基于粗糙集-支持向量机的软件缺陷预测
软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型....
Saved in:
| Published in | 计算机工程与科学 Vol. 37; no. 1; pp. 93 - 98 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国矿业大学信电学院,江苏徐州221008
2015
江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-130X |
| DOI | 10.3969/j.issn.1007-130X.2015.01.014 |
Cover
| Abstract | 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型. |
|---|---|
| AbstractList | TP311.5; 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型. 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择.实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个.实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型. |
| Author | 孟倩 马小平 |
| AuthorAffiliation | 中国矿业大学信电学院,江苏徐州221008 江苏师范大学计算科学与技术学院,江苏徐州221116 |
| AuthorAffiliation_xml | – name: 中国矿业大学信电学院,江苏徐州221008;江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008 |
| Author_FL | MA Xiao-ping MENG Qian |
| Author_FL_xml | – sequence: 1 fullname: MENG Qian – sequence: 2 fullname: MA Xiao-ping |
| Author_xml | – sequence: 1 fullname: 孟倩 马小平 |
| BookMark | eNo9j81Kw0AcxPdQwVr7EuLFQ-J_d5Pd5CjFLyh46cFbSfejJupWG0R7FIoeFD9AkKog-AIFRYWob9Mm5i2MVISBgeHHDDODSqZjFELzGGzqM38xssM4NjYG4BamsGkTwK4NuJBTQuX_fBpV4zhsATCXeS7HZeSMH5NRcpE932Yvg_z-xEpvhun58fjqOj-9TB-S7K7__TUcfbxln0k-eM-f-unr2Sya0sFOrKp_XkGNleVGbc2qb6yu15bqlmDYsbRkWGiQWCrpE6mI4_OWUJwJGWiPQqAkkZRSoTlpMeZyxZR2CAiPMoIppxW0MKk9DIwOTLsZdQ66phhsRnHUFr3to9-bgIuTBTs3YcVWx7T3w4Le64a7QbfXZIw61OPA6A8gdWpP |
| ClassificationCodes | TP311.5 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1007-130X.2015.01.014 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Software defect prediction using rough sets and support vector machine |
| DocumentTitle_FL | Software defect prediction using rough sets and support vector machine |
| EndPage | 98 |
| ExternalDocumentID | jsjgcykx201501014 663438706 |
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 江苏省自然科学基金资助项目; 高等学校博士学科点专项科研基金资助项目 funderid: (61303183); (BK20130204); (20120095120023) |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c614-fd61cf0d1ded92de2497bce76cdaf830aed2d333cf72b6657e6ef420c83621373 |
| ISSN | 1007-130X |
| IngestDate | Thu May 29 04:04:00 EDT 2025 Wed Feb 14 10:36:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 支持向量机 support vector machine rough sets 预测 software defect 粗糙集 prediction 粒子群 particle swarm optimization 软件缺陷 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c614-fd61cf0d1ded92de2497bce76cdaf830aed2d333cf72b6657e6ef420c83621373 |
| Notes | The prediction of software defects has been an important research topic in the field of software engineering.The paper focuses on the problem of defect prediction.A classification model for predicting software defects based on the integration of rough sets and support vector machine model (RSSVM) is constructed.Rough sets work as a preprocessor in order to remove redundant information and reduce data dimensionality before the sample data are processed by support vector machine.As a solution to the difficulty of choosing parameters,the particle swarm optimization algorithm is used to choose the parameters of support vector machines.The experimental data are from the open source NASA datasets.The dimensions of the original data sets are reduced from 21 to 5 by rough sets.Experimental results indicate that the prediction performances of Bayes classifier,CART tree,RBF neural network and RS-SVM are all improved after the dimension of the original data sets are reduced from 21 to 5 by rough sets.Compared with the a |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_jsjgcykx201501014 chongqing_primary_663438706 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机工程与科学 |
| PublicationTitleAlternate | Computer Engineering & Science |
| PublicationTitle_FL | Computer Engineering and Science |
| PublicationYear | 2015 |
| Publisher | 中国矿业大学信电学院,江苏徐州221008 江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008 |
| Publisher_xml | – name: 中国矿业大学信电学院,江苏徐州221008 – name: 江苏师范大学计算科学与技术学院,江苏徐州221116%中国矿业大学信电学院,江苏徐州,221008 |
| SSID | ssib006568571 ssib017479296 ssib001050383 ssib015938883 ssib001102936 ssib051375740 ssib023646326 ssib036438059 ssib000459496 |
| Score | 2.0040479 |
| Snippet | 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的... TP311.5; 软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型.该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 93 |
| SubjectTerms | 支持向量机 粒子群 粗糙集 软件缺陷 预测 |
| Title | 基于粗糙集-支持向量机的软件缺陷预测 |
| URI | http://lib.cqvip.com/qk/94293X/201501/663438706.html https://d.wanfangdata.com.cn/periodical/jsjgcykx201501014 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-130X databaseCode: ADMLS dateStart: 20130501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib015938883 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qC-KLKCrWqhTpPElqkk324zG5phSxvnjCvR2XbLalhavaK2jfhKIPih8gSK0g-A8UFBVO_W_aO--_cHYT01ikqHAsc_sxu5NJdn87ycwSMsNETtOOr52Qe7mD67XrpJ2cOYpxnarUDZU2poHFm2zhdnC9FbbGxnZqXy1t9NLZbPOPfiX_o1XMQ70aL9l_0GzFFDOQRv1iihrG9K90DEkIch7iCJLApCKBhEPsg-SWoCAlJBJkDII5kDCQAUTzhhANxJC2vQvSM5UEB2GLZMNy5CCRYwCJgHjOtsI-YoiZZV3UkaaDmBsi8m1lBnEIIq5jXsMhSiDyTEMkzOCqXkLTPAptkcCGthdRShJxO7YQIhxAZUIsM1BwJIQLkbxqB4C_hmXoWkGQwLHRulmjcOks52BjPcWltVWfpIvIML_djMWMW5yvWK7dxYHWh1cFKpm0q4JhP1uxN9_1FTFbCzfWQ3G3EYoF1LwFPkYmfGPsGScT0dzijVt1NCyDWrRCz8bWqbspuwimDsoROovwAH0jkKRCHNTHvSFHsFrVN6H9WQ1d418qamg49CgPeeHy-0um42SmFPjaUeKaQCLLa92luwiPrLdaV3e6SzVg1TxFTpY7oumouL1Pk7HN5TMk2H_X3-s_G354Pfy4Pdp55Axe7Q6ePtx_8XL0-PngbX_4ZuvH9929r5-H3_qj7S-j91uDT0_OkuZ80mwsOOUBH06GqNDRinmZdpWnciV9lfuB5GmWc5apjhbU7eTKV5TSTHM_NW8Ic5brwHczgagLhafnyHh3rZufJ9PaZSr0M4U60YH2zb4B99HIIROe9gJ3kkxVArfvFHFc2pWGJ8mV8hK0y6d7vb2yvrKUPVi9b66aPdD6wpEspsgJU7Mwzl0k4717G_klhKu99HJ52_wE6zJyBQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%B2%97%E7%B3%99%E9%9B%86-%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E7%9A%84%E8%BD%AF%E4%BB%B6%E7%BC%BA%E9%99%B7%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E5%AD%9F%E5%80%A9+%E9%A9%AC%E5%B0%8F%E5%B9%B3&rft.date=2015&rft.issn=1007-130X&rft.volume=37&rft.issue=1&rft.spage=93&rft.epage=98&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2015.01.014&rft.externalDocID=663438706 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg |