基于粗糙集-支持向量机的软件缺陷预测

软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型....

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 37; no. 1; pp. 93 - 98
Main Author 孟倩 马小平
Format Journal Article
LanguageChinese
Published 中国矿业大学信电学院,江苏徐州221008 2015
江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2015.01.014

Cover

Abstract 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型.
AbstractList TP311.5; 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型.
软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型.
Author 孟倩 马小平
AuthorAffiliation 中国矿业大学信电学院,江苏徐州221008 江苏师范大学计算科学与技术学院,江苏徐州221116
AuthorAffiliation_xml – name: 中国矿业大学信电学院,江苏徐州221008;江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008
Author_FL MA Xiao-ping
MENG Qian
Author_FL_xml – sequence: 1
  fullname: MENG Qian
– sequence: 2
  fullname: MA Xiao-ping
Author_xml – sequence: 1
  fullname: 孟倩 马小平
BookMark eNo9j81Kw0AcxPdQwVr7EuLFQ-J_d5Pd5CjFLyh46cFbSfejJupWG0R7FIoeFD9AkKog-AIFRYWob9Mm5i2MVISBgeHHDDODSqZjFELzGGzqM38xssM4NjYG4BamsGkTwK4NuJBTQuX_fBpV4zhsATCXeS7HZeSMH5NRcpE932Yvg_z-xEpvhun58fjqOj-9TB-S7K7__TUcfbxln0k-eM-f-unr2Sya0sFOrKp_XkGNleVGbc2qb6yu15bqlmDYsbRkWGiQWCrpE6mI4_OWUJwJGWiPQqAkkZRSoTlpMeZyxZR2CAiPMoIppxW0MKk9DIwOTLsZdQ66phhsRnHUFr3to9-bgIuTBTs3YcVWx7T3w4Le64a7QbfXZIw61OPA6A8gdWpP
ClassificationCodes TP311.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1007-130X.2015.01.014
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Software defect prediction using rough sets and support vector machine
DocumentTitle_FL Software defect prediction using rough sets and support vector machine
EndPage 98
ExternalDocumentID jsjgcykx201501014
663438706
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 江苏省自然科学基金资助项目; 高等学校博士学科点专项科研基金资助项目
  funderid: (61303183); (BK20130204); (20120095120023)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c614-fd61cf0d1ded92de2497bce76cdaf830aed2d333cf72b6657e6ef420c83621373
ISSN 1007-130X
IngestDate Thu May 29 04:04:00 EDT 2025
Wed Feb 14 10:36:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 支持向量机
support vector machine
rough sets
预测
software defect
粗糙集
prediction
粒子群
particle swarm optimization
软件缺陷
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c614-fd61cf0d1ded92de2497bce76cdaf830aed2d333cf72b6657e6ef420c83621373
Notes The prediction of software defects has been an important research topic in the field of software engineering.The paper focuses on the problem of defect prediction.A classification model for predicting software defects based on the integration of rough sets and support vector machine model (RSSVM) is constructed.Rough sets work as a preprocessor in order to remove redundant information and reduce data dimensionality before the sample data are processed by support vector machine.As a solution to the difficulty of choosing parameters,the particle swarm optimization algorithm is used to choose the parameters of support vector machines.The experimental data are from the open source NASA datasets.The dimensions of the original data sets are reduced from 21 to 5 by rough sets.Experimental results indicate that the prediction performances of Bayes classifier,CART tree,RBF neural network and RS-SVM are all improved after the dimension of the original data sets are reduced from 21 to 5 by rough sets.Compared with the a
PageCount 6
ParticipantIDs wanfang_journals_jsjgcykx201501014
chongqing_primary_663438706
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机工程与科学
PublicationTitleAlternate Computer Engineering & Science
PublicationTitle_FL Computer Engineering and Science
PublicationYear 2015
Publisher 中国矿业大学信电学院,江苏徐州221008
江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008
Publisher_xml – name: 中国矿业大学信电学院,江苏徐州221008
– name: 江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008
SSID ssib006568571
ssib017479296
ssib001050383
ssib015938883
ssib001102936
ssib051375740
ssib023646326
ssib036438059
ssib000459496
Score 2.0040479
Snippet 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的...
TP311.5; 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 93
SubjectTerms 支持向量机
粒子群
粗糙集
软件缺陷
预测
Title 基于粗糙集-支持向量机的软件缺陷预测
URI http://lib.cqvip.com/qk/94293X/201501/663438706.html
https://d.wanfangdata.com.cn/periodical/jsjgcykx201501014
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-130X
  databaseCode: ADMLS
  dateStart: 20130501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib015938883
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qC-KLKCrWqhTpPElqkk324zG5phSxvnjCvR2XbLalhavaK2jfhKIPih8gSK0g-A8UFBVO_W_aO--_cHYT01ikqHAsc_sxu5NJdn87ycwSMsNETtOOr52Qe7mD67XrpJ2cOYpxnarUDZU2poHFm2zhdnC9FbbGxnZqXy1t9NLZbPOPfiX_o1XMQ70aL9l_0GzFFDOQRv1iihrG9K90DEkIch7iCJLApCKBhEPsg-SWoCAlJBJkDII5kDCQAUTzhhANxJC2vQvSM5UEB2GLZMNy5CCRYwCJgHjOtsI-YoiZZV3UkaaDmBsi8m1lBnEIIq5jXsMhSiDyTEMkzOCqXkLTPAptkcCGthdRShJxO7YQIhxAZUIsM1BwJIQLkbxqB4C_hmXoWkGQwLHRulmjcOks52BjPcWltVWfpIvIML_djMWMW5yvWK7dxYHWh1cFKpm0q4JhP1uxN9_1FTFbCzfWQ3G3EYoF1LwFPkYmfGPsGScT0dzijVt1NCyDWrRCz8bWqbspuwimDsoROovwAH0jkKRCHNTHvSFHsFrVN6H9WQ1d418qamg49CgPeeHy-0um42SmFPjaUeKaQCLLa92luwiPrLdaV3e6SzVg1TxFTpY7oumouL1Pk7HN5TMk2H_X3-s_G354Pfy4Pdp55Axe7Q6ePtx_8XL0-PngbX_4ZuvH9929r5-H3_qj7S-j91uDT0_OkuZ80mwsOOUBH06GqNDRinmZdpWnciV9lfuB5GmWc5apjhbU7eTKV5TSTHM_NW8Ic5brwHczgagLhafnyHh3rZufJ9PaZSr0M4U60YH2zb4B99HIIROe9gJ3kkxVArfvFHFc2pWGJ8mV8hK0y6d7vb2yvrKUPVi9b66aPdD6wpEspsgJU7Mwzl0k4717G_klhKu99HJ52_wE6zJyBQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%B2%97%E7%B3%99%E9%9B%86-%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E7%9A%84%E8%BD%AF%E4%BB%B6%E7%BC%BA%E9%99%B7%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E5%AD%9F%E5%80%A9+%E9%A9%AC%E5%B0%8F%E5%B9%B3&rft.date=2015&rft.issn=1007-130X&rft.volume=37&rft.issue=1&rft.spage=93&rft.epage=98&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2015.01.014&rft.externalDocID=663438706
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg