Deciphering the role of RNA structure in translation efficiency

Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inacc...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. Suppl 3; pp. 559 - 15
Main Authors Lin, Jianan, Chen, Yang, Zhang, Yuping, Lin, Haifan, Ouyang, Zhengqing
Format Journal Article
LanguageEnglish
Published London BioMed Central 23.12.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-022-05037-7

Cover

Abstract Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
AbstractList RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency.BACKGROUNDRNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency.Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish.RESULTSHere, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish.Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.CONCLUSIONSOur results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
Abstract Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.
Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. Keywords: RNA structure profiling, mRNA translation, 3' UTR, Mouse embryonic stem cells, Zebrafish
ArticleNumber 559
Audience Academic
Author Chen, Yang
Zhang, Yuping
Lin, Haifan
Lin, Jianan
Ouyang, Zhengqing
Author_xml – sequence: 1
  givenname: Jianan
  surname: Lin
  fullname: Lin, Jianan
  organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, The Jackson Laboratory for Genomic Medicine
– sequence: 2
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst
– sequence: 3
  givenname: Yuping
  surname: Zhang
  fullname: Zhang, Yuping
  organization: Department of Statistics, University of Connecticut, Institute for Systems Genomics, University of Connecticut, Center for Quantitative Medicine, University of Connecticut
– sequence: 4
  givenname: Haifan
  surname: Lin
  fullname: Lin, Haifan
  organization: Yale Stem Cell Center and Department of Cell Biology, Yale University
– sequence: 5
  givenname: Zhengqing
  orcidid: 0000-0003-2842-8503
  surname: Ouyang
  fullname: Ouyang, Zhengqing
  email: ouyang@schoolph.umass.edu
  organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36564729$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuO0zAUjdAg5gE_wAJFYgOLDH7EsbMBVcOr0gikAdaW41y3rlK72A7Qv8dtymiK0Ah5Yev6nKN7zz3nxYnzDoriKUaXGIvmVcREsLZChFSIIcor_qA4wzXHFcGIndx5nxbnMa4Qwlwg9qg4pQ1rak7as-LNW9B2s4Rg3aJMSyiDH6D0prz5NCtjCqNOY4DSujIF5eKgkvWuBGOstuD09nHx0KghwpPDfVF8e__u69XH6vrzh_nV7LrSDaapAq3qDnrKhWpR3ynENWZATM1MZ2iHheCG90K0bQNIKwEN5j1teGuMENARelHMJ93eq5XcBLtWYSu9snJf8GEhVUhWDyDBQJ85WPcGasJEl0fFWGGKSAvcsKxFJ63RbdT2pxqGW0GM5M5aOVkrs7Vyb63kmfV6Ym3Gbg29BpcdGY5aOf5xdikX_odsuaA1qrPAi4NA8N9HiEmubdQwDMqBH6MknAmMGUEiQ59P0IXKA1lnfFbUO7iccZoXKijeCV7-A5VPD2urc1aMzfUjwssjQsYk-JUWaoxRzr_cHGOf3R33ds4_0ckAMQF08DEGMFLbtI9H7sIO91tJ_qL-l_-HrcXNLqwQ5MqPweXQ3cf6DadH9hI
CitedBy_id crossref_primary_10_3390_biom15020180
crossref_primary_10_1038_s41467_023_43946_0
crossref_primary_10_1016_j_ymthe_2024_05_036
Cites_doi 10.1126/science.1170160
10.1016/S0968-0004(03)00002-1
10.1101/gad.1399806
10.1101/gr.138545.112
10.1016/j.bbrc.2020.05.170
10.1111/j.1467-9868.2005.00503.x
10.1038/nature14263
10.1101/gad.298752.117
10.1038/s41594-018-0091-z
10.1038/ncb2105
10.1146/annurev.cellbio.14.1.399
10.1186/1748-7188-6-26
10.1016/S0968-0004(03)00051-3
10.1371/journal.pcbi.1000664
10.1016/S0959-437X(99)00005-2
10.1002/bip.360290621
10.1038/nature12894
10.1016/j.ceb.2008.01.013
10.15252/msb.20145524
10.1093/emboj/19.2.306
10.1016/j.molcel.2015.07.018
10.1016/j.cell.2011.10.002
10.1016/j.cell.2009.01.044
10.1016/j.tibs.2009.10.004
10.1101/gr.139758.112
10.1084/jem.20181726
10.1073/pnas.0909910107
10.1038/nature07598
10.1126/science.aad4939
10.1074/mcp.M500405-MCP200
10.1073/pnas.1432104100
10.1038/nature16509
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-022-05037-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 15
ExternalDocumentID oai_doaj_org_article_efed8eb1cdfe4258b64711a13029e7f5
10.1186/s12859-022-05037-7
PMC9783404
A731058314
36564729
10_1186_s12859_022_05037_7
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: R35GM124998
  funderid: http://dx.doi.org/10.13039/100000057
– fundername: NIGMS NIH HHS
  grantid: R35GM124998
– fundername: ;
  grantid: R35GM124998
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c613t-eca4bed378a90dba07c15e2f45fbf3b1887f7d88996e0ca8e617d3679ff88eb23
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:44:49 EDT 2025
Sun Oct 26 04:10:50 EDT 2025
Tue Sep 30 17:17:21 EDT 2025
Thu Oct 02 05:55:12 EDT 2025
Mon Oct 20 22:12:40 EDT 2025
Mon Oct 20 16:34:00 EDT 2025
Thu Oct 16 16:09:06 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Wed Oct 01 04:15:41 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Keywords Zebrafish
mRNA translation
3’ UTR
Mouse embryonic stem cells
RNA structure profiling
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-eca4bed378a90dba07c15e2f45fbf3b1887f7d88996e0ca8e617d3679ff88eb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2842-8503
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-05037-7
PMID 36564729
PQID 2758115208
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_efed8eb1cdfe4258b64711a13029e7f5
unpaywall_primary_10_1186_s12859_022_05037_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783404
proquest_miscellaneous_2758115208
gale_infotracmisc_A731058314
gale_infotracacademiconefile_A731058314
gale_incontextgauss_ISR_A731058314
pubmed_primary_36564729
crossref_citationtrail_10_1186_s12859_022_05037_7
crossref_primary_10_1186_s12859_022_05037_7
springer_journals_10_1186_s12859_022_05037_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-23
PublicationDateYYYYMMDD 2022-12-23
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References K Mazan-Mamczarz (5037_CR31) 2003; 100
S Guo (5037_CR26) 2020; 529
M Zhang (5037_CR33) 2017; 31
D Van Hoof (5037_CR25) 2006; 5
PS Ray (5037_CR4) 2009; 457
T Tuller (5037_CR6) 2010; 107
JS McCaskill (5037_CR12) 1990; 29
MW Andy Liaw (5037_CR21) 2002; 2
MB Warf (5037_CR2) 2010; 35
Z Ouyang (5037_CR13) 2013; 23
G Boel (5037_CR11) 2016; 529
B Mazumder (5037_CR17) 2003; 28
F Pedregosa (5037_CR23) 2011; 12
K Singh (5037_CR32) 2019; 216
J Hausser (5037_CR29) 2013; 23
R Lorenz (5037_CR20) 2011; 6
S Rouskin (5037_CR19) 2014; 505
RC Spitale (5037_CR18) 2015; 519
GS Wilkie (5037_CR16) 2003; 28
M Kedde (5037_CR1) 2010; 12
C Pop (5037_CR7) 2014; 10
JD Beaudoin (5037_CR8) 2018; 25
S Weingarten-Gabbay (5037_CR5) 2016; 351
S Yamasaki (5037_CR28) 2008; 20
W Gu (5037_CR10) 2010; 6
KC Martin (5037_CR3) 2009; 136
G Kudla (5037_CR9) 2009; 324
TH Hui Zou (5037_CR22) 2005; 67
PR Copeland (5037_CR30) 2000; 19
CH Yu (5037_CR24) 2015; 59
NT Ingolia (5037_CR34) 2011; 147
NK Gray (5037_CR14) 1998; 14
T Preiss (5037_CR15) 1999; 9
MA Valencia-Sanchez (5037_CR27) 2006; 20
References_xml – volume: 324
  start-page: 255
  issue: 5924
  year: 2009
  ident: 5037_CR9
  publication-title: Science
  doi: 10.1126/science.1170160
– volume: 28
  start-page: 91
  issue: 2
  year: 2003
  ident: 5037_CR17
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(03)00002-1
– volume: 20
  start-page: 515
  issue: 5
  year: 2006
  ident: 5037_CR27
  publication-title: Genes Dev
  doi: 10.1101/gad.1399806
– volume: 23
  start-page: 377
  issue: 2
  year: 2013
  ident: 5037_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.138545.112
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 5037_CR21
  publication-title: R News
– volume: 529
  start-page: 642
  issue: 3
  year: 2020
  ident: 5037_CR26
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.05.170
– volume: 67
  start-page: 301
  year: 2005
  ident: 5037_CR22
  publication-title: J R Stat Soc B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 519
  start-page: 486
  issue: 7544
  year: 2015
  ident: 5037_CR18
  publication-title: Nature
  doi: 10.1038/nature14263
– volume: 31
  start-page: 1354
  issue: 13
  year: 2017
  ident: 5037_CR33
  publication-title: Genes Dev
  doi: 10.1101/gad.298752.117
– volume: 25
  start-page: 677
  issue: 8
  year: 2018
  ident: 5037_CR8
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-018-0091-z
– volume: 12
  start-page: 1014
  issue: 10
  year: 2010
  ident: 5037_CR1
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2105
– volume: 14
  start-page: 399
  year: 1998
  ident: 5037_CR14
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.14.1.399
– volume: 6
  start-page: 26
  year: 2011
  ident: 5037_CR20
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-6-26
– volume: 28
  start-page: 182
  issue: 4
  year: 2003
  ident: 5037_CR16
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(03)00051-3
– volume: 6
  start-page: e1000664
  issue: 2
  year: 2010
  ident: 5037_CR10
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000664
– volume: 9
  start-page: 515
  issue: 5
  year: 1999
  ident: 5037_CR15
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/S0959-437X(99)00005-2
– volume: 29
  start-page: 1105
  issue: 6–7
  year: 1990
  ident: 5037_CR12
  publication-title: Biopolymers
  doi: 10.1002/bip.360290621
– volume: 505
  start-page: 701
  issue: 7485
  year: 2014
  ident: 5037_CR19
  publication-title: Nature
  doi: 10.1038/nature12894
– volume: 12
  start-page: 2825
  year: 2011
  ident: 5037_CR23
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 222
  issue: 2
  year: 2008
  ident: 5037_CR28
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2008.01.013
– volume: 10
  start-page: 770
  year: 2014
  ident: 5037_CR7
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20145524
– volume: 19
  start-page: 306
  issue: 2
  year: 2000
  ident: 5037_CR30
  publication-title: EMBO J
  doi: 10.1093/emboj/19.2.306
– volume: 59
  start-page: 744
  issue: 5
  year: 2015
  ident: 5037_CR24
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.07.018
– volume: 147
  start-page: 789
  issue: 4
  year: 2011
  ident: 5037_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.002
– volume: 136
  start-page: 719
  issue: 4
  year: 2009
  ident: 5037_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.044
– volume: 35
  start-page: 169
  issue: 3
  year: 2010
  ident: 5037_CR2
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2009.10.004
– volume: 23
  start-page: 604
  issue: 4
  year: 2013
  ident: 5037_CR29
  publication-title: Genome Res
  doi: 10.1101/gr.139758.112
– volume: 216
  start-page: 1509
  issue: 7
  year: 2019
  ident: 5037_CR32
  publication-title: J Exp Med
  doi: 10.1084/jem.20181726
– volume: 107
  start-page: 3645
  issue: 8
  year: 2010
  ident: 5037_CR6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0909910107
– volume: 457
  start-page: 915
  issue: 7231
  year: 2009
  ident: 5037_CR4
  publication-title: Nature
  doi: 10.1038/nature07598
– volume: 351
  start-page: 555
  issue: 6270
  year: 2016
  ident: 5037_CR5
  publication-title: Science
  doi: 10.1126/science.aad4939
– volume: 5
  start-page: 1261
  issue: 7
  year: 2006
  ident: 5037_CR25
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M500405-MCP200
– volume: 100
  start-page: 8354
  issue: 14
  year: 2003
  ident: 5037_CR31
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1432104100
– volume: 529
  start-page: 358
  issue: 7586
  year: 2016
  ident: 5037_CR11
  publication-title: Nature
  doi: 10.1038/nature16509
SSID ssj0017805
Score 2.4620786
Snippet Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the...
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the...
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation...
Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation...
Abstract Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms 3' Untranslated Regions
3’ UTR
5' Untranslated Regions
Algorithms
Analysis
Animals
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Eukaryotic Cells
Genetic translation
Life Sciences
Mice
Microarrays
Mouse embryonic stem cells
mRNA translation
Protein Biosynthesis
RNA
RNA structure profiling
RNA, Messenger - chemistry
RNA, Messenger - genetics
Zebrafish
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcKt4ESmUQEgdqNY6T2DmhpVAVJHooVOrNip1xWWmVXTW7Qv33zOSlDUiFA9f1JCvPfJ5HPP7M2BvpCqhkAIElcibSPA6CdtuEUgFyAEi9o-8dX0_zk_P0y0V2sXXVF_WEdfTAneIOIUBl0KH4KgDiy7gc3aksab-tAB1a9tLYFEMx1e8fEFP_cETG5IeNJJ42QZ3rxH-ihZ6EoZat_0-fvBWUfm-YHHdN77E7m3pVXv8sF4utwHR8n-32GSWfdTN5wG5B_ZDd7u6YvH7E3n8EP1-1p_wuOWZ7nPoJ-TLws9MZ79hjN1fA5zVfU9jqWuM4tMwSdCzzMTs__vT96ET0tyYIj6F5LcCXqYNKaVMWceXKWHuZQRLSLLignESvEnRlsM7KIfalAcxhKpXrIgSDik7UE7ZTL2t4xrhK4rzwpogdlpGxT4xLKzQCVrUS3yl1xOSgROt7SnG62WJh29LC5LZTvEXF21bxFp95Nz6z6gg1bpT-QLYZJYkMu_0BIWJ7iNi_QSRir8myluguauqnuSw3TWM_fzuzM43pbWaUTCP2thcKS5yDL_vjCagJYsiaSO5NJHE9-snwqwFAloaoia2G5aaxCdZmmIAjXCP2tAPUODGFeXWKhU7E9ARqk5lPR-r5j5YOnD7epTH-78EAStv7oeZGzR6MwP0HQzz_H4Z4we4mtAZlIhK1x3YQ4_ASc7q122-X7y9J9URY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCDEeEN8cDBQQEg8somnaJH1Cx2AaSOxhMGlvUZM646RT77TeCe2_x2571RXQBK-N0zaOE9ux_Qtjr6UvoJIRBLrIuch0EgVF24RSETQAZMHTecfXY310mn05y896mByqhdmO30ur3zWSENYE5ZwTcokR5jq7gUpKt4FZfTBEDAibf1MU89d-I8XT4vP_uQtvqaHfUySHOOltdmtdL8vLn-V8vqWKDu-yO70NyafdpN9j16C-z252t0pePmDvP0KYLdu6vnOO9h2nDEK-iPzkeMo7vNj1BfBZzVekqLpkOA4tlgQVYj5kp4efvh8cif6eBBFQGa8EhDLzUCljyyKpfJmYIHNIY5ZHH5WXuI9EU1n0rDQkobSAVkultClitBY9a_WI7dSLGp4wrtJEF8EWiUfHMQmp9VkFaHGhXsd3SjNhcsNEF3oQcbrLYu5aZ8Jq1zHeIeNdy3iHfd4OfZYdhMaV1B9obgZKgr9uH6BUuH41OYhQ4Z_LUEX8u9x6jTpWlhSELcDEfMJe0cw6ArioKYPmvFw3jfv87cRNDRq0uVUym7A3PVFc4BhC2RckICcIE2tEuTeixBUYRs0vNwLkqInS1mpYrBuXojeGJnea2Al73AnUMDCFlnSGrs2EmZGojUY-bqlnP1oAcDquyxL87v5GKF2_8zRXcnZ_ENx_mIin__f2Z2w3pdUmU5GqPbaD0gzP0V5b-RftQv0FMS4z1w
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88M0oDBQQEg_MXZxP5wmVj2kgUaFCpe3Jip1zqVaSqmmFxl_PXT6qZqAJJF7jcxJf7uzfxXc_M_ZC6AQyYYFjiBzyIHItp9027vsWIgAIjKb_HZ9G0fEk-HgSnuywcVsLo78bPSsa0lAiKh5sl6HP6yoHOkUBloeLzNZOL6PDUhATG6fcdGI4iXl8he1GIeLzHtudjD4PT6syo1hwjHHCtnrmjx07K1RF5P_7dL21Xl3MpdxsqN5g19b5Ij3_kc7nW2vW0S1WtqOtU1XOBuuVHpifF4gg_686brObDcR1hrVN3mE7kN9lV-tDL8_vsdfvwMwWVdnh1EH46VCCo1NYZzwaOjWd7XoJzix3VrSO1rl6DlRUF1Qnep9Njt5_fXvMm2McuEGssOJg0kBD5scyTdxMp25sRAieDUKrra8FTnM2ziQGfhG4JpWAoCrzozixVkoM_P0HrJcXOTxkju-5UWJk4mqMa13jSR1kgIAQYQfeU8R9JtpPp0zDcU5HbcxVFevISNWKUagYVSlGYZ9Xmz6LmuHjUuk3ZBEbSWLnri4Uy6lqnF2BhQzfXJjM4tuFUkdoeCKlPeIEYhv22XOyJ0X8Gzkl-EzTdVmqD1_Gahgj3g6lL4I-e9kI2QLHYNKmXgI1QZRdHcn9jiROEKbT_Kw1W0VNlFWXQ7EulYfBIkYEniv7bK82483AfAT6AUZefRZ3DLwz8m5LPvtW8ZPT38TAxecetK6gmomxvFSzBxt3-YsP8ejfxB-z6x55g_C45--zHlozPEE4udJPm_nhF4n2bFk
  priority: 102
  providerName: Unpaywall
Title Deciphering the role of RNA structure in translation efficiency
URI https://link.springer.com/article/10.1186/s12859-022-05037-7
https://www.ncbi.nlm.nih.gov/pubmed/36564729
https://www.proquest.com/docview/2758115208
https://pubmed.ncbi.nlm.nih.gov/PMC9783404
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-022-05037-7
https://doaj.org/article/efed8eb1cdfe4258b64711a13029e7f5
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELf2EAI-IN4URhUQEh-YIc7Lzgc0ZWVlVFo1dVTqPlmJY5dKVVr6EPS_585JygLTtC-JFDsPn-9yd_bd7wh5x7JY58xoCi5ySIPINRR326jvGx1prQOV4XrHWT86HQa9UTjaIXW5o4qAy2tdO6wnNVxMP_7-uTkCgf9sBV5En5YMUdgoxqUjugmnfJfsg6aKsZTDWfB3VwHx-222EWcUXJ2wTqK59hkNRWXx_P__a19RW_-GVG73Ve-Tu-tinm5-pdPpFdXVfUgeVDank5RM8ojs6OIxuVNWodw8IUdftJrMbR7g2AF70MGIQ2dmnEE_cUp82fVCO5PCWaFiK4PnHG2xJzBx8ykZdk--d05pVVeBKlDeK6pVGmQ697lIYzfPUpcrFmrPBKHJjJ8x-O8YngvwxCLtqlRosHJyP-KxMUKAJ-4_I3vFrNAviON7bhQrEbsZOJqu8kQW5BosNLAD4JmMtwiriShVBTqOtS-m0jofIpIl4SUQXlrCS7jnw_aeeQm5cWPvY5ybbU-Ey7YXZouxrKRPaqNz-HKmcgNfF4osAhZgKW7axpqbsEXe4sxKBMQoMOJmnK6XS_ntYiATDgZwKHwWtMj7qpOZwRhUWiUwACUQQ6vR86DREyRWNZrf1AwksQnD3Ao9Wy-lB94bmOieK1rkeclQ24H5YHkH4Aq1CG-wWmPkzZZi8sMChuPyXuDCew9rppS1oN1I2cMt495iIl7ehoavyD0PZYx51PMPyB7wsH4NVt0qa5NdPuJwFN2vbbKfJL2LHpyPT_rnA7jaiTptu17StiINLcP-eXL5B5aCSmo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEK9CoEBASByoRRzn4ZxQeFTbpd1DH1JvVuKMl5VWyarZFeq_ZyYvNYAquK7H2Xg845nJzHxm7J3IEyiEBY4hcsiDyLOcsm1cSgsRAAQmp-8dx7Noch5ML8KLrims7qvd-5Rkc1I3aq2ij7UgrDVO1eeEYRLz-DbbpiIrVMftNJ2eTofsAeH09w0yf505MkINVv-fJ_I1k_R7ueSQM73HdjblKrv6mS2X18zSwQN2v_Mn3bQVgIfsFpSP2J32hsmrx-zTVzCLVdPjN3fR13OpmtCtrHsyS90WO3ZzCe6idNdktNrCOBcaXAlqynzCzg--nX2Z8O7OBG7QMK85mCzIoZCxyhKvyDMvNiIE3wahza3MBZ4pNi4URlkReCZTgB5MIaM4sVYpjLLlLtsqqxKeMVf6XpQYlXg5BpGe8VUeFIDeF9p4fKaIHSZ6JmrTAYrTvRZL3QQWKtIt4zUyXjeM1zjnwzBn1cJp3Ej9mfZmoCQo7OaH6nKuO83SYKHANxemsPh2ocojtLcio4RsArENHfaWdlYT2EVJ1TTzbFPX-vD0RKcxOrehkiJw2PuOyFa4BpN1zQnICcLHGlHujShRG81o-E0vQJqGqISthGpTax8jM3S_fU857GkrUMPCJHrVAYY5DotHojZa-XikXPxowMDp013g4f_u90Kpu1OovpGz-4Pg_sNGPP-_p79mO5Oz4yN9dDj7_oLd9UnzhM99uce2ULLhJfpx6_xVp7a_AImaPDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxDeBAQEh8bBZixMndp5Q6ag2Pio0mLQ3K3HOpVKVVksrtP-eu3ypATTBa31O4_Od7y539zNjb0SeQiEccAyRYy6TwHHKtvEocpAAgLQ5fe_4Mk2OTuXHs_hsq4u_rnbvUpJNTwOhNJXrg1XhGhXXyUElCHeNUyU64Zkorq6yaxKtG91hME7GfR6BEPu7Vpm_zhuYoxq1_8-zecs4_V442WdPb7Obm3KVXfzMFostAzW5y-60nqU_akThHrsC5X12vblr8uIBe3cIdr6qu_1mPnp9PtUV-kvnn0xHfoMiuzkHf176azJfTYmcDzXCBLVnPmSnkw_fx0e8vT2BWzTRaw42kzkUkdJZGhR5FigrYgidjF3uolzg6eJUoTHeSiCwmQb0ZYooUalzWmO8HT1iO-WyhCfMj8IgSa1OgxzDycCGOpcFoB-G1h6fKZTHRMdEY1tocbrhYmHqEEMnpmG8QcabmvEG5-z1c1YNsMal1O9pb3pKAsWuf1iez0yrYwYcFPjmwhYO3y7WeYKWV2SUmk1Budhjr2lnDcFelFRXM8s2VWWOv52YkUI3N9aRkB572xK5Ja7BZm2bAnKCkLIGlLsDStRLOxh-1QmQoSEqZithualMiDEaOuJhoD32uBGofmER-tcSAx6PqYGoDVY-HCnnP2pYcPqIJwP83_1OKE17HlWXcna_F9x_2Iin__f0l-zG18OJ-Xw8_fSM3QpJ8UTIw2iX7aBgw3N06Nb5i1pnfwH0nj8N
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88M0oDBQQEg_MXZxP5wmVj2kgUaFCpe3Jip1zqVaSqmmFxl_PXT6qZqAJJF7jcxJf7uzfxXc_M_ZC6AQyYYFjiBzyIHItp9027vsWIgAIjKb_HZ9G0fEk-HgSnuywcVsLo78bPSsa0lAiKh5sl6HP6yoHOkUBloeLzNZOL6PDUhATG6fcdGI4iXl8he1GIeLzHtudjD4PT6syo1hwjHHCtnrmjx07K1RF5P_7dL21Xl3MpdxsqN5g19b5Ij3_kc7nW2vW0S1WtqOtU1XOBuuVHpifF4gg_686brObDcR1hrVN3mE7kN9lV-tDL8_vsdfvwMwWVdnh1EH46VCCo1NYZzwaOjWd7XoJzix3VrSO1rl6DlRUF1Qnep9Njt5_fXvMm2McuEGssOJg0kBD5scyTdxMp25sRAieDUKrra8FTnM2ziQGfhG4JpWAoCrzozixVkoM_P0HrJcXOTxkju-5UWJk4mqMa13jSR1kgIAQYQfeU8R9JtpPp0zDcU5HbcxVFevISNWKUagYVSlGYZ9Xmz6LmuHjUuk3ZBEbSWLnri4Uy6lqnF2BhQzfXJjM4tuFUkdoeCKlPeIEYhv22XOyJ0X8Gzkl-EzTdVmqD1_Gahgj3g6lL4I-e9kI2QLHYNKmXgI1QZRdHcn9jiROEKbT_Kw1W0VNlFWXQ7EulYfBIkYEniv7bK82483AfAT6AUZefRZ3DLwz8m5LPvtW8ZPT38TAxecetK6gmomxvFSzBxt3-YsP8ejfxB-z6x55g_C45--zHlozPEE4udJPm_nhF4n2bFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+role+of+RNA+structure+in+translation+efficiency&rft.jtitle=BMC+bioinformatics&rft.au=Lin%2C+Jianan&rft.au=Chen%2C+Yang&rft.au=Zhang%2C+Yuping&rft.au=Lin%2C+Haifan&rft.date=2022-12-23&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-05037-7&rft.externalDBID=ISR&rft.externalDocID=A731058314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon