Click chemistry enables preclinical evaluation of targeted epigenetic therapies

The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 356; no. 6345; pp. 1397 - 1401
Main Authors Tyler, Dean S., Vappiani, Johanna, Cañeque, Tatiana, Lam, Enid Y. N., Ward, Aoife, Gilan, Omer, Chan, Yih-Chih, Hienzsch, Antje, Rutkowska, Anna, Werner, Thilo, Wagner, Anne J., Lugo, Dave, Gregory, Richard, Molina, Cesar Ramirez, Garton, Neil, Wellaway, Christopher R., Jackson, Susan, MacPherson, Laura, Figueiredo, Margarida, Stolzenburg, Sabine, Bell, Charles C., House, Colin, Dawson, Sarah-Jane, Hawkins, Edwin D., Drewes, Gerard, Prinjha, Rab K., Rodriguez, Raphaël, Grandi, Paola, Dawson, Mark A.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 30.06.2017
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aal2066

Cover

Abstract The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
AbstractList Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across tissues. In a proof-of-concept study, Tyler et al. applied click chemistry methods to study the localization of bromodomain inhibitors. These are cancer drugs that alter chromatin structure and gene expression. Clickable derivatives of the drugs localized within chromatin and showed that the drugs exhibit distinct modes of binding at responsive and unresponsive genes. In a mouse leukemia model, the click-probes revealed that the drugs accumulate to different extents in the spleen and bone marrow, which are two tissue sources of leukemic cells.Science, this issue p. 1397 The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
Are better drugs just a click away? Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across tissues. In a proof-of-concept study, Tyler et al. applied click chemistry methods to study the localization of bromodomain inhibitors. These are cancer drugs that alter chromatin structure and gene expression. Clickable derivatives of the drugs localized within chromatin and showed that the drugs exhibit distinct modes of binding at responsive and unresponsive genes. In a mouse leukemia model, the click-probes revealed that the drugs accumulate to different extents in the spleen and bone marrow, which are two tissue sources of leukemic cells. Science , this issue p. 1397
Are better drugs just a click away?Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across tissues. In a proof-of-concept study, Tyler et al. applied click chemistry methods to study the localization of bromodomain inhibitors. These are cancer drugs that alter chromatin structure and gene expression. Clickable derivatives of the drugs localized within chromatin and showed that the drugs exhibit distinct modes of binding at responsive and unresponsive genes. In a mouse leukemia model, the click-probes revealed that the drugs accumulate to different extents in the spleen and bone marrow, which are two tissue sources of leukemic cells.Science, this issue p. 1397 The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across tissues. In a proof-of-concept study, Tyler et al. applied click chemistry methods to study the localization of bromodomain inhibitors. These are cancer drugs that alter chromatin structure and gene expression. Clickable derivatives of the drugs localized within chromatin and showed that the drugs exhibit distinct modes of binding at responsive and unresponsive genes. In a mouse leukemia model, the click-probes revealed that the drugs accumulate to different extents in the spleen and bone marrow, which are two tissue sources of leukemic cells. Science , this issue p. 1397 Conversion of an epigenetic drug into a probe amenable to click chemistry allows visualization of the drug’s activity in vivo. The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.
Author House, Colin
Prinjha, Rab K.
Cañeque, Tatiana
Tyler, Dean S.
Bell, Charles C.
Rutkowska, Anna
Dawson, Sarah-Jane
Gilan, Omer
Stolzenburg, Sabine
Grandi, Paola
Vappiani, Johanna
Molina, Cesar Ramirez
Hawkins, Edwin D.
Drewes, Gerard
Lugo, Dave
Werner, Thilo
Wagner, Anne J.
Chan, Yih-Chih
Figueiredo, Margarida
Dawson, Mark A.
Lam, Enid Y. N.
Rodriguez, Raphaël
Hienzsch, Antje
Gregory, Richard
Garton, Neil
Ward, Aoife
Jackson, Susan
Wellaway, Christopher R.
MacPherson, Laura
AuthorAffiliation 9 The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
8 Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
1 Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
4 Chemical Cell Biology Group, Institut Curie, Paris Sciences et Lettres Research University, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
2 Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
6 INSERM U1143, 75005 Paris, France
5 CNRS UMR3666, 75005 Paris, France
7 Epigenetics Discovery Performance Unit, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
10 Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
3 Cellzome, GlaxoSmithKline, Meyerhofstrasse 1, Heidelberg, Germany
AuthorAffiliation_xml – name: 6 INSERM U1143, 75005 Paris, France
– name: 1 Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
– name: 2 Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
– name: 8 Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
– name: 5 CNRS UMR3666, 75005 Paris, France
– name: 7 Epigenetics Discovery Performance Unit, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
– name: 9 The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
– name: 3 Cellzome, GlaxoSmithKline, Meyerhofstrasse 1, Heidelberg, Germany
– name: 4 Chemical Cell Biology Group, Institut Curie, Paris Sciences et Lettres Research University, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
– name: 10 Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
Author_xml – sequence: 1
  givenname: Dean S.
  surname: Tyler
  fullname: Tyler, Dean S.
– sequence: 2
  givenname: Johanna
  surname: Vappiani
  fullname: Vappiani, Johanna
– sequence: 3
  givenname: Tatiana
  surname: Cañeque
  fullname: Cañeque, Tatiana
– sequence: 4
  givenname: Enid Y. N.
  surname: Lam
  fullname: Lam, Enid Y. N.
– sequence: 5
  givenname: Aoife
  surname: Ward
  fullname: Ward, Aoife
– sequence: 6
  givenname: Omer
  surname: Gilan
  fullname: Gilan, Omer
– sequence: 7
  givenname: Yih-Chih
  surname: Chan
  fullname: Chan, Yih-Chih
– sequence: 8
  givenname: Antje
  surname: Hienzsch
  fullname: Hienzsch, Antje
– sequence: 9
  givenname: Anna
  surname: Rutkowska
  fullname: Rutkowska, Anna
– sequence: 10
  givenname: Thilo
  surname: Werner
  fullname: Werner, Thilo
– sequence: 11
  givenname: Anne J.
  surname: Wagner
  fullname: Wagner, Anne J.
– sequence: 12
  givenname: Dave
  surname: Lugo
  fullname: Lugo, Dave
– sequence: 13
  givenname: Richard
  surname: Gregory
  fullname: Gregory, Richard
– sequence: 14
  givenname: Cesar Ramirez
  surname: Molina
  fullname: Molina, Cesar Ramirez
– sequence: 15
  givenname: Neil
  surname: Garton
  fullname: Garton, Neil
– sequence: 16
  givenname: Christopher R.
  surname: Wellaway
  fullname: Wellaway, Christopher R.
– sequence: 17
  givenname: Susan
  surname: Jackson
  fullname: Jackson, Susan
– sequence: 18
  givenname: Laura
  surname: MacPherson
  fullname: MacPherson, Laura
– sequence: 19
  givenname: Margarida
  surname: Figueiredo
  fullname: Figueiredo, Margarida
– sequence: 20
  givenname: Sabine
  surname: Stolzenburg
  fullname: Stolzenburg, Sabine
– sequence: 21
  givenname: Charles C.
  surname: Bell
  fullname: Bell, Charles C.
– sequence: 22
  givenname: Colin
  surname: House
  fullname: House, Colin
– sequence: 23
  givenname: Sarah-Jane
  surname: Dawson
  fullname: Dawson, Sarah-Jane
– sequence: 24
  givenname: Edwin D.
  surname: Hawkins
  fullname: Hawkins, Edwin D.
– sequence: 25
  givenname: Gerard
  surname: Drewes
  fullname: Drewes, Gerard
– sequence: 26
  givenname: Rab K.
  surname: Prinjha
  fullname: Prinjha, Rab K.
– sequence: 27
  givenname: Raphaël
  surname: Rodriguez
  fullname: Rodriguez, Raphaël
– sequence: 28
  givenname: Paola
  surname: Grandi
  fullname: Grandi, Paola
– sequence: 29
  givenname: Mark A.
  surname: Dawson
  fullname: Dawson, Mark A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28619718$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04034188$$DView record in HAL
BookMark eNqNkktvEzEUhS1URNPCmhVoJDZ0Ma3tGb82SFUEFClSN7C2HOdO4uDYwfZE6r_HISmUSEisLN37neP7ukBnIQZA6DXB14RQfpOtg2Dh2hhPMefP0IRgxVpFcXeGJhh3vJVYsHN0kfMa45pT3Qt0TiUnShA5QfdT7-z3xq5g43JJDw0EM_eQm20C611w1vgGdsaPprgYmjg0xaQlFFg0sHVLCFCcbcoKktk6yC_R88H4DK-O7yX69unj1-ldO7v__GV6O2stJ11pFeFGgaLWDoPEbBAWpF0Y4JhhDlLywZq5ldYCGXrgdAA8Z1KQQUmyYBS6S_Th4Lsd5xtYWAglGa-3yW1MetDROP13JriVXsadZpIzwXA1uDoYrE5kd7czvY_hHnc9kXJHKvv--FmKP0bIRddhWfDeBIhj1kRRJiVjPf4PlGChqBCiou9O0HUcU6hTq5TolaqT2lNvnzb6u9THFVaAHQCbYs4JBm1d-bWs2rfzmmC9PxV9PBV9PJWquznRPVr_W_HmoFjnEtOfSninVNfT7icmrc7c
CitedBy_id crossref_primary_10_1002_anie_202200303
crossref_primary_10_1002_ejoc_201800464
crossref_primary_10_1016_j_canlet_2024_216800
crossref_primary_10_1080_1062936X_2024_2447071
crossref_primary_10_1016_j_ekir_2017_12_001
crossref_primary_10_1038_nrd_2018_116
crossref_primary_10_1002_ange_201901139
crossref_primary_10_1038_s41467_019_10652_9
crossref_primary_10_1016_j_bbcan_2022_188697
crossref_primary_10_1039_D3CS00056G
crossref_primary_10_1002_chem_201903704
crossref_primary_10_1007_s11899_021_00621_9
crossref_primary_10_1158_2159_8290_CD_21_0522
crossref_primary_10_1016_j_celrep_2020_108290
crossref_primary_10_1016_j_cbpa_2020_02_003
crossref_primary_10_1016_j_cell_2019_03_009
crossref_primary_10_1002_ange_202318534
crossref_primary_10_1021_acs_jmedchem_0c00566
crossref_primary_10_1111_pcn_12621
crossref_primary_10_1038_s41568_020_00302_4
crossref_primary_10_1039_C9QM00059C
crossref_primary_10_1038_s41467_022_34024_y
crossref_primary_10_1002_med_21730
crossref_primary_10_1073_pnas_2208077119
crossref_primary_10_1038_s41580_019_0143_1
crossref_primary_10_1016_j_cbpa_2019_12_005
crossref_primary_10_1021_acs_accounts_2c00757
crossref_primary_10_1039_C7NJ03266H
crossref_primary_10_1021_acs_jmedchem_4c02516
crossref_primary_10_1002_anie_202318534
crossref_primary_10_1186_s12931_023_02348_y
crossref_primary_10_1021_jacs_7b11281
crossref_primary_10_1016_j_ahj_2019_08_001
crossref_primary_10_1016_j_ejmech_2025_117504
crossref_primary_10_1016_j_isci_2022_104340
crossref_primary_10_1002_cbic_202300785
crossref_primary_10_1016_j_crci_2018_03_012
crossref_primary_10_1073_pnas_1714790115
crossref_primary_10_3390_biomedicines11102683
crossref_primary_10_1002_anie_202008625
crossref_primary_10_1016_j_biopha_2023_116010
crossref_primary_10_1039_D3CB00009E
crossref_primary_10_1038_s41592_024_02360_0
crossref_primary_10_1002_ange_202200303
crossref_primary_10_1039_D1SC06659E
crossref_primary_10_3389_fddsv_2024_1474331
crossref_primary_10_1038_s41467_020_19274_y
crossref_primary_10_1172_JCI126327
crossref_primary_10_1016_j_bioorg_2022_105636
crossref_primary_10_1126_science_aaz8455
crossref_primary_10_4155_fmc_2018_0370
crossref_primary_10_1021_acs_jmedchem_0c00075
crossref_primary_10_1016_j_molcel_2020_05_026
crossref_primary_10_1038_548162a
crossref_primary_10_1038_s41467_021_24843_w
crossref_primary_10_3389_fmicb_2020_591778
crossref_primary_10_1016_j_cbpa_2020_05_006
crossref_primary_10_1021_acs_analchem_3c05946
crossref_primary_10_1038_s41587_022_01636_0
crossref_primary_10_1021_jacsau_1c00310
crossref_primary_10_1152_ajplung_00436_2018
crossref_primary_10_1021_acs_molpharmaceut_7b00765
crossref_primary_10_1039_C8CC09558B
crossref_primary_10_1016_j_trechm_2019_07_002
crossref_primary_10_1186_s13072_019_0286_5
crossref_primary_10_1146_annurev_pharmtox_033123_123610
crossref_primary_10_1016_j_molmet_2017_11_012
crossref_primary_10_1021_acsmedchemlett_4c00531
crossref_primary_10_1021_jacs_4c16074
crossref_primary_10_1182_blood_2019003262
crossref_primary_10_1002_ange_202008625
crossref_primary_10_1039_D1OB01353J
crossref_primary_10_1021_acsomega_3c03935
crossref_primary_10_1016_j_ejmech_2021_113853
crossref_primary_10_1021_acs_jmedchem_3c01028
crossref_primary_10_1021_acsptsci_4c00726
crossref_primary_10_1146_annurev_cancerbio_070120_103531
crossref_primary_10_1021_acsmedchemlett_2c00300
crossref_primary_10_1002_anie_201710195
crossref_primary_10_1021_acsbiomaterials_2c01482
crossref_primary_10_1038_s41467_021_24822_1
crossref_primary_10_1039_C8CC08685K
crossref_primary_10_1038_s41588_024_01911_7
crossref_primary_10_1021_acs_jmedchem_1c01835
crossref_primary_10_1002_slct_201803748
crossref_primary_10_1021_acs_jmedchem_4c02438
crossref_primary_10_1038_s41557_023_01240_y
crossref_primary_10_1016_j_biomaterials_2021_121014
crossref_primary_10_1039_C9SC03368H
crossref_primary_10_4155_fmc_2019_0274
crossref_primary_10_1080_14789450_2019_1650025
crossref_primary_10_1038_s41598_020_72491_9
crossref_primary_10_1039_C9SC04387J
crossref_primary_10_1126_science_aat6664
crossref_primary_10_1016_j_ejmech_2024_116837
crossref_primary_10_1021_acsami_8b06927
crossref_primary_10_1038_nrm_2017_113
crossref_primary_10_1002_med_21942
crossref_primary_10_1002_ange_201710195
crossref_primary_10_1073_pnas_2201483119
crossref_primary_10_1126_science_adn2259
crossref_primary_10_1002_ijch_201900020
crossref_primary_10_1039_C9CC02824B
crossref_primary_10_1021_jacs_1c00312
crossref_primary_10_1038_s41392_023_01647_6
crossref_primary_10_1016_j_cbpa_2021_03_002
crossref_primary_10_1021_acs_jmedchem_0c00628
crossref_primary_10_1038_s41573_020_0077_5
crossref_primary_10_3390_v15122435
crossref_primary_10_1002_anie_201901139
crossref_primary_10_1021_acsmedchemlett_3c00242
crossref_primary_10_1146_annurev_pharmtox_052120_013205
crossref_primary_10_1038_s41570_018_0030_x
crossref_primary_10_1016_j_bmcl_2019_02_020
crossref_primary_10_1016_j_atherosclerosis_2022_11_015
Cites_doi 10.1093/bioinformatics/btu638
10.1016/j.molcel.2014.05.016
10.1038/nmeth.1923
10.1021/pr400098r
10.1073/pnas.0900191106
10.1093/bioinformatics/btr189
10.1038/nature19801
10.1126/science.aaa7227
10.1021/cb400789e
10.1038/nature14888
10.1016/j.molcel.2012.12.006
10.1021/ja034490h
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nature10509
10.1016/j.molcel.2015.04.011
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1073/pnas.1310658110
10.1021/ja8053805
10.1038/nsmb.3249
10.1038/ncomms2796
10.1002/anie.201307803
10.1126/science.aam7304
10.1186/gb-2013-14-4-r36
10.1038/nbt.2786
10.1093/bioinformatics/btq033
10.1186/gb-2012-13-8-r68
10.1016/j.jasms.2010.01.012
10.1038/nbt.1754
10.1021/acschembio.6b00346
10.1074/mcp.M500230-MCP200
10.1093/bioinformatics/btp324
10.1038/nchem.2302
10.1126/science.1249830
10.1186/1471-2164-15-284
10.1021/jm200108t
10.1186/gb-2008-9-9-r137
10.1007/978-0-387-98141-3
10.1038/nature10334
10.1038/nrg3796
10.1038/nbt.2776
10.1093/bioinformatics/btp616
ContentType Journal Article
Copyright Copyright © 2017 by the American Association for the Advancement of Science
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2017 by the American Association for the Advancement of Science
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1126/science.aal2066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database


Solid State and Superconductivity Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Chemistry
EISSN 1095-9203
EndPage 1401
ExternalDocumentID PMC5865750
oai_HAL_hal_04034188v1
28619718
10_1126_science_aal2066
26399342
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 647973
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
AGFXO
ALIPV
ALSLI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c613t-916a9e92ccff805f7ce8cdae60506e886fcabc8cce1f4e62fe0b5871f981d52e3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:07:51 EDT 2025
Fri Sep 12 12:52:10 EDT 2025
Thu Sep 04 23:07:36 EDT 2025
Thu Sep 04 18:01:54 EDT 2025
Fri Jul 25 10:33:24 EDT 2025
Mon Jul 21 05:50:37 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 00:37:28 EDT 2025
Sun Sep 28 12:59:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6345
Language English
License Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c613t-916a9e92ccff805f7ce8cdae60506e886fcabc8cce1f4e62fe0b5871f981d52e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-6354-7033
0000-0003-2469-5575
0000-0002-8276-0374
0000-0002-1110-0643
0000-0001-7078-2878
0000-0003-4883-9940
0000-0002-5562-414X
0000-0003-2177-5406
0000-0001-8799-0075
0000-0002-3255-5161
0000-0003-0688-5834
0000-0002-6768-1432
0000-0003-0566-3658
0000-0001-5843-7836
0000-0002-0722-8775
0000-0001-6853-5616
0000-0003-1527-9078
0000-0003-0077-3452
0000-0002-5464-5029
0000-0003-2447-086X
0000-0003-2194-8311
0000-0002-2666-3326
0000-0002-6337-1269
0000-0001-7668-446X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5865750
PMID 28619718
PQID 1974996137
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865750
hal_primary_oai_HAL_hal_04034188v1
proquest_miscellaneous_1925885540
proquest_miscellaneous_1910792777
proquest_journals_1974996137
pubmed_primary_28619718
crossref_citationtrail_10_1126_science_aal2066
crossref_primary_10_1126_science_aal2066
jstor_primary_26399342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-30
PublicationDateYYYYMMDD 2017-06-30
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Benjamini Y. H. (e_1_3_2_40_2) 1995; 57
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
28796205 - Nature. 2017 Aug 9;548(7666):162-164. doi: 10.1038/548162a.
References_xml – ident: e_1_3_2_38_2
  doi: 10.1093/bioinformatics/btu638
– ident: e_1_3_2_14_2
  doi: 10.1016/j.molcel.2014.05.016
– ident: e_1_3_2_30_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_2_26_2
  doi: 10.1021/pr400098r
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.0900191106
– ident: e_1_3_2_36_2
  doi: 10.1093/bioinformatics/btr189
– ident: e_1_3_2_42_2
  doi: 10.1038/nature19801
– ident: e_1_3_2_43_2
  doi: 10.1126/science.aaa7227
– ident: e_1_3_2_17_2
  doi: 10.1021/cb400789e
– ident: e_1_3_2_22_2
  doi: 10.1038/nature14888
– ident: e_1_3_2_20_2
  doi: 10.1016/j.molcel.2012.12.006
– ident: e_1_3_2_34_2
– ident: e_1_3_2_12_2
  doi: 10.1021/ja034490h
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_2_40_2
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_2_8_2
  doi: 10.1038/nature10509
– ident: e_1_3_2_21_2
  doi: 10.1016/j.molcel.2015.04.011
– ident: e_1_3_2_11_2
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.1310658110
– ident: e_1_3_2_10_2
  doi: 10.1021/ja8053805
– ident: e_1_3_2_15_2
  doi: 10.1038/nsmb.3249
– ident: e_1_3_2_41_2
  doi: 10.1038/ncomms2796
– ident: e_1_3_2_23_2
  doi: 10.1002/anie.201307803
– ident: e_1_3_2_6_2
  doi: 10.1126/science.aam7304
– ident: e_1_3_2_37_2
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_3_2_2_2
  doi: 10.1038/nbt.2786
– ident: e_1_3_2_33_2
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_3_2_16_2
  doi: 10.1186/gb-2012-13-8-r68
– ident: e_1_3_2_25_2
  doi: 10.1016/j.jasms.2010.01.012
– ident: e_1_3_2_31_2
  doi: 10.1038/nbt.1754
– ident: e_1_3_2_4_2
  doi: 10.1021/acschembio.6b00346
– ident: e_1_3_2_27_2
  doi: 10.1074/mcp.M500230-MCP200
– ident: e_1_3_2_28_2
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_3_2_3_2
  doi: 10.1038/nchem.2302
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1249830
– ident: e_1_3_2_32_2
  doi: 10.1186/1471-2164-15-284
– ident: e_1_3_2_24_2
  doi: 10.1021/jm200108t
– ident: e_1_3_2_29_2
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_3_2_35_2
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_3_2_13_2
  doi: 10.1038/nature10334
– ident: e_1_3_2_5_2
  doi: 10.1038/nrg3796
– ident: e_1_3_2_9_2
  doi: 10.1038/nbt.2776
– ident: e_1_3_2_39_2
  doi: 10.1093/bioinformatics/btp616
– reference: 28796205 - Nature. 2017 Aug 9;548(7666):162-164. doi: 10.1038/548162a.
SSID ssj0009593
Score 2.5515814
Snippet The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an...
Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across...
Are better drugs just a click away?Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug...
Are better drugs just a click away? Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1397
SubjectTerms Animal models
Animals
Benzodiazepines - pharmacology
Benzodiazepines - therapeutic use
Bone marrow
Cancer
Cells, Cultured
Chemical Sciences
Chemical synthesis
Chemistry
Chromatin
Click Chemistry
Compartments
Cytometry
Differential distribution
Disease Models, Animal
Drug Delivery Systems
Drugs
Epigenetics
Epigenomics
Flow cytometry
Gene expression
Gene sequencing
Genes
Heterogeneity
In vivo methods and tests
Inhibitors
Leukemia
Leukemia - drug therapy
Leukemia - pathology
Leukemias
Life Sciences
Localization
Mice
Narcotics
Organic Chemistry
Position (location)
Precision Medicine
Probes
Proteomics
Spleen
Synthesis (chemistry)
Therapy
Tissue Distribution
Transcription
Transcription Factors - antagonists & inhibitors
Tumor cells
Title Click chemistry enables preclinical evaluation of targeted epigenetic therapies
URI https://www.jstor.org/stable/26399342
https://www.ncbi.nlm.nih.gov/pubmed/28619718
https://www.proquest.com/docview/1974996137
https://www.proquest.com/docview/1910792777
https://www.proquest.com/docview/1925885540
https://hal.science/hal-04034188
https://pubmed.ncbi.nlm.nih.gov/PMC5865750
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBsMAgMFxMNQ1ChxvpzHdh-q0DQe6NB4imzP0SqqtKIt0vgj-Zs4xx9xUYsYL1HlOGni-9l3F__uDqH3oHEwTSI6iHMBDgrGYkBB8w3KDLQBFTURiuV7mY-v0o_X2XWv98thLa1XLOQ_t8aV_I9UoQ3kKqNk7yFZe1NogN8gXziChOH4TzI-mU35t4Cbmm2BaAOhljLw30Y8dum8WzpAS_wGI1MsZBpOGcEYqBAsQybUhqqZ82CA2k0dR5SWnThUHAJDKdCXOd8XJnc61vBUfvP_HJr2L3SxmKqCUpIPTJum4wxRuX0_iiXLu8UTlcuQPX2hMHzWTG-Cr2FwGbpfLmJLszNYu__Tuyu5TqSs9JhavCNZdxJHibu6JypvuYZxnqSZs1xL89dR_dLZ3K5WnEKYIqR0JpPgdxrU8hpxa--lYBLs4QJsuT7aG45OR-c700DrZFNOGJe5-4ad9OBWsnQVYXabK_Qno9cxkSZP0GPt2_hDBdR91BPNAXqoqp3eHaB9PbxL_1gnO__wFH1qMexbDPsaw76DYb_DsD-vfYNhv8OwbzH8DF2dn01OxgNd5GPAwZJcgbLNaSlKzHldkyirCy4Iv6EC3OwoF4TkNaeME85FXKcix7WIWAZefl2Cp5VhkRyifjNvxAvklyxlnLG0ZpSnNI9ZnRNOoA2zRCQs9VBohrTiOgO-LMQyq1pPGOeVlkGlZeChY3vBQiV_2d31HcjI9pJJ28fDi0q2gZoEU5GQH7GHDlsR2m4GLx46MjKt9PqyrGJw9csSBqnw0Ft7GoQht_RoI-Zr2SeOihIXxV_74IxINmrkoecKJt0DkBz-JiYeKjYAtPEim2ea6W2bhT4jcs82ernrnV6hR92kP0L91fe1eA0G_Iq90bPiNyqG97I
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Click+chemistry+enables+preclinical+evaluation+of+targeted+epigenetic+therapies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tyler%2C+Dean+S.&rft.au=Vappiani%2C+Johanna&rft.au=Ca%C3%B1eque%2C+Tatiana&rft.au=Lam%2C+Enid+Y.+N.&rft.date=2017-06-30&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=356&rft.issue=6345&rft.spage=1397&rft.epage=1401&rft_id=info:doi/10.1126%2Fscience.aal2066&rft.externalDocID=26399342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon