Deciphering the role of RNA structure in translation efficiency
Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inacc...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 23; no. Suppl 3; pp. 559 - 15 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        23.12.2022
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-022-05037-7 | 
Cover
| Abstract | Background
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency.
Results
Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish.
Conclusions
Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. | 
    
|---|---|
| AbstractList | RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency.BACKGROUNDRNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency.Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish.RESULTSHere, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish.Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation.CONCLUSIONSOur results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. Abstract Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3’ untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5’ UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3’ UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3’ UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation site/start codon of the coding region promotes the efficiency of translation in both prokaryotic and eukaryotic species. However, the inaccuracy of in silico folding and the focus on the coding region limit our understanding of the global relationship between the whole mRNA structure and translation efficiency. Leveraging high-throughput RNA structure probing data in the transcriptome, we aim to systematically investigate the role of RNA structure in regulating translation efficiency. Results Here, we analyze the influences of hundreds of sequence and structural features on translation efficiency in the mouse embryonic stem cells (mESCs) and zebrafish developmental stages. Our findings reveal that overall in vivo RNA structure has a higher relative importance in predicting translation efficiency than in vitro RNA structure in both mESCs and zebrafish. Also, RNA structures in 3' untranslated region (UTR) have much stronger influence on translation efficiency compared to those in coding regions or 5' UTR. Furthermore, strong alternation between in vitro and in vivo structures in 3' UTR are detected in highly translated mRNAs in mESCs but not zebrafish. Instead, moderate alteration between in vitro and in vivo RNA structures in the 5' UTR and proximal coding regions are detected in highly translated mRNAs in zebrafish. Conclusions Our results suggest the openness of the 3' UTR promotes the translation efficiency in both mice and zebrafish, with the in vivo structure in 3' UTR more important in mice than in zebrafish. This reveals a novel role of RNA secondary structure on translational regulation. Keywords: RNA structure profiling, mRNA translation, 3' UTR, Mouse embryonic stem cells, Zebrafish  | 
    
| ArticleNumber | 559 | 
    
| Audience | Academic | 
    
| Author | Chen, Yang Zhang, Yuping Lin, Haifan Lin, Jianan Ouyang, Zhengqing  | 
    
| Author_xml | – sequence: 1 givenname: Jianan surname: Lin fullname: Lin, Jianan organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, The Jackson Laboratory for Genomic Medicine – sequence: 2 givenname: Yang surname: Chen fullname: Chen, Yang organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst – sequence: 3 givenname: Yuping surname: Zhang fullname: Zhang, Yuping organization: Department of Statistics, University of Connecticut, Institute for Systems Genomics, University of Connecticut, Center for Quantitative Medicine, University of Connecticut – sequence: 4 givenname: Haifan surname: Lin fullname: Lin, Haifan organization: Yale Stem Cell Center and Department of Cell Biology, Yale University – sequence: 5 givenname: Zhengqing orcidid: 0000-0003-2842-8503 surname: Ouyang fullname: Ouyang, Zhengqing email: ouyang@schoolph.umass.edu organization: Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36564729$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUsuO0zAUjdAg5gE_wAJFYgOLDH7EsbMBVcOr0gikAdaW41y3rlK72A7Qv8dtymiK0Ah5Yev6nKN7zz3nxYnzDoriKUaXGIvmVcREsLZChFSIIcor_qA4wzXHFcGIndx5nxbnMa4Qwlwg9qg4pQ1rak7as-LNW9B2s4Rg3aJMSyiDH6D0prz5NCtjCqNOY4DSujIF5eKgkvWuBGOstuD09nHx0KghwpPDfVF8e__u69XH6vrzh_nV7LrSDaapAq3qDnrKhWpR3ynENWZATM1MZ2iHheCG90K0bQNIKwEN5j1teGuMENARelHMJ93eq5XcBLtWYSu9snJf8GEhVUhWDyDBQJ85WPcGasJEl0fFWGGKSAvcsKxFJ63RbdT2pxqGW0GM5M5aOVkrs7Vyb63kmfV6Ym3Gbg29BpcdGY5aOf5xdikX_odsuaA1qrPAi4NA8N9HiEmubdQwDMqBH6MknAmMGUEiQ59P0IXKA1lnfFbUO7iccZoXKijeCV7-A5VPD2urc1aMzfUjwssjQsYk-JUWaoxRzr_cHGOf3R33ds4_0ckAMQF08DEGMFLbtI9H7sIO91tJ_qL-l_-HrcXNLqwQ5MqPweXQ3cf6DadH9hI | 
    
| CitedBy_id | crossref_primary_10_3390_biom15020180 crossref_primary_10_1038_s41467_023_43946_0 crossref_primary_10_1016_j_ymthe_2024_05_036  | 
    
| Cites_doi | 10.1126/science.1170160 10.1016/S0968-0004(03)00002-1 10.1101/gad.1399806 10.1101/gr.138545.112 10.1016/j.bbrc.2020.05.170 10.1111/j.1467-9868.2005.00503.x 10.1038/nature14263 10.1101/gad.298752.117 10.1038/s41594-018-0091-z 10.1038/ncb2105 10.1146/annurev.cellbio.14.1.399 10.1186/1748-7188-6-26 10.1016/S0968-0004(03)00051-3 10.1371/journal.pcbi.1000664 10.1016/S0959-437X(99)00005-2 10.1002/bip.360290621 10.1038/nature12894 10.1016/j.ceb.2008.01.013 10.15252/msb.20145524 10.1093/emboj/19.2.306 10.1016/j.molcel.2015.07.018 10.1016/j.cell.2011.10.002 10.1016/j.cell.2009.01.044 10.1016/j.tibs.2009.10.004 10.1101/gr.139758.112 10.1084/jem.20181726 10.1073/pnas.0909910107 10.1038/nature07598 10.1126/science.aad4939 10.1074/mcp.M500405-MCP200 10.1073/pnas.1432104100 10.1038/nature16509  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12859-022-05037-7 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | oai_doaj_org_article_efed8eb1cdfe4258b64711a13029e7f5 10.1186/s12859-022-05037-7 PMC9783404 A731058314 36564729 10_1186_s12859_022_05037_7  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States | 
    
| GeographicLocations_xml | – name: United States | 
    
| GrantInformation_xml | – fundername: National Institute of General Medical Sciences grantid: R35GM124998 funderid: http://dx.doi.org/10.13039/100000057 – fundername: NIGMS NIH HHS grantid: R35GM124998 – fundername: ; grantid: R35GM124998  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c613t-eca4bed378a90dba07c15e2f45fbf3b1887f7d88996e0ca8e617d3679ff88eb23 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:44:49 EDT 2025 Sun Oct 26 04:10:50 EDT 2025 Tue Sep 30 17:17:21 EDT 2025 Thu Oct 02 05:55:12 EDT 2025 Mon Oct 20 22:12:40 EDT 2025 Mon Oct 20 16:34:00 EDT 2025 Thu Oct 16 16:09:06 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Wed Oct 01 04:15:41 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Sat Sep 06 07:27:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Suppl 3 | 
    
| Keywords | Zebrafish mRNA translation 3’ UTR Mouse embryonic stem cells RNA structure profiling  | 
    
| Language | English | 
    
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c613t-eca4bed378a90dba07c15e2f45fbf3b1887f7d88996e0ca8e617d3679ff88eb23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-2842-8503 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-05037-7 | 
    
| PMID | 36564729 | 
    
| PQID | 2758115208 | 
    
| PQPubID | 23479 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_efed8eb1cdfe4258b64711a13029e7f5 unpaywall_primary_10_1186_s12859_022_05037_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783404 proquest_miscellaneous_2758115208 gale_infotracmisc_A731058314 gale_infotracacademiconefile_A731058314 gale_incontextgauss_ISR_A731058314 pubmed_primary_36564729 crossref_citationtrail_10_1186_s12859_022_05037_7 crossref_primary_10_1186_s12859_022_05037_7 springer_journals_10_1186_s12859_022_05037_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-23 | 
    
| PublicationDateYYYYMMDD | 2022-12-23 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-23 day: 23  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2022 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | K Mazan-Mamczarz (5037_CR31) 2003; 100 S Guo (5037_CR26) 2020; 529 M Zhang (5037_CR33) 2017; 31 D Van Hoof (5037_CR25) 2006; 5 PS Ray (5037_CR4) 2009; 457 T Tuller (5037_CR6) 2010; 107 JS McCaskill (5037_CR12) 1990; 29 MW Andy Liaw (5037_CR21) 2002; 2 MB Warf (5037_CR2) 2010; 35 Z Ouyang (5037_CR13) 2013; 23 G Boel (5037_CR11) 2016; 529 B Mazumder (5037_CR17) 2003; 28 F Pedregosa (5037_CR23) 2011; 12 K Singh (5037_CR32) 2019; 216 J Hausser (5037_CR29) 2013; 23 R Lorenz (5037_CR20) 2011; 6 S Rouskin (5037_CR19) 2014; 505 RC Spitale (5037_CR18) 2015; 519 GS Wilkie (5037_CR16) 2003; 28 M Kedde (5037_CR1) 2010; 12 C Pop (5037_CR7) 2014; 10 JD Beaudoin (5037_CR8) 2018; 25 S Weingarten-Gabbay (5037_CR5) 2016; 351 S Yamasaki (5037_CR28) 2008; 20 W Gu (5037_CR10) 2010; 6 KC Martin (5037_CR3) 2009; 136 G Kudla (5037_CR9) 2009; 324 TH Hui Zou (5037_CR22) 2005; 67 PR Copeland (5037_CR30) 2000; 19 CH Yu (5037_CR24) 2015; 59 NT Ingolia (5037_CR34) 2011; 147 NK Gray (5037_CR14) 1998; 14 T Preiss (5037_CR15) 1999; 9 MA Valencia-Sanchez (5037_CR27) 2006; 20  | 
    
| References_xml | – volume: 324 start-page: 255 issue: 5924 year: 2009 ident: 5037_CR9 publication-title: Science doi: 10.1126/science.1170160 – volume: 28 start-page: 91 issue: 2 year: 2003 ident: 5037_CR17 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(03)00002-1 – volume: 20 start-page: 515 issue: 5 year: 2006 ident: 5037_CR27 publication-title: Genes Dev doi: 10.1101/gad.1399806 – volume: 23 start-page: 377 issue: 2 year: 2013 ident: 5037_CR13 publication-title: Genome Res doi: 10.1101/gr.138545.112 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 5037_CR21 publication-title: R News – volume: 529 start-page: 642 issue: 3 year: 2020 ident: 5037_CR26 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.05.170 – volume: 67 start-page: 301 year: 2005 ident: 5037_CR22 publication-title: J R Stat Soc B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 519 start-page: 486 issue: 7544 year: 2015 ident: 5037_CR18 publication-title: Nature doi: 10.1038/nature14263 – volume: 31 start-page: 1354 issue: 13 year: 2017 ident: 5037_CR33 publication-title: Genes Dev doi: 10.1101/gad.298752.117 – volume: 25 start-page: 677 issue: 8 year: 2018 ident: 5037_CR8 publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-018-0091-z – volume: 12 start-page: 1014 issue: 10 year: 2010 ident: 5037_CR1 publication-title: Nat Cell Biol doi: 10.1038/ncb2105 – volume: 14 start-page: 399 year: 1998 ident: 5037_CR14 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.14.1.399 – volume: 6 start-page: 26 year: 2011 ident: 5037_CR20 publication-title: Algorithms Mol Biol doi: 10.1186/1748-7188-6-26 – volume: 28 start-page: 182 issue: 4 year: 2003 ident: 5037_CR16 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(03)00051-3 – volume: 6 start-page: e1000664 issue: 2 year: 2010 ident: 5037_CR10 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000664 – volume: 9 start-page: 515 issue: 5 year: 1999 ident: 5037_CR15 publication-title: Curr Opin Genet Dev doi: 10.1016/S0959-437X(99)00005-2 – volume: 29 start-page: 1105 issue: 6–7 year: 1990 ident: 5037_CR12 publication-title: Biopolymers doi: 10.1002/bip.360290621 – volume: 505 start-page: 701 issue: 7485 year: 2014 ident: 5037_CR19 publication-title: Nature doi: 10.1038/nature12894 – volume: 12 start-page: 2825 year: 2011 ident: 5037_CR23 publication-title: J Mach Learn Res – volume: 20 start-page: 222 issue: 2 year: 2008 ident: 5037_CR28 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2008.01.013 – volume: 10 start-page: 770 year: 2014 ident: 5037_CR7 publication-title: Mol Syst Biol doi: 10.15252/msb.20145524 – volume: 19 start-page: 306 issue: 2 year: 2000 ident: 5037_CR30 publication-title: EMBO J doi: 10.1093/emboj/19.2.306 – volume: 59 start-page: 744 issue: 5 year: 2015 ident: 5037_CR24 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.07.018 – volume: 147 start-page: 789 issue: 4 year: 2011 ident: 5037_CR34 publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 136 start-page: 719 issue: 4 year: 2009 ident: 5037_CR3 publication-title: Cell doi: 10.1016/j.cell.2009.01.044 – volume: 35 start-page: 169 issue: 3 year: 2010 ident: 5037_CR2 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2009.10.004 – volume: 23 start-page: 604 issue: 4 year: 2013 ident: 5037_CR29 publication-title: Genome Res doi: 10.1101/gr.139758.112 – volume: 216 start-page: 1509 issue: 7 year: 2019 ident: 5037_CR32 publication-title: J Exp Med doi: 10.1084/jem.20181726 – volume: 107 start-page: 3645 issue: 8 year: 2010 ident: 5037_CR6 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909910107 – volume: 457 start-page: 915 issue: 7231 year: 2009 ident: 5037_CR4 publication-title: Nature doi: 10.1038/nature07598 – volume: 351 start-page: 555 issue: 6270 year: 2016 ident: 5037_CR5 publication-title: Science doi: 10.1126/science.aad4939 – volume: 5 start-page: 1261 issue: 7 year: 2006 ident: 5037_CR25 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M500405-MCP200 – volume: 100 start-page: 8354 issue: 14 year: 2003 ident: 5037_CR31 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1432104100 – volume: 529 start-page: 358 issue: 7586 year: 2016 ident: 5037_CR11 publication-title: Nature doi: 10.1038/nature16509  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.4620786 | 
    
| Snippet | Background
RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the... RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the... RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation initiation... Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the translation... Abstract Background RNA secondary structure has broad impact on the fate of RNA metabolism. The reduced stability of secondary structures near the...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 559 | 
    
| SubjectTerms | 3' Untranslated Regions 3’ UTR 5' Untranslated Regions Algorithms Analysis Animals Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Eukaryotic Cells Genetic translation Life Sciences Mice Microarrays Mouse embryonic stem cells mRNA translation Protein Biosynthesis RNA RNA structure profiling RNA, Messenger - chemistry RNA, Messenger - genetics Zebrafish  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcKt4ESmUQEgdqNY6T2DmhpVAVJHooVOrNip1xWWmVXTW7Qv33zOSlDUiFA9f1JCvPfJ5HPP7M2BvpCqhkAIElcibSPA6CdtuEUgFyAEi9o-8dX0_zk_P0y0V2sXXVF_WEdfTAneIOIUBl0KH4KgDiy7gc3aksab-tAB1a9tLYFEMx1e8fEFP_cETG5IeNJJ42QZ3rxH-ihZ6EoZat_0-fvBWUfm-YHHdN77E7m3pVXv8sF4utwHR8n-32GSWfdTN5wG5B_ZDd7u6YvH7E3n8EP1-1p_wuOWZ7nPoJ-TLws9MZ79hjN1fA5zVfU9jqWuM4tMwSdCzzMTs__vT96ET0tyYIj6F5LcCXqYNKaVMWceXKWHuZQRLSLLignESvEnRlsM7KIfalAcxhKpXrIgSDik7UE7ZTL2t4xrhK4rzwpogdlpGxT4xLKzQCVrUS3yl1xOSgROt7SnG62WJh29LC5LZTvEXF21bxFp95Nz6z6gg1bpT-QLYZJYkMu_0BIWJ7iNi_QSRir8myluguauqnuSw3TWM_fzuzM43pbWaUTCP2thcKS5yDL_vjCagJYsiaSO5NJHE9-snwqwFAloaoia2G5aaxCdZmmIAjXCP2tAPUODGFeXWKhU7E9ARqk5lPR-r5j5YOnD7epTH-78EAStv7oeZGzR6MwP0HQzz_H4Z4we4mtAZlIhK1x3YQ4_ASc7q122-X7y9J9URY priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCDEeEN8cDBQQEg8somnaJH1Cx2AaSOxhMGlvUZM646RT77TeCe2_x2571RXQBK-N0zaOE9ux_Qtjr6UvoJIRBLrIuch0EgVF24RSETQAZMHTecfXY310mn05y896mByqhdmO30ur3zWSENYE5ZwTcokR5jq7gUpKt4FZfTBEDAibf1MU89d-I8XT4vP_uQtvqaHfUySHOOltdmtdL8vLn-V8vqWKDu-yO70NyafdpN9j16C-z252t0pePmDvP0KYLdu6vnOO9h2nDEK-iPzkeMo7vNj1BfBZzVekqLpkOA4tlgQVYj5kp4efvh8cif6eBBFQGa8EhDLzUCljyyKpfJmYIHNIY5ZHH5WXuI9EU1n0rDQkobSAVkultClitBY9a_WI7dSLGp4wrtJEF8EWiUfHMQmp9VkFaHGhXsd3SjNhcsNEF3oQcbrLYu5aZ8Jq1zHeIeNdy3iHfd4OfZYdhMaV1B9obgZKgr9uH6BUuH41OYhQ4Z_LUEX8u9x6jTpWlhSELcDEfMJe0cw6ArioKYPmvFw3jfv87cRNDRq0uVUym7A3PVFc4BhC2RckICcIE2tEuTeixBUYRs0vNwLkqInS1mpYrBuXojeGJnea2Al73AnUMDCFlnSGrs2EmZGojUY-bqlnP1oAcDquyxL87v5GKF2_8zRXcnZ_ENx_mIin__f2Z2w3pdUmU5GqPbaD0gzP0V5b-RftQv0FMS4z1w priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88M0oDBQQEg_MXZxP5wmVj2kgUaFCpe3Jip1zqVaSqmmFxl_PXT6qZqAJJF7jcxJf7uzfxXc_M_ZC6AQyYYFjiBzyIHItp9027vsWIgAIjKb_HZ9G0fEk-HgSnuywcVsLo78bPSsa0lAiKh5sl6HP6yoHOkUBloeLzNZOL6PDUhATG6fcdGI4iXl8he1GIeLzHtudjD4PT6syo1hwjHHCtnrmjx07K1RF5P_7dL21Xl3MpdxsqN5g19b5Ij3_kc7nW2vW0S1WtqOtU1XOBuuVHpifF4gg_686brObDcR1hrVN3mE7kN9lV-tDL8_vsdfvwMwWVdnh1EH46VCCo1NYZzwaOjWd7XoJzix3VrSO1rl6DlRUF1Qnep9Njt5_fXvMm2McuEGssOJg0kBD5scyTdxMp25sRAieDUKrra8FTnM2ziQGfhG4JpWAoCrzozixVkoM_P0HrJcXOTxkju-5UWJk4mqMa13jSR1kgIAQYQfeU8R9JtpPp0zDcU5HbcxVFevISNWKUagYVSlGYZ9Xmz6LmuHjUuk3ZBEbSWLnri4Uy6lqnF2BhQzfXJjM4tuFUkdoeCKlPeIEYhv22XOyJ0X8Gzkl-EzTdVmqD1_Gahgj3g6lL4I-e9kI2QLHYNKmXgI1QZRdHcn9jiROEKbT_Kw1W0VNlFWXQ7EulYfBIkYEniv7bK82483AfAT6AUZefRZ3DLwz8m5LPvtW8ZPT38TAxecetK6gmomxvFSzBxt3-YsP8ejfxB-z6x55g_C45--zHlozPEE4udJPm_nhF4n2bFk priority: 102 providerName: Unpaywall  | 
    
| Title | Deciphering the role of RNA structure in translation efficiency | 
    
| URI | https://link.springer.com/article/10.1186/s12859-022-05037-7 https://www.ncbi.nlm.nih.gov/pubmed/36564729 https://www.proquest.com/docview/2758115208 https://pubmed.ncbi.nlm.nih.gov/PMC9783404 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-022-05037-7 https://doaj.org/article/efed8eb1cdfe4258b64711a13029e7f5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELf2EAI-IN4URhUQEh-YIc7Lzgc0ZWVlVFo1dVTqPlmJY5dKVVr6EPS_585JygLTtC-JFDsPn-9yd_bd7wh5x7JY58xoCi5ySIPINRR326jvGx1prQOV4XrHWT86HQa9UTjaIXW5o4qAy2tdO6wnNVxMP_7-uTkCgf9sBV5En5YMUdgoxqUjugmnfJfsg6aKsZTDWfB3VwHx-222EWcUXJ2wTqK59hkNRWXx_P__a19RW_-GVG73Ve-Tu-tinm5-pdPpFdXVfUgeVDank5RM8ojs6OIxuVNWodw8IUdftJrMbR7g2AF70MGIQ2dmnEE_cUp82fVCO5PCWaFiK4PnHG2xJzBx8ykZdk--d05pVVeBKlDeK6pVGmQ697lIYzfPUpcrFmrPBKHJjJ8x-O8YngvwxCLtqlRosHJyP-KxMUKAJ-4_I3vFrNAviON7bhQrEbsZOJqu8kQW5BosNLAD4JmMtwiriShVBTqOtS-m0jofIpIl4SUQXlrCS7jnw_aeeQm5cWPvY5ybbU-Ey7YXZouxrKRPaqNz-HKmcgNfF4osAhZgKW7axpqbsEXe4sxKBMQoMOJmnK6XS_ntYiATDgZwKHwWtMj7qpOZwRhUWiUwACUQQ6vR86DREyRWNZrf1AwksQnD3Ao9Wy-lB94bmOieK1rkeclQ24H5YHkH4Aq1CG-wWmPkzZZi8sMChuPyXuDCew9rppS1oN1I2cMt495iIl7ehoavyD0PZYx51PMPyB7wsH4NVt0qa5NdPuJwFN2vbbKfJL2LHpyPT_rnA7jaiTptu17StiINLcP-eXL5B5aCSmo | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEK9CoEBASByoRRzn4ZxQeFTbpd1DH1JvVuKMl5VWyarZFeq_ZyYvNYAquK7H2Xg845nJzHxm7J3IEyiEBY4hcsiDyLOcsm1cSgsRAAQmp-8dx7Noch5ML8KLrims7qvd-5Rkc1I3aq2ij7UgrDVO1eeEYRLz-DbbpiIrVMftNJ2eTofsAeH09w0yf505MkINVv-fJ_I1k_R7ueSQM73HdjblKrv6mS2X18zSwQN2v_Mn3bQVgIfsFpSP2J32hsmrx-zTVzCLVdPjN3fR13OpmtCtrHsyS90WO3ZzCe6idNdktNrCOBcaXAlqynzCzg--nX2Z8O7OBG7QMK85mCzIoZCxyhKvyDMvNiIE3wahza3MBZ4pNi4URlkReCZTgB5MIaM4sVYpjLLlLtsqqxKeMVf6XpQYlXg5BpGe8VUeFIDeF9p4fKaIHSZ6JmrTAYrTvRZL3QQWKtIt4zUyXjeM1zjnwzBn1cJp3Ej9mfZmoCQo7OaH6nKuO83SYKHANxemsPh2ocojtLcio4RsArENHfaWdlYT2EVJ1TTzbFPX-vD0RKcxOrehkiJw2PuOyFa4BpN1zQnICcLHGlHujShRG81o-E0vQJqGqISthGpTax8jM3S_fU857GkrUMPCJHrVAYY5DotHojZa-XikXPxowMDp013g4f_u90Kpu1OovpGz-4Pg_sNGPP-_p79mO5Oz4yN9dDj7_oLd9UnzhM99uce2ULLhJfpx6_xVp7a_AImaPDA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxDeBAQEh8bBZixMndp5Q6ag2Pio0mLQ3K3HOpVKVVksrtP-eu3ypATTBa31O4_Od7y539zNjb0SeQiEccAyRYy6TwHHKtvEocpAAgLQ5fe_4Mk2OTuXHs_hsq4u_rnbvUpJNTwOhNJXrg1XhGhXXyUElCHeNUyU64Zkorq6yaxKtG91hME7GfR6BEPu7Vpm_zhuYoxq1_8-zecs4_V442WdPb7Obm3KVXfzMFostAzW5y-60nqU_akThHrsC5X12vblr8uIBe3cIdr6qu_1mPnp9PtUV-kvnn0xHfoMiuzkHf176azJfTYmcDzXCBLVnPmSnkw_fx0e8vT2BWzTRaw42kzkUkdJZGhR5FigrYgidjF3uolzg6eJUoTHeSiCwmQb0ZYooUalzWmO8HT1iO-WyhCfMj8IgSa1OgxzDycCGOpcFoB-G1h6fKZTHRMdEY1tocbrhYmHqEEMnpmG8QcabmvEG5-z1c1YNsMal1O9pb3pKAsWuf1iez0yrYwYcFPjmwhYO3y7WeYKWV2SUmk1Budhjr2lnDcFelFRXM8s2VWWOv52YkUI3N9aRkB572xK5Ja7BZm2bAnKCkLIGlLsDStRLOxh-1QmQoSEqZithualMiDEaOuJhoD32uBGofmER-tcSAx6PqYGoDVY-HCnnP2pYcPqIJwP83_1OKE17HlWXcna_F9x_2Iin__f0l-zG18OJ-Xw8_fSM3QpJ8UTIw2iX7aBgw3N06Nb5i1pnfwH0nj8N | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88M0oDBQQEg_MXZxP5wmVj2kgUaFCpe3Jip1zqVaSqmmFxl_PXT6qZqAJJF7jcxJf7uzfxXc_M_ZC6AQyYYFjiBzyIHItp9027vsWIgAIjKb_HZ9G0fEk-HgSnuywcVsLo78bPSsa0lAiKh5sl6HP6yoHOkUBloeLzNZOL6PDUhATG6fcdGI4iXl8he1GIeLzHtudjD4PT6syo1hwjHHCtnrmjx07K1RF5P_7dL21Xl3MpdxsqN5g19b5Ij3_kc7nW2vW0S1WtqOtU1XOBuuVHpifF4gg_686brObDcR1hrVN3mE7kN9lV-tDL8_vsdfvwMwWVdnh1EH46VCCo1NYZzwaOjWd7XoJzix3VrSO1rl6DlRUF1Qnep9Njt5_fXvMm2McuEGssOJg0kBD5scyTdxMp25sRAieDUKrra8FTnM2ziQGfhG4JpWAoCrzozixVkoM_P0HrJcXOTxkju-5UWJk4mqMa13jSR1kgIAQYQfeU8R9JtpPp0zDcU5HbcxVFevISNWKUagYVSlGYZ9Xmz6LmuHjUuk3ZBEbSWLnri4Uy6lqnF2BhQzfXJjM4tuFUkdoeCKlPeIEYhv22XOyJ0X8Gzkl-EzTdVmqD1_Gahgj3g6lL4I-e9kI2QLHYNKmXgI1QZRdHcn9jiROEKbT_Kw1W0VNlFWXQ7EulYfBIkYEniv7bK82483AfAT6AUZefRZ3DLwz8m5LPvtW8ZPT38TAxecetK6gmomxvFSzBxt3-YsP8ejfxB-z6x55g_C45--zHlozPEE4udJPm_nhF4n2bFk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+role+of+RNA+structure+in+translation+efficiency&rft.jtitle=BMC+bioinformatics&rft.au=Lin%2C+Jianan&rft.au=Chen%2C+Yang&rft.au=Zhang%2C+Yuping&rft.au=Lin%2C+Haifan&rft.date=2022-12-23&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-05037-7&rft.externalDBID=ISR&rft.externalDocID=A731058314 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |