Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
•A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-...
Saved in:
| Published in | Gait & posture Vol. 51; no. NA; pp. 84 - 90 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier B.V
01.01.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0966-6362 1879-2219 1879-2219 |
| DOI | 10.1016/j.gaitpost.2016.09.023 |
Cover
| Abstract | •A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs.•An alternative way of assessing performance based on non-parametric statistical tests.
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings.
This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. |
|---|---|
| AbstractList | Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. •A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection algorithms.•Algorithmic performance is significantly decreased in outdoor walking and running.•Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs.•An alternative way of assessing performance based on non-parametric statistical tests. Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. © 2016 Elsevier B.V. Highlights • A new database of gait in indoor and outdoor environments using accelerometers. • Evaluation of the robustness of state-of-the-art gait event detection algorithms. • Algorithmic performance is significantly decreased in outdoor walking and running. • Algorithms show better performance for detecting Heel-Strikes compared to Toe-Offs. • An alternative way of assessing performance based on non-parametric statistical tests. |
| Author | Khandelwal, Siddhartha Wickström, Nicholas |
| Author_xml | – sequence: 1 givenname: Siddhartha surname: Khandelwal fullname: Khandelwal, Siddhartha email: siddhartha.khandelwal@hh.se – sequence: 2 givenname: Nicholas surname: Wickström fullname: Wickström, Nicholas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27736735$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-32110$$DView record from Swedish Publication Index |
| BookMark | eNqNUsuO0zAUjdAgpjPwC6MskVCCH40TSwhRDeUhDULitbUc-6Z1ceJiOx3Nf_DBOO2UxSwoK9tX53Gtcy6ys8ENkGVXGJUYYfZyU66kiVsXYknSu0S8RIQ-yma4qXlBCOZn2QxxxgpGGTnPLkLYIITmtCFPsnNS15TVtJplv5c7aUcZjRty1-VxDfkWfOd8LwcF00gqBRa86yGCL1oZQOeTdw47GGKu01jt6dKunDdx3YfcDLk2XQd-QniQtrh13uo8KBikNy7kYzDDam_3afFluTgoahnlZPA0e9xJG-DZ_XmZfX-3_Hb9obj5_P7j9eKmUAzTWKi2qjDFWGvQknS66tKVUlo3NTRMp4M1wDqFWyQ7WjUtQi3nbQuIdogTTS-zFwfdcAvbsRVbb3rp74STRrw1PxbC-ZVYrwUlGKOEfn5Ab737NUKIojfpQ9bKAdwYRMqBI8R5w09CcUOrOWF8jhP06h46tj3ovzscI0qAVweA8i4ED51QJu4Di14aKzASUyPERhwbMW3CBOIiNSLR2QP60eEk8c2BCCmBnQEvgjKQSqGNT4kL7cxpidcPJJQ1g1HS_oQ7CBs3-iHlK7AIRCDxderrVFfMKKqaiv9b4H82-AP4iAG1 |
| CitedBy_id | crossref_primary_10_3390_s23177615 crossref_primary_10_3390_s21030813 crossref_primary_10_3390_electronics9020355 crossref_primary_10_1109_TNSRE_2021_3131953 crossref_primary_10_1109_JTEHM_2023_3319576 crossref_primary_10_1109_JSEN_2021_3119658 crossref_primary_10_1109_TNSRE_2018_2868094 crossref_primary_10_1142_S0219455419500299 crossref_primary_10_3390_s20185206 crossref_primary_10_3390_electronics11213614 crossref_primary_10_3390_s19081820 crossref_primary_10_1016_j_jvcir_2021_103218 crossref_primary_10_1109_TBME_2019_2919394 crossref_primary_10_1111_exsy_13130 crossref_primary_10_3390_electronics8080894 crossref_primary_10_1016_j_medengphy_2024_104251 crossref_primary_10_1038_s41597_023_02704_z crossref_primary_10_3389_fams_2020_564935 crossref_primary_10_1080_10255842_2020_1864822 crossref_primary_10_1016_j_medengphy_2020_06_001 crossref_primary_10_1109_JSEN_2020_3013996 crossref_primary_10_1038_s41597_022_01580_3 crossref_primary_10_3390_s22197180 crossref_primary_10_1016_j_neucom_2020_08_079 crossref_primary_10_3389_fspor_2022_1037438 crossref_primary_10_1002_widm_1557 crossref_primary_10_1109_TNSRE_2021_3076366 crossref_primary_10_1117_1_JBO_27_6_067002 crossref_primary_10_1109_JIOT_2020_2966773 crossref_primary_10_1109_ACCESS_2018_2879896 crossref_primary_10_1109_ACCESS_2022_3149100 crossref_primary_10_1109_JBHI_2022_3228329 crossref_primary_10_1177_09544119211072971 crossref_primary_10_2196_19068 crossref_primary_10_1016_j_gaitpost_2019_09_007 crossref_primary_10_3390_s24041155 crossref_primary_10_1016_j_gaitpost_2021_03_019 crossref_primary_10_3390_s21196476 crossref_primary_10_1109_ACCESS_2024_3361754 crossref_primary_10_1155_2022_9933018 crossref_primary_10_1007_s00521_023_08863_9 crossref_primary_10_1016_j_gaitpost_2018_08_025 crossref_primary_10_1142_S0219519423300028 crossref_primary_10_1109_TIM_2022_3165257 crossref_primary_10_1016_j_gaitpost_2018_04_047 crossref_primary_10_1007_s12652_019_01659_7 crossref_primary_10_1016_j_bspc_2018_08_030 crossref_primary_10_1109_RBME_2018_2807182 crossref_primary_10_3390_s19163462 crossref_primary_10_1016_j_bspc_2019_101643 crossref_primary_10_1016_j_bspc_2020_102232 crossref_primary_10_1186_s12938_020_00803_1 crossref_primary_10_1123_jmpb_2024_0008 crossref_primary_10_1109_TIM_2023_3346537 crossref_primary_10_1088_1361_6579_aae7ee crossref_primary_10_1038_s41597_024_04020_6 crossref_primary_10_3390_s20226509 crossref_primary_10_1038_s41746_021_00513_5 crossref_primary_10_3390_app9020324 crossref_primary_10_1016_j_apergo_2021_103414 crossref_primary_10_1016_j_gaitpost_2017_10_009 crossref_primary_10_1109_TIM_2023_3265753 crossref_primary_10_3390_s22041678 crossref_primary_10_1109_ACCESS_2023_3236000 crossref_primary_10_1123_mc_2020_0023 crossref_primary_10_1109_LSENS_2021_3060376 crossref_primary_10_1016_j_gaitpost_2017_07_030 crossref_primary_10_1109_JBHI_2023_3311677 crossref_primary_10_1115_1_4048554 crossref_primary_10_1007_s11831_019_09375_3 crossref_primary_10_1109_TMRB_2019_2930352 crossref_primary_10_1007_s11277_021_09224_2 crossref_primary_10_1016_j_bspc_2021_103429 crossref_primary_10_3390_s22124579 crossref_primary_10_1007_s40279_022_01760_6 crossref_primary_10_3390_s21134260 crossref_primary_10_3390_s24113343 |
| Cites_doi | 10.1109/TNSRE.2004.843176 10.1016/j.gaitpost.2014.07.007 10.1016/j.patcog.2013.06.028 10.1016/j.gaitpost.2010.06.009 10.1016/j.gaitpost.2013.08.023 10.1016/S0021-9290(01)00231-7 10.1049/el.2010.2118 10.1016/j.gaitpost.2009.07.128 10.1016/j.medengphy.2008.09.005 10.1109/TNSRE.2016.2536278 10.1016/j.gaitpost.2015.05.020 10.1016/j.gaitpost.2012.02.019 10.1109/TITB.2010.2047402 10.1016/S0966-6362(02)00190-X 10.1016/j.gaitpost.2007.10.010 10.1016/j.gaitpost.2009.11.014 10.1016/j.medengphy.2010.03.007 10.1109/TNSRE.2013.2239313 10.1123/jab.2014-0178 10.1016/j.medengphy.2013.10.004 10.1016/j.gaitpost.2014.08.009 10.1016/S0966-6362(01)00203-X 10.1016/j.gaitpost.2013.05.012 10.1109/TCYB.2014.2361287 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D8Z |
| DOI | 10.1016/j.gaitpost.2016.09.023 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Högskolan i Halmstad |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1879-2219 |
| EndPage | 90 |
| ExternalDocumentID | oai_DiVA_org_hh_32110 27736735 10_1016_j_gaitpost_2016_09_023 S0966636216305859 1_s2_0_S0966636216305859 |
| Genre | Evaluation Studies Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D8Z |
| ID | FETCH-LOGICAL-c613t-cb551311ddeda2fd5f1dd333787e86d78768e6fc1b0af358b00b99bbe03f092d3 |
| IEDL.DBID | .~1 |
| ISSN | 0966-6362 1879-2219 |
| IngestDate | Thu Oct 02 04:57:15 EDT 2025 Sun Sep 28 02:04:09 EDT 2025 Thu Oct 02 11:07:36 EDT 2025 Mon Jul 21 06:00:03 EDT 2025 Wed Oct 01 04:25:30 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 23 02:27:31 EST 2024 Tue Feb 25 19:57:05 EST 2025 Tue Oct 14 19:35:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | NA |
| Keywords | Inertial sensors Heel-Strike Toe-Off Gait events Gait database |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c613t-cb551311ddeda2fd5f1dd333787e86d78768e6fc1b0af358b00b99bbe03f092d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 |
| PMID | 27736735 |
| PQID | 1835426941 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_hh_32110 proquest_miscellaneous_2019009989 proquest_miscellaneous_1835426941 pubmed_primary_27736735 crossref_citationtrail_10_1016_j_gaitpost_2016_09_023 crossref_primary_10_1016_j_gaitpost_2016_09_023 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2016_09_023 elsevier_clinicalkeyesjournals_1_s2_0_S0966636216305859 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2016_09_023 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Gait & posture |
| PublicationTitleAlternate | Gait Posture |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kavanagh, Menz (bib0040) 2008; 28 McCamley, Donati, Grimpampi, Mazzà (bib0090) 2012; 36 Aung, Thies, Kenney, Howard, Selles, Findlow, Goulermas (bib0050) 2013; 21 Rueterbories, Spaich, Andersen (bib0045) 2014; 36 Khandelwal, Wickström (bib0120) 2016 Bruening, Ridge (bib0015) 2014; 39 Cox, Hinkley (bib0125) 1974 Rueterbories, Spaich, Larsen, Andersen (bib0005) 2010; 32 Sant’Anna, Wickström (bib0065) 2010; 14 González, López, Rodriguez-Uría, Álvarez, Alvarez (bib0110) 2010; 31 Smith, Preece, Mason, Bramah (bib0025) 2015; 41 Mansour, Rezzoug, Gorce (bib0105) 2015; 42 Zijlstra, Hof (bib0100) 2003; 18 Ngo, Makihara, Nagahara, Mukaigawa, Yagi (bib0070) 2014; 47 Auvinet, Berrut, Touzard, Moutel, Collet, Chaleil, Barrey (bib0095) 2002; 16 Zhang, Pan, Jia, Lu, Wang, Wu (bib0075) 2015; 45 Leitch, Stebbins, Paolini, Zavatsky (bib0010) 2011; 33 Selles, Formanoy, Bussmann, Janssens, Stam (bib0055) 2005; 13 Torrealba, Cappelletto, Fermin-Leon, Grieco, Fernandez-Lopez (bib0060) 2010; 46 Alvim, Cerqueira, Netto, Leite, Muniz (bib0020) 2015; 31 Hanlon, Anderson (bib0085) 2009; 30 Rebula, Ojeda, Adamczyk, Kuo (bib0035) 2013; 38 Godfrey, Conway, Meagher, ÓLaighin (bib0115) 2008; 30 Mayagoitia, Nene, Veltink (bib0030) 2002; 35 Trojaniello, Cereatti, Croce (bib0080) 2014; 40 Auvinet (10.1016/j.gaitpost.2016.09.023_bib0095) 2002; 16 Zijlstra (10.1016/j.gaitpost.2016.09.023_bib0100) 2003; 18 Aung (10.1016/j.gaitpost.2016.09.023_bib0050) 2013; 21 Torrealba (10.1016/j.gaitpost.2016.09.023_bib0060) 2010; 46 McCamley (10.1016/j.gaitpost.2016.09.023_bib0090) 2012; 36 Ngo (10.1016/j.gaitpost.2016.09.023_bib0070) 2014; 47 Zhang (10.1016/j.gaitpost.2016.09.023_bib0075) 2015; 45 Mayagoitia (10.1016/j.gaitpost.2016.09.023_bib0030) 2002; 35 Sant’Anna (10.1016/j.gaitpost.2016.09.023_bib0065) 2010; 14 Rueterbories (10.1016/j.gaitpost.2016.09.023_bib0005) 2010; 32 Trojaniello (10.1016/j.gaitpost.2016.09.023_bib0080) 2014; 40 Alvim (10.1016/j.gaitpost.2016.09.023_bib0020) 2015; 31 Rueterbories (10.1016/j.gaitpost.2016.09.023_bib0045) 2014; 36 Hanlon (10.1016/j.gaitpost.2016.09.023_bib0085) 2009; 30 Godfrey (10.1016/j.gaitpost.2016.09.023_bib0115) 2008; 30 Cox (10.1016/j.gaitpost.2016.09.023_bib0125) 1974 Smith (10.1016/j.gaitpost.2016.09.023_bib0025) 2015; 41 Mansour (10.1016/j.gaitpost.2016.09.023_bib0105) 2015; 42 González (10.1016/j.gaitpost.2016.09.023_bib0110) 2010; 31 Rebula (10.1016/j.gaitpost.2016.09.023_bib0035) 2013; 38 Selles (10.1016/j.gaitpost.2016.09.023_bib0055) 2005; 13 Kavanagh (10.1016/j.gaitpost.2016.09.023_bib0040) 2008; 28 Leitch (10.1016/j.gaitpost.2016.09.023_bib0010) 2011; 33 Bruening (10.1016/j.gaitpost.2016.09.023_bib0015) 2014; 39 Khandelwal (10.1016/j.gaitpost.2016.09.023_bib0120) 2016 |
| References_xml | – volume: 14 start-page: 1180 year: 2010 end-page: 1187 ident: bib0065 article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 33 start-page: 130 year: 2011 end-page: 132 ident: bib0010 article-title: Identifying gait events without a force plate during running: a comparison of methods publication-title: Gait Posture – volume: 47 start-page: 228 year: 2014 end-page: 237 ident: bib0070 article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication publication-title: Pattern Recognit. – volume: 45 start-page: 1864 year: 2015 end-page: 1875 ident: bib0075 article-title: Accelerometer-based gait recognition by sparse representation of signature points with clusters publication-title: IEEE Trans. Cybern. – volume: 13 start-page: 81 year: 2005 end-page: 88 ident: bib0055 article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 42 start-page: 409 year: 2015 end-page: 414 ident: bib0105 article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects publication-title: Gait Posture – volume: 36 start-page: 316 year: 2012 end-page: 318 ident: bib0090 article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data publication-title: Gait Posture – volume: 39 start-page: 472 year: 2014 end-page: 477 ident: bib0015 article-title: Automated event detection algorithms in pathological gait publication-title: Gait Posture – volume: 46 start-page: 1483 year: 2010 end-page: 1485 ident: bib0060 article-title: Statistics-based technique for automated detection of gait events from accelerometer signals publication-title: Electron. Lett. – volume: 31 start-page: 322 year: 2010 end-page: 325 ident: bib0110 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture – volume: 32 start-page: 545 year: 2010 end-page: 552 ident: bib0005 article-title: Methods for gait event detection and analysis in ambulatory systems publication-title: Med. Eng. Phys. – year: 2016 ident: bib0120 article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 28 start-page: 1 year: 2008 end-page: 15 ident: bib0040 article-title: Accelerometry: a technique for quantifying movement patterns during walking publication-title: Gait Posture – volume: 21 start-page: 908 year: 2013 end-page: 916 ident: bib0050 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 36 start-page: 502 year: 2014 end-page: 508 ident: bib0045 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. – volume: 35 start-page: 537 year: 2002 end-page: 542 ident: bib0030 article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems publication-title: J. Biomech. – volume: 16 start-page: 124 year: 2002 end-page: 134 ident: bib0095 article-title: Reference data for normal subjects obtained with an accelerometric device publication-title: Gait Posture – year: 1974 ident: bib0125 article-title: Theoretical Statistics – volume: 18 start-page: 1 year: 2003 end-page: 10 ident: bib0100 article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking publication-title: Gait Posture – volume: 31 start-page: 383 year: 2015 end-page: 388 ident: bib0020 article-title: Comparison of five kinematic-based identification methods of foot contact events during treadmill walking and running at different speeds publication-title: J. Appl. Biomech. – volume: 40 start-page: 487 year: 2014 end-page: 492 ident: bib0080 article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk publication-title: Gait Posture – volume: 30 start-page: 1364 year: 2008 end-page: 1386 ident: bib0115 article-title: Direct measurement of human movement by accelerometry publication-title: Med. Eng. Phys. – volume: 38 start-page: 974 year: 2013 end-page: 980 ident: bib0035 article-title: Measurement of foot placement and its variability with inertial sensors publication-title: Gait Posture – volume: 41 start-page: 39 year: 2015 end-page: 43 ident: bib0025 article-title: A comparison of kinematic algorithms to estimate gait events during overground running publication-title: Gait Posture – volume: 30 start-page: 523 year: 2009 end-page: 527 ident: bib0085 article-title: Real-time gait event detection using wearable sensors publication-title: Gait Posture – volume: 13 start-page: 81 issue: 1 year: 2005 ident: 10.1016/j.gaitpost.2016.09.023_bib0055 article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.843176 – volume: 40 start-page: 487 issue: 4 year: 2014 ident: 10.1016/j.gaitpost.2016.09.023_bib0080 article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.07.007 – volume: 47 start-page: 228 issue: 1 year: 2014 ident: 10.1016/j.gaitpost.2016.09.023_bib0070 article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.06.028 – volume: 33 start-page: 130 issue: 1 year: 2011 ident: 10.1016/j.gaitpost.2016.09.023_bib0010 article-title: Identifying gait events without a force plate during running: a comparison of methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.06.009 – volume: 39 start-page: 472 issue: 1 year: 2014 ident: 10.1016/j.gaitpost.2016.09.023_bib0015 article-title: Automated event detection algorithms in pathological gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.08.023 – volume: 35 start-page: 537 issue: 4 year: 2002 ident: 10.1016/j.gaitpost.2016.09.023_bib0030 article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00231-7 – volume: 46 start-page: 1483 issue: 22 year: 2010 ident: 10.1016/j.gaitpost.2016.09.023_bib0060 article-title: Statistics-based technique for automated detection of gait events from accelerometer signals publication-title: Electron. Lett. doi: 10.1049/el.2010.2118 – volume: 30 start-page: 523 issue: 4 year: 2009 ident: 10.1016/j.gaitpost.2016.09.023_bib0085 article-title: Real-time gait event detection using wearable sensors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.07.128 – volume: 30 start-page: 1364 issue: 10 year: 2008 ident: 10.1016/j.gaitpost.2016.09.023_bib0115 article-title: Direct measurement of human movement by accelerometry publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.09.005 – year: 2016 ident: 10.1016/j.gaitpost.2016.09.023_bib0120 article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2536278 – volume: 42 start-page: 409 issue: 4 year: 2015 ident: 10.1016/j.gaitpost.2016.09.023_bib0105 article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.020 – volume: 36 start-page: 316 issue: 2 year: 2012 ident: 10.1016/j.gaitpost.2016.09.023_bib0090 article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.02.019 – volume: 14 start-page: 1180 issue: 5 year: 2010 ident: 10.1016/j.gaitpost.2016.09.023_bib0065 article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2047402 – volume: 18 start-page: 1 issue: 2 year: 2003 ident: 10.1016/j.gaitpost.2016.09.023_bib0100 article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00190-X – volume: 28 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.gaitpost.2016.09.023_bib0040 article-title: Accelerometry: a technique for quantifying movement patterns during walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.10.010 – volume: 31 start-page: 322 issue: 3 year: 2010 ident: 10.1016/j.gaitpost.2016.09.023_bib0110 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.11.014 – volume: 32 start-page: 545 issue: 6 year: 2010 ident: 10.1016/j.gaitpost.2016.09.023_bib0005 article-title: Methods for gait event detection and analysis in ambulatory systems publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.03.007 – volume: 21 start-page: 908 issue: 6 year: 2013 ident: 10.1016/j.gaitpost.2016.09.023_bib0050 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2239313 – year: 1974 ident: 10.1016/j.gaitpost.2016.09.023_bib0125 – volume: 31 start-page: 383 issue: 5 year: 2015 ident: 10.1016/j.gaitpost.2016.09.023_bib0020 article-title: Comparison of five kinematic-based identification methods of foot contact events during treadmill walking and running at different speeds publication-title: J. Appl. Biomech. doi: 10.1123/jab.2014-0178 – volume: 36 start-page: 502 issue: 4 year: 2014 ident: 10.1016/j.gaitpost.2016.09.023_bib0045 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.004 – volume: 41 start-page: 39 issue: 1 year: 2015 ident: 10.1016/j.gaitpost.2016.09.023_bib0025 article-title: A comparison of kinematic algorithms to estimate gait events during overground running publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.08.009 – volume: 16 start-page: 124 issue: 2 year: 2002 ident: 10.1016/j.gaitpost.2016.09.023_bib0095 article-title: Reference data for normal subjects obtained with an accelerometric device publication-title: Gait Posture doi: 10.1016/S0966-6362(01)00203-X – volume: 38 start-page: 974 issue: 4 year: 2013 ident: 10.1016/j.gaitpost.2016.09.023_bib0035 article-title: Measurement of foot placement and its variability with inertial sensors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.05.012 – volume: 45 start-page: 1864 issue: 9 year: 2015 ident: 10.1016/j.gaitpost.2016.09.023_bib0075 article-title: Accelerometer-based gait recognition by sparse representation of signature points with clusters publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2361287 |
| SSID | ssj0004382 |
| Score | 2.4967303 |
| Snippet | •A new database of gait in indoor and outdoor environments using accelerometers.•Evaluation of the robustness of state-of-the-art gait event detection... Highlights • A new database of gait in indoor and outdoor environments using accelerometers. • Evaluation of the robustness of state-of-the-art gait event... Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday... |
| SourceID | swepub proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 84 |
| SubjectTerms | accelerometer Accelerometry Adult Algorithms Biomechanical Phenomena Female Foot - physiology Gait Gait database gait dataset gait event detection Gait events Heel Strike Humans inertial sensor Inertial sensors Male Orthopedics Reproducibility of Results Signal Processing, Computer-Assisted Toe Off Walking |
| Title | Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636216305859 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636216305859 https://dx.doi.org/10.1016/j.gaitpost.2016.09.023 https://www.ncbi.nlm.nih.gov/pubmed/27736735 https://www.proquest.com/docview/1835426941 https://www.proquest.com/docview/2019009989 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-32110 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 1879-2219 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 1879-2219 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 1879-2219 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 1879-2219 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 1879-2219 databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuCFoey6MyUsXN3SROnOQYLVttC1uhQlFvlpPYu6m2yWqTHrjwK_jBzDiPUqqqCE5ZJZ514sfMZ3vmG0L2HZF7PFaCARYPmJ9yzRTgZhYLV3HuplFoMHZ4fiJmZ_7xeXC-RSZ9LAy6VXa6v9XpVlt3d8Zda47XRTH-AuAbzKXwAFE4AHoxiM_3Q8xicPDj2s0DD7os354QDEv_FiV8cbBQRbOuavSpdIXlO_X4XQbqNgD9g13UWqTDJ-RxByVp0r7tU7Klyx2ym5SwjL78Tt9T69xpd813yMN5d4a-S35OB4JvWhkKAJCur6MH8JbKMjBGyGMAjc7QzuUUv4Fatiea68b6b5VUrRbVpmiWlzUtStrnWmkoANEVs1ysFMmiYDle1RQ97Be2unlyOk3af0QHVazgGTk7nH6dzFiXm4FlAAAalqWYGcZ1QTvmyjN5YOAn5xzmv45EDhcRaWEyN3WU4UEEszuN4zTVDjdO7OX8Odkuq1K_JNTAIs6oKA-ggG_SLFIRmMwow8Tu3DXuiAR9h8isIy7H_Bkr2XuoXci-IyV2pHRiCbIjMh7k1i11x70SYd_fsg9MBVUqwbr8m6SuO41QS1fWnnTkrVE7IvEgeWPg_1Wt7_pBKUEr4FGPKnV1BbXhfp4NUr67jIc0ArBAiOAdXrQjemgnLwy5CHkwIvvtEB-eIB35h-JbIqvNQi6XkuMOwqv_-IjX5JGHUMlua70h283mSr8FoNeke3Ym75EHyeT002e8Hn2cnfwCK_ZXYA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2P5Wmkipu7SbzxJseobLVAtwdoUW-Wk9i7qbbJapMeuPAr-MHMOMkWqCoQnLLK2nHix8w39sw3AHuezAMRa8kRi4d8lArDNeJmHktfC-Gn0dhS7PDsWE5PRx_OwrMtOOhjYcitspP9rUx30rq7M-x6c7gqiuFnBN-oLmWAiMJD0BvfgtujMBiTBbb_7crPg066HOGelJyK_xQmfL4_10WzqmpyqvSlIzwNxE0a6joC_Y1e1Kmkwwdwv8OSLGlf9yFsmXIHdpMS7eiLr-wtc96dbtt8B-7MukP0Xfg-2TB8s8oyRIBsdRU-QLd0lqE2IiID7HVOii5n9A3M0T2x3DTOgatkejmv1kWzuKhZUbI-2UrDEIkuuSNjZcQWhfZ4VTNysZ-75mbJp0nSPpE8VKmBR3B6ODk5mPIuOQPPEAE0PEspNYzvo3jMdWDz0OJPIQQKABPJHC8yMtJmfuppK8IIl3cax2lqPGG9OMjFY9guq9I8BWbRirM6ykMsMLJpFukIdWaUUWZ34Vt_AGE_ICrrmMspgcZS9S5q56ofSEUDqbxYYd0BDDf1Vi13xx9rjPvxVn1kKspSherl32qauhMJtfJVHShPXZu2A4g3NX-Z-X_V6pt-UioUC3TWo0tTXWJrtKHnopRvLhMQjwBaCBG-w5N2Rm_6CdeRkGMRDmCvneKbf4iP_F3xJVHVeq4WCyVoC-HZf3zEa7g7PZkdqaP3xx-fw72AcJPb43oB28360rxE1Nekr9yq_gHkgVdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+performance+of+accelerometer-based+gait+event+detection+algorithms+in+different+real-world+scenarios+using+the+MAREA+gait+database&rft.jtitle=Gait+%26+posture&rft.au=Khandelwal%2C+Siddhartha&rft.au=Wickstr%C3%B6m%2C+Nicholas&rft.date=2017-01-01&rft.issn=1879-2219&rft.volume=51&rft.spage=84&rft_id=info:doi/10.1016%2Fj.gaitpost.2016.09.023&rft.externalDocID=oai_DiVA_org_hh_32110 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2Fcov200h.gif |