Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model

Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation re...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroinflammation Vol. 19; no. 1; pp. 63 - 17
Main Authors Reboussin, Élodie, Buffault, Juliette, Brignole-Baudouin, Françoise, Réaux-Le Goazigo, Annabelle, Riancho, Luisa, Olmiere, Céline, Sahel, José-Alain, Mélik Parsadaniantz, Stéphane, Baudouin, Christophe
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.03.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1742-2094
1742-2094
DOI10.1186/s12974-022-02418-w

Cover

Abstract Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Methods Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both ‘M1’ or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and ‘M2’ or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). Results The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Conclusion Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
AbstractList Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Methods Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both ‘M1’ or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and ‘M2’ or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). Results The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Conclusion Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Methods Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNF[alpha], IL1[beta], and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). Results The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Conclusion Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling. Keywords: Glaucoma, Neuroprotection, Immunomodulation, Cellular therapy, Mesenchymal stem cell, Microglia, Retinal ganglion cell
Background: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Methods: Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). Results: The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype.
Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNF[alpha], IL1[beta], and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model.BACKGROUNDGlaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model.Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6).METHODSLabeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6).The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype.RESULTSThe number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype.Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.CONCLUSIONUsing an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
Abstract Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. Methods Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both ‘M1’ or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and ‘M2’ or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). Results The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. Conclusion Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
ArticleNumber 63
Audience Academic
Author Mélik Parsadaniantz, Stéphane
Reboussin, Élodie
Riancho, Luisa
Réaux-Le Goazigo, Annabelle
Brignole-Baudouin, Françoise
Sahel, José-Alain
Buffault, Juliette
Olmiere, Céline
Baudouin, Christophe
Author_xml – sequence: 1
  givenname: Élodie
  orcidid: 0000-0002-9264-1133
  surname: Reboussin
  fullname: Reboussin, Élodie
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT
– sequence: 2
  givenname: Juliette
  orcidid: 0000-0002-4599-9749
  surname: Buffault
  fullname: Buffault, Juliette
  email: jbuffault@15-20.fr
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423
– sequence: 3
  givenname: Françoise
  orcidid: 0000-0002-2006-5384
  surname: Brignole-Baudouin
  fullname: Brignole-Baudouin, Françoise
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Laboratoire, CHNO des Quinze-Vingts
– sequence: 4
  givenname: Annabelle
  orcidid: 0000-0003-3855-9523
  surname: Réaux-Le Goazigo
  fullname: Réaux-Le Goazigo, Annabelle
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT
– sequence: 5
  givenname: Luisa
  orcidid: 0000-0003-0972-2117
  surname: Riancho
  fullname: Riancho, Luisa
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT
– sequence: 6
  givenname: Céline
  orcidid: 0000-0001-7551-1129
  surname: Olmiere
  fullname: Olmiere, Céline
  organization: Laboratoires THEA
– sequence: 7
  givenname: José-Alain
  orcidid: 0000-0002-4831-1153
  surname: Sahel
  fullname: Sahel, José-Alain
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Department of Ophthalmology, The University of Pittsburgh School of Medicine
– sequence: 8
  givenname: Stéphane
  orcidid: 0000-0003-2029-9591
  surname: Mélik Parsadaniantz
  fullname: Mélik Parsadaniantz, Stéphane
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT
– sequence: 9
  givenname: Christophe
  orcidid: 0000-0003-1743-6698
  surname: Baudouin
  fullname: Baudouin, Christophe
  organization: Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35236378$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-03598635$$DView record in HAL
BookMark eNqNks1q3DAUhU1JaX7aF-iiGLpJF04t2ZalTWEIaRMY6KZdC1m-nlGQJVeSPRn68tWMpyETSijG2Fx950hX554nJ8YaSJL3KL9CiJLPHmFWl1mOcXxLRLPNq-QM1SXOcM7Kkyf_p8m59_d5XuCK4DfJaVHhghQ1PUt-30xCjyIoa1LbpQZGZwdnA8igJkiFaVPV96OxvW1HLYJ12zSuD-CCAr-T9ODByPW2Fzr1AfpUgtY-VSaKU3hIJzXZ1EFQJgLwMGhhQhrdQL9NXndCe3h3-F4kP7_e_Li-zZbfv91dL5aZJKgIWdtIUtCyhQaVVFKKcY4bWktU5Z2glSQtIqSpWAeyxlg0rKRFhytaCEqarkPFRXI3-7ZW3PPBqV64LbdC8X3BuhUXsR2pgTOoqagpblBFyy7HooIWKEhWA4iKNNGrmL1GM4jtRmj9aIhyvouFz7HwGAvfx8I3UfVlVg1j00MrwQQn9NFRjleMWvOVnTilDBNWR4NPs8H6mex2seS7Wl5UjJKimnbtXh42c_bXCD7wXvldKMKAHT3HEStrhkoS0Y8zuhKxeWU6G3eXO5wvCGMlQxhVkbr6BxWfFnol40x2KtaPBB-etvt44L9jFwE6A9JZ7x10XKqwH8LorPTLV4mfSf_r_g-p-QibFTh-b0cXB9K_pPoDThIOlA
CitedBy_id crossref_primary_10_3389_fcell_2022_1068213
crossref_primary_10_1186_s40001_024_01987_1
crossref_primary_10_3390_biomedicines11102656
crossref_primary_10_1186_s40478_024_01859_z
crossref_primary_10_1186_s10020_024_01058_5
crossref_primary_10_1007_s10753_023_01880_9
crossref_primary_10_1096_fj_202202056RR
crossref_primary_10_3389_fcell_2023_1081898
crossref_primary_10_1089_dna_2024_0254
crossref_primary_10_1186_s40478_024_01753_8
crossref_primary_10_3390_ph16091193
crossref_primary_10_1007_s12015_023_10607_0
crossref_primary_10_1097_ICU_0000000000001016
crossref_primary_10_1186_s10020_025_01120_w
crossref_primary_10_1016_j_jneumeth_2024_110181
crossref_primary_10_1016_j_yexcr_2024_114220
crossref_primary_10_1080_02713683_2023_2253378
Cites_doi 10.1167/iovs.18-25156
10.1002/stem.2095
10.1159/000497296
10.4103/1673-5374.245465
10.3389/fneur.2021.624983
10.3390/ijms19072016
10.1038/s41598-020-72875-x
10.3390/ijms21239330
10.1016/j.jcyt.2015.10.008
10.1167/iovs.10-6873
10.1167/iovs.07-1601
10.1186/1742-2094-11-98
10.3390/cells10040730
10.1016/j.brainres.2019.146422
10.1182/blood.V99.10.3838
10.3791/2241
10.1167/iovs.09-4509
10.1016/j.it.2004.09.015
10.1007/s00018-013-1290-8
10.1007/s12015-016-9688-y
10.1007/5584_2018_219
10.1016/j.ejphar.2016.03.064
10.1186/s12865-021-00443-7
10.4103/2008-322X.200164
10.1093/brain/awt292
10.1177/1759091415598292
10.3389/fnana.2017.00077
10.4274/tjo.89972
10.1097/ICB.0000000000000327
10.1186/s12974-021-02248-2
10.1016/j.exer.2019.107722
10.1016/j.jcyt.2014.12.005
10.1038/s41419-020-02955-3
10.1007/s12035-014-9070-5
10.1007/s10633-021-09817-z
10.1089/scd.2016.0349
10.1523/JNEUROSCI.14-07-04368.1994
10.1111/cei.12929
10.1186/s13287-015-0168-0
10.3390/cells10030588
10.4252/wjsc.v13.i6.632
10.1186/s12967-014-0260-8
10.3390/ijms22020763
10.1038/aps.2012.178
10.1016/j.preteyeres.2020.100916
10.1186/s13287-020-02122-7
10.1186/s12974-021-02263-3
10.3390/cells9030535
10.1111/ceo.13434
10.1056/NEJMoa1609583
10.3390/ijms222011077
10.1016/j.expneurol.2012.03.021
10.1016/j.exer.2016.07.010
10.1016/j.molmed.2015.02.008
10.1177/0271678X18776802
10.1016/bs.pbr.2020.05.026
10.1002/sctm.16-0428
10.1002/cne.23521
10.1016/j.ajo.2017.03.030
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12974-022-02418-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-2094
EndPage 17
ExternalDocumentID oai_doaj_org_article_9e78a782b1584f02a5ede8ec97eea56b
10.1186/s12974-022-02418-w
PMC8892697
oai_HAL_hal_03598635v1
A699491215
35236378
10_1186_s12974_022_02418_w
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
1XC
VOOES
5PM
2VQ
4.4
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c613t-dbc6384deb148c882202b87c150fa85c6d166b59fec722ab9483f2583a86bff13
IEDL.DBID M48
ISSN 1742-2094
IngestDate Wed Aug 27 01:16:47 EDT 2025
Sun Sep 07 10:47:53 EDT 2025
Tue Sep 30 16:35:03 EDT 2025
Fri Sep 12 12:46:33 EDT 2025
Fri Sep 05 05:14:57 EDT 2025
Tue Jun 17 22:13:59 EDT 2025
Tue Jun 10 21:09:04 EDT 2025
Thu Apr 03 07:09:33 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Wed Oct 01 03:33:21 EDT 2025
Sat Sep 06 07:29:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Glaucoma
Mesenchymal stem cell
Neuroprotection
Immunomodulation
Cellular therapy
Microglia
Retinal ganglion cell
Language English
License 2022. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-dbc6384deb148c882202b87c150fa85c6d166b59fec722ab9483f2583a86bff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2029-9591
0000-0002-9264-1133
0000-0003-0972-2117
0000-0001-7551-1129
0000-0003-3855-9523
0000-0002-4831-1153
0000-0002-2006-5384
0000-0002-4599-9749
0000-0003-1743-6698
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12974-022-02418-w
PMID 35236378
PQID 2635479146
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9e78a782b1584f02a5ede8ec97eea56b
unpaywall_primary_10_1186_s12974_022_02418_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892697
hal_primary_oai_HAL_hal_03598635v1
proquest_miscellaneous_2635479146
gale_infotracmisc_A699491215
gale_infotracacademiconefile_A699491215
pubmed_primary_35236378
crossref_citationtrail_10_1186_s12974_022_02418_w
crossref_primary_10_1186_s12974_022_02418_w
springer_journals_10_1186_s12974_022_02418_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-02
PublicationDateYYYYMMDD 2022-03-02
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroinflammation
PublicationTitleAbbrev J Neuroinflammation
PublicationTitleAlternate J Neuroinflammation
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References JD Cherry (2418_CR14) 2014; 11
F Lazzara (2418_CR13) 2021; 18
MY García-Bermúdez (2418_CR12) 2021; 12
G Mannino (2418_CR24) 2021; 13
Z-Q Hua (2418_CR40) 2020; 257
F Carty (2418_CR26) 2017; 188
CR Harrell (2418_CR5) 2019; 2019
A Adornetto (2418_CR23) 2019; 14
TV Johnson (2418_CR38) 2008; 49
HA Quigley (2418_CR29) 1995; 36
M Berkelaar (2418_CR28) 1994; 14
TV Johnson (2418_CR7) 2010; 51
SD Nicoară (2418_CR25) 2021; 22
V Holan (2418_CR56) 2016; 12
Y Wang (2418_CR41) 2020; 11
K Allison (2418_CR1) 2020; 12
V Alarautalahti (2418_CR31) 2019; 60
M Di Nicola (2418_CR55) 2002; 99
Y Liu (2418_CR20) 2019; 1724
V Miceli (2418_CR60) 2021; 22
J Martins (2418_CR37) 2015
ND Bull (2418_CR36) 2012; 236
A Mantovani (2418_CR18) 2004; 25
AR Rodriguez (2418_CR34) 2014; 522
C Christakopoulos (2418_CR39) 2019; 186
R Russo (2418_CR11) 2016; 787
B Mathew (2418_CR63) 2021; 10
A Tuekprakhon (2418_CR50) 2021; 12
TV Johnson (2418_CR33) 2014; 137
AE Kuriyan (2418_CR47) 2017; 376
Y Hou (2418_CR22) 2021; 18
A Tassoni (2418_CR52) 2015; 33
MM Magharious (2418_CR27) 2011
C Roubeix (2418_CR8) 2015; 6
X Pereiro (2418_CR35) 2020; 21
CR Harrell (2418_CR61) 2018; 1089
JY Kim (2418_CR48) 2017; 11
T Zhou (2418_CR17) 2017; 11
ND Bull (2418_CR30) 2011; 52
S MélikParsadaniantz (2418_CR9) 2020; 9
AE Kuriyan (2418_CR46) 2017; 177
A Murali (2418_CR42) 2019; 47
VBR Konala (2418_CR53) 2016; 18
GD Kusuma (2418_CR58) 2017; 26
CAP Vilela (2418_CR45) 2021
A Öner (2418_CR6) 2018; 48
KN Mutoji (2418_CR19) 2021; 22
M Madrigal (2418_CR59) 2014; 12
CL Rettinger (2418_CR43) 2018; 206
L Satarian (2418_CR49) 2017; 12
FG Teixeira (2418_CR54) 2013; 70
Y Tang (2418_CR15) 2016; 53
Y Huang (2418_CR16) 2013; 34
V Holan (2418_CR2) 2021; 10
KA Jha (2418_CR21) 2018; 19
E Emre (2418_CR4) 2015; 17
U Pattamatta (2418_CR32) 2016; 151
HC Ray (2418_CR51) 2020; 10
B Mead (2418_CR62) 2017; 6
CJ Cunningham (2418_CR57) 2018; 38
Y Hu (2418_CR3) 2013; 8
C Baudouin (2418_CR10) 2020; 83
L Turner (2418_CR44) 2015; 21
References_xml – volume: 60
  start-page: 1914
  year: 2019
  ident: 2418_CR31
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-25156
– volume: 33
  start-page: 3006
  year: 2015
  ident: 2418_CR52
  publication-title: Stem Cells
  doi: 10.1002/stem.2095
– volume: 206
  start-page: 119
  year: 2018
  ident: 2418_CR43
  publication-title: Cells Tissues Organs
  doi: 10.1159/000497296
– volume: 14
  start-page: 391
  year: 2019
  ident: 2418_CR23
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.245465
– volume: 12
  start-page: 624983
  year: 2021
  ident: 2418_CR12
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.624983
– volume: 19
  start-page: E2016
  year: 2018
  ident: 2418_CR21
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19072016
– volume: 10
  start-page: 15808
  year: 2020
  ident: 2418_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-72875-x
– volume: 21
  start-page: 9330
  year: 2020
  ident: 2418_CR35
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21239330
– volume: 18
  start-page: 13
  year: 2016
  ident: 2418_CR53
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.10.008
– volume: 52
  start-page: 3309
  year: 2011
  ident: 2418_CR30
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.10-6873
– volume: 49
  start-page: 3503
  year: 2008
  ident: 2418_CR38
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.07-1601
– volume: 11
  start-page: 98
  year: 2014
  ident: 2418_CR14
  publication-title: J Neuroinflamm
  doi: 10.1186/1742-2094-11-98
– volume: 10
  start-page: 730
  year: 2021
  ident: 2418_CR63
  publication-title: Cells
  doi: 10.3390/cells10040730
– volume: 1724
  start-page: 146422
  year: 2019
  ident: 2418_CR20
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2019.146422
– volume: 99
  start-page: 3838
  year: 2002
  ident: 2418_CR55
  publication-title: Blood
  doi: 10.1182/blood.V99.10.3838
– year: 2011
  ident: 2418_CR27
  publication-title: J Vis Exp
  doi: 10.3791/2241
– volume: 51
  start-page: 2051
  year: 2010
  ident: 2418_CR7
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4509
– volume: 25
  start-page: 677
  year: 2004
  ident: 2418_CR18
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2004.09.015
– volume: 70
  start-page: 3871
  year: 2013
  ident: 2418_CR54
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-013-1290-8
– volume: 12
  start-page: 654
  year: 2016
  ident: 2418_CR56
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/s12015-016-9688-y
– volume: 1089
  start-page: 47
  year: 2018
  ident: 2418_CR61
  publication-title: Adv Exp Med Biol
  doi: 10.1007/5584_2018_219
– volume: 787
  start-page: 134
  year: 2016
  ident: 2418_CR11
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2016.03.064
– volume: 22
  start-page: 52
  year: 2021
  ident: 2418_CR19
  publication-title: BMC Immunol
  doi: 10.1186/s12865-021-00443-7
– volume: 12
  start-page: 58
  year: 2017
  ident: 2418_CR49
  publication-title: J Ophthalmic Vis Res
  doi: 10.4103/2008-322X.200164
– volume: 137
  start-page: 503
  year: 2014
  ident: 2418_CR33
  publication-title: Brain
  doi: 10.1093/brain/awt292
– year: 2015
  ident: 2418_CR37
  publication-title: ASN Neuro
  doi: 10.1177/1759091415598292
– volume: 11
  start-page: 77
  year: 2017
  ident: 2418_CR17
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2017.00077
– volume: 48
  start-page: 33
  year: 2018
  ident: 2418_CR6
  publication-title: Turk J Ophthalmol
  doi: 10.4274/tjo.89972
– volume: 11
  start-page: 227
  year: 2017
  ident: 2418_CR48
  publication-title: Retin Cases Brief Rep
  doi: 10.1097/ICB.0000000000000327
– volume: 18
  start-page: 216
  year: 2021
  ident: 2418_CR22
  publication-title: J Neuroinflamm
  doi: 10.1186/s12974-021-02248-2
– volume: 186
  start-page: 107722
  year: 2019
  ident: 2418_CR39
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2019.107722
– volume: 17
  start-page: 543
  year: 2015
  ident: 2418_CR4
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.12.005
– volume: 11
  start-page: 793
  year: 2020
  ident: 2418_CR41
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-02955-3
– volume: 53
  start-page: 1181
  year: 2016
  ident: 2418_CR15
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-014-9070-5
– year: 2021
  ident: 2418_CR45
  publication-title: Doc Ophthalmol
  doi: 10.1007/s10633-021-09817-z
– volume: 26
  start-page: 617
  year: 2017
  ident: 2418_CR58
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2016.0349
– volume: 14
  start-page: 4368
  year: 1994
  ident: 2418_CR28
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-07-04368.1994
– volume: 188
  start-page: 1
  year: 2017
  ident: 2418_CR26
  publication-title: Clin Exp Immunol
  doi: 10.1111/cei.12929
– volume: 6
  start-page: 177
  year: 2015
  ident: 2418_CR8
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-015-0168-0
– volume: 10
  start-page: 588
  year: 2021
  ident: 2418_CR2
  publication-title: Cells
  doi: 10.3390/cells10030588
– volume: 13
  start-page: 632
  year: 2021
  ident: 2418_CR24
  publication-title: World J Stem Cells
  doi: 10.4252/wjsc.v13.i6.632
– volume: 12
  start-page: 260
  year: 2014
  ident: 2418_CR59
  publication-title: J Transl Med
  doi: 10.1186/s12967-014-0260-8
– volume: 22
  start-page: E763
  year: 2021
  ident: 2418_CR60
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22020763
– volume: 34
  start-page: 6
  year: 2013
  ident: 2418_CR16
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2012.178
– volume: 2019
  start-page: 7869130
  year: 2019
  ident: 2418_CR5
  publication-title: Stem Cells Int
– volume: 83
  start-page: 100916
  year: 2020
  ident: 2418_CR10
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2020.100916
– volume: 12
  start-page: 52
  year: 2021
  ident: 2418_CR50
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-02122-7
– volume: 8
  start-page: 1467
  year: 2013
  ident: 2418_CR3
  publication-title: Clin Interv Aging
– volume: 18
  start-page: 206
  year: 2021
  ident: 2418_CR13
  publication-title: J Neuroinflamm
  doi: 10.1186/s12974-021-02263-3
– volume: 9
  start-page: 535
  year: 2020
  ident: 2418_CR9
  publication-title: Cells
  doi: 10.3390/cells9030535
– volume: 36
  start-page: 774
  year: 1995
  ident: 2418_CR29
  publication-title: Invest Ophthalmol Vis Sci
– volume: 47
  start-page: 274
  year: 2019
  ident: 2418_CR42
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.13434
– volume: 376
  start-page: 1047
  year: 2017
  ident: 2418_CR47
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1609583
– volume: 12
  start-page: e11686
  year: 2020
  ident: 2418_CR1
  publication-title: Cureus
– volume: 22
  start-page: 11077
  year: 2021
  ident: 2418_CR25
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms222011077
– volume: 236
  start-page: 34
  year: 2012
  ident: 2418_CR36
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2012.03.021
– volume: 151
  start-page: 38
  year: 2016
  ident: 2418_CR32
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2016.07.010
– volume: 21
  start-page: 271
  year: 2015
  ident: 2418_CR44
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2015.02.008
– volume: 38
  start-page: 1276
  year: 2018
  ident: 2418_CR57
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X18776802
– volume: 257
  start-page: 99
  year: 2020
  ident: 2418_CR40
  publication-title: Prog Brain Res
  doi: 10.1016/bs.pbr.2020.05.026
– volume: 6
  start-page: 1273
  year: 2017
  ident: 2418_CR62
  publication-title: Stem Cells Transl Med
  doi: 10.1002/sctm.16-0428
– volume: 522
  start-page: 1411
  year: 2014
  ident: 2418_CR34
  publication-title: J Comp Neurol
  doi: 10.1002/cne.23521
– volume: 177
  start-page: xix
  year: 2017
  ident: 2418_CR46
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.03.030
SSID ssj0032562
Score 2.4537396
Snippet Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and...
Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually...
Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and...
Background: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and...
Abstract Background Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Care and treatment
Cellular therapy
Disease Models, Animal
Glaucoma
Immunity
Immunology
Immunomodulation
Life Sciences
Mesenchymal stem cell
Mesenchymal Stem Cells - metabolism
Microglia
Neurobiology
Neurology
Neuroprotection
Neuroprotection - physiology
Neuroprotective agents
Neurosciences
Rats
Retina - metabolism
Retinal Ganglion Cells - metabolism
Testing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBx4HxLMECjIIiQONunEcP44LarVClBOVerMcx9GutJus9tlV_3xnnGzUqFLhwCGXxE6czOObJDPfEPIlK5BVhPm44FLEXFsfW65FLL1I2cBbqyQWCp__FqML_vMyu7zV6gtzwhp64ObBnWgvlQUYyxOAynLAbOYLr7zT0nubiRy9L8DY_mWq8cEpADnbl8gocbIEVJM8xsx1wKRExdseDAW2_s4nPxxjSuTdePNu2mT37_Qpebyu5na3tdPpLXg6e06etXElHTb384I88NVL8ui8_XP-ilyfdrTetC5poLFsORrA31FbFXSCpSL1rC6wo1e92NE5fqhfIOMqTplhnZIb72ZwGWR_pvjNf0knFUym_opuJpuaYk0krsNfzacgMxoa7bwmF2enf36M4rbxQuwA3VdxkTswS16AH-fKQQzOBixX0kHwWFqVOVEkQuSZLr2TjNlcc5WWLFOpVSIvyyR9Qw6quvJvCdXIDsOV5U7CJlieKTcoweq5V8IVIiLJXg7Gtazk2BxjasLbiRKmkZ0B2ZkgO7ONyLduzrzh5Lh39HcUbzcS-bTDDtAy02qZ-ZuWReQrKodBq4flOdsWL8BNIn-WGQqtuUamjogc9UaCtbre4c-gXr3FjIa_DO4LZIoQ_22SiHzaa5_B-ZgHV_l6vTRIHcSlBniLyGGjjd25IJRORSpVRGRPT3sX6x-pJuPAKK6UZkLLiBzvNdq0rmx575M97rT-HwTx7n8I4j15woIZY_bBETlYLdb-A4SFq_xj8AA3f0depQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbYkIA9IO4EBjIIiQcWrXEcXx5LtalCjCcm7c1yHEet1CZVr6v25znHTaNFQxM85CXxSdyc29f4nM-EfMkKZBVhPi64FDHX1seWaxFLL1LW89YqiY3CF7_E8JL_uMquGpoc7IW5vX6fKHG6gHwkeYw155BNEhVvDsjDDAIvlu8NxGAfdVNI3WzfFPNXuU7iCfz8bRQ-GGER5F2EebdQsl0tPSKPV9XMbjd2MrmVkM6fkacNkqT9neqfkwe-ekEeXTRr5S_JzVlL5E3rkgbiyoaVASIctVVBx9gcUk_rAvfwqudbOsNP83PkWEWRKXYmudF2Co9BvmeKX_kXdFyBMPXXdD1e1xS7IHEe_no2AS3RsLXOK3J5fvZ7MIybrRZiB_l8GRe5A0fkBURurhygbtZjuZIO4GJpVeZEkQiRZ7r0TjJmc81VWrJMpVaJvCyT9DU5rOrKvyVUIx8MV5Y7CYdgeaZcrwQ_514JV4iIJHs9GNfwkON2GBMT_o8oYXa6M6A7E3RnNhH51srMdiwc947-juptRyKDdjgBhmUahzTaS2UBHuUJQLCyx2zmC6-809J7m4k8Il_ROAz6OUzP2aZdAX4kMmaZvtCaa-TmiMhxZyT4p-tc_gzm1ZnMsP_T4LlAnwiIb51E5NPe-gzKY-Vb5evVwiBZEJcaElpE3uyssb0XgOdUpFJFRHbstPOw7pVqPAoc4kppJrSMyMneok0TvBb3vtmT1ur_QRHv_u_u78kTFhwWKwuOyeFyvvIfAPIt84_B1_8AMRBOgA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_aK_j44LNqtMoqgh9srnfJZh8fT2k5xBYFC_XTstlsvLN3yXHPnv7zziS50FgpCn4IhGQnm8zOK8zMbwl5HSWIKhI4P2GC-0wZ5xumuC8cD4OOM0YKbBQ-PuH9U_bhLDrbIp83vTDfCxhHYC7wo-zda1_uQx8VxhtO7PnBJElLnZf8YAZuSzAfS9PB6XSlv9omOxxzTi2yc3ryqfe1bIwMQCoU2zTP_JGw4aAKHP_aWm8PsFjyaiR6taCyzqreJjcX2cSsV2Y0uuS4ju6S6eaTy3qV8_ZiHrftj9_QIP8rT-6RO1WYS3ulXN4nWy57QG4cV4n8h-TnYY0yTvOUFlNXkBFgfqnJEjrEzpV8nCe4wVg-XdMJ5g2mCACLJGNsm7KD9RimQTBqiimIGR1mQEzdBV0OlznFFk18D3cxGYEI0WLfn11yenT45X3fr_aB8C0EG3M_iS1YCZaAW2HSwi9B0AliKSzEsqmRkeVJl_M4UqmzIghMrJgM0yCSoZE8TtNu-Ii0sjxzTwhVCFbDpGFWwMGDOJK2k4IRYk5ym3CPdDeLr20Fko57dYx08bMkuS65qoGruuCqXnnkbU0zKSFCrh39DmWqHonw3sWFfPpNV9ZCKyekgdgt7kJ8mHYCE7nESWeVcM5EPPbIG5RIjUYIF95UvRTwkQjnpXtcKaYQOMQje42RYDxs4_YrkOnGy_R7HzVeK7AdIRxddj3yciPyGumxLC9z-WKmEcmICQXe1iOPSxWonwWRfchDIT0iGsrRmKx5JxsOCoBzKVXAlfDI_kaNdGVZZ9dydr9Wtb9YiKf_NvwZuRUUqoRlD3ukNZ8u3HOIR-fxi8rC_AIOSYZ4
  priority: 102
  providerName: Unpaywall
Title Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model
URI https://link.springer.com/article/10.1186/s12974-022-02418-w
https://www.ncbi.nlm.nih.gov/pubmed/35236378
https://www.proquest.com/docview/2635479146
https://hal.sorbonne-universite.fr/hal-03598635
https://pubmed.ncbi.nlm.nih.gov/PMC8892697
https://jneuroinflammation.biomedcentral.com/track/pdf/10.1186/s12974-022-02418-w
https://doaj.org/article/9e78a782b1584f02a5ede8ec97eea56b
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: KQ8
  dateStart: 20040401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: RPM
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: M48
  dateStart: 20040701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: AAJSJ
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1742-2094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032562
  issn: 1742-2094
  databaseCode: C6C
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9QNc9jN3nrQvaGOxh9ZbIsi4PY6ShpZS1lG2B7knIsrwGUjvLrQ378zvHsU1DSxl7MDG62IrPd3SOLZ3vEPIuTpFVhPkw5VKEXFsfWq5FKL2IWNtbqyQGCh-fiMM-PzqLz9ZIne6oeoCTW1_tMJ9Ufzz8ePV78QUU_nOp8Ep8moDNkjzEfelgcToqvFwnm3DCEOXHvFlViMC8szpw5tZ-22QLHJJIRJh17ZqdKun8m0l7_Rz3TN50SG_uq2wWV--Te7N8ZBeXdji8Zr8OHpIHleNJu0ukPCJrPn9Mto6rpfUn5M9-w_tNi4yWPJcViQNMiNTmKR1gLElxUaSY8qsYL-gIv-SPkZIVu1xgIJM7X1zAbZAemuKiwIQOcuhM_RWdD-YFxaBJHIe_Gg1BqLTMxPOU9A_2f_QOwyozQ-jA_E_DNHGgtzyFiZ4rB046a7NESQfeZWZV7ETaESKJdeadZMwmmqsoY7GKrBJJlnWiZ2QjL3L_glCN9DFcWe4kHIIlsXLtDKYF7pVwqQhIp5aDcRVtOWbPGJry9UUJsxSjATGaUozmMiAfmj6jJWnHna33ULxNSyTcLguK8S9T6a_RXioL3lTSAY8tazMb-9Qr77T03sYiCch7BIdBoMLwnK2iG-BPIsGW6QqtuUYqj4DsrLQEdXYr1W8BXiuDOex-NVhWsi2CgzjvBORNjT6D_XGjXO6L2cQgtxCXGuxfQJ4v0dhcq4Z2QOQKTldutlqTD85LynGlNBNaBmS3RrSpVfXOJ7vboP4fBPHyv8f1imyzUo1xT8IO2ZiOZ_41OIvTpEXW5Zlskc1u9-j7Efzu7Z-cfoPSnui1yg8wrXKOgJr-yWn3519t4m2L
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVKJwQLwxFFgQEgdqEdvrfRwDahVC0gut1NtqvV6TSIkd5dmIP8-MY1tYRRUcfLF37I3n9cU78y0hH-IUWUVC56dMcJ8p43zDFPeF41HYdcZIgY3Co3Pev2SDq_iqagpb1tXu9ZJkGalLt5b88xIyk2A-Vp9DXgmkvz0ghzKOOeuQw15v8GNQR-AI0nhYN8j8VbKVhEqu_iYiH4yxIPIm2rxZNNmsnN4nR-t8bnZbM53-kZzOHpIHFaqkvb0ZPCJ3XP6Y3B1V6-ZPyK_ThtSbFhktSSwrhgaIdtTkKZ1go0gxK1Lcz6tY7OgcP9MvkG8VRWbYpWTHuxk8BrmfKX7xX9JJDsLUXdPNZFNQ7IjEebjr-RQ0Rsttdp6Sy7PTi699v9p2wbeQ21d-mlhwSpZCFGfSAgIPu2EihQXomBkZW54GnCexypwVYWgSxWSUhbGMjORJlgXRM9LJi9y9IFQhNwyThlkBBw-TWNpuBj7PnOQ25R4Jaj1oW3GS49YYU13-N5Fc73WnQXe61J3eeuRTIzPfM3LcOvoLqrcZiWza5Yli8VNXzqmVE9IAVEoCgGNZNzSxS510VgnnTMwTj3xE49Do8zA9a6rWBfiRyJ6le1wpppCnwyPHrZHgq7Z1-T2YV2sy_d5Q47mSShHQ3ybwyLva-jTKYxVc7or1UiNxEBMKkptHnu-tsbkXAOmIR0J6RLTstPWw9pV8Mi75xKVUIVfCIye1ResqkC1vfbMnjdX_gyJe_t_d35Kj_sVoqIffzr-_IvfC0nmx4uCYdFaLtXsNUHCVvKk8_zdYn1bh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVipwQLwKhgILQuJArSb2eh_HAI1CaCskqNTbar1ek0iJHeXZiD_PjF-qVVTBIRd7x15nXp-9M98S8j5KkFUkcH7CBPeZMs43THFfOB4GHWeMFNgofHbOBxdseBldXuviL6rd6yXJsqcBWZqy5fEsSUsXl_x4AVlKMB8r0SHHdKW_2SF7MlIcXr_2er3hj2EdjUNI6UHdLPNXyVZCKnj7m-i8M8LiyJvI82YBZbOKep_cXWUzs92YyeRaouo_JA8qhEl7pUk8Indc9pjsn1Vr6E_I75OG4JvmKS0ILSu2Boh81GQJHWPTSD7NE9zbK59v6Qw_2c-RexVFptixZEfbKdwGeaApfv1f0HEGwtRd0fV4nVPsjsR5uKvZBLRHiy13npKL_snPzwO_2oLBt5Dnl34SW3BQlkBEZ9ICGg86QSyFBRiZGhlZnnQ5jyOVOiuCwMSKyTANIhkayeM07YYHZDfLM_ecUIU8MUwaZgX8eBBH0nZS8H_mJLcJ90i31oO2FT85bpMx0cV7iuS61J0G3elCd3rjkY-NzKxk57h19CdUbzMSmbWLA_n8l64cVSsnpAHYFHcBmqWdwEQucdJZJZwzEY898gGNQ6P_w_SsqdoY4CGRSUv3uFJMIWeHRw5bI8Fvbev0OzCv1mQGvVONxwpaRUCC665H3tbWp1EeK-Iyl68WGkmEmFCQ6DzyrLTG5loAqkMeCukR0bLT1s3aZ7LxqOAWl1IFXAmPHNUWraugtrj1nz1qrP4fFPHi_67-hux__9LXp1_Pv70k94LCd7H44JDsLucr9wpQ4TJ-XTn-H2JpWys
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_aK_j44LNqtMoqgh9srnfJZh8fT2k5xBYFC_XTstlsvLN3yXHPnv7zziS50FgpCn4IhGQnm8zOK8zMbwl5HSWIKhI4P2GC-0wZ5xumuC8cD4OOM0YKbBQ-PuH9U_bhLDrbIp83vTDfCxhHYC7wo-zda1_uQx8VxhtO7PnBJElLnZf8YAZuSzAfS9PB6XSlv9omOxxzTi2yc3ryqfe1bIwMQCoU2zTP_JGw4aAKHP_aWm8PsFjyaiR6taCyzqreJjcX2cSsV2Y0uuS4ju6S6eaTy3qV8_ZiHrftj9_QIP8rT-6RO1WYS3ulXN4nWy57QG4cV4n8h-TnYY0yTvOUFlNXkBFgfqnJEjrEzpV8nCe4wVg-XdMJ5g2mCACLJGNsm7KD9RimQTBqiimIGR1mQEzdBV0OlznFFk18D3cxGYEI0WLfn11yenT45X3fr_aB8C0EG3M_iS1YCZaAW2HSwi9B0AliKSzEsqmRkeVJl_M4UqmzIghMrJgM0yCSoZE8TtNu-Ii0sjxzTwhVCFbDpGFWwMGDOJK2k4IRYk5ym3CPdDeLr20Fko57dYx08bMkuS65qoGruuCqXnnkbU0zKSFCrh39DmWqHonw3sWFfPpNV9ZCKyekgdgt7kJ8mHYCE7nESWeVcM5EPPbIG5RIjUYIF95UvRTwkQjnpXtcKaYQOMQje42RYDxs4_YrkOnGy_R7HzVeK7AdIRxddj3yciPyGumxLC9z-WKmEcmICQXe1iOPSxWonwWRfchDIT0iGsrRmKx5JxsOCoBzKVXAlfDI_kaNdGVZZ9dydr9Wtb9YiKf_NvwZuRUUqoRlD3ukNZ8u3HOIR-fxi8rC_AIOSYZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+neuroprotective+and+immunomodulatory+properties+of+mesenchymal+stem+cells+in+an+ex+vivo+retinal+explant+model&rft.jtitle=Journal+of+neuroinflammation&rft.au=Reboussin%2C+%C3%89lodie&rft.au=Buffault%2C+Juliette&rft.au=Brignole-Baudouin%2C+Fran%C3%A7oise&rft.au=R%C3%A9aux-Le+Goazigo%2C+Annabelle&rft.date=2022-03-02&rft.pub=BioMed+Central&rft.eissn=1742-2094&rft.volume=19&rft_id=info:doi/10.1186%2Fs12974-022-02418-w&rft_id=info%3Apmid%2F35236378&rft.externalDocID=PMC8892697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon