Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database

•A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 51; no. NA; pp. 84 - 90
Main Authors Khandelwal, Siddhartha, Wickström, Nicholas
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2016.09.023

Cover

Abstract •A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs.•An alternative way of assessing performance based on non-parametric statistical tests. Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.
AbstractList Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.
•A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs.•An alternative way of assessing performance based on non-parametric statistical tests. Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. © 2016 Elsevier B.V.
Highlights • A new database of gait in indoor and outdoor environments using accelerometers. • Evaluation of the robustness of state-of-the-art gait event detection algorithms. • Algorithmic performance is significantly decreased in outdoor walking and running. • Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs. • An alternative way of assessing performance based on non-parametric statistical tests.
Author Khandelwal, Siddhartha
Wickström, Nicholas
Author_xml – sequence: 1
  givenname: Siddhartha
  surname: Khandelwal
  fullname: Khandelwal, Siddhartha
  email: siddhartha.khandelwal@hh.se
– sequence: 2
  givenname: Nicholas
  surname: Wickström
  fullname: Wickström, Nicholas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27736735$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-32110$$DView record from Swedish Publication Index
BookMark eNqNUsuO0zAUjdAgpjPwC6MskVCCH40TSwhRDeUhDULitbUc-6Z1ceJiOx3Nf_DBOO2UxSwoK9tX53Gtcy6ys8ENkGVXGJUYYfZyU66kiVsXYknSu0S8RIQ-yma4qXlBCOZn2QxxxgpGGTnPLkLYIITmtCFPsnNS15TVtJplv5c7aUcZjRty1-VxDfkWfOd8LwcF00gqBRa86yGCL1oZQOeTdw47GGKu01jt6dKunDdx3YfcDLk2XQd-QniQtrh13uo8KBikNy7kYzDDam_3afFluTgoahnlZPA0e9xJG-DZ_XmZfX-3_Hb9obj5_P7j9eKmUAzTWKi2qjDFWGvQknS66tKVUlo3NTRMp4M1wDqFWyQ7WjUtQi3nbQuIdogTTS-zFwfdcAvbsRVbb3rp74STRrw1PxbC-ZVYrwUlGKOEfn5Ab737NUKIojfpQ9bKAdwYRMqBI8R5w09CcUOrOWF8jhP06h46tj3ovzscI0qAVweA8i4ED51QJu4Di14aKzASUyPERhwbMW3CBOIiNSLR2QP60eEk8c2BCCmBnQEvgjKQSqGNT4kL7cxpidcPJJQ1g1HS_oQ7CBs3-iHlK7AIRCDxderrVFfMKKqaiv9b4H82-AP4iAG1
CitedBy_id crossref_primary_10_3390_s23177615
crossref_primary_10_3390_s21030813
crossref_primary_10_3390_electronics9020355
crossref_primary_10_1109_TNSRE_2021_3131953
crossref_primary_10_1109_JTEHM_2023_3319576
crossref_primary_10_1109_JSEN_2021_3119658
crossref_primary_10_1109_TNSRE_2018_2868094
crossref_primary_10_1142_S0219455419500299
crossref_primary_10_3390_s20185206
crossref_primary_10_3390_electronics11213614
crossref_primary_10_3390_s19081820
crossref_primary_10_1016_j_jvcir_2021_103218
crossref_primary_10_1109_TBME_2019_2919394
crossref_primary_10_1111_exsy_13130
crossref_primary_10_3390_electronics8080894
crossref_primary_10_1016_j_medengphy_2024_104251
crossref_primary_10_1038_s41597_023_02704_z
crossref_primary_10_3389_fams_2020_564935
crossref_primary_10_1080_10255842_2020_1864822
crossref_primary_10_1016_j_medengphy_2020_06_001
crossref_primary_10_1109_JSEN_2020_3013996
crossref_primary_10_1038_s41597_022_01580_3
crossref_primary_10_3390_s22197180
crossref_primary_10_1016_j_neucom_2020_08_079
crossref_primary_10_3389_fspor_2022_1037438
crossref_primary_10_1002_widm_1557
crossref_primary_10_1109_TNSRE_2021_3076366
crossref_primary_10_1117_1_JBO_27_6_067002
crossref_primary_10_1109_JIOT_2020_2966773
crossref_primary_10_1109_ACCESS_2018_2879896
crossref_primary_10_1109_ACCESS_2022_3149100
crossref_primary_10_1109_JBHI_2022_3228329
crossref_primary_10_1177_09544119211072971
crossref_primary_10_2196_19068
crossref_primary_10_1016_j_gaitpost_2019_09_007
crossref_primary_10_3390_s24041155
crossref_primary_10_1016_j_gaitpost_2021_03_019
crossref_primary_10_3390_s21196476
crossref_primary_10_1109_ACCESS_2024_3361754
crossref_primary_10_1155_2022_9933018
crossref_primary_10_1007_s00521_023_08863_9
crossref_primary_10_1016_j_gaitpost_2018_08_025
crossref_primary_10_1142_S0219519423300028
crossref_primary_10_1109_TIM_2022_3165257
crossref_primary_10_1016_j_gaitpost_2018_04_047
crossref_primary_10_1007_s12652_019_01659_7
crossref_primary_10_1016_j_bspc_2018_08_030
crossref_primary_10_1109_RBME_2018_2807182
crossref_primary_10_3390_s19163462
crossref_primary_10_1016_j_bspc_2019_101643
crossref_primary_10_1016_j_bspc_2020_102232
crossref_primary_10_1186_s12938_020_00803_1
crossref_primary_10_1123_jmpb_2024_0008
crossref_primary_10_1109_TIM_2023_3346537
crossref_primary_10_1088_1361_6579_aae7ee
crossref_primary_10_1038_s41597_024_04020_6
crossref_primary_10_3390_s20226509
crossref_primary_10_1038_s41746_021_00513_5
crossref_primary_10_3390_app9020324
crossref_primary_10_1016_j_apergo_2021_103414
crossref_primary_10_1016_j_gaitpost_2017_10_009
crossref_primary_10_1109_TIM_2023_3265753
crossref_primary_10_3390_s22041678
crossref_primary_10_1109_ACCESS_2023_3236000
crossref_primary_10_1123_mc_2020_0023
crossref_primary_10_1109_LSENS_2021_3060376
crossref_primary_10_1016_j_gaitpost_2017_07_030
crossref_primary_10_1109_JBHI_2023_3311677
crossref_primary_10_1115_1_4048554
crossref_primary_10_1007_s11831_019_09375_3
crossref_primary_10_1109_TMRB_2019_2930352
crossref_primary_10_1007_s11277_021_09224_2
crossref_primary_10_1016_j_bspc_2021_103429
crossref_primary_10_3390_s22124579
crossref_primary_10_1007_s40279_022_01760_6
crossref_primary_10_3390_s21134260
crossref_primary_10_3390_s24113343
Cites_doi 10.1109/TNSRE.2004.843176
10.1016/j.gaitpost.2014.07.007
10.1016/j.patcog.2013.06.028
10.1016/j.gaitpost.2010.06.009
10.1016/j.gaitpost.2013.08.023
10.1016/S0021-9290(01)00231-7
10.1049/el.2010.2118
10.1016/j.gaitpost.2009.07.128
10.1016/j.medengphy.2008.09.005
10.1109/TNSRE.2016.2536278
10.1016/j.gaitpost.2015.05.020
10.1016/j.gaitpost.2012.02.019
10.1109/TITB.2010.2047402
10.1016/S0966-6362(02)00190-X
10.1016/j.gaitpost.2007.10.010
10.1016/j.gaitpost.2009.11.014
10.1016/j.medengphy.2010.03.007
10.1109/TNSRE.2013.2239313
10.1123/jab.2014-0178
10.1016/j.medengphy.2013.10.004
10.1016/j.gaitpost.2014.08.009
10.1016/S0966-6362(01)00203-X
10.1016/j.gaitpost.2013.05.012
10.1109/TCYB.2014.2361287
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8Z
DOI 10.1016/j.gaitpost.2016.09.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Högskolan i Halmstad
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 90
ExternalDocumentID oai_DiVA_org_hh_32110
27736735
10_1016_j_gaitpost_2016_09_023
S0966636216305859
1_s2_0_S0966636216305859
Genre Evaluation Studies
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8Z
ID FETCH-LOGICAL-c613t-cb551311ddeda2fd5f1dd333787e86d78768e6fc1b0af358b00b99bbe03f092d3
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Thu Oct 02 04:57:15 EDT 2025
Sun Sep 28 02:04:09 EDT 2025
Thu Oct 02 11:07:36 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Wed Oct 01 04:25:30 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Fri Feb 23 02:27:31 EST 2024
Tue Feb 25 19:57:05 EST 2025
Tue Oct 14 19:35:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords Inertial sensors
Heel-Strike
Toe-Off
Gait events
Gait database
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-cb551311ddeda2fd5f1dd333787e86d78768e6fc1b0af358b00b99bbe03f092d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
PMID 27736735
PQID 1835426941
PQPubID 23479
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_hh_32110
proquest_miscellaneous_2019009989
proquest_miscellaneous_1835426941
pubmed_primary_27736735
crossref_citationtrail_10_1016_j_gaitpost_2016_09_023
crossref_primary_10_1016_j_gaitpost_2016_09_023
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2016_09_023
elsevier_clinicalkeyesjournals_1_s2_0_S0966636216305859
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2016_09_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kavanagh, Menz (bib0040) 2008; 28
McCamley, Donati, Grimpampi, Mazzà (bib0090) 2012; 36
Aung, Thies, Kenney, Howard, Selles, Findlow, Goulermas (bib0050) 2013; 21
Rueterbories, Spaich, Andersen (bib0045) 2014; 36
Khandelwal, Wickström (bib0120) 2016
Bruening, Ridge (bib0015) 2014; 39
Cox, Hinkley (bib0125) 1974
Rueterbories, Spaich, Larsen, Andersen (bib0005) 2010; 32
Sant’Anna, Wickström (bib0065) 2010; 14
González, López, Rodriguez-Uría, Álvarez, Alvarez (bib0110) 2010; 31
Smith, Preece, Mason, Bramah (bib0025) 2015; 41
Mansour, Rezzoug, Gorce (bib0105) 2015; 42
Zijlstra, Hof (bib0100) 2003; 18
Ngo, Makihara, Nagahara, Mukaigawa, Yagi (bib0070) 2014; 47
Auvinet, Berrut, Touzard, Moutel, Collet, Chaleil, Barrey (bib0095) 2002; 16
Zhang, Pan, Jia, Lu, Wang, Wu (bib0075) 2015; 45
Leitch, Stebbins, Paolini, Zavatsky (bib0010) 2011; 33
Selles, Formanoy, Bussmann, Janssens, Stam (bib0055) 2005; 13
Torrealba, Cappelletto, Fermin-Leon, Grieco, Fernandez-Lopez (bib0060) 2010; 46
Alvim, Cerqueira, Netto, Leite, Muniz (bib0020) 2015; 31
Hanlon, Anderson (bib0085) 2009; 30
Rebula, Ojeda, Adamczyk, Kuo (bib0035) 2013; 38
Godfrey, Conway, Meagher, ÓLaighin (bib0115) 2008; 30
Mayagoitia, Nene, Veltink (bib0030) 2002; 35
Trojaniello, Cereatti, Croce (bib0080) 2014; 40
Auvinet (10.1016/j.gaitpost.2016.09.023_bib0095) 2002; 16
Zijlstra (10.1016/j.gaitpost.2016.09.023_bib0100) 2003; 18
Aung (10.1016/j.gaitpost.2016.09.023_bib0050) 2013; 21
Torrealba (10.1016/j.gaitpost.2016.09.023_bib0060) 2010; 46
McCamley (10.1016/j.gaitpost.2016.09.023_bib0090) 2012; 36
Ngo (10.1016/j.gaitpost.2016.09.023_bib0070) 2014; 47
Zhang (10.1016/j.gaitpost.2016.09.023_bib0075) 2015; 45
Mayagoitia (10.1016/j.gaitpost.2016.09.023_bib0030) 2002; 35
Sant’Anna (10.1016/j.gaitpost.2016.09.023_bib0065) 2010; 14
Rueterbories (10.1016/j.gaitpost.2016.09.023_bib0005) 2010; 32
Trojaniello (10.1016/j.gaitpost.2016.09.023_bib0080) 2014; 40
Alvim (10.1016/j.gaitpost.2016.09.023_bib0020) 2015; 31
Rueterbories (10.1016/j.gaitpost.2016.09.023_bib0045) 2014; 36
Hanlon (10.1016/j.gaitpost.2016.09.023_bib0085) 2009; 30
Godfrey (10.1016/j.gaitpost.2016.09.023_bib0115) 2008; 30
Cox (10.1016/j.gaitpost.2016.09.023_bib0125) 1974
Smith (10.1016/j.gaitpost.2016.09.023_bib0025) 2015; 41
Mansour (10.1016/j.gaitpost.2016.09.023_bib0105) 2015; 42
González (10.1016/j.gaitpost.2016.09.023_bib0110) 2010; 31
Rebula (10.1016/j.gaitpost.2016.09.023_bib0035) 2013; 38
Selles (10.1016/j.gaitpost.2016.09.023_bib0055) 2005; 13
Kavanagh (10.1016/j.gaitpost.2016.09.023_bib0040) 2008; 28
Leitch (10.1016/j.gaitpost.2016.09.023_bib0010) 2011; 33
Bruening (10.1016/j.gaitpost.2016.09.023_bib0015) 2014; 39
Khandelwal (10.1016/j.gaitpost.2016.09.023_bib0120) 2016
References_xml – volume: 14
  start-page: 1180
  year: 2010
  end-page: 1187
  ident: bib0065
  article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 33
  start-page: 130
  year: 2011
  end-page: 132
  ident: bib0010
  article-title: Identifying gait events without a force plate during running: a comparison of methods
  publication-title: Gait Posture
– volume: 47
  start-page: 228
  year: 2014
  end-page: 237
  ident: bib0070
  article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 1864
  year: 2015
  end-page: 1875
  ident: bib0075
  article-title: Accelerometer-based gait recognition by sparse representation of signature points with clusters
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 81
  year: 2005
  end-page: 88
  ident: bib0055
  article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 42
  start-page: 409
  year: 2015
  end-page: 414
  ident: bib0105
  article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects
  publication-title: Gait Posture
– volume: 36
  start-page: 316
  year: 2012
  end-page: 318
  ident: bib0090
  article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data
  publication-title: Gait Posture
– volume: 39
  start-page: 472
  year: 2014
  end-page: 477
  ident: bib0015
  article-title: Automated event detection algorithms in pathological gait
  publication-title: Gait Posture
– volume: 46
  start-page: 1483
  year: 2010
  end-page: 1485
  ident: bib0060
  article-title: Statistics-based technique for automated detection of gait events from accelerometer signals
  publication-title: Electron. Lett.
– volume: 31
  start-page: 322
  year: 2010
  end-page: 325
  ident: bib0110
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
– volume: 32
  start-page: 545
  year: 2010
  end-page: 552
  ident: bib0005
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
– year: 2016
  ident: bib0120
  article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 28
  start-page: 1
  year: 2008
  end-page: 15
  ident: bib0040
  article-title: Accelerometry: a technique for quantifying movement patterns during walking
  publication-title: Gait Posture
– volume: 21
  start-page: 908
  year: 2013
  end-page: 916
  ident: bib0050
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 36
  start-page: 502
  year: 2014
  end-page: 508
  ident: bib0045
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
– volume: 35
  start-page: 537
  year: 2002
  end-page: 542
  ident: bib0030
  article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems
  publication-title: J. Biomech.
– volume: 16
  start-page: 124
  year: 2002
  end-page: 134
  ident: bib0095
  article-title: Reference data for normal subjects obtained with an accelerometric device
  publication-title: Gait Posture
– year: 1974
  ident: bib0125
  article-title: Theoretical Statistics
– volume: 18
  start-page: 1
  year: 2003
  end-page: 10
  ident: bib0100
  article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking
  publication-title: Gait Posture
– volume: 31
  start-page: 383
  year: 2015
  end-page: 388
  ident: bib0020
  article-title: Comparison of five kinematic-based identification methods of foot contact events during treadmill walking and running at different speeds
  publication-title: J. Appl. Biomech.
– volume: 40
  start-page: 487
  year: 2014
  end-page: 492
  ident: bib0080
  article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk
  publication-title: Gait Posture
– volume: 30
  start-page: 1364
  year: 2008
  end-page: 1386
  ident: bib0115
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Med. Eng. Phys.
– volume: 38
  start-page: 974
  year: 2013
  end-page: 980
  ident: bib0035
  article-title: Measurement of foot placement and its variability with inertial sensors
  publication-title: Gait Posture
– volume: 41
  start-page: 39
  year: 2015
  end-page: 43
  ident: bib0025
  article-title: A comparison of kinematic algorithms to estimate gait events during overground running
  publication-title: Gait Posture
– volume: 30
  start-page: 523
  year: 2009
  end-page: 527
  ident: bib0085
  article-title: Real-time gait event detection using wearable sensors
  publication-title: Gait Posture
– volume: 13
  start-page: 81
  issue: 1
  year: 2005
  ident: 10.1016/j.gaitpost.2016.09.023_bib0055
  article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.843176
– volume: 40
  start-page: 487
  issue: 4
  year: 2014
  ident: 10.1016/j.gaitpost.2016.09.023_bib0080
  article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.07.007
– volume: 47
  start-page: 228
  issue: 1
  year: 2014
  ident: 10.1016/j.gaitpost.2016.09.023_bib0070
  article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.028
– volume: 33
  start-page: 130
  issue: 1
  year: 2011
  ident: 10.1016/j.gaitpost.2016.09.023_bib0010
  article-title: Identifying gait events without a force plate during running: a comparison of methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.06.009
– volume: 39
  start-page: 472
  issue: 1
  year: 2014
  ident: 10.1016/j.gaitpost.2016.09.023_bib0015
  article-title: Automated event detection algorithms in pathological gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.08.023
– volume: 35
  start-page: 537
  issue: 4
  year: 2002
  ident: 10.1016/j.gaitpost.2016.09.023_bib0030
  article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00231-7
– volume: 46
  start-page: 1483
  issue: 22
  year: 2010
  ident: 10.1016/j.gaitpost.2016.09.023_bib0060
  article-title: Statistics-based technique for automated detection of gait events from accelerometer signals
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.2118
– volume: 30
  start-page: 523
  issue: 4
  year: 2009
  ident: 10.1016/j.gaitpost.2016.09.023_bib0085
  article-title: Real-time gait event detection using wearable sensors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.07.128
– volume: 30
  start-page: 1364
  issue: 10
  year: 2008
  ident: 10.1016/j.gaitpost.2016.09.023_bib0115
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.09.005
– year: 2016
  ident: 10.1016/j.gaitpost.2016.09.023_bib0120
  article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2536278
– volume: 42
  start-page: 409
  issue: 4
  year: 2015
  ident: 10.1016/j.gaitpost.2016.09.023_bib0105
  article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.05.020
– volume: 36
  start-page: 316
  issue: 2
  year: 2012
  ident: 10.1016/j.gaitpost.2016.09.023_bib0090
  article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.02.019
– volume: 14
  start-page: 1180
  issue: 5
  year: 2010
  ident: 10.1016/j.gaitpost.2016.09.023_bib0065
  article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2047402
– volume: 18
  start-page: 1
  issue: 2
  year: 2003
  ident: 10.1016/j.gaitpost.2016.09.023_bib0100
  article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00190-X
– volume: 28
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.gaitpost.2016.09.023_bib0040
  article-title: Accelerometry: a technique for quantifying movement patterns during walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.10.010
– volume: 31
  start-page: 322
  issue: 3
  year: 2010
  ident: 10.1016/j.gaitpost.2016.09.023_bib0110
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.11.014
– volume: 32
  start-page: 545
  issue: 6
  year: 2010
  ident: 10.1016/j.gaitpost.2016.09.023_bib0005
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.03.007
– volume: 21
  start-page: 908
  issue: 6
  year: 2013
  ident: 10.1016/j.gaitpost.2016.09.023_bib0050
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2239313
– year: 1974
  ident: 10.1016/j.gaitpost.2016.09.023_bib0125
– volume: 31
  start-page: 383
  issue: 5
  year: 2015
  ident: 10.1016/j.gaitpost.2016.09.023_bib0020
  article-title: Comparison of five kinematic-based identification methods of foot contact events during treadmill walking and running at different speeds
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2014-0178
– volume: 36
  start-page: 502
  issue: 4
  year: 2014
  ident: 10.1016/j.gaitpost.2016.09.023_bib0045
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.004
– volume: 41
  start-page: 39
  issue: 1
  year: 2015
  ident: 10.1016/j.gaitpost.2016.09.023_bib0025
  article-title: A comparison of kinematic algorithms to estimate gait events during overground running
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.08.009
– volume: 16
  start-page: 124
  issue: 2
  year: 2002
  ident: 10.1016/j.gaitpost.2016.09.023_bib0095
  article-title: Reference data for normal subjects obtained with an accelerometric device
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(01)00203-X
– volume: 38
  start-page: 974
  issue: 4
  year: 2013
  ident: 10.1016/j.gaitpost.2016.09.023_bib0035
  article-title: Measurement of foot placement and its variability with inertial sensors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.012
– volume: 45
  start-page: 1864
  issue: 9
  year: 2015
  ident: 10.1016/j.gaitpost.2016.09.023_bib0075
  article-title: Accelerometer-based gait recognition by sparse representation of signature points with clusters
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2361287
SSID ssj0004382
Score 2.4967303
Snippet •A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection...
Highlights • A new database of gait in indoor and outdoor environments using accelerometers. • Evaluation of the robustness of state-of-the-art gait event...
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms accelerometer
Accelerometry
Adult
Algorithms
Biomechanical Phenomena
Female
Foot - physiology
Gait
Gait database
gait dataset
gait event detection
Gait events
Heel Strike
Humans
inertial sensor
Inertial sensors
Male
Orthopedics
Reproducibility of Results
Signal Processing, Computer-Assisted
Toe Off
Walking
Title Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636216305859
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636216305859
https://dx.doi.org/10.1016/j.gaitpost.2016.09.023
https://www.ncbi.nlm.nih.gov/pubmed/27736735
https://www.proquest.com/docview/1835426941
https://www.proquest.com/docview/2019009989
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-32110
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 1879-2219
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 1879-2219
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 1879-2219
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 1879-2219
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 1879-2219
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuCFoey6MyUsXN3SROnOQYLVttC1uhQlFvlpPYu6m2yWqTHrjwK_jBzDiPUqqqCE5ZJZ514sfMZ3vmG0L2HZF7PFaCARYPmJ9yzRTgZhYLV3HuplFoMHZ4fiJmZ_7xeXC-RSZ9LAy6VXa6v9XpVlt3d8Zda47XRTH-AuAbzKXwAFE4AHoxiM_3Q8xicPDj2s0DD7os354QDEv_FiV8cbBQRbOuavSpdIXlO_X4XQbqNgD9g13UWqTDJ-RxByVp0r7tU7Klyx2ym5SwjL78Tt9T69xpd813yMN5d4a-S35OB4JvWhkKAJCur6MH8JbKMjBGyGMAjc7QzuUUv4Fatiea68b6b5VUrRbVpmiWlzUtStrnWmkoANEVs1ysFMmiYDle1RQ97Be2unlyOk3af0QHVazgGTk7nH6dzFiXm4FlAAAalqWYGcZ1QTvmyjN5YOAn5xzmv45EDhcRaWEyN3WU4UEEszuN4zTVDjdO7OX8Odkuq1K_JNTAIs6oKA-ggG_SLFIRmMwow8Tu3DXuiAR9h8isIy7H_Bkr2XuoXci-IyV2pHRiCbIjMh7k1i11x70SYd_fsg9MBVUqwbr8m6SuO41QS1fWnnTkrVE7IvEgeWPg_1Wt7_pBKUEr4FGPKnV1BbXhfp4NUr67jIc0ArBAiOAdXrQjemgnLwy5CHkwIvvtEB-eIB35h-JbIqvNQi6XkuMOwqv_-IjX5JGHUMlua70h283mSr8FoNeke3Ym75EHyeT002e8Hn2cnfwCK_ZXYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2P5Wmkipu7SbzxJseobLVAtwdoUW-Wk9i7qbbJapMeuPAr-MHMOMkWqCoQnLLK2nHix8w39sw3AHuezAMRa8kRi4d8lArDNeJmHktfC-Gn0dhS7PDsWE5PRx_OwrMtOOhjYcitspP9rUx30rq7M-x6c7gqiuFnBN-oLmWAiMJD0BvfgtujMBiTBbb_7crPg066HOGelJyK_xQmfL4_10WzqmpyqvSlIzwNxE0a6joC_Y1e1Kmkwwdwv8OSLGlf9yFsmXIHdpMS7eiLr-wtc96dbtt8B-7MukP0Xfg-2TB8s8oyRIBsdRU-QLd0lqE2IiID7HVOii5n9A3M0T2x3DTOgatkejmv1kWzuKhZUbI-2UrDEIkuuSNjZcQWhfZ4VTNysZ-75mbJp0nSPpE8VKmBR3B6ODk5mPIuOQPPEAE0PEspNYzvo3jMdWDz0OJPIQQKABPJHC8yMtJmfuppK8IIl3cax2lqPGG9OMjFY9guq9I8BWbRirM6ykMsMLJpFukIdWaUUWZ34Vt_AGE_ICrrmMspgcZS9S5q56ofSEUDqbxYYd0BDDf1Vi13xx9rjPvxVn1kKspSherl32qauhMJtfJVHShPXZu2A4g3NX-Z-X_V6pt-UioUC3TWo0tTXWJrtKHnopRvLhMQjwBaCBG-w5N2Rm_6CdeRkGMRDmCvneKbf4iP_F3xJVHVeq4WCyVoC-HZf3zEa7g7PZkdqaP3xx-fw72AcJPb43oB28360rxE1Nekr9yq_gHkgVdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+performance+of+accelerometer-based+gait+event+detection+algorithms+in+different+real-world+scenarios+using+the+MAREA+gait+database&rft.jtitle=Gait+%26+posture&rft.au=Khandelwal%2C+Siddhartha&rft.au=Wickstr%C3%B6m%2C+Nicholas&rft.date=2017-01-01&rft.issn=1879-2219&rft.volume=51&rft.spage=84&rft_id=info:doi/10.1016%2Fj.gaitpost.2016.09.023&rft.externalDocID=oai_DiVA_org_hh_32110
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2Fcov200h.gif