Multi-PGS enhances polygenic prediction by combining 937 polygenic scores

The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 4702 - 11
Main Authors Albiñana, Clara, Zhu, Zhihong, Schork, Andrew J., Ingason, Andrés, Aschard, Hugues, Brikell, Isabell, Bulik, Cynthia M., Petersen, Liselotte V., Agerbo, Esben, Grove, Jakob, Nordentoft, Merete, Hougaard, David M., Werge, Thomas, Børglum, Anders D., Mortensen, Preben Bo, McGrath, John J., Neale, Benjamin M., Privé, Florian, Vilhjálmsson, Bjarni J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-40330-w

Cover

Abstract The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R 2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks. Polygenic scores (PGS) have high potential for clinical use but are currently underpowered for many applications. Here, the authors develop an approach that leverages an agnostic library of hundreds of PGS to increase prediction of complex diseases and other traits. This multi-PGS framework is ideal for emerging biobank data.
AbstractList The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.Polygenic scores (PGS) have high potential for clinical use but are currently underpowered for many applications. Here, the authors develop an approach that leverages an agnostic library of hundreds of PGS to increase prediction of complex diseases and other traits. This multi-PGS framework is ideal for emerging biobank data.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R 2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks. Polygenic scores (PGS) have high potential for clinical use but are currently underpowered for many applications. Here, the authors develop an approach that leverages an agnostic library of hundreds of PGS to increase prediction of complex diseases and other traits. This multi-PGS framework is ideal for emerging biobank data.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
Abstract The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R 2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R 2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
ArticleNumber 4702
Author Hougaard, David M.
Grove, Jakob
Aschard, Hugues
Albiñana, Clara
Ingason, Andrés
Neale, Benjamin M.
Schork, Andrew J.
Petersen, Liselotte V.
Børglum, Anders D.
Nordentoft, Merete
Mortensen, Preben Bo
Zhu, Zhihong
Brikell, Isabell
Agerbo, Esben
McGrath, John J.
Werge, Thomas
Vilhjálmsson, Bjarni J.
Bulik, Cynthia M.
Privé, Florian
Author_xml – sequence: 1
  givenname: Clara
  orcidid: 0000-0002-3166-4120
  surname: Albiñana
  fullname: Albiñana, Clara
  email: albinanaclara@gmail.com
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University
– sequence: 2
  givenname: Zhihong
  surname: Zhu
  fullname: Zhu, Zhihong
  organization: National Centre for Register-Based Research, Aarhus University
– sequence: 3
  givenname: Andrew J.
  surname: Schork
  fullname: Schork, Andrew J.
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, The Translational Genomics Research Institute
– sequence: 4
  givenname: Andrés
  surname: Ingason
  fullname: Ingason, Andrés
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital
– sequence: 5
  givenname: Hugues
  orcidid: 0000-0002-7554-6783
  surname: Aschard
  fullname: Aschard, Hugues
  organization: Department of Computational Biology, Institut Pasteur, Université de Paris
– sequence: 6
  givenname: Isabell
  surname: Brikell
  fullname: Brikell, Isabell
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine and Center for Integrative Sequencing, iSEQ, Aarhus University, Department of Medical Epidemiology and Biostatistics, Karolinska Institute
– sequence: 7
  givenname: Cynthia M.
  orcidid: 0000-0001-7772-3264
  surname: Bulik
  fullname: Bulik, Cynthia M.
  organization: Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Department of Psychiatry, University of North Carolina at Chapel Hill, Department of Nutrition, University of North Carolina at Chapel Hill
– sequence: 8
  givenname: Liselotte V.
  surname: Petersen
  fullname: Petersen, Liselotte V.
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University
– sequence: 9
  givenname: Esben
  surname: Agerbo
  fullname: Agerbo, Esben
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University
– sequence: 10
  givenname: Jakob
  orcidid: 0000-0003-2284-5744
  surname: Grove
  fullname: Grove, Jakob
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine and Center for Integrative Sequencing, iSEQ, Aarhus University, Center for Genomics and Personalized Medicine, Aarhus University, Bioinformatics Research Centre, Aarhus University
– sequence: 11
  givenname: Merete
  surname: Nordentoft
  fullname: Nordentoft, Merete
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen Research Centre on Mental Health (CORE), University of Copenhagen
– sequence: 12
  givenname: David M.
  orcidid: 0000-0001-5928-3517
  surname: Hougaard
  fullname: Hougaard, David M.
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut
– sequence: 13
  givenname: Thomas
  orcidid: 0000-0003-1829-0766
  surname: Werge
  fullname: Werge, Thomas
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Lundbeck Foundation Centre for GeoGenetics, GLOBE Institute, University of Copenhagen
– sequence: 14
  givenname: Anders D.
  orcidid: 0000-0001-8627-7219
  surname: Børglum
  fullname: Børglum, Anders D.
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine and Center for Integrative Sequencing, iSEQ, Aarhus University, Center for Genomics and Personalized Medicine, Aarhus University
– sequence: 15
  givenname: Preben Bo
  orcidid: 0000-0002-5230-9865
  surname: Mortensen
  fullname: Mortensen, Preben Bo
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University
– sequence: 16
  givenname: John J.
  orcidid: 0000-0002-4792-6068
  surname: McGrath
  fullname: McGrath, John J.
  organization: National Centre for Register-Based Research, Aarhus University, Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Queensland Brain Institute, University of Queensland
– sequence: 17
  givenname: Benjamin M.
  orcidid: 0000-0003-1513-6077
  surname: Neale
  fullname: Neale, Benjamin M.
  organization: Analytic and Translational Genetics Unit, Massachusetts General Hospital, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
– sequence: 18
  givenname: Florian
  orcidid: 0000-0002-3138-2078
  surname: Privé
  fullname: Privé, Florian
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University
– sequence: 19
  givenname: Bjarni J.
  orcidid: 0000-0003-2277-9249
  surname: Vilhjálmsson
  fullname: Vilhjálmsson, Bjarni J.
  email: bjv.ncrr@au.dk
  organization: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-Based Research, Aarhus University, Bioinformatics Research Centre, Aarhus University, Novo Nordisk Foundation Center for Genomic Mechanisms, Broad Institute of MIT and Harvard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37543680$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04145280$$DView record in HAL
BookMark eNp9kktvEzEUhS1UREvpH2CBRmJTFgN-je1ZoaqCNlIQSMDa8viROJrYwZ5plX-PkyklzaLe2LK_c65173kNTkIMFoC3CH5EkIhPmSLKeA0xqSkkBNb3L8AZhhTViGNycnA-BRc5r2BZpEWC0lfglPCGEibgGZh9G_vB1z9uflY2LFXQNleb2G8XNnhdbZI1Xg8-hqrbVjquOx98WFQt4QdU1jHZ_Aa8dKrP9uJhPwe_v375dX1bz7_fzK6v5rVmiAy1UxR30CDbNkJZyjTsWqW4o9oZ5YQgAgsNGTFca9xx5ihuO0usEhQiYzg5B7PJ10S1kpvk1yptZVRe7i9iWkiVBq97K1mjmTPcKE4bionrOu4ahtrWKIa0IMXr8-S1Gbu1NdqGIan-ienTl-CXchHvJIIUUsza4vBhclge6W6v5nJ3V6ZAGyzgHSrs5UO1FP-MNg9y7bO2fa-CjWOWWFDWYto0uKDvj9BVHFMofd1TFOJiWah3h99_rP9vvAXAE6BTzDlZ94ggKHcxklOMZImR3MdI3heROBJpP6hdCEoLfP-8lEzSXOqEhU3_v_2M6i_vPdsn
CitedBy_id crossref_primary_10_1007_s00439_024_02716_8
crossref_primary_10_1016_j_ajhg_2024_06_003
crossref_primary_10_1002_ajmg_b_33026
crossref_primary_10_3390_jcm13102955
crossref_primary_10_1038_s41398_024_02998_6
crossref_primary_10_1186_s12866_023_03147_7
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_1186_s12864_024_10706_3
crossref_primary_10_1371_journal_pgen_1011519
crossref_primary_10_1186_s13059_024_03400_w
crossref_primary_10_1016_j_xgen_2024_100539
crossref_primary_10_1038_s42003_025_07721_9
crossref_primary_10_1016_j_xgen_2024_100523
crossref_primary_10_30629_2618_6667_2024_22_4_93_101
Cites_doi 10.1177/1403494810395825
10.1038/s41593-021-00826-4
10.1038/s41588-017-0009-4
10.1038/s41562-019-0566-x
10.1093/nar/gky1120
10.1093/hmg/ddz187
10.1038/s41588-019-0344-8
10.1038/s41467-019-12653-0
10.1038/s41588-018-0144-6
10.1016/j.ajhg.2022.01.007
10.1038/ng.3643
10.1002/gepi.21614
10.1038/s41588-018-0269-7
10.1038/s41588-018-0183-z
10.1016/j.jacc.2018.07.079
10.1007/s10654-018-0356-1
10.1038/s41588-018-0090-3
10.1016/j.ajhg.2021.04.014
10.1016/j.ajhg.2019.11.001
10.1038/s41562-021-01110-y
10.1016/j.ajhg.2017.03.004
10.1093/bioinformatics/btz633
10.1038/s41467-017-02769-6
10.1038/ng.3211
10.1038/s41588-019-0481-0
10.1038/s41467-019-13848-1
10.1038/s41593-018-0326-7
10.1038/ng.2653
10.1016/j.cct.2018.09.015
10.1176/appi.ajp.22010003
10.3389/fmed.2021.711208
10.1038/ng.3406
10.1038/s41588-021-00978-w
10.1038/ng.3190
10.1093/ehjci/jeaa297
10.1038/s41467-019-11112-0
10.1038/s41467-021-27930-0
10.1038/s41588-021-00783-5
10.1038/s41588-018-0320-8
10.1038/s41467-019-08535-0
10.1093/bioinformatics/bty185
10.1038/s41467-019-09718-5
10.1371/journal.pgen.1009697
10.1038/mp.2017.163
10.18637/jss.v033.i01
10.1038/mp.2017.196
10.1038/s41588-019-0379-x
10.1016/j.xhgg.2022.100136
10.1101/2022.01.19.476997
10.1038/s41467-021-24485-y
10.5281/zenodo.7988493
10.1093/bioinformatics/btaa520
10.1093/bioinformatics/btaa1029
10.1145/2939672.2939785
10.1101/2020.11.30.20237768
ContentType Journal Article
Copyright The Author(s) 2023
2023. Springer Nature Limited.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. Springer Nature Limited.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41467-023-40330-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_65c6fd7da745423fbb7f56199da61c83
PMC10404269
oai_HAL_hal_04145280v1
37543680
10_1038_s41467_023_40330_w
Genre Journal Article
GrantInformation_xml – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: Niels Bohr Profesorsship to John McGrath
  funderid: https://doi.org/10.13039/501100001732
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: Niels Bohr Profesorsship to John McGrath
– fundername: ;
  grantid: Niels Bohr Profesorsship to John McGrath
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
1XC
4.4
ABAWZ
BAPOH
CAG
COF
EJD
VOOES
5PM
ID FETCH-LOGICAL-c613t-fa42b0d1e958ae46c0b9aa7f4cfdaf883828c063d7cc2b76f429be3ea8401dd73
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:41 EDT 2025
Thu Aug 21 18:41:58 EDT 2025
Tue Sep 02 06:30:06 EDT 2025
Thu Sep 04 19:18:31 EDT 2025
Wed Aug 13 06:05:16 EDT 2025
Thu Apr 03 07:01:38 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 02:10:29 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Springer Nature Limited.
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-fa42b0d1e958ae46c0b9aa7f4cfdaf883828c063d7cc2b76f429be3ea8401dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC10404269
ORCID 0000-0003-1829-0766
0000-0002-3138-2078
0000-0001-7772-3264
0000-0002-5230-9865
0000-0002-7554-6783
0000-0003-2284-5744
0000-0003-2277-9249
0000-0001-8627-7219
0000-0002-3166-4120
0000-0003-1513-6077
0000-0001-5928-3517
0000-0002-4792-6068
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40330-w
PMID 37543680
PQID 2846402280
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_65c6fd7da745423fbb7f56199da61c83
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10404269
hal_primary_oai_HAL_hal_04145280v1
proquest_miscellaneous_2846924552
proquest_journals_2846402280
pubmed_primary_37543680
crossref_primary_10_1038_s41467_023_40330_w
crossref_citationtrail_10_1038_s41467_023_40330_w
springer_journals_10_1038_s41467_023_40330_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-05
PublicationDateYYYYMMDD 2023-08-05
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Inouye (CR1) 2018; 72
Privé (CR6) 2022; 109
Lambert (CR45) 2021; 53
Privé, Vilhjálmsson, Aschard, Blum (CR15) 2019; 105
Maier (CR8) 2018; 9
Martin (CR40) 2017; 100
Friedman, Hastie, Tibshirani (CR53) 2010; 33
CR38
Smith (CR41) 2021; 24
Zhou, Zhao (CR19) 2021; 17
Khera (CR3) 2018; 50
Albiñana (CR32) 2021; 108
Rohde, Nyegaard, Kjolby, Sørensen (CR13) 2021; 8
Ge, Chen, Ni, Feng, Smoller (CR18) 2019; 10
Grove (CR14) 2019; 51
Abdellaoui, Verweij (CR24) 2021; 5
Pedersen (CR22) 2017; 23
Lloyd-Jones (CR17) 2019; 10
Watanabe (CR27) 2019; 51
McCaw (CR36) 2022; 13
Bliddal, Broe, Pottegård, Olsen, Langhoff-Roos (CR34) 2018; 33
Lam (CR50) 2020; 36
Raisi-Estabragh, Harvey, Neubauer, Petersen (CR42) 2021; 22
CR46
Turley (CR9) 2018; 50
Abraham (CR11) 2019; 10
Hasseris (CR37) 2023; 180
Martin (CR4) 2019; 51
Duncan (CR5) 2019; 10
(CR43) 2013; 45
Grotzinger (CR10) 2019; 3
Bulik-Sullivan (CR39) 2015; 47
Lee, Goddard, Wray, Visscher (CR56) 2012; 36
Loh (CR54) 2015; 47
CR16
CR57
Howard (CR30) 2019; 22
Demontis (CR35) 2019; 51
CR51
Loh, Kichaev, Gazal, Schoech, Price (CR55) 2018; 50
Wray (CR29) 2018; 50
Mors, Perto, Mortensen (CR33) 2011; 39
Bulik-Sullivan (CR47) 2015; 47
Thornton (CR48) 2018; 74
Ferkingstad (CR44) 2021; 53
Buniello (CR26) 2019; 47
McCarthy (CR49) 2016; 48
Krapohl (CR7) 2018; 23
Privé, Aschard, Ziyatdinov, Blum (CR52) 2018; 34
CR28
CR25
CR23
Lambert, Abraham, Inouye (CR2) 2019; 28
Baselmans (CR31) 2019; 51
CR21
CR20
Chung (CR12) 2019; 10
40330_CR46
D Demontis (40330_CR35) 2019; 51
E Ferkingstad (40330_CR44) 2021; 53
SM Smith (40330_CR41) 2021; 24
AV Khera (40330_CR3) 2018; 50
BK Bulik-Sullivan (40330_CR47) 2015; 47
M Lam (40330_CR50) 2020; 36
K Watanabe (40330_CR27) 2019; 51
P Turley (40330_CR9) 2018; 50
BML Baselmans (40330_CR31) 2019; 51
CB Pedersen (40330_CR22) 2017; 23
W Chung (40330_CR12) 2019; 10
P-R Loh (40330_CR55) 2018; 50
RM Maier (40330_CR8) 2018; 9
NR Wray (40330_CR29) 2018; 50
40330_CR38
F Privé (40330_CR15) 2019; 105
SA Lambert (40330_CR2) 2019; 28
L Duncan (40330_CR5) 2019; 10
E Krapohl (40330_CR7) 2018; 23
SA Lambert (40330_CR45) 2021; 53
ZR McCaw (40330_CR36) 2022; 13
A Abdellaoui (40330_CR24) 2021; 5
GTEx Consortium. (40330_CR43) 2013; 45
F Privé (40330_CR52) 2018; 34
S McCarthy (40330_CR49) 2016; 48
SH Lee (40330_CR56) 2012; 36
40330_CR28
G Abraham (40330_CR11) 2019; 10
J Grove (40330_CR14) 2019; 51
M Bliddal (40330_CR34) 2018; 33
A Buniello (40330_CR26) 2019; 47
T Ge (40330_CR18) 2019; 10
40330_CR25
40330_CR20
P-R Loh (40330_CR54) 2015; 47
40330_CR21
40330_CR23
G Zhou (40330_CR19) 2021; 17
PD Rohde (40330_CR13) 2021; 8
F Privé (40330_CR6) 2022; 109
O Mors (40330_CR33) 2011; 39
M Inouye (40330_CR1) 2018; 72
AR Martin (40330_CR4) 2019; 51
B Bulik-Sullivan (40330_CR39) 2015; 47
40330_CR57
C Albiñana (40330_CR32) 2021; 108
40330_CR16
LR Lloyd-Jones (40330_CR17) 2019; 10
40330_CR51
DM Howard (40330_CR30) 2019; 22
S Hasseris (40330_CR37) 2023; 180
AR Martin (40330_CR40) 2017; 100
Z Raisi-Estabragh (40330_CR42) 2021; 22
J Friedman (40330_CR53) 2010; 33
AD Grotzinger (40330_CR10) 2019; 3
LM Thornton (40330_CR48) 2018; 74
References_xml – volume: 39
  start-page: 54
  year: 2011
  end-page: 57
  ident: CR33
  article-title: The Danish psychiatric central research register
  publication-title: Scand. J. Public Health
  doi: 10.1177/1403494810395825
– volume: 24
  start-page: 737
  year: 2021
  end-page: 745
  ident: CR41
  article-title: An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00826-4
– volume: 50
  start-page: 229
  year: 2018
  end-page: 237
  ident: CR9
  article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0009-4
– volume: 3
  start-page: 513
  year: 2019
  end-page: 525
  ident: CR10
  article-title: Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0566-x
– volume: 47
  start-page: D1005
  year: 2019
  end-page: D1012
  ident: CR26
  article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1120
– volume: 28
  start-page: R133
  year: 2019
  end-page: R142
  ident: CR2
  article-title: Towards clinical utility of polygenic risk scores
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddz187
– ident: CR16
– ident: CR51
– volume: 51
  start-page: 431
  year: 2019
  end-page: 444
  ident: CR14
  article-title: Identification of common genetic risk variants for autism spectrum disorder
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0344-8
– volume: 10
  year: 2019
  ident: CR17
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 50
  start-page: 906
  year: 2018
  end-page: 908
  ident: CR55
  article-title: Mixed-model association for biobank-scale datasets
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 109
  start-page: 373
  year: 2022
  ident: CR6
  article-title: Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2022.01.007
– volume: 48
  start-page: 1279
  year: 2016
  end-page: 1283
  ident: CR49
  article-title: A reference panel of 64,976 haplotypes for genotype imputation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3643
– volume: 36
  start-page: 214
  year: 2012
  end-page: 224
  ident: CR56
  article-title: A better coefficient of determination for genetic profile analysis
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21614
– volume: 51
  start-page: 63
  year: 2019
  end-page: 75
  ident: CR35
  article-title: Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0269-7
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: CR3
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0183-z
– ident: CR25
– ident: CR21
– ident: CR46
– volume: 72
  start-page: 1883
  year: 2018
  end-page: 1893
  ident: CR1
  article-title: Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.07.079
– volume: 33
  start-page: 27
  year: 2018
  end-page: 36
  ident: CR34
  article-title: The Danish medical birth register
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-018-0356-1
– volume: 50
  start-page: 668
  year: 2018
  end-page: 681
  ident: CR29
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
– volume: 108
  start-page: 1001
  year: 2021
  end-page: 1011
  ident: CR32
  article-title: Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2021.04.014
– volume: 105
  start-page: 1213
  year: 2019
  end-page: 1221
  ident: CR15
  article-title: Making the most of clumping and thresholding for polygenic scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.11.001
– ident: CR57
– volume: 5
  start-page: 686
  year: 2021
  end-page: 694
  ident: CR24
  article-title: Dissecting polygenic signals from genome-wide association studies on human behaviour
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01110-y
– volume: 100
  start-page: 635
  year: 2017
  end-page: 649
  ident: CR40
  article-title: Human demographic history impacts genetic risk prediction across diverse populations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.03.004
– volume: 36
  start-page: 930
  year: 2020
  end-page: 933
  ident: CR50
  article-title: RICOPILI: Rapid Imputation for COnsortias PIpeLIne
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz633
– volume: 9
  year: 2018
  ident: CR8
  article-title: Improving genetic prediction by leveraging genetic correlations among human diseases and traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02769-6
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: CR47
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 51
  start-page: 1339
  year: 2019
  end-page: 1348
  ident: CR27
  article-title: A global overview of pleiotropy and genetic architecture in complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0481-0
– volume: 10
  year: 2019
  ident: CR11
  article-title: Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13848-1
– volume: 22
  start-page: 343
  year: 2019
  end-page: 352
  ident: CR30
  article-title: Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0326-7
– volume: 45
  start-page: 580
  year: 2013
  end-page: 585
  ident: CR43
  article-title: The Genotype-Tissue Expression (GTEx) project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2653
– volume: 74
  start-page: 61
  year: 2018
  end-page: 69
  ident: CR48
  article-title: The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2018.09.015
– volume: 180
  start-page: 200
  year: 2023
  end-page: 208
  ident: CR37
  article-title: Polygenic risk and episode polarity among individuals with bipolar disorder
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.22010003
– volume: 8
  start-page: 711208
  year: 2021
  ident: CR13
  article-title: Multi-trait genomic risk stratification for type 2 diabetes
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.711208
– volume: 47
  start-page: 1236
  year: 2015
  end-page: 1241
  ident: CR39
  article-title: An atlas of genetic correlations across human diseases and traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 53
  start-page: 1712
  year: 2021
  end-page: 1721
  ident: CR44
  article-title: Large-scale integration of the plasma proteome with genetics and disease
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00978-w
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  ident: CR54
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– ident: CR23
– volume: 22
  start-page: 251
  year: 2021
  end-page: 258
  ident: CR42
  article-title: Cardiovascular magnetic resonance imaging in the UK Biobank: a major international health research resource
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeaa297
– volume: 10
  year: 2019
  ident: CR5
  article-title: Analysis of polygenic risk score usage and performance in diverse human populations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11112-0
– volume: 13
  year: 2022
  ident: CR36
  article-title: DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27930-0
– volume: 53
  start-page: 420
  year: 2021
  end-page: 425
  ident: CR45
  article-title: The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00783-5
– volume: 51
  start-page: 445
  year: 2019
  end-page: 451
  ident: CR31
  article-title: Multivariate genome-wide analyses of the well-being spectrum
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0320-8
– ident: CR38
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR12
  article-title: Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08535-0
– volume: 34
  start-page: 2781
  year: 2018
  end-page: 2787
  ident: CR52
  article-title: Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty185
– volume: 10
  year: 2019
  ident: CR18
  article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 17
  start-page: e1009697
  year: 2021
  ident: CR19
  article-title: A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009697
– volume: 23
  start-page: 1368
  year: 2018
  end-page: 1374
  ident: CR7
  article-title: Multi-polygenic score approach to trait prediction
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.163
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: CR53
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 23
  start-page: 6
  year: 2017
  ident: CR22
  article-title: The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.196
– ident: CR28
– volume: 51
  start-page: 584
  year: 2019
  end-page: 591
  ident: CR4
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– ident: CR20
– volume: 51
  start-page: 445
  year: 2019
  ident: 40330_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0320-8
– volume: 5
  start-page: 686
  year: 2021
  ident: 40330_CR24
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01110-y
– volume: 23
  start-page: 1368
  year: 2018
  ident: 40330_CR7
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.163
– ident: 40330_CR28
– volume: 3
  start-page: 513
  year: 2019
  ident: 40330_CR10
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0566-x
– ident: 40330_CR46
  doi: 10.1016/j.xhgg.2022.100136
– ident: 40330_CR38
  doi: 10.1101/2022.01.19.476997
– volume: 45
  start-page: 580
  year: 2013
  ident: 40330_CR43
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2653
– volume: 10
  start-page: 1
  year: 2019
  ident: 40330_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08535-0
– volume: 47
  start-page: 1236
  year: 2015
  ident: 40330_CR39
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 53
  start-page: 420
  year: 2021
  ident: 40330_CR45
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00783-5
– volume: 180
  start-page: 200
  year: 2023
  ident: 40330_CR37
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.22010003
– volume: 47
  start-page: 284
  year: 2015
  ident: 40330_CR54
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– volume: 23
  start-page: 6
  year: 2017
  ident: 40330_CR22
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.196
– volume: 109
  start-page: 373
  year: 2022
  ident: 40330_CR6
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2022.01.007
– volume: 51
  start-page: 584
  year: 2019
  ident: 40330_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– volume: 53
  start-page: 1712
  year: 2021
  ident: 40330_CR44
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00978-w
– volume: 22
  start-page: 343
  year: 2019
  ident: 40330_CR30
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0326-7
– volume: 39
  start-page: 54
  year: 2011
  ident: 40330_CR33
  publication-title: Scand. J. Public Health
  doi: 10.1177/1403494810395825
– volume: 36
  start-page: 214
  year: 2012
  ident: 40330_CR56
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21614
– volume: 33
  start-page: 27
  year: 2018
  ident: 40330_CR34
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-018-0356-1
– volume: 22
  start-page: 251
  year: 2021
  ident: 40330_CR42
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeaa297
– ident: 40330_CR20
  doi: 10.1038/s41467-021-24485-y
– volume: 50
  start-page: 668
  year: 2018
  ident: 40330_CR29
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
– volume: 47
  start-page: 291
  year: 2015
  ident: 40330_CR47
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 50
  start-page: 906
  year: 2018
  ident: 40330_CR55
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– ident: 40330_CR57
  doi: 10.5281/zenodo.7988493
– volume: 51
  start-page: 1339
  year: 2019
  ident: 40330_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0481-0
– volume: 24
  start-page: 737
  year: 2021
  ident: 40330_CR41
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00826-4
– volume: 47
  start-page: D1005
  year: 2019
  ident: 40330_CR26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1120
– ident: 40330_CR25
– volume: 108
  start-page: 1001
  year: 2021
  ident: 40330_CR32
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2021.04.014
– ident: 40330_CR51
  doi: 10.1093/bioinformatics/btaa520
– volume: 72
  start-page: 1883
  year: 2018
  ident: 40330_CR1
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.07.079
– volume: 51
  start-page: 431
  year: 2019
  ident: 40330_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0344-8
– volume: 10
  year: 2019
  ident: 40330_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– ident: 40330_CR16
  doi: 10.1093/bioinformatics/btaa1029
– volume: 8
  start-page: 711208
  year: 2021
  ident: 40330_CR13
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.711208
– volume: 17
  start-page: e1009697
  year: 2021
  ident: 40330_CR19
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009697
– volume: 13
  year: 2022
  ident: 40330_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27930-0
– volume: 10
  year: 2019
  ident: 40330_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 34
  start-page: 2781
  year: 2018
  ident: 40330_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty185
– volume: 74
  start-page: 61
  year: 2018
  ident: 40330_CR48
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2018.09.015
– volume: 10
  year: 2019
  ident: 40330_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13848-1
– volume: 10
  year: 2019
  ident: 40330_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11112-0
– ident: 40330_CR21
  doi: 10.1145/2939672.2939785
– volume: 51
  start-page: 63
  year: 2019
  ident: 40330_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0269-7
– volume: 105
  start-page: 1213
  year: 2019
  ident: 40330_CR15
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.11.001
– volume: 100
  start-page: 635
  year: 2017
  ident: 40330_CR40
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.03.004
– volume: 36
  start-page: 930
  year: 2020
  ident: 40330_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz633
– volume: 48
  start-page: 1279
  year: 2016
  ident: 40330_CR49
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3643
– volume: 28
  start-page: R133
  year: 2019
  ident: 40330_CR2
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddz187
– ident: 40330_CR23
  doi: 10.1101/2020.11.30.20237768
– volume: 50
  start-page: 1219
  year: 2018
  ident: 40330_CR3
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0183-z
– volume: 33
  start-page: 1
  year: 2010
  ident: 40330_CR53
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 50
  start-page: 229
  year: 2018
  ident: 40330_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0009-4
– volume: 9
  year: 2018
  ident: 40330_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02769-6
SSID ssj0000391844
Score 2.5298512
Snippet The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a...
Abstract The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4702
SubjectTerms 45/43
631/114/2415
631/208/366
692/53/2423
Accuracy
Attention deficit hyperactivity disorder
Biobanks
Genetics
Genome-wide association studies
Genomes
Genomics
Genotype & phenotype
Human genetics
Humanities and Social Sciences
Hyperactivity
Life Sciences
Mental disorders
Mental health
multidisciplinary
Performance prediction
Phenotypes
Polygenic inheritance
Predictions
Psychiatric research
Sample size
Science
Science (multidisciplinary)
Statistics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kIPgi3k2tEsU3HTrJ3B-rWFdREbTQt2GubKFkl2Zr2X_vmUl23VjUF58WkslmOJd852NmvoPQS2cFtY13WHvKMHMpYQs4hTlJQZAkedL5cPLnL2J2wj6e8tOdVl95T9ggDzwY7lBwL1KQwUrGAfqTczIB5msdrGi8KjqfRJMdMlW-wVQDdWHjKRlC1WHPyjcBIAooE5B4fDVBoiLYD_gyz9shr9ea17dM_rZuWuDo-A66PdaR9dEw_7voRuzuoZtDZ8n1ffShHKzFX99_q2M3z57t6-XifA3hcubr5UVenskuqd26hphzpU1EDUXEzqg-K1z2D9DJ8bvvb2d47JqAPUDzCifLWkdCEzVXNjLhidPWysR8CjYpRYFjeShMgvS-dVIkQCQXabRA9ZoQJH2I9rpFFx-j2ifhlGiCkjIwC6mb2thGBz_a50ZUFWo2FjR-lBTPnS3OTVnapsoMVjdgdVOsbq4q9Gr7zHIQ1Pjr6DfZMduRWQy7XIAQMWOImH-FSIVegFsn_zE7-mTyNQJv5K0iP5oKHWy8bsY07g1gt2BFMahCz7e3IQHzqort4uJyGAMklvO2Qo-GINm-KvcXpiI_rSbhM5nL9E53Ni8i30CTM73VFXq9ibRf8_qzwfb_h8GeoFttTpS8M4YfoL3VxWV8CrXXyj0rafYTNQ4p5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VVEi9oFIeNS3IIG5g1Y_dtX1AqEUtAUFUAZV6W-2TVKqckKRU-ffMrO2UUNFTJHsd2ztvz-73AbzWShQqMzqpTcESpr1PFMaphKfeitSX3Ne0OfnrSAzP2Odzfr4Bo34vDC2r7H1icNR2Yugb-QG6UcECeMv76a-EWKOou9pTaKiOWsG-CxBj92ATXTJPB7B5dDw6_bb66kJ46BVj3e6ZtKgO5iz4CgxdWEphcZ9cr0WoAOSPcWdMyyRv56C3l1L-008NYepkGx50-WV82CrEQ9hwzQ7cbxknlzuwRclli838CD6F3bfJ6cfvsWvGJP55PJ1cLlGnLkw8nVEPh-QW62WMk6QDl0SMmcZfo-YEgzl_DGcnxz8-DJOOWiExGL8XiVcs16nNXM0r5Zgwqa6VKj0z3ipfVQUWYgazF1sak-tSeAxb2hVOYT2YWVsWT2DQTBq3C7HxQlcis1VZWqbQvn3ucqfxpzbEVhVB1k-nNB3uONFfXMrQ_y4q2YpAoghkEIG8juDN6pppi7px5-gjktJqJCFmhwOT2U_ZGaAU3AhvS6tKxjGF9FqXHnPHurZKZKYqIniFMl77j-HhF0nHUrwjR8X7nUWw36uA7Gx9Lm80M4KXq9NopdR6UY2bXLVjsNLlPI_gaasxq1sRCXEh6OpqTZfWnmX9THMxDkjgWEtTDVxH8LZXu5vn-v-EPbv7NfZgKyd7oIUxfB8Gi9mVe46p10K_6OzpD6ZNK_U
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9RAEC7WFcEX8Ta6ShTfNJikzzyug-soKoIu7FvTp7OwZIbJrMv8e6s7h46rgk-BpDrp1JGqSld_BfDcaE50ZU3RWEILakIoNPqpgpXB8TIIFpq4OfnjJz4_pu9P2Mke1ONemFS0nyAt02d6rA571dFk0uhhMOPBHLy4uAJXpSAsavWMz6b_KhHxXFI67I8pifzD0B0flKD60bMsYiHk5SjzcrHkbyumyREd3YQbQwSZH_ZzvgV7vr0N1_qekts78C5tqS0-v_2S-3YRZdrlq-XZFhXl1OardVyYicLIzTbHdzepQUSO4cMvVF3EtuzuwvHRm6-zeTH0SygsOuVNETStTekq3zCpPeW2NI3WIlAbnA5SEsyuLIYkTlhbG8ED-iLjideY5FXOCXIP9ttl6x9AbgM3kldOCuGoRqMNta-9wUNjYwuqDKqRg8oOYOKxp8WZSovaRKqe6wq5rhLX1UUGL6Yxqx5K45_Ur6NgJsoIg51OLNff1KAWijPLgxNOC8owLgzGiIABYdM4zSsrSQbPUKw795gfflDxXIlPZLUsv1cZHIxSV4MBdwq9NqcJKyiDp9NlNL24nqJbvzzvaTB9ZazO4H6vJNOjYmdhwuNouaM-O3PZvdKeLhK8NybIMbFtMng5atrPef2dYQ__j_wRXK-jScTqF3YA-5v1uX-M8dXGPEkG9QOmXB9o
  priority: 102
  providerName: Springer Nature
Title Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
URI https://link.springer.com/article/10.1038/s41467-023-40330-w
https://www.ncbi.nlm.nih.gov/pubmed/37543680
https://www.proquest.com/docview/2846402280
https://www.proquest.com/docview/2846924552
https://hal.science/hal-04145280
https://pubmed.ncbi.nlm.nih.gov/PMC10404269
https://doaj.org/article/65c6fd7da745423fbb7f56199da61c83
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71EKgviBtDiQziDQw-1rv2A0Jp1DZEUFWUSHlb7UkqRU5IUkr-PbNrOzS0IF5sab2-dr7xN-PZnQF4JQXNRKJkVKqMRERaGwnkqSiPraaxZbkt3eLkzye0PySDUT7agrbcUTOAixtdO1dPajifvP35ffUBFf59vWS8eLcgXt2RfdAbQv88utyGXR8vclP5GnPff5mzEh0aF2hOY5JEyN1Zs47m5svswW1XITajLmnkFdry2f2RjMZu7uR1w_T6_Mo_gqyeu47uwp3G6Ay7NUruwZap7sOtugzl6gF89Ktwo9Pjs9BUYweDRTibTlaIrXMVzuYuluPkF8pViACVvqZEiBbHlV4Llw5z8RCGR4dfe_2oKbEQKeTxZWQFSWWsE1PmhTCEqliWQjBLlNXCFkWGDplCK0YzpVLJqEX6kiYzAv3CRGuWPYKdalqZJxAqS2VBE10wpolAPbepSY3EXalc1aoAknYEuWryj7syGBPu4-BZwWsBcBQA9wLglwG8Xp8zq7Nv_LP3gRPMuqfLnO0bpvNvvFFETnNFrWZaMJKjKWmlZBZtyLLUgiaqyAJ4iWLduEa_-4m7NsQMydMi_pEEsN9KnbeQ5Uj0lPj0QgG8WB9GbXUhGFGZ6UXdBz3ePE8DeFyDZH2rFmoBFBvw2XiWzSPV-dhnBEef2vnCZQBvWqT9fq6_D9jT_3nXZ7CXOp1w02TyfdhZzi_MczTElrID22zEcFscHXdgt9sdnA1wf3B4cvoFW3u01_G_ODpeC38BG-kwuw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIheEJSXoYBBcAKrfqzX9qFCLbQkNK0qaKXeln14SaXKCXFKlD_Hb2Nm7aSEit56smSvXzvvnZ35AN4oyRMZaRUUOmEBU9YGEu1UkIbW8NBmqS2oOPngkHdP2JfT9HQFfs9rYWhb5VwnOkVthprWyDdRjXLmmrd8GP0MCDWKsqtzCA3ZQiuYLddirC3s2C9nUwzh6q3eJ6T32zje2z3-2A1alIFAoymbBFayWIUmKos0lyXjOlSFlJll2hpp8zzBmESjITeZ1rHKuEUNrsqklBgaRcZkCT73FqwyWkDpwOrO7uHR18UqD_Vfzxlrq3XCJN-smdNNaCoxdEuSMJguWUQHHIB2bkDbMq_6vFe3bv6Tv3Vmce8e3G39WX-7YcD7sFJW63C7QbicrcMaObNNL-gH0HPVvsHR529-WQ2I3Wp_NDyfIQ-faX80ppwR8YmvZj4SRTnsCh89m79G1dR2s34IJzcyyY-gUw2r8gn42nKV88jkWWaYRH1i4zIuFR4KTehYHkTz6RS67XNOcBvnwuXbk1w0JBBIAuFIIKYevFvcM2q6fFw7eoeotBhJHbrdieH4h2gFXvBUc2syIzOWostqlcos-qpFYSSPdJ548BppvPSM7nZf0LkQ35gio_-KPNiYs4BodUstLiXBg1eLy6gVKNUjq3J40YzByDpNYw8eNxyzeBWBHiec7s6XeGnpW5avVGcD13kcY3eKuQsP3s_Z7vK7_j9hT6__jZdwp3t80Bf93uH-M1iLSTZoU066AZ3J-KJ8jm7fRL1oZcuH7zctzn8A-fVqhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlAvCMrLUMAgOIEV27v22geECiUktFSVoFJuyz5JpcoJcUqUv8avY2Ztp4SK3nqKZK8f2fnm5Z2dj5CXSuZUJlpFpaYsYsq5SIKfirLYmTx2PHMlbk7-cpgPjtnnUTbaIL-7vTBYVtnZRG-ozUTjN_IemNGc-eYtPdeWRRzt9d9Nf0bIIIUrrR2dRgORfbtcQPpWvx3ugaxfpWn_47cPg6hlGIg0uLF55CRLVWwSW2aFtCzXsSql5I5pZ6QrCgr5iAYnbrjWqeK5A-utLLUS0qLEGE7hvtfIdU4ZQ9oIPuKr7zvYeb1grN2nE9OiVzNvlcBJQtJGaRwt1nyhpwwADzfGgsyL0e7Fos1_Vm69Q-zfJrfaSDbcbaB3h2zYapvcaLgtl9tkC8PYpgv0XTL0-3yjo09fQ1uNEWh1OJ2cLgG9JzqcznC1CBESqmUI4lCetSKEmOavUTU23KzvkeMrmeL7ZLOaVPYhCbXLVZEnpuDcMAmWxKU2tQp-So28WAFJuukUuu1wjkQbp8KvtNNCNCIQIALhRSAWAXm9umba9Pe4dPR7lNJqJPbm9gcmsx-iVXWRZzp3hhvJWQbBqlOKO4hSy9LIPNEFDcgLkPHaPQa7BwKPxfDEDCD-KwnITgcB0VqVWpzrQECer06DPcBFHlnZyVkzBnLqLEsD8qBBzOpRSHdMc7y6WMPS2rusn6lOxr7nOGTtmG2XAXnTwe78vf4_YY8u_xvPyE1QYnEwPNx_TLZSVA2sxsl2yOZ8dmafQLw3V0-9YoXk-1Vr8h8TEWgi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-PGS+enhances+polygenic+prediction+by+combining+937+polygenic+scores&rft.jtitle=Nature+communications&rft.au=Albi%C3%B1ana%2C+Clara&rft.au=Zhu%2C+Zhihong&rft.au=Schork%2C+Andrew&rft.au=Ingason%2C+Andr%C3%A9s&rft.date=2023-08-05&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40330-w&rft_id=info%3Apmid%2F37543680&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04145280v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon