融合社交网络特征的协同过滤推荐算法

TP301; 为了解决传统协同过滤算法中存在的严峻的数据稀疏性问题,提出了一种融合社交网络特征的协同过滤推荐算法.该算法在传统矩阵分解模型基础上,通过融合社交网络特征与用户评分偏好程度得到信任和被信任特征矩阵,然后利用社交特征矩阵、商品特征矩阵和用户评分偏好相似性共同预测用户对商品的评分值.为了验证该算法的可靠性,使用Epinions公开数据集对算法性能进行对比分析.实验结果显示,相比现有的社交推荐算法,所提算法有更小的平均绝对误差和均方根误差,同时算法的时间复杂度与数据集的数量之间为线性关系.因此,该算法可以有效缓解数据稀疏性对推荐结果的影响,并提高推荐准确率.在现实推荐中,该算法可以考虑作...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 12; no. 2; pp. 208 - 217
Main Authors 郭宁宁, 王宝亮, 侯永宏, 常鹏
Format Journal Article
LanguageChinese
Published 天津大学电子信息工程学院,天津,300072%天津大学信息与网络中心,天津,300072 2018
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1702012

Cover

Abstract TP301; 为了解决传统协同过滤算法中存在的严峻的数据稀疏性问题,提出了一种融合社交网络特征的协同过滤推荐算法.该算法在传统矩阵分解模型基础上,通过融合社交网络特征与用户评分偏好程度得到信任和被信任特征矩阵,然后利用社交特征矩阵、商品特征矩阵和用户评分偏好相似性共同预测用户对商品的评分值.为了验证该算法的可靠性,使用Epinions公开数据集对算法性能进行对比分析.实验结果显示,相比现有的社交推荐算法,所提算法有更小的平均绝对误差和均方根误差,同时算法的时间复杂度与数据集的数量之间为线性关系.因此,该算法可以有效缓解数据稀疏性对推荐结果的影响,并提高推荐准确率.在现实推荐中,该算法可以考虑作为大规模数据集进行商品推荐的一个选择方式.
AbstractList TP301; 为了解决传统协同过滤算法中存在的严峻的数据稀疏性问题,提出了一种融合社交网络特征的协同过滤推荐算法.该算法在传统矩阵分解模型基础上,通过融合社交网络特征与用户评分偏好程度得到信任和被信任特征矩阵,然后利用社交特征矩阵、商品特征矩阵和用户评分偏好相似性共同预测用户对商品的评分值.为了验证该算法的可靠性,使用Epinions公开数据集对算法性能进行对比分析.实验结果显示,相比现有的社交推荐算法,所提算法有更小的平均绝对误差和均方根误差,同时算法的时间复杂度与数据集的数量之间为线性关系.因此,该算法可以有效缓解数据稀疏性对推荐结果的影响,并提高推荐准确率.在现实推荐中,该算法可以考虑作为大规模数据集进行商品推荐的一个选择方式.
Abstract_FL To solve the severe sparseness problem of traditional collaborative filtering recommendation algorithm,this paper proposes a novel collaborative filtering recommendation algorithm based on the characteristics of social network.On the basis of traditional matrix decomposition model,the algorithm obtains the trust and trusted characteristic matrix by integrating the characteristics of social network and user's preference degree,and then,predicts the rating of the commodity by the social identity matrix,the commodity characteristic matrix and the user rating preference similarity in common.In order to verify the reliability of the proposed algorithm,this paper uses the Epinions open dataset to compare the algorithm performance.The experimental results show that compared with the existing social recommendation algorithms,the proposed algorithm has smaller average absolute error and root mean square error.Meanwhile,there is a linear relationship between the time complexity of the proposed algorithm and the number of the dataset.Therefore,the proposed algorithm can effectively reduce the impact of data sparseness on recommendation results and improve the recommendation accuracy rate.In practice,the proposed algorithm can be considered as an alternative and development of the large-scale data set recommendation.
Author 王宝亮
常鹏
郭宁宁
侯永宏
AuthorAffiliation 天津大学电子信息工程学院,天津,300072%天津大学信息与网络中心,天津,300072
AuthorAffiliation_xml – name: 天津大学电子信息工程学院,天津,300072%天津大学信息与网络中心,天津,300072
Author_FL WANG Baoliang
CHANG Peng
GUO Ningning
HOU Yonghong
Author_FL_xml – sequence: 1
  fullname: GUO Ningning
– sequence: 2
  fullname: WANG Baoliang
– sequence: 3
  fullname: HOU Yonghong
– sequence: 4
  fullname: CHANG Peng
Author_xml – sequence: 1
  fullname: 郭宁宁
– sequence: 2
  fullname: 王宝亮
– sequence: 3
  fullname: 侯永宏
– sequence: 4
  fullname: 常鹏
BookMark eNo9jz1Lw0Acxm-oYK39Dq4OiXe5y_0voxTfoODSvVxeThrlCp6ijoKggrFxEEHEKUOnLk5arF_G5PIxDChODzwP_B5-K6ilxzpBaI1glwKIjdQdGaNdwoE6ASPCJYA9TLwWav93y6hrzCjEPmMeAS7aiNavWZnf2GLx_VHYzwc7f7G37-Xi0j5fldmkzO_qr-tqXlT30zrL7eypentcRUtKHpmk-5cdNNjeGvR2nf7-zl5vs-9EnDCHY04hURIkVlzxMBFKqMCnPFAYuAoTn2LJY8ECABZD0Iw44kr5EY4IiQntoPVf7JnUSuqDYTo-PdbN4TA16eH5xYlp9ETjiBn9AeSFXR0
ClassificationCodes TP301
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1702012
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network
EndPage 217
ExternalDocumentID jsjkxyts201802004
GrantInformation_xml – fundername: The National Natural Science Foundation of China under Grant No.61571325
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-c614-60637efa7a0f6f6be8f8f95369f076fbe530a6d849774d798f90c6ff5c0c11d13
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 用户评分偏好
social network
collaborative filtering
recommender system
rating prediction
推荐系统
社交网络
协同过滤
评分预测
user rating preference
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c614-60637efa7a0f6f6be8f8f95369f076fbe530a6d849774d798f90c6ff5c0c11d13
PageCount 10
ParticipantIDs wanfang_journals_jsjkxyts201802004
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2018
Publisher 天津大学电子信息工程学院,天津,300072%天津大学信息与网络中心,天津,300072
Publisher_xml – name: 天津大学电子信息工程学院,天津,300072%天津大学信息与网络中心,天津,300072
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.1298976
Snippet TP301; 为了解决传统协同过滤算法中存在的严峻的数据稀疏性问题,提出了一种融合社交网络特征的协同过滤推荐算法.该算法在传统矩阵分解模型基础上,通过融合社交网络特征与...
SourceID wanfang
SourceType Aggregation Database
StartPage 208
Title 融合社交网络特征的协同过滤推荐算法
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201802004
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJT14kUUFb8p4hxTJ8l8HpPdWYqgpxV6K5tsRqmwgt2C9iAIggpW60EEEU89ePLiSYv1z7jd_gzfm0x2U1ulegkv77157817s3lvsjOZILhmpaaxLVgIxUceMp3LUEMVG-YW0ndUFJq70xtu3hKLt9mNJb4012o1Vi2tjfKFYv3QfSX_E1XAQVxxl-w_RHYqFBAAQ3zhChGG65FiTIwi2hDVIYYTTYlSxEiSMpIZYuCaIgyYrEN05ICM6DYCSpNMYyvgVI6kU6IYYkCa6tYC26gi6xIliRHYHAUKogxJFZKAGdhQqSG64klIdZ5lXfIiG1DTaB8bmAHmIUY62zhJOyQVzmyF8r2W2JnNAKiHBjGaqATZsVFlvgdmLBIbq8xTdKd2h5mxOC-lXWczRaVeSnfGwhGNFOctT_GvSPzzHIezawkmaicLAF5jZKNj0E9QyT0GvcbQs-gXgZ1IndMz6ZpL9K-3v2quidbojrh9iLq4nWAZBlR-NGMOqp76_eBwcaTK3zgUkr_b0EhzQiahZt5TdR6MG7_3uJnUqGrUR3G11_b31JtIqVzqRQULUwULkYQJiRe9_8PmK6sr9x4-Gq1ixGjsPup7LJZQL-IC3MdmVkRCntHNSTDes327saHqnmYVPBFB8FlRDreJomJatPMokfhn4_SeMehStWe2trpa8odduv6nDrlNfkPbH95p1KO9k8EJP5GcT6unwqlgbv3u6SDZ-7gx3nw-2dr5-W1r8v3NZPvD5MXX8c6Tyfun443X482Xez-e7W5v7b76tLexOfn8bvfL2zNBr2t67cXQH4sSFlBLhwImFbK0fdmnVliRl8oqi4swtKVS2LzkCe2LgWI4sxtIDURaCGt5QYsoGkTJ2aA1vD8szwXzZZQLEALYUjI64H3cLEbhJtJRoYv8fHDV93HZP_VWlw9E7cJRmC4GxxGu3l1eClqjB2vlZajmR_kVF-xffmatLQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E7%A4%BE%E4%BA%A4%E7%BD%91%E7%BB%9C%E7%89%B9%E5%BE%81%E7%9A%84%E5%8D%8F%E5%90%8C%E8%BF%87%E6%BB%A4%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E9%83%AD%E5%AE%81%E5%AE%81&rft.au=%E7%8E%8B%E5%AE%9D%E4%BA%AE&rft.au=%E4%BE%AF%E6%B0%B8%E5%AE%8F&rft.au=%E5%B8%B8%E9%B9%8F&rft.date=2018&rft.pub=%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5%2C300072%25%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%BD%91%E7%BB%9C%E4%B8%AD%E5%BF%83%2C%E5%A4%A9%E6%B4%A5%2C300072&rft.issn=1673-9418&rft.volume=12&rft.issue=2&rft.spage=208&rft.epage=217&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1702012&rft.externalDocID=jsjkxyts201802004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg