 |
| ContentType | Journal Article |
| Copyright | 2014 by The University of Tokushima Faculty of Medicine |
| Copyright_xml | – notice: 2014 by The University of Tokushima Faculty of Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| DOI | 10.2152/jmi.61.162 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1349-6867 |
| EndPage | 170 |
| ExternalDocumentID | 10.2152/jmi.61.162 24705762 10_2152_jmi_61_162 article_jmi_61_1_2_61_162_article_char_en |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- .55 123 29L 2WC 3O- 53G 5GY 7.U ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P JSF JSH KQ8 OK1 OVT RJT RNS RZJ TKC TR2 X7M XSB ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c614t-72e3281bdbc864fac66fdbcd65e49d58825ac096d62d9b3c8c8eef2dbc76f4bf3 |
| IEDL.DBID | UNPAY |
| ISSN | 1343-1420 1349-6867 |
| IngestDate | Thu Oct 02 04:31:32 EDT 2025 Sat Sep 18 02:02:05 EDT 2021 Tue Jul 01 05:09:04 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Sep 03 06:30:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1.2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c614t-72e3281bdbc864fac66fdbcd65e49d58825ac096d62d9b3c8c8eef2dbc76f4bf3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jmi/61/1.2/61_162/_pdf |
| PMID | 24705762 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_2152_jmi_61_162 pubmed_primary_24705762 crossref_primary_10_2152_jmi_61_162 crossref_citationtrail_10_2152_jmi_61_162 jstage_primary_article_jmi_61_1_2_61_162_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-00-00 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | The Journal of Medical Investigation |
| PublicationTitleAlternate | J. Med. Invest. |
| PublicationYear | 2014 |
| Publisher | The University of Tokushima Faculty of Medicine |
| Publisher_xml | – name: The University of Tokushima Faculty of Medicine |
| References | 7. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, Kuwahata M, Kido S, Tatsumi S, Kaneko I, Segawa H: Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100: 3719-3730, 2011 37. Lumlertgul D, Burke TJ, Gillum DM, Alfrey AC, Harris DC, Hammond WS, Schrier RW: Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int 29: 658-666, 1986 22. Shah SV, Kempson SA, Northrup TE, Dousa TP: Renal adaptation to a low phosphate diet in rats. J Clin Invest 64: 955-966, 1979 16. Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K: Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b(+)/(-) mice. Am J Physiol Renal Physiol 301: F1105-1113, 2011 11. Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, Tatsumi S, Nii T, Taketani Y, Haga H, Hisano S, Fukui Y, Miyamoto KI, Takeda E: Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J 333 (Pt 1): 175-181, 1998 6. Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J: Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49: 1769-1773, 1996 14. Kumar R: Phosphate sensing. Curr Opin Nephrol Hypertens 18: 281-284, 2009 38. Alfrey AC: Effect of dietary phosphate restriction on renal function and deterioration. Am J Clin Nutr 47: 153-156, 1988 13. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K: Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol 180: 86-97, 2013 18. Saidak Z, Brazier M, Kamel S, Mentaverri R: Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol Pharmacol 76: 1131-1144, 2009 33. Feldman EJ, Grossman MI: Liver extract and its free amino acids equally stimulate gastric acid secretion. Am J Physiol 239: G493-496, 1980 4. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL: Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16: 520-528, 2005 28. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, Brown EM: Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol 274: G122-130, 1998 17. McGehee DS, Aldersberg M, Liu KP, Hsuing S, Heath MJ, Tamir H: Mechanism of extracellular Ca2+ receptor-stimulated hormone release from sheep thyroid parafollicular cells. J Physiol 502 (Pt 1): 31-44, 1997 40. Hutchison AJ, Smith CP, Brenchley PE: Pharmacology, efficacy and safety of oral phosphate binders. Nat Rev Nephrol 7: 578-589, 2011 29. Ohnishi R, Segawa H, Kawakami E, Furutani J, Ito M, Tatsumi S, Kuwahata M, Miyamoto K: Control of phosphate appetite in young rats. J Med Invest 54: 366-369, 2007 8. Miyamoto K, Segawa H, Ito M, Kuwahata M: Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54: 93-102, 2004 20. Steele TH, DeLuca HF: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J Clin Invest 57: 867-874, 1976 32. Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA: Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A 107: 17791-17796, 2010 12. Farrow EG, White KE: Recent advances in renal phosphate handling. Nat Rev Nephrol 6: 207-217, 2010 23. Bronner F: Mechanisms of intestinal calcium absorption. J Cell Biochem 88: 387-393, 2003 9. Miyamoto KI, Itho M: Transcriptional regulation of the NPT2 gene by dietary phosphate. Kidney Int 60: 412-415, 2001 1. Isakova T: Comparison of mineral metabolites as risk factors for adverse clinical outcomes in CKD. Semin Nephrol 33: 106-117, 2013 10. Marks J, Debnam ES, Unwin RJ: Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299: F285-296, 2010 26. Mace OJ, Marshall F: Digestive physiology of the pig symposium: gut chemosensing and the regulation of nutrient absorption and energy supply. J Anim Sci 91: 1932-1945, 2013 39. Weinman EJ, Light PD, Suki WN: Gastrointestinal Phosphate Handling in CKD and Its Association With Cardiovascular Disease. Am J Kidney Dis 62: 1006-1011, 2013 35. Gutierrez OM, Wolf M: Dietary phosphorus restriction in advanced chronic kidney disease: merits, challenges, and emerging strategies. Semin Dial 23: 401-406, 2010 36. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 330: 877-884, 1994 3. Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH: Treatment of chronic kidney disease. Kidney Int 81: 351-362, 2012 34. Mace OJ, Schindler M, Patel S: The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol 590: 2917-2936, 2012 24. Kellett GL: Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 69: 347-370, 2011 19. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H: New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27: 503-515, 2007 21. Steele TH, Stromberg BA, Underwood JL, Larmore CA: Renal resistance to parathyroid hormone during phosphorus deprivation. J Clin Invest 58: 1461-1464, 1976 5. Loghman-Adham M: Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med 129: 176-188, 1997 2. Kendrick J, Chonchol M: The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 58: 826-834, 2011 31. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA: The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 300: G538-546, 2011 15. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R: Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A 104: 11085-11090, 2007 25. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K: Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287: F39-47, 2004 27. Sutherland K, Young RL, Cooper NJ, Horowitz M, Blackshaw LA: Phenotypic characterization of taste cells of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol 292: G1420-1428, 2007 30. Martin DR, Ritter CS, Slatopolsky E, Brown AJ: Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab 289: E729-734, 2005 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 20 21 |
| References_xml | – reference: 39. Weinman EJ, Light PD, Suki WN: Gastrointestinal Phosphate Handling in CKD and Its Association With Cardiovascular Disease. Am J Kidney Dis 62: 1006-1011, 2013 – reference: 27. Sutherland K, Young RL, Cooper NJ, Horowitz M, Blackshaw LA: Phenotypic characterization of taste cells of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol 292: G1420-1428, 2007 – reference: 29. Ohnishi R, Segawa H, Kawakami E, Furutani J, Ito M, Tatsumi S, Kuwahata M, Miyamoto K: Control of phosphate appetite in young rats. J Med Invest 54: 366-369, 2007 – reference: 9. Miyamoto KI, Itho M: Transcriptional regulation of the NPT2 gene by dietary phosphate. Kidney Int 60: 412-415, 2001 – reference: 20. Steele TH, DeLuca HF: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J Clin Invest 57: 867-874, 1976 – reference: 26. Mace OJ, Marshall F: Digestive physiology of the pig symposium: gut chemosensing and the regulation of nutrient absorption and energy supply. J Anim Sci 91: 1932-1945, 2013 – reference: 16. Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K: Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b(+)/(-) mice. Am J Physiol Renal Physiol 301: F1105-1113, 2011 – reference: 32. Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA: Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A 107: 17791-17796, 2010 – reference: 37. Lumlertgul D, Burke TJ, Gillum DM, Alfrey AC, Harris DC, Hammond WS, Schrier RW: Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int 29: 658-666, 1986 – reference: 35. Gutierrez OM, Wolf M: Dietary phosphorus restriction in advanced chronic kidney disease: merits, challenges, and emerging strategies. Semin Dial 23: 401-406, 2010 – reference: 18. Saidak Z, Brazier M, Kamel S, Mentaverri R: Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol Pharmacol 76: 1131-1144, 2009 – reference: 40. Hutchison AJ, Smith CP, Brenchley PE: Pharmacology, efficacy and safety of oral phosphate binders. Nat Rev Nephrol 7: 578-589, 2011 – reference: 33. Feldman EJ, Grossman MI: Liver extract and its free amino acids equally stimulate gastric acid secretion. Am J Physiol 239: G493-496, 1980 – reference: 10. Marks J, Debnam ES, Unwin RJ: Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299: F285-296, 2010 – reference: 6. Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J: Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49: 1769-1773, 1996 – reference: 15. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R: Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A 104: 11085-11090, 2007 – reference: 1. Isakova T: Comparison of mineral metabolites as risk factors for adverse clinical outcomes in CKD. Semin Nephrol 33: 106-117, 2013 – reference: 12. Farrow EG, White KE: Recent advances in renal phosphate handling. Nat Rev Nephrol 6: 207-217, 2010 – reference: 19. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H: New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27: 503-515, 2007 – reference: 8. Miyamoto K, Segawa H, Ito M, Kuwahata M: Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54: 93-102, 2004 – reference: 3. Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH: Treatment of chronic kidney disease. Kidney Int 81: 351-362, 2012 – reference: 14. Kumar R: Phosphate sensing. Curr Opin Nephrol Hypertens 18: 281-284, 2009 – reference: 17. McGehee DS, Aldersberg M, Liu KP, Hsuing S, Heath MJ, Tamir H: Mechanism of extracellular Ca2+ receptor-stimulated hormone release from sheep thyroid parafollicular cells. J Physiol 502 (Pt 1): 31-44, 1997 – reference: 36. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 330: 877-884, 1994 – reference: 24. Kellett GL: Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 69: 347-370, 2011 – reference: 34. Mace OJ, Schindler M, Patel S: The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol 590: 2917-2936, 2012 – reference: 30. Martin DR, Ritter CS, Slatopolsky E, Brown AJ: Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab 289: E729-734, 2005 – reference: 5. Loghman-Adham M: Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med 129: 176-188, 1997 – reference: 28. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, Brown EM: Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol 274: G122-130, 1998 – reference: 7. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, Kuwahata M, Kido S, Tatsumi S, Kaneko I, Segawa H: Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100: 3719-3730, 2011 – reference: 21. Steele TH, Stromberg BA, Underwood JL, Larmore CA: Renal resistance to parathyroid hormone during phosphorus deprivation. J Clin Invest 58: 1461-1464, 1976 – reference: 23. Bronner F: Mechanisms of intestinal calcium absorption. J Cell Biochem 88: 387-393, 2003 – reference: 22. Shah SV, Kempson SA, Northrup TE, Dousa TP: Renal adaptation to a low phosphate diet in rats. J Clin Invest 64: 955-966, 1979 – reference: 13. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K: Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol 180: 86-97, 2013 – reference: 4. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL: Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16: 520-528, 2005 – reference: 25. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K: Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287: F39-47, 2004 – reference: 11. Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, Tatsumi S, Nii T, Taketani Y, Haga H, Hisano S, Fukui Y, Miyamoto KI, Takeda E: Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J 333 (Pt 1): 175-181, 1998 – reference: 38. Alfrey AC: Effect of dietary phosphate restriction on renal function and deterioration. Am J Clin Nutr 47: 153-156, 1988 – reference: 31. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA: The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 300: G538-546, 2011 – reference: 2. Kendrick J, Chonchol M: The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 58: 826-834, 2011 – ident: 10 doi: 10.1152/ajprenal.00508.2009 – ident: 32 doi: 10.1073/pnas.1009078107 – ident: 22 doi: 10.1172/JCI109562 – ident: 33 doi: 10.1152/ajpgi.1980.239.6.G493 – ident: 35 doi: 10.1111/j.1525-139X.2010.00750.x – ident: 17 doi: 10.1111/j.1469-7793.1997.031bl.x – ident: 12 doi: 10.1038/nrneph.2010.17 – ident: 31 doi: 10.1152/ajpgi.00342.2010 – ident: 25 doi: 10.1152/ajprenal.00375.2003 – ident: 20 doi: 10.1172/JCI108363 – ident: 23 doi: 10.1002/jcb.10330 – ident: 36 doi: 10.1056/NEJM199403313301301 – ident: 3 doi: 10.1038/ki.2011.380 – ident: 38 doi: 10.1093/ajcn/47.1.153 – ident: 13 doi: 10.1159/000346786 – ident: 26 doi: 10.2527/jas.2012-5906 – ident: 24 doi: 10.1111/j.1753-4887.2011.00395.x – ident: 14 doi: 10.1097/MNH.0b013e32832b5094 – ident: 1 doi: 10.1016/j.semnephrol.2012.12.012 – ident: 39 doi: 10.1053/j.ajkd.2013.04.013 – ident: 27 doi: 10.1152/ajpgi.00504.2006 – ident: 15 doi: 10.1073/pnas.0704446104 – ident: 2 doi: 10.1053/j.ajkd.2011.07.020 – ident: 34 doi: 10.1113/jphysiol.2011.223800 – ident: 18 doi: 10.1124/mol.109.058784 – ident: 19 doi: 10.1159/000107069 – ident: 29 doi: 10.2152/jmi.54.366 – ident: 4 doi: 10.1681/ASN.2004070602 – ident: 40 doi: 10.1038/nrneph.2011.112 – ident: 21 doi: 10.1172/JCI108602 – ident: 37 doi: 10.1038/ki.1986.49 – ident: 16 doi: 10.1152/ajprenal.00663.2010 – ident: 9 doi: 10.1046/j.1523-1755.2001.060002412.x – ident: 30 doi: 10.1152/ajpendo.00065.2005 – ident: 11 doi: 10.1042/bj3330175 – ident: 6 doi: 10.1038/ki.1996.264 – ident: 7 doi: 10.1002/jps.22614 – ident: 5 doi: 10.1016/S0022-2143(97)90137-2 – ident: 8 doi: 10.2170/jjphysiol.54.93 – ident: 28 doi: 10.1152/ajpgi.1998.274.1.G122 |
| SSID | ssj0033555 |
| Score | 1.9700778 |
| Snippet | Dietary inorganic phosphate (Pi) is the most important factor in the regulation of renal Pi excretion. Recent studies suggest the presence of an enteric-renal... |
| SourceID | unpaywall pubmed crossref jstage |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 162 |
| SubjectTerms | Animals calcium Calcium, Dietary - pharmacology Diet dietary phosphate Food, Formulated Intestines - physiology Kidney - drug effects Kidney - metabolism Male Models, Animal phosphate excretion Phosphates - deficiency Phosphates - metabolism Rats Rats, Wistar Receptors, Calcium-Sensing - agonists sensing Signal Transduction - drug effects Signal Transduction - physiology |
| Title | Effect of dietary components on renal inorganic phosphate (Pi) excretion induced by a Pi-depleted diet |
| URI | https://www.jstage.jst.go.jp/article/jmi/61/1.2/61_162/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/24705762 https://www.jstage.jst.go.jp/article/jmi/61/1.2/61_162/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | The Journal of Medical Investigation, 2014, Vol.61(1.2), pp.162-170 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1349-6867 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033555 issn: 1343-1420 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1349-6867 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033555 issn: 1343-1420 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tXQRceD_KY2WJPbCHJI1jO4k4rRCrBdSqByotElLk-LGbUpKopILy6xnjNFoQQohLHCWfH7FHmW-SmTHAYcKtUZm0gXWujYymk6C0YhJoatMklYIn0gUnT2fidMHenvGzPXi5i4VxbpVL5EXnxhXheRMu26ifxGj5uYpEHKFZh0URCxoVrbZXYF9wJOIj2F_M5scffppYLvEmoz5GmOWByETqk5O6fVxdQ6GIw1jQX9TRVd_zJWV0fVO3cvtVrlaXtM7JLfi4G693NvkUbroyVN9_S-X4nw90G272bJQce-Ad2DP1Xbg27f-33wPrkxuTxhJdmU6ut8T5oDe1c78gTU3WxtWvar85lCLtRfOlvUD-Sl7MqyNivikXJYlANP1RiDQpt0SSeRVo06LE4AXX7n1YnLx-_-o06HdmCBSq8y5IqUkoEl5dqkwwK5UQFs-14IblmiNr51KhcaQF1XmZqExlxliKkFRYVtrkAYxqHOsjIEbknCtqJrnOmM14phnWmBisXLI8jcdwtFugQvVpy93uGasCzRe3mAVOYuFnbwzPB2zrk3X8EZX5BRkw_XIMmIL20OGOC4HD98gYHnrJGKpSliLjdY0eDqLyl74f_xvsCdxAYsb8p56nMOrWG_MMyU9XHiDtf_MOj7P59KAX-B9adAbg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7Urdi-1Fu1640B-2AfkmwmM5OEPhWxFKFlH1yoIITJXNqs2ySsWXT99Z5xsqGKiPiUkHxzycwh5zvJuQAcJtwalUkbWOfayGg6CUorJoGmNk1SKXgiXXDy-YU4m7H3l_xyC443sTDOrXKOvOjKuEN41YTzNuoXMZrfVJGIIzTr8FDEgkZFq-0d2BYcifgItmcX05OPP00sl3iTUR8jzPJAZCL1yUldHVfXUSjiMBb0F3V01498SxntrOpWrr_KxeKW1jm9D5828_XOJp_DVVeG6vtvqRz_84EewF7PRsmJBz6ELVM_gnvn_f_2x2B9cmPSWKIr08nlmjgf9KZ27hekqcnSuPZV7YtDKdJeN1_aa-Sv5M20OiLmm3JRkghE0x-FSJNyTSSZVoE2LUoMXnD97sPs9N2Ht2dBX5khUKjOuyClJqFIeHWpMsGsVEJYPNeCG5ZrjqydS4XGkRZU52WiMpUZYylCUmFZaZMnMKpxrgdAjMg5V9RMcp0xm_FMM2wxMdi4ZHkaj-Fos0GF6tOWu-oZiwLNF7eZBS5i4VdvDK8HbOuTdfwRlfkNGTD9dgyYgvbQ4Y4LgcP3yBieeskYmlKWIuN1nR4OovKXsZ_9G-w57CIxY_5TzwsYdcuVeYnkpytf9UL-AxlyBNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+dietary+components+on+renal+inorganic+phosphate+%28Pi%29+excretion+induced+by+a+Pi-depleted+diet&rft.jtitle=The+journal+of+medical+investigation&rft.au=Ohnishi%2C+Ritsuko&rft.au=Segawa%2C+Hiroko&rft.au=Ohmoto%2C+Tomoyo&rft.au=Sasaki%2C+Shohei&rft.date=2014&rft.issn=1343-1420&rft.eissn=1349-6867&rft.volume=61&rft.issue=1.2&rft.spage=162&rft.epage=170&rft_id=info:doi/10.2152%2Fjmi.61.162&rft.externalDBID=n%2Fa&rft.externalDocID=10_2152_jmi_61_162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-1420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-1420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-1420&client=summon |