Soft optical metamaterials
Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical met...
Saved in:
Published in | Nano convergence Vol. 7; no. 1; pp. 18 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
26.05.2020
Springer Nature B.V SpringerOpen 나노기술연구협의회 |
Subjects | |
Online Access | Get full text |
ISSN | 2196-5404 2196-5404 |
DOI | 10.1186/s40580-020-00226-7 |
Cover
Abstract | Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified. |
---|---|
AbstractList | Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified. Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified. Abstract Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified. Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in nextgeneration metamaterial devices are identified. KCI Citation Count: 0 |
ArticleNumber | 18 |
Author | Chen, Yixin Ai, Bin Wong, Zi Jing |
Author_xml | – sequence: 1 givenname: Yixin surname: Chen fullname: Chen, Yixin organization: Department of Aerospace Engineering, Texas A&M University – sequence: 2 givenname: Bin surname: Ai fullname: Ai, Bin organization: Department of Aerospace Engineering, Texas A&M University – sequence: 3 givenname: Zi Jing surname: Wong fullname: Wong, Zi Jing email: zijing@tamu.edu organization: Department of Aerospace Engineering, Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32451734$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002705253$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kk9v1DAQxS1UREvpF-gBVeICh4DHnnicC1JV8WelSkhQzpbjdRZvk3ixs5X49ng3pbQ99GBNZP_e8xtnXrKDMY6esVPg7wG0-pCR15pXXJTFhVAVPWNHAhpV1cjx4N73ITvJec05B1ISQb9gh1JgDSTxiJ3-iN10FjdTcLY_G_xkBzv5FGyfX7HnXSn-5LYes5-fP11dfK0uv31ZXJxfVk6BnCqpCAg8cgteCAd1C0IrpXSnPVrlO1_ilds11QJc47TultC1LVmUKKmWx-zd7Dumzly7YKIN-7qK5jqZ8-9XC9MQCU2ysIuZXUa7NpsUBpv-7AX7jZhWxqbSS-8NF7VvOdKSaocWSDeyFQoVoaC2BVW8Ps5em207-KXz45Rs_8D04ckYfpVMN4YEalA7g7e3Bin-3vo8mSFk5_vejj5usxHIVYNNLbCgbx6h67hNY3nWPYWEQE2hXt9PdBfl3-8qgJgBl2LOyXd3CHCzGwszj0VpvqzdWBgqIv1I5MJkpxB3XYX-aamcpbncM658-h_7CdVfTIPGoA |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2024_118783 crossref_primary_10_1016_j_engstruct_2024_119597 crossref_primary_10_1364_OE_530404 crossref_primary_10_1021_acsphotonics_1c01833 crossref_primary_10_1016_j_compositesa_2023_107893 crossref_primary_10_1021_acsphotonics_2c01324 crossref_primary_10_3390_mi15101267 crossref_primary_10_1002_adpr_202000205 crossref_primary_10_1088_1361_648X_ad6110 crossref_primary_10_3390_bios12030180 crossref_primary_10_1016_j_ijmecsci_2023_108614 crossref_primary_10_1016_j_matdes_2023_112189 crossref_primary_10_1016_j_optlastec_2023_110383 crossref_primary_10_1109_ACCESS_2022_3201020 crossref_primary_10_3390_nano13101633 crossref_primary_10_1016_j_ijleo_2023_171575 crossref_primary_10_1021_acs_jpclett_3c01620 crossref_primary_10_1080_15397734_2023_2267653 crossref_primary_10_3389_fphy_2020_586087 crossref_primary_10_1039_D1MA00783A crossref_primary_10_1186_s40580_021_00296_1 crossref_primary_10_1007_s12206_021_0243_7 crossref_primary_10_1186_s40580_022_00331_9 crossref_primary_10_1002_adfm_202108437 crossref_primary_10_1002_admt_202101725 crossref_primary_10_1088_1361_6463_acb8c7 crossref_primary_10_1007_s00707_024_04158_9 crossref_primary_10_1088_1361_6463_ac0faa crossref_primary_10_1063_5_0153856 crossref_primary_10_1109_JSEN_2021_3073078 crossref_primary_10_1364_AO_469263 crossref_primary_10_56767_jfpe_2023_2_1_97 crossref_primary_10_1021_acsami_1c05049 crossref_primary_10_3390_photonics11090788 crossref_primary_10_1002_aisy_202100105 crossref_primary_10_3390_app11178084 crossref_primary_10_1007_s10483_025_3219_6 crossref_primary_10_1007_s12200_021_1121_8 crossref_primary_10_1039_D3NR02834H crossref_primary_10_1021_acsphotonics_2c01341 crossref_primary_10_1016_j_optlastec_2020_106660 crossref_primary_10_3390_nano12010153 crossref_primary_10_1108_RPJ_11_2023_0415 crossref_primary_10_1016_j_molliq_2022_120305 crossref_primary_10_3389_frsfm_2022_1079063 crossref_primary_10_1038_s41578_024_00714_w crossref_primary_10_1016_j_eml_2021_101166 crossref_primary_10_1016_j_matdes_2021_109632 crossref_primary_10_1039_D0NA01039A crossref_primary_10_1002_mgea_73 crossref_primary_10_1021_acs_nanolett_0c04593 crossref_primary_10_1016_j_jsamd_2023_100585 crossref_primary_10_1038_s41598_024_63204_7 crossref_primary_10_3390_nano12061027 crossref_primary_10_1016_j_matt_2024_06_048 crossref_primary_10_1051_e3sconf_202455201100 crossref_primary_10_3390_nano11102674 crossref_primary_10_1002_adom_202200750 crossref_primary_10_1109_JSEN_2024_3469028 crossref_primary_10_1364_OE_454980 crossref_primary_10_3390_biomimetics9050285 crossref_primary_10_3390_bios12110962 crossref_primary_10_1016_j_mser_2023_100745 crossref_primary_10_1016_j_mtcomm_2025_112070 crossref_primary_10_1016_j_compositesa_2023_107881 crossref_primary_10_7498_aps_73_20240861 crossref_primary_10_1007_s10999_024_09707_7 crossref_primary_10_1039_D4CC06236A crossref_primary_10_1016_j_ijmecsci_2022_107854 crossref_primary_10_1002_smll_202405140 crossref_primary_10_1038_s41378_021_00307_5 crossref_primary_10_1002_adfm_202305734 crossref_primary_10_1016_j_tws_2024_111764 crossref_primary_10_1038_s41598_024_71566_1 crossref_primary_10_1088_2632_959X_abe652 crossref_primary_10_1021_acsaom_4c00386 |
Cites_doi | 10.1021/acs.nanolett.7b05190 10.1063/1.2795345 10.1080/15421406.2011.571966 10.1063/1.1491003 10.1063/1.2759463 10.1021/nl204118h 10.1364/OE.14.008247 10.1038/nmat4164 10.1364/OE.17.019459 10.1021/acs.nanolett.5b00680 10.1038/nmat4031 10.1038/srep13535 10.1038/s41586-018-0034-1 10.1109/22.798002 10.1186/s40580-016-0081-y 10.1021/acs.nanolett.7b00807 10.1063/1.4929449 10.1038/s41598-019-45091-5 10.1088/0022-3727/48/17/175105 10.1038/srep27432 10.1063/1.3182857 10.1038/ncomms11329 10.1038/srep34147 10.1038/lsa.2016.254 10.1002/adma.201907077 10.1002/adom.201900074 10.1364/OL.38.002008 10.1073/pnas.0808478106 10.1088/1361-6528/aa6144 10.1038/nature10889 10.1364/OE.27.0A1241 10.1103/PhysRevB.86.165103 10.1364/OE.23.021809 10.1364/OE.15.003342 10.1038/s41598-017-06456-w 10.1103/RevModPhys.64.645 10.1038/ncomms12911 10.1364/OE.20.015781 10.1002/adfm.201707309 10.1021/acsami.8b17258 10.1038/ncomms7590 10.1021/nn5015775 10.1021/nl071893x 10.1038/nphoton.2011.154 10.1364/OL.31.002592 10.1038/ncomms11618 10.1002/adma.201702669 10.1021/nl401642z 10.1002/adma.201302938 10.1364/OE.25.013822 10.1002/adma.201901364 10.1126/science.1186351 10.1038/srep27621 10.1021/acs.nanolett.0c00422 10.1039/C3NR04012G 10.1002/adma.201504467 10.1038/s41467-019-09939-8 10.1126/science.aac9411 10.1126/sciadv.aar8535 10.1038/nmat2141 10.1063/1.3695165 10.1038/ncomms8021 10.1126/science.aaw6747 10.1038/nphoton.2013.243 10.1103/PhysRevB.78.085112 10.1364/OE.17.004360 10.1021/acs.accounts.9b00264 10.1021/ar400232h 10.1126/science.1096796 10.1103/PhysRevLett.101.103902 10.1126/science.1187949 10.1016/j.cap.2013.06.028 10.1021/acsnano.8b02566 10.1063/1.2335812 10.1021/acs.nanolett.7b02350 10.1126/science.1108759 10.1364/OE.15.014129 10.1016/j.solmat.2015.02.019 10.1002/adom.201901182 10.1063/1.4773238 10.1021/acsphotonics.7b01343 10.1021/acs.nanolett.8b00475 10.1038/nphoton.2006.49 10.1126/science.1157566 10.1021/nn301358n 10.1021/nl2014982 10.1021/nl200791r 10.1002/adfm.201601154 10.1364/OE.17.005723 10.1088/1367-2630/12/11/113006 10.1063/1.5025400 10.1364/OE.23.012766 10.1016/j.metmat.2007.02.001 10.1038/nature07247 10.1126/science.1241727 10.1038/ncomms8337 10.1021/nn204647b 10.1021/acsami.7b11139 10.1103/PhysRevLett.100.207402 10.1126/sciadv.aaw2205 10.1021/acsnano.5b00723 10.1021/acs.nanolett.6b00618 10.1103/PhysRevB.79.045111 10.1063/1.3427429 10.1038/ncomms8325 10.1021/acs.jpclett.7b01307 10.1002/adma.200500804 10.1063/1.4764054 10.1103/PhysRevB.75.235114 10.1002/adma.201102430 10.1002/adma.201200419 10.1063/1.4914502 10.1039/C9NR04068D 10.1021/acsnano.5b05954 10.1103/PhysRevB.67.113103 10.1021/acsphotonics.7b00249 10.1021/nl102684x 10.1038/nnano.2013.25 10.1016/j.ijleo.2016.02.067 10.1021/acsami.5b08334 10.1038/ncomms3948 10.1364/OE.19.002754 10.1038/natrevmats.2017.66 10.1002/adfm.201400526 10.1063/1.3655332 10.1002/adma.201700412 10.1021/jacs.6b03966 10.1021/acsnano.8b04889 10.1021/acsphotonics.7b00546 10.1021/nl1004114 10.1002/lpor.201600144 10.1016/j.physb.2013.12.040 10.1126/science.1252876 10.1021/acsphotonics.7b01497 10.1021/acs.nanolett.5b05142 10.1126/science.1058847 10.1002/adom.201801167 10.1063/1.4976504 10.1038/s41467-018-03155-6 10.1364/OE.23.028170 10.1021/acsphotonics.5b00470 10.1038/nnano.2011.82 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.1186/s40580-020-00226-7 |
DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2196-5404 |
EndPage | 17 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9772873 oai_doaj_org_article_025eb047d75c4a17893b26467427bb16 PMC7248166 32451734 10_1186_s40580_020_00226_7 |
Genre | Journal Article Review |
GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU D1I EBLON EBS GROUPED_DOAJ HCIFZ HYE IAO ITC KB. KQ8 M~E OK1 PDBOC PGMZT PIMPY PROAC RPM RSV SOJ AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM AAYZJ ACYCR AFNRJ AHBXF AHSBF EJD |
ID | FETCH-LOGICAL-c613t-367171e40a1e22c15b1286668f8e4a6efe02200087521c9c88fd1fbb7a4343753 |
IEDL.DBID | C6C |
ISSN | 2196-5404 |
IngestDate | Tue Nov 21 21:26:17 EST 2023 Wed Aug 27 01:28:02 EDT 2025 Thu Aug 21 18:07:36 EDT 2025 Fri Sep 05 07:07:53 EDT 2025 Fri Jul 25 11:12:04 EDT 2025 Mon Jul 21 05:49:58 EDT 2025 Tue Jul 01 01:41:57 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Fri Feb 21 02:29:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Soft matter Nanophotonics Metasurfaces Nanofabrication Metamaterials Reconfigurable metamaterials |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c613t-367171e40a1e22c15b1286668f8e4a6efe02200087521c9c88fd1fbb7a4343753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 https://nanoconvergencejournal.springeropen.com/articles/10.1186/s40580-020-00226-7 |
OpenAccessLink | https://doi.org/10.1186/s40580-020-00226-7 |
PMID | 32451734 |
PQID | 2406474179 |
PQPubID | 2034688 |
PageCount | 17 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9772873 doaj_primary_oai_doaj_org_article_025eb047d75c4a17893b26467427bb16 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7248166 proquest_miscellaneous_2406949524 proquest_journals_2406474179 pubmed_primary_32451734 crossref_primary_10_1186_s40580_020_00226_7 crossref_citationtrail_10_1186_s40580_020_00226_7 springer_journals_10_1186_s40580_020_00226_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-26 |
PublicationDateYYYYMMDD | 2020-05-26 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: England – name: Heidleberg |
PublicationTitle | Nano convergence |
PublicationTitleAbbrev | Nano Convergence |
PublicationTitleAlternate | Nano Converg |
PublicationYear | 2020 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen 나노기술연구협의회 |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen – name: 나노기술연구협의회 |
References | ZouQLiuWShenYJinCNanoscale201911114371:CAS:528:DC%2BC1MXhtVKit7rP10.1039/C9NR04068D LiXShaWEChoyWCFungDDXieFJ. Phys. Chem.201211672001:CAS:528:DC%2BC38XjslKnsr4%3D WangHSivanVPMitchellARosengartenGPhelanPWangLSol. Energy Mater. Sol. Cells201513723510.1016/j.solmat.2015.02.0191:CAS:528:DC%2BC2MXjsF2rs7Y%3D ZhangHGuoXWuJFangDZhangYSci. Adv.20184eaar853510.1126/sciadv.aar85351:CAS:528:DC%2BC1cXisVGktb3K CaiWShalaevVOptical metamaterials: fundamentals and applications2009BerlinSpringer YahiaouiRTanSCongLSinghRYanFZhangWJ. Appl. Phys.201511808310310.1063/1.49294491:CAS:528:DC%2BC2MXhsVSltL3J JacobZAlekseyevLVNarimanovEOpt. Express200614824710.1364/OE.14.008247 GuoXYingYTongLAcc. Chem. Res.20134765610.1021/ar400232h1:CAS:528:DC%2BC2cXhsl2nsQ%3D%3D ArbabiEArbabiAKamaliSMHorieYFaraji-DanaMFaraonANat. Commun.2018981210.1038/s41467-018-03155-61:CAS:528:DC%2BC1cXhtFWkt7nM KomarAPaniagua-DomínguezRMiroshnichenkoAYuYFKivsharYSKuznetsovAINeshevDACS Photonics2018517421:CAS:528:DC%2BC1cXitl2ls7s%3D10.1021/acsphotonics.7b01343 Di FalcoAPloschnerMKraussTFNew J. Phys.20101211300610.1088/1367-2630/12/11/1130061:CAS:528:DC%2BC3cXhsVeqtb3N LiJShahCMWithayachumnankulWUngBSYMitchellASriramSBhaskaranMChangSAbbottDAppl. Phys. Lett.201310212110110.1063/1.47732381:CAS:528:DC%2BC3sXksFOntb8%3D EvansPWurtzGHendrenWAtkinsonRDicksonWZayatsAPollardRAppl. Phys. Lett.20079104310110.1063/1.27594631:CAS:528:DC%2BD2sXovFKrtb0%3D VallecchiAAlbaniMCapolinoFOpt. Express20111927541:CAS:528:DC%2BC3MXhvFahsbY%3D10.1364/OE.19.002754 KimRChungKKimJYNamYParkS-HKShinJACS Photonics2018511881:CAS:528:DC%2BC1cXjvFKjsb4%3D10.1021/acsphotonics.7b01497 ShamoninaESolymarLMetamaterials200711210.1016/j.metmat.2007.02.001 WuZChenXWangMDongJZhengYACS Nano20181250301:CAS:528:DC%2BC1cXosFOnsrY%3D10.1021/acsnano.8b02566 LeeSKangBKeumHAhmedNRogersJAFerreiraPMKimSMinBSci. Rep.20166276211:CAS:528:DC%2BC28XpvF2qsL4%3D10.1038/srep27621 RamahiOMAlmoneefTSAlShareefMBoybayMSAppl. Phys. Lett.201210117390310.1063/1.47640541:CAS:528:DC%2BC38XhsFCltb%2FE TsengMLYangJSemmlingerMZhangCNordlanderPHalasNJNano Lett.20171760341:CAS:528:DC%2BC2sXhsVeksL7F10.1021/acs.nanolett.7b02350 MalekSCEeH-SAgarwalRNano Lett.20171736411:CAS:528:DC%2BC2sXnt1Gku7w%3D10.1021/acs.nanolett.7b00807 XuXPengBLiDZhangJWongLMZhangQWangSXiongQNano Lett.20111132321:CAS:528:DC%2BC3MXotlGnur0%3D10.1021/nl2014982 ShalaevVMNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D10.1038/nphoton.2006.49 FranklinDChenYVazquez-GuardadoAModakSBoroumandJXuDWuS-TChandaDNat. Commun.2015673371:CAS:528:DC%2BC2MXhtFylt7jI10.1038/ncomms8337 PendryJBHoldenAJRobbinsDJStewartWIEEE Trans. Microw. Theory Tech.199947207510.1109/22.798002 ErginTStengerNBrennerPPendryJBWegenerMScience201032859763373391:CAS:528:DC%2BC3cXks1Sgtb4%3D10.1126/science.1186351 X. Zhang, In 2018 conference on lasers and electro-optics pacific rim (CLEO-PR), pp. 1 (2018) PtasinskiJKimSWPangLKhooI-CFainmanYOpt. Lett.20133820081:CAS:528:DC%2BC3sXht1artrrJ10.1364/OL.38.002008 ChoYHuhJ-HParkKJKimKLeeJLeeSOpt. Express201725138221:CAS:528:DC%2BC1cXmvV2htro%3D10.1364/OE.25.013822 LeeMJeonHKimSNano Lett.20151533581:CAS:528:DC%2BC2MXlsFejtr4%3D10.1021/acs.nanolett.5b00680 BarceloSLiZNanoimprint lithography for nanodevice fabricationNano Convergence20163211:CAS:528:DC%2BC28XhslWntLjK10.1186/s40580-016-0081-y MaFWuJHHuangMZhangWZhangSJ. Phys. D20154817510510.1088/0022-3727/48/17/1751051:CAS:528:DC%2BC2MXntFWqurc%3D WenXLiGZhangJZhangQPengBWongLMWangSXiongQNanoscale201461321:CAS:528:DC%2BC3sXhvV2hs73I10.1039/C3NR04012G EeH-SAgarwalRNano Lett.20161628181:CAS:528:DC%2BC28XksVGrtrg%3D10.1021/acs.nanolett.6b00618 ZhangFKangLZhaoQZhouJZhaoXLippensDOpt. Express20091743601:CAS:528:DC%2BD1MXjslCrsb4%3D10.1364/OE.17.004360 PryceIMAydinKKelaitaYABriggsRMAtwaterHANano Lett.20101042221:CAS:528:DC%2BC3cXhtFygsb7P10.1021/nl102684x NiXWongZJMrejenMWangYZhangXScience201534913101:CAS:528:DC%2BC2MXhsV2gtLjP10.1126/science.aac9411 WangXKwonD-HWernerDHKhooI-CKildishevAVShalaevVMAppl. Phys. Lett.20079114312210.1063/1.27953451:CAS:528:DC%2BD2sXhtF2murjO MinovichAAppl. Phys. Lett.201210012111310.1063/1.36951651:CAS:528:DC%2BC38XksVCmu78%3D ChandaDNat. Nanotechnol.201164021:CAS:528:DC%2BC3MXnslSmt7s%3D10.1038/nnano.2011.82 LiuZXuYJiC-YChenSLiXZhangXYaoYLiJAdv. Mater.20203219070771:CAS:528:DC%2BB3cXht1Giu78%3D10.1002/adma.201907077 PratibhaRParkKSmalyukhIParkWOpt. Express200917194591:CAS:528:DC%2BD1MXhtlGmsr7N10.1364/OE.17.019459 AhnH-YYooSChoNHKimRMKimHHuhJ-HLeeSNamKTAcc. Chem. Res.20195227681:CAS:528:DC%2BC1MXhsl2nsr3J10.1021/acs.accounts.9b00264 BelovPMarquesRMaslovskiSNefedovISilveirinhaMSimovskiCTretyakovSPhys. Rev. B20036711310310.1103/PhysRevB.67.1131031:CAS:528:DC%2BD3sXis1yls7s%3D LiSQXuXMaruthiyodan VeetilRValuckasVPaniagua-DomínguezRKuznetsovAIScience201936410871:CAS:528:DC%2BC1MXhtFOitrbL10.1126/science.aaw6747 Di FalcoAZhaoYAlúAAppl. Phys. Lett.20119916311010.1063/1.36553321:CAS:528:DC%2BC3MXhtlGntr%2FK SautterJStaudeIDeckerMRusakENeshevDNBrenerIKivsharYSACS Nano2015943081:CAS:528:DC%2BC2MXjvFygtrc%3D10.1021/acsnano.5b00723 ChenWACS Nano201812106831:CAS:528:DC%2BC1cXhslOrurnE10.1021/acsnano.8b04889 FangNLeeHSunCZhangXScience20053085341:CAS:528:DC%2BD2MXjtlOjtrs%3D10.1126/science.1108759 ChuKCChaoCYChenYFWuYCChenC-CAppl. Phys. Lett.20068910310710.1063/1.23358121:CAS:528:DC%2BD28XpvVyqt7o%3D LewandowskiWFruhnertMMieczkowskiJRockstuhlCGóreckaENat. Commun.20156659010.1038/ncomms75901:CAS:528:DC%2BC2MXosFeksrY%3D WangPGaitanarosSLeeSBatheMShihWMKeYJ. Am. Chem. Soc.201613877331:CAS:528:DC%2BC28Xos12nt7Y%3D10.1021/jacs.6b03966 ChenZGuoBYangYChengCPhysica B Condens. Matter201443811:CAS:528:DC%2BC2cXislGqs7o%3D10.1016/j.physb.2013.12.040 LysyakovaLLomadzeNNeherDMaximovaKKabashinAVSanterSJ. Phys. Chem.201511937621:CAS:528:DC%2BC2MXosVKmsw%3D%3D YaoJLiuZLiuYWangYSunCBartalGStacyAMZhangXScience20083219301:CAS:528:DC%2BD1cXpslWrtLo%3D10.1126/science.1157566 WernerDHKwonD-HKhooI-CKildishevAVShalaevVMOpt. Express200715334210.1364/OE.15.003342 MinovichANeshevDNPowellDAShadrivovIVKivsharYSAppl. Phys. Lett.20109619310310.1063/1.34274291:CAS:528:DC%2BC3cXlvVelu7c%3D PratibhaRParkWSmalyukhIIApplJPhysics2010107063511 RenM-XWuWCaiWPiBZhangX-ZXuJ-JLight Sci. Appl.20176e162541:CAS:528:DC%2BC2sXpt1KqtL0%3D10.1038/lsa.2016.254 SilverbergJLEvansAAMcLeodLHaywardRCHullTSantangeloCDCohenIScience20143456471:CAS:528:DC%2BC2cXht12gtLjF10.1126/science.1252876 MüllerJSönnichsenCVon PoschingerHVon PlessenGKlarTFeldmannJAppl. Phys. Lett.20028117110.1063/1.14910031:CAS:528:DC%2BD38XkvFOkur0%3D ZhangXLiuZNat. Mater.200874351:CAS:528:DC%2BD1cXmsVejt7o%3D10.1038/nmat2141 MaryARodrigoSGGarcia-VidalFMartin-MorenoLPhys. Rev. Lett.20081011039021:STN:280:DC%2BD1cnls12qtg%3D%3D10.1103/PhysRevLett.101.103902 AlùAEnghetaNPhys. Rev. B20087808511210.1103/PhysRevB.78.0851121:CAS:528:DC%2BD1cXhtVKitLfP KuboSDiazATangYMayerTSKhooICMalloukTENano Lett.2007734181:CAS:528:DC%2BD2sXhtFOitb3L10.1021/nl071893x ValenteJOuJ-YPlumEYoungsIJZheludevNINat. Commun.2015670211:CAS:528:DC%2BC2MXhtF2itLzL10.1038/ncomms8021 SchreiberRNat. Commun.20134294810.1038/ncomms39481:CAS:528:DC%2BC2cXhsFelt7g%3D ParkKJSci. Rep.20177604510.1038/s41598-017-06456-w1:CAS:528:DC%2BC1cXhtlemurnK ZhangGHsuCLanCGaoRWenYZhouJApplACSMater. Interfaces20191122541:CAS:528:DC%2BC1cXisFKiur7M10.1021/acsami.8b17258 OuJ-YPlumEZhangJZheludevNINat. Nanotechnol.201382521:CAS:528:DC%2BC3sXktVKgtL0%3D10.1038/nnano.2013.25 FengSHaltermanKPhys. Rev. B20128616510310.1103/PhysRevB.86.1651031:CAS:528:DC%2BC38XhslylsL7N LeeH-ENature20185563601:CAS:528:DC%2BC1cXosVCmsLk%3D10.1038/s41586-018-0034-1 OuJYPlumEZhangJZheludevNIAdv. Mater.2016287291:CAS:528:DC%2BC2MXhvFemsr3I10.1002/adma.201504467 M. Tsuruta, J. Valente, B. Gholipour, K. MacDonald, E. Plum, and N. Zheludev, 2016 In Conference on lasers and electro-optics (CLEO) (2016) ŠvandaJKalachyovaYSlepičkaPŠvorčíkVLyutakovOApplACSMater. Interfaces2016822510.1021/acsami.5b083341:CAS:528:DC%2BC2MXhvFylurjL SmithDRPendryJBWiltshireMCScience20043057881:CAS:528:DC%2BD2cXmt1Krtr8%3D10.1126/science.1096796 KwonHKimSACS Photonics2015216751:CAS:528:DC%2BC2MXhvVehs7fP10.1021/acsphotonics.5b00470 BohnJBucherTChongKEKomarAChoiD-YNeshevDNKivsharYSPertschTStaudeINano Lett.20181834611:CAS:528:DC%2BC1cXosFOnt7g%3D10.1021/acs.nanolett.8b00475 SheikholeslamiSNAlaeianHKohALDionneJANano Lett.20131341371:CAS:528:DC%2BC3sXht1ars7jJ10.1021/nl401642z LiuXHuangZZhuCWangLZangJNano Lett.20181814351:CAS:528:DC%2BC2sXitVSntLvP10.1021/acs.nanolett.7b05190 PoddubnyAIorshIBelovPKivsharYNat. Photonics201379481:CAS:528:DC%2BC3sXhvVGru7nO10.1038/nphoton.2013.243 LeeSKimSKimT-TKimYChoiMLeeSHKimJ-YMinBAdv. Mater.20122434911:CAS:528:DC%2BC38XosVantro%3D10.1002/adma.201200419 BrunetTLengJMondain-MonvalOScience20133423231:CAS:528:DC%2BC3sXhsl2gtb7P10.1126/science.1241727 AlùAEnghetaNOpt. Express200917572310.1364/OE.17.0057231:CAS:528:DC%2BD1MXktl2qsrg%3D XinFLuTSci. Rep.20166274321:CAS:528:DC%2BC28Xps1yhtr0%3D10.1038/srep27432 SunMXuXSunXWLiangXAValuckasVZhengYPaniagua-DomínguezRKuznetsovAISci. Rep.20199867310.1038/s41598-019-45091-51:CAS:528:DC%2BC1MXhtFymu7fK AndryieuskiAKuznetsovaSMZhukovskySVKivsharYSLavrinenkoAVSci. Rep.20155135351:CAS:528:DC%2BC2MXhsVKhtLvF10.1038/srep13535 B. Kirkpatrick, P. Reader-Harris, Y. Shen, J. Wu, and A. Di Falco, In Photonic and phononic properties of engineered nanostructures V (International society for optics and photonics, 2015), p. 93710Z YangJKramerNJSchramkeKSWheelerLMBesteiroLVHoganCJJrGovorovAOKortshagenURNano Lett.20161614721:CAS:528:DC%2BC28XhtlygtLY%3D10.1021/acs.nanolett.5b05142 CuiYFungKHXuJMaHJinYHeSFangNXNano Lett.20121214431:CAS:528:DC%2BC38XhvVSrt7g%3D10.1021/nl204118h LeeYACS Photonics2017419541:CAS:528:DC%2BC2sXhtV2ru73J10.1021/acsphotonics.7b00249 BertoldiKVitelliVChristensenJvan HeckeMNat. Rev. Mater.20172170661:CAS:528:DC%2BC2sXhs1Kgtr3O10.1038/natrevmats.2017.66 EnkrichCPérez-WillardFGerthsenDZhouJFKoschnyTSoukoulisCMWegenerMLindenSAdv. Mater.20051725471:CAS:528:DC%2BD2MXht1Cgt7vM10.1002/adma.200500804 OuJ-YPlumEJiangLZheludevNINano Lett.20111121421:CAS:528:DC%2BC3MXksFamurg%3D10.1021/nl200791r NagasakiYGholipourBOuJ-YTsurutaM H Kwon (226_CR74) 2015; 2 M Sharma (226_CR106) 2020; 8 226_CR123 P Wang (226_CR146) 2016; 138 X Liu (226_CR126) 2018; 18 S Lee (226_CR43) 2012; 24 226_CR96 S Lee (226_CR138) 2015; 23 Y Cui (226_CR16) 2012; 12 X Li (226_CR84) 2012; 116 J Lee (226_CR145) 2018; 28 W Lewandowski (226_CR122) 2015; 6 L Gao (226_CR82) 2014; 8 F Ma (226_CR36) 2015; 48 T Brunet (226_CR35) 2013; 342 H Alaeian (226_CR137) 2012; 20 K Kim (226_CR30) 2019; 7 T Brunet (226_CR37) 2015; 14 Z Wang (226_CR41) 2017; 29 226_CR90 J Peng (226_CR110) 2019; 5 H-Y Ahn (226_CR80) 2019; 52 L Lysyakova (226_CR99) 2015; 119 J Müller (226_CR101) 2002; 81 CM Soukoulis (226_CR3) 2011; 5 N Fang (226_CR24) 2005; 308 DH Werner (226_CR52) 2007; 15 R Schreiber (226_CR76) 2013; 4 H Wang (226_CR26) 2015; 137 M-X Ren (226_CR97) 2017; 6 SJ Palmer (226_CR34) 2019; 10 M Kim (226_CR148) 2015; 23 S Barcelo (226_CR135) 2016; 3 P Wang (226_CR144) 2019; 31 M Kim (226_CR150) 2017; 8 E Arbabi (226_CR116) 2018; 9 A Fernandez-Nieves (226_CR29) 2016 MJ Rozin (226_CR33) 2015; 6 X Wang (226_CR51) 2007; 91 KJ Park (226_CR149) 2017; 7 Z Zhou (226_CR111) 2017; 9 SN Sheikholeslami (226_CR65) 2013; 13 T Ergin (226_CR22) 2010; 328 IM Pryce (226_CR85) 2010; 10 K Kim (226_CR67) 2017; 4 H Zhang (226_CR50) 2018; 4 J Bohn (226_CR119) 2018; 18 JB Pendry (226_CR6) 1999; 47 Z Liu (226_CR128) 2020; 32 M Kolle (226_CR31) 2018; 30 W Cai (226_CR2) 2009 S Lee (226_CR139) 2015; 23 J Ptasinski (226_CR58) 2013; 38 Z Chen (226_CR27) 2014; 438 H-S Ee (226_CR130) 2016; 16 J Valentine (226_CR5) 2008; 455 IC Khoo (226_CR55) 2006; 31 C Enkrich (226_CR8) 2005; 17 JL Silverberg (226_CR48) 2014; 345 Q Zou (226_CR114) 2019; 11 H-E Lee (226_CR78) 2018; 556 A Alù (226_CR60) 2008; 78 X Jia (226_CR95) 2016; 127 S Kubo (226_CR64) 2007; 7 A Kuzyk (226_CR77) 2014; 13 P Belov (226_CR9) 2003; 67 A Minovich (226_CR54) 2012; 100 S Aksu (226_CR94) 2011; 23 SS Kruk (226_CR19) 2016; 7 A Di Falco (226_CR89) 2011; 99 R Pratibha (226_CR57) 2010; 107 X Xu (226_CR91) 2011; 11 Y Jiang (226_CR49) 2016; 6 C Simovski (226_CR63) 2009; 79 A Minovich (226_CR53) 2010; 96 J Sautter (226_CR121) 2015; 9 S Feng (226_CR15) 2012; 86 J-Y Ou (226_CR117) 2011; 11 JA Fan (226_CR142) 2010; 328 R Kim (226_CR147) 2018; 5 W Chen (226_CR127) 2018; 12 K Bertoldi (226_CR47) 2017; 2 X Guo (226_CR10) 2013; 47 M Lee (226_CR72) 2015; 15 A Komar (226_CR120) 2018; 5 E Shamonina (226_CR1) 2007; 1 J Li (226_CR44) 2013; 102 K Kim (226_CR140) 2019; 27 JY Kim (226_CR151) 2016; 7 M Sun (226_CR109) 2019; 9 X Zhang (226_CR23) 2008; 7 D Franklin (226_CR104) 2015; 6 RA Shelby (226_CR7) 2001; 292 N Gogurla (226_CR73) 2017; 28 KC Chu (226_CR102) 2006; 89 A Vallecchi (226_CR61) 2011; 19 Y Cho (226_CR69) 2017; 25 P-G De Gennes (226_CR28) 1992; 64 A Di Falco (226_CR88) 2010; 12 G Zhang (226_CR98) 2019; 11 SM Kamali (226_CR133) 2016; 7 A Alù (226_CR136) 2009; 17 Y Lee (226_CR108) 2017; 4 A Andryieuski (226_CR39) 2015; 5 D Chanda (226_CR81) 2011; 6 M Choi (226_CR87) 2013; 13 VM Shalaev (226_CR4) 2007; 1 OM Ramahi (226_CR17) 2012; 101 J-H Huh (226_CR68) 2020 Y Cui (226_CR93) 2012; 6 BP Partlow (226_CR71) 2014; 24 SC Malek (226_CR132) 2017; 17 KL Young (226_CR143) 2014; 26 O Vazquez-Mena (226_CR134) 2012; 6 R Merlin (226_CR62) 2009; 106 JY Ou (226_CR100) 2016; 28 J-Y Ou (226_CR112) 2013; 8 226_CR32 R Pratibha (226_CR56) 2009; 17 Z Wu (226_CR79) 2018; 12 S Xiao (226_CR118) 2009; 95 Y Nagasaki (226_CR124) 2018; 113 SM Kamali (226_CR131) 2016; 10 F Zhang (226_CR42) 2015; 106 X Liu (226_CR92) 2016; 26 P Gutruf (226_CR83) 2016; 10 X Ni (226_CR21) 2015; 349 SQ Li (226_CR107) 2019; 364 F Huang (226_CR125) 2010; 10 ML Tseng (226_CR129) 2017; 17 M Kafesaki (226_CR12) 2007; 75 F Zhang (226_CR40) 2009; 17 P Evans (226_CR103) 2007; 91 J Valente (226_CR113) 2015; 6 DR Smith (226_CR14) 2004; 305 J Švanda (226_CR115) 2016; 8 X Wen (226_CR86) 2014; 6 R Yahiaoui (226_CR45) 2015; 118 A Komar (226_CR105) 2017; 110 S Lee (226_CR46) 2016; 6 DF Gardner (226_CR141) 2011; 545 A Poddubny (226_CR20) 2013; 7 J Yao (226_CR11) 2008; 321 A Kuzyk (226_CR75) 2012; 483 Z Jacob (226_CR25) 2006; 14 J Yang (226_CR66) 2016; 16 A Mary (226_CR13) 2008; 101 F Xin (226_CR38) 2016; 6 Y Cho (226_CR70) 2019; 7 NI Landy (226_CR18) 2008; 100 YA Urzhumov (226_CR59) 2007; 15 |
References_xml | – reference: LeeSKimJOpt. Express201523218091:CAS:528:DC%2BC2sXjsFOnsLs%3D10.1364/OE.23.021809 – reference: XinFLuTSci. Rep.20166274321:CAS:528:DC%2BC28Xps1yhtr0%3D10.1038/srep27432 – reference: LiuXHuangZZhuCWangLZangJNano Lett.20181814351:CAS:528:DC%2BC2sXitVSntLvP10.1021/acs.nanolett.7b05190 – reference: PalmerSJXiaoXPazos-PerezNGuerriniLCorrea-DuarteMAMaierSACrasterRVAlvarez-PueblaRAGianniniVNat. Commun.201910211810.1038/s41467-019-09939-81:CAS:528:DC%2BC1MXpsVWht7o%3D – reference: WangPHuhJ-HLeeJKimKParkKJLeeSKeYAdv. Mater.201931190136410.1002/adma.2019013641:CAS:528:DC%2BC1MXhtVOjt7fP – reference: FangNLeeHSunCZhangXScience20053085341:CAS:528:DC%2BD2MXjtlOjtrs%3D10.1126/science.1108759 – reference: YangJKramerNJSchramkeKSWheelerLMBesteiroLVHoganCJJrGovorovAOKortshagenURNano Lett.20161614721:CAS:528:DC%2BC28XhtlygtLY%3D10.1021/acs.nanolett.5b05142 – reference: KwonHKimSACS Photonics2015216751:CAS:528:DC%2BC2MXhvVehs7fP10.1021/acsphotonics.5b00470 – reference: WenXLiGZhangJZhangQPengBWongLMWangSXiongQNanoscale201461321:CAS:528:DC%2BC3sXhvV2hs73I10.1039/C3NR04012G – reference: WangPGaitanarosSLeeSBatheMShihWMKeYJ. Am. Chem. Soc.201613877331:CAS:528:DC%2BC28Xos12nt7Y%3D10.1021/jacs.6b03966 – reference: PendryJBHoldenAJRobbinsDJStewartWIEEE Trans. Microw. Theory Tech.199947207510.1109/22.798002 – reference: WuZChenXWangMDongJZhengYACS Nano20181250301:CAS:528:DC%2BC1cXosFOnsrY%3D10.1021/acsnano.8b02566 – reference: JiaXMengQYuanCZhouZWangXOptik201612757381:CAS:528:DC%2BC28Xls1Ojt7w%3D10.1016/j.ijleo.2016.02.067 – reference: BrunetTLengJMondain-MonvalOScience20133423231:CAS:528:DC%2BC3sXhsl2gtb7P10.1126/science.1241727 – reference: AndryieuskiAKuznetsovaSMZhukovskySVKivsharYSLavrinenkoAVSci. Rep.20155135351:CAS:528:DC%2BC2MXhsVKhtLvF10.1038/srep13535 – reference: LiuXWangJTangLXieLYingYAdv. Funct. Mater.20162655151:CAS:528:DC%2BC28XptVWjtrg%3D10.1002/adfm.201601154 – reference: OuJYPlumEZhangJZheludevNIAdv. Mater.2016287291:CAS:528:DC%2BC2MXhvFemsr3I10.1002/adma.201504467 – reference: LiJShahCMWithayachumnankulWUngBSYMitchellASriramSBhaskaranMChangSAbbottDAppl. Phys. Lett.201310212110110.1063/1.47732381:CAS:528:DC%2BC3sXksFOntb8%3D – reference: KimKParkHParkKJParkSHKimHHLeeSAdv. Opt. Mater.20197190007410.1002/adom.2019000741:CAS:528:DC%2BC1MXosFKgsL0%3D – reference: WernerDHKwonD-HKhooI-CKildishevAVShalaevVMOpt. Express200715334210.1364/OE.15.003342 – reference: ShelbyRASmithDRSchultzSScience2001292771:CAS:528:DC%2BD3MXis1GrsL8%3D10.1126/science.1058847 – reference: Di FalcoAZhaoYAlúAAppl. Phys. Lett.20119916311010.1063/1.36553321:CAS:528:DC%2BC3MXhtlGntr%2FK – reference: EnkrichCPérez-WillardFGerthsenDZhouJFKoschnyTSoukoulisCMWegenerMLindenSAdv. Mater.20051725471:CAS:528:DC%2BD2MXht1Cgt7vM10.1002/adma.200500804 – reference: SheikholeslamiSNAlaeianHKohALDionneJANano Lett.20131341371:CAS:528:DC%2BC3sXht1ars7jJ10.1021/nl401642z – reference: BarceloSLiZNanoimprint lithography for nanodevice fabricationNano Convergence20163211:CAS:528:DC%2BC28XhslWntLjK10.1186/s40580-016-0081-y – reference: LeeSKangBKeumHAhmedNRogersJAFerreiraPMKimSMinBSci. Rep.20166276211:CAS:528:DC%2BC28XpvF2qsL4%3D10.1038/srep27621 – reference: Vazquez-MenaOSannomiyaTTosunMVillanuevaLGSavuVVorosJBruggerJACS Nano2012654741:CAS:528:DC%2BC38Xnt1Wqsbc%3D10.1021/nn301358n – reference: ZhangGHsuCLanCGaoRWenYZhouJApplACSMater. Interfaces20191122541:CAS:528:DC%2BC1cXisFKiur7M10.1021/acsami.8b17258 – reference: CaiWShalaevVOptical metamaterials: fundamentals and applications2009BerlinSpringer – reference: WangHSivanVPMitchellARosengartenGPhelanPWangLSol. Energy Mater. Sol. Cells201513723510.1016/j.solmat.2015.02.0191:CAS:528:DC%2BC2MXjsF2rs7Y%3D – reference: ValentineJZhangSZentgrafTUlin-AvilaEGenovDABartalGZhangXNature20084553761:CAS:528:DC%2BD1cXhtFamsL7P10.1038/nature07247 – reference: LiSQXuXMaruthiyodan VeetilRValuckasVPaniagua-DomínguezRKuznetsovAIScience201936410871:CAS:528:DC%2BC1MXhtFOitrbL10.1126/science.aaw6747 – reference: Fernandez-NievesAPuertasAMFluids, colloids and soft materials: an introduction to soft matter physics2016New YorkWiley – reference: MinovichAAppl. Phys. Lett.201210012111310.1063/1.36951651:CAS:528:DC%2BC38XksVCmu78%3D – reference: SimovskiCTretyakovSPhys. Rev. B20097904511110.1103/PhysRevB.79.0451111:CAS:528:DC%2BD1MXhtlGiur0%3D – reference: ChoYHuhJ-HParkKJKimKLeeJLeeSOpt. Express201725138221:CAS:528:DC%2BC1cXmvV2htro%3D10.1364/OE.25.013822 – reference: MaFWuJHHuangMZhangWZhangSJ. Phys. D20154817510510.1088/0022-3727/48/17/1751051:CAS:528:DC%2BC2MXntFWqurc%3D – reference: KomarAPaniagua-DomínguezRMiroshnichenkoAYuYFKivsharYSKuznetsovAINeshevDACS Photonics2018517421:CAS:528:DC%2BC1cXitl2ls7s%3D10.1021/acsphotonics.7b01343 – reference: LeeMJeonHKimSNano Lett.20151533581:CAS:528:DC%2BC2MXlsFejtr4%3D10.1021/acs.nanolett.5b00680 – reference: MalekSCEeH-SAgarwalRNano Lett.20171736411:CAS:528:DC%2BC2sXnt1Gku7w%3D10.1021/acs.nanolett.7b00807 – reference: AlùAEnghetaNOpt. Express200917572310.1364/OE.17.0057231:CAS:528:DC%2BD1MXktl2qsrg%3D – reference: B. Kirkpatrick, P. Reader-Harris, Y. Shen, J. Wu, and A. Di Falco, In Photonic and phononic properties of engineered nanostructures V (International society for optics and photonics, 2015), p. 93710Z – reference: EeH-SAgarwalRNano Lett.20161628181:CAS:528:DC%2BC28XksVGrtrg%3D10.1021/acs.nanolett.6b00618 – reference: AksuSHuangMArtarAYanikAASelvarasahSDokmeciMRAltugHAdv. Mater.20112344221:CAS:528:DC%2BC3MXhtVOnu7fE10.1002/adma.201102430 – reference: BertoldiKVitelliVChristensenJvan HeckeMNat. Rev. Mater.20172170661:CAS:528:DC%2BC2sXhs1Kgtr3O10.1038/natrevmats.2017.66 – reference: ChenWACS Nano201812106831:CAS:528:DC%2BC1cXhslOrurnE10.1021/acsnano.8b04889 – reference: ParkKJSci. Rep.20177604510.1038/s41598-017-06456-w1:CAS:528:DC%2BC1cXhtlemurnK – reference: GutrufPZouCWithayachumnankulWBhaskaranMSriramSFumeauxCACS Nano2016101331:CAS:528:DC%2BC2MXhvFWrsb7E10.1021/acsnano.5b05954 – reference: KafesakiMTsiapaIKatsarakisNKoschnyTSoukoulisCEconomouEPhys. Rev. B20077523511410.1103/PhysRevB.75.2351141:CAS:528:DC%2BD2sXnsFamsLo%3D – reference: UrzhumovYAShvetsGFanJCapassoFBrandlDNordlanderPOpt. Express2007151412910.1364/OE.15.014129 – reference: KhooICWernerDHLiangXDiazAWeinerBOpt. Lett.20063125921:CAS:528:DC%2BD28XpsFeisr4%3D10.1364/OL.31.002592 – reference: ZhangFFengSQiuKLiuZFanYZhangWZhaoQZhouJAppl. Phys. Lett.201510609190710.1063/1.49145021:CAS:528:DC%2BC2MXjvF2jurY%3D – reference: ZhangHGuoXWuJFangDZhangYSci. Adv.20184eaar853510.1126/sciadv.aar85351:CAS:528:DC%2BC1cXisVGktb3K – reference: RamahiOMAlmoneefTSAlShareefMBoybayMSAppl. Phys. Lett.201210117390310.1063/1.47640541:CAS:528:DC%2BC38XhsFCltb%2FE – reference: ChoiMChoeJ-HKangBChoiC-GCurr. Appl. Phys.201313172310.1016/j.cap.2013.06.028 – reference: LandyNISajuyigbeSMockJJSmithDRPadillaWJPhys. Rev. Lett.20081002074021:STN:280:DC%2BD1czlsV2kug%3D%3D10.1103/PhysRevLett.100.207402 – reference: ZouQLiuWShenYJinCNanoscale201911114371:CAS:528:DC%2BC1MXhtVKit7rP10.1039/C9NR04068D – reference: KuzykASchreiberRZhangHGovorovAOLiedlTLiuNNat. Mater.2014138621:CAS:528:DC%2BC2cXhtFSlsLjN10.1038/nmat4031 – reference: HuhJ-HLeeJLeeSNano Lett.202010.1021/acs.nanolett.0c00422 – reference: FranklinDChenYVazquez-GuardadoAModakSBoroumandJXuDWuS-TChandaDNat. Commun.2015673371:CAS:528:DC%2BC2MXhtFylt7jI10.1038/ncomms8337 – reference: KimMJ. Phys. Chem. Lett2017837451:CAS:528:DC%2BC2sXht1eks7%2FO10.1021/acs.jpclett.7b01307 – reference: RozinMJRosenDADillTJTaoARNat. Commun.2015673251:CAS:528:DC%2BC2MXhtF2kt7rF10.1038/ncomms8325 – reference: Di FalcoAPloschnerMKraussTFNew J. Phys.20101211300610.1088/1367-2630/12/11/1130061:CAS:528:DC%2BC3cXhsVeqtb3N – reference: ChoYHuhJ-HKimKLeeSAdv. Opt. Mater.20197180116710.1002/adom.2018011671:CAS:528:DC%2BC1cXisVSgur3E – reference: ValenteJOuJ-YPlumEYoungsIJZheludevNINat. Commun.2015670211:CAS:528:DC%2BC2MXhtF2itLzL10.1038/ncomms8021 – reference: GaoLShigetaKVazquez-GuardadoAProglerCJBogartGRRogersJAChandaDACS Nano2014855351:CAS:528:DC%2BC2cXmtVOmsbw%3D10.1021/nn5015775 – reference: ŠvandaJKalachyovaYSlepičkaPŠvorčíkVLyutakovOApplACSMater. Interfaces2016822510.1021/acsami.5b083341:CAS:528:DC%2BC2MXhvFylurjL – reference: EvansPWurtzGHendrenWAtkinsonRDicksonWZayatsAPollardRAppl. Phys. Lett.20079104310110.1063/1.27594631:CAS:528:DC%2BD2sXovFKrtb0%3D – reference: SoukoulisCMWegenerMNat. Photonics201155231:CAS:528:DC%2BC3MXhtV2qurjL10.1038/nphoton.2011.154 – reference: AhnH-YYooSChoNHKimRMKimHHuhJ-HLeeSNamKTAcc. Chem. Res.20195227681:CAS:528:DC%2BC1MXhsl2nsr3J10.1021/acs.accounts.9b00264 – reference: GogurlaNKunduSCRaySKNanotechnology20172814520210.1088/1361-6528/aa61441:CAS:528:DC%2BC1cXkvVKqtb4%3D – reference: KimKLeeSOpt. Express201927A12411:CAS:528:DC%2BC1MXit1yisrfI10.1364/OE.27.0A1241 – reference: ErginTStengerNBrennerPPendryJBWegenerMScience201032859763373391:CAS:528:DC%2BC3cXks1Sgtb4%3D10.1126/science.1186351 – reference: MinovichANeshevDNPowellDAShadrivovIVKivsharYSAppl. Phys. Lett.20109619310310.1063/1.34274291:CAS:528:DC%2BC3cXlvVelu7c%3D – reference: SharmaMHendlerNEllenbogenTJAOMAdv. Optical Mater.2020819011821:CAS:528:DC%2BB3cXht1Gkurw%3D10.1002/adom.201901182 – reference: KolleMLeeSAdv. Mater.201830170266910.1002/adma.2017026691:CAS:528:DC%2BC2sXhs12lsrvL – reference: ChuKCChaoCYChenYFWuYCChenC-CAppl. Phys. Lett.20068910310710.1063/1.23358121:CAS:528:DC%2BD28XpvVyqt7o%3D – reference: KamaliSMArbabiAArbabiEHorieYFaraonAJNCNat. Commun.20167116181:CAS:528:DC%2BC28Xotleht7o%3D10.1038/ncomms11618 – reference: ZhangFKangLZhaoQZhouJZhaoXLippensDOpt. Express20091743601:CAS:528:DC%2BD1MXjslCrsb4%3D10.1364/OE.17.004360 – reference: JiangYWangQSci. Rep.20166341471:CAS:528:DC%2BC28XhsFynur7J10.1038/srep34147 – reference: PoddubnyAIorshIBelovPKivsharYNat. Photonics201379481:CAS:528:DC%2BC3sXhvVGru7nO10.1038/nphoton.2013.243 – reference: WangZJingLYaoKYangYZhengBSoukoulisCMChenHLiuYAdv. Mater.201729170041210.1002/adma.2017004121:CAS:528:DC%2BC2sXntlynsL4%3D – reference: OuJ-YPlumEJiangLZheludevNINano Lett.20111121421:CAS:528:DC%2BC3MXksFamurg%3D10.1021/nl200791r – reference: ChenZGuoBYangYChengCPhysica B Condens. Matter201443811:CAS:528:DC%2BC2cXislGqs7o%3D10.1016/j.physb.2013.12.040 – reference: De GennesP-GRev. Mod. Phys.19926464510.1103/RevModPhys.64.645 – reference: ShalaevVMNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D10.1038/nphoton.2006.49 – reference: P. Reader-Harris, B. C. Kirkpatrick, and A. Di Falco, In Quantum sensing and nanophotonic devices XI (International Society for Optics and Photonics, 2014), p. 89930P – reference: WangXKwonD-HWernerDHKhooI-CKildishevAVShalaevVMAppl. Phys. Lett.20079114312210.1063/1.27953451:CAS:528:DC%2BD2sXhtF2murjO – reference: PartlowBPAdv. Funct. Mater.20142446151:CAS:528:DC%2BC2cXmsVKrsb4%3D10.1002/adfm.201400526 – reference: LeeYACS Photonics2017419541:CAS:528:DC%2BC2sXhtV2ru73J10.1021/acsphotonics.7b00249 – reference: YoungKLAdv. Mater.2014266531:CAS:528:DC%2BC3sXhs1yksbvE10.1002/adma.201302938 – reference: RenM-XWuWCaiWPiBZhangX-ZXuJ-JLight Sci. Appl.20176e162541:CAS:528:DC%2BC2sXpt1KqtL0%3D10.1038/lsa.2016.254 – reference: LewandowskiWFruhnertMMieczkowskiJRockstuhlCGóreckaENat. Commun.20156659010.1038/ncomms75901:CAS:528:DC%2BC2MXosFeksrY%3D – reference: PtasinskiJKimSWPangLKhooI-CFainmanYOpt. Lett.20133820081:CAS:528:DC%2BC3sXht1artrrJ10.1364/OL.38.002008 – reference: BrunetTMerlinAMascaroBZimnyKLengJPonceletOAristeguiCMondain-MonvalONat. Mater.2015143841:CAS:528:DC%2BC2cXitFKltLfN10.1038/nmat4164 – reference: MaryARodrigoSGGarcia-VidalFMartin-MorenoLPhys. Rev. Lett.20081011039021:STN:280:DC%2BD1cnls12qtg%3D%3D10.1103/PhysRevLett.101.103902 – reference: CuiYFungKHXuJMaHJinYHeSFangNXNano Lett.20121214431:CAS:528:DC%2BC38XhvVSrt7g%3D10.1021/nl204118h – reference: ZhangXLiuZNat. Mater.200874351:CAS:528:DC%2BD1cXmsVejt7o%3D10.1038/nmat2141 – reference: KomarAAppl. Phys. Lett.201711007110910.1063/1.49765041:CAS:528:DC%2BC2sXislGmt7c%3D – reference: XiaoSChettiarUKKildishevAVDrachevVKhooIShalaevVMAppl. Phys. Lett.20099503311510.1063/1.31828571:CAS:528:DC%2BD1MXptVOlsrs%3D – reference: YahiaouiRTanSCongLSinghRYanFZhangWJ. Appl. Phys.201511808310310.1063/1.49294491:CAS:528:DC%2BC2MXhsVSltL3J – reference: PryceIMAydinKKelaitaYABriggsRMAtwaterHANano Lett.20101042221:CAS:528:DC%2BC3cXhtFygsb7P10.1021/nl102684x – reference: MüllerJSönnichsenCVon PoschingerHVon PlessenGKlarTFeldmannJAppl. Phys. Lett.20028117110.1063/1.14910031:CAS:528:DC%2BD38XkvFOkur0%3D – reference: PratibhaRParkKSmalyukhIParkWOpt. Express200917194591:CAS:528:DC%2BD1MXhtlGmsr7N10.1364/OE.17.019459 – reference: HuangFBaumbergJJNano Lett.20101017871:CAS:528:DC%2BC3cXltVygt7k%3D10.1021/nl1004114 – reference: VallecchiAAlbaniMCapolinoFOpt. Express20111927541:CAS:528:DC%2BC3MXhvFahsbY%3D10.1364/OE.19.002754 – reference: KuzykASchreiberRFanZPardatscherGRollerE-MHögeleASimmelFCGovorovAOLiedlTNature20124833111:CAS:528:DC%2BC38XktVaru7k%3D10.1038/nature10889 – reference: GuoXYingYTongLAcc. Chem. Res.20134765610.1021/ar400232h1:CAS:528:DC%2BC2cXhsl2nsQ%3D%3D – reference: SunMXuXSunXWLiangXAValuckasVZhengYPaniagua-DomínguezRKuznetsovAISci. Rep.20199867310.1038/s41598-019-45091-51:CAS:528:DC%2BC1MXhtFymu7fK – reference: NiXWongZJMrejenMWangYZhangXScience201534913101:CAS:528:DC%2BC2MXhsV2gtLjP10.1126/science.aac9411 – reference: PratibhaRParkWSmalyukhIIApplJPhysics2010107063511 – reference: NagasakiYGholipourBOuJ-YTsurutaMPlumEMacDonaldKFTakaharaJZheludevNIAppl. Phys. Lett.201811302110510.1063/1.50254001:CAS:528:DC%2BC1cXhtlWqurzN – reference: PengJJeongH-HLinQCormierSLiangH-LDe VolderMFLVignoliniSBaumbergJJSci. Adv.20195220510.1126/sciadv.aaw2205 – reference: BohnJBucherTChongKEKomarAChoiD-YNeshevDNKivsharYSPertschTStaudeINano Lett.20181834611:CAS:528:DC%2BC1cXosFOnt7g%3D10.1021/acs.nanolett.8b00475 – reference: M. Tsuruta, J. Valente, B. Gholipour, K. MacDonald, E. Plum, and N. Zheludev, 2016 In Conference on lasers and electro-optics (CLEO) (2016) – reference: KimJYNat. Commun.20167129111:CAS:528:DC%2BC28Xhs1Smu7rE10.1038/ncomms12911 – reference: LeeH-ENature20185563601:CAS:528:DC%2BC1cXosVCmsLk%3D10.1038/s41586-018-0034-1 – reference: SilverbergJLEvansAAMcLeodLHaywardRCHullTSantangeloCDCohenIScience20143456471:CAS:528:DC%2BC2cXht12gtLjF10.1126/science.1252876 – reference: LysyakovaLLomadzeNNeherDMaximovaKKabashinAVSanterSJ. Phys. Chem.201511937621:CAS:528:DC%2BC2MXosVKmsw%3D%3D – reference: OuJ-YPlumEZhangJZheludevNINat. Nanotechnol.201382521:CAS:528:DC%2BC3sXktVKgtL0%3D10.1038/nnano.2013.25 – reference: SmithDRPendryJBWiltshireMCScience20043057881:CAS:528:DC%2BD2cXmt1Krtr8%3D10.1126/science.1096796 – reference: KrukSSWongZJPshenay-SeverinEO’BrienKNeshevDNKivsharYSZhangXNat. Commun.20167113291:CAS:528:DC%2BC28Xmt1Sjtr4%3D10.1038/ncomms11329 – reference: JacobZAlekseyevLVNarimanovEOpt. Express200614824710.1364/OE.14.008247 – reference: XuXPengBLiDZhangJWongLMZhangQWangSXiongQNano Lett.20111132321:CAS:528:DC%2BC3MXotlGnur0%3D10.1021/nl2014982 – reference: CuiYZhouJTammaVAParkWACS Nano2012623851:CAS:528:DC%2BC38XitlOltrk%3D10.1021/nn204647b – reference: KamaliSMArbabiEArbabiAHorieYFaraonALaser Photonics Rev.20161010021:CAS:528:DC%2BC28XhvV2gtrbM10.1002/lpor.201600144 – reference: ChandaDNat. Nanotechnol.201164021:CAS:528:DC%2BC3MXnslSmt7s%3D10.1038/nnano.2011.82 – reference: LiXShaWEChoyWCFungDDXieFJ. Phys. Chem.201211672001:CAS:528:DC%2BC38XjslKnsr4%3D – reference: KimMLeeSLeeJKimDKHwangYJLeeGYiG-RSongYJOpt. Express201523127661:CAS:528:DC%2BC2sXks1Wmu7k%3D10.1364/OE.23.012766 – reference: KimKYooSHuhJ-HParkQHLeeSACS Photonics2017422981:CAS:528:DC%2BC2sXht1ylsrnP10.1021/acsphotonics.7b00546 – reference: SautterJStaudeIDeckerMRusakENeshevDNBrenerIKivsharYSACS Nano2015943081:CAS:528:DC%2BC2MXjvFygtrc%3D10.1021/acsnano.5b00723 – reference: X. Zhang, In 2018 conference on lasers and electro-optics pacific rim (CLEO-PR), pp. 1 (2018) – reference: LeeSKimSKimT-TKimYChoiMLeeSHKimJ-YMinBAdv. Mater.20122434911:CAS:528:DC%2BC38XosVantro%3D10.1002/adma.201200419 – reference: YaoJLiuZLiuYWangYSunCBartalGStacyAMZhangXScience20083219301:CAS:528:DC%2BD1cXpslWrtLo%3D10.1126/science.1157566 – reference: AlùAEnghetaNPhys. Rev. B20087808511210.1103/PhysRevB.78.0851121:CAS:528:DC%2BD1cXhtVKitLfP – reference: LeeJHuhJ-HKimKLeeSAdv. Funct. Mater.201828170730910.1002/adfm.2017073091:CAS:528:DC%2BC1cXisFCjsro%3D – reference: FengSHaltermanKPhys. Rev. B20128616510310.1103/PhysRevB.86.1651031:CAS:528:DC%2BC38XhslylsL7N – reference: KuboSDiazATangYMayerTSKhooICMalloukTENano Lett.2007734181:CAS:528:DC%2BD2sXhtFOitb3L10.1021/nl071893x – reference: AlaeianHDionneJAOpt. Express201220157811:CAS:528:DC%2BC38XhtVWgsbrI10.1364/OE.20.015781 – reference: ShamoninaESolymarLMetamaterials200711210.1016/j.metmat.2007.02.001 – reference: LeeSOpt. Express201523281701:CAS:528:DC%2BC2sXltFKmtLY%3D10.1364/OE.23.028170 – reference: FanJAScience201032811351:CAS:528:DC%2BC3cXmsVGjs7s%3D10.1126/science.1187949 – reference: KimRChungKKimJYNamYParkS-HKShinJACS Photonics2018511881:CAS:528:DC%2BC1cXjvFKjsb4%3D10.1021/acsphotonics.7b01497 – reference: MerlinRProc. Natl. Acad. Sci.200910616931:CAS:528:DC%2BD1MXitVGntbk%3D10.1073/pnas.0808478106 – reference: ArbabiEArbabiAKamaliSMHorieYFaraji-DanaMFaraonANat. Commun.2018981210.1038/s41467-018-03155-61:CAS:528:DC%2BC1cXhtFWkt7nM – reference: SchreiberRNat. Commun.20134294810.1038/ncomms39481:CAS:528:DC%2BC2cXhsFelt7g%3D – reference: ZhouZACS Appl. Mater. Interfaces.20179352441:CAS:528:DC%2BC2sXhsFWhu73M10.1021/acsami.7b11139 – reference: LiuZXuYJiC-YChenSLiXZhangXYaoYLiJAdv. Mater.20203219070771:CAS:528:DC%2BB3cXht1Giu78%3D10.1002/adma.201907077 – reference: BelovPMarquesRMaslovskiSNefedovISilveirinhaMSimovskiCTretyakovSPhys. Rev. B20036711310310.1103/PhysRevB.67.1131031:CAS:528:DC%2BD3sXis1yls7s%3D – reference: TsengMLYangJSemmlingerMZhangCNordlanderPHalasNJNano Lett.20171760341:CAS:528:DC%2BC2sXhsVeksL7F10.1021/acs.nanolett.7b02350 – reference: GardnerDFEvansJSSmalyukhIIMol. Cryst. Liq. Cryst.2011545122710.1080/15421406.2011.5719661:CAS:528:DC%2BC3MXovFGgsL4%3D – volume: 18 start-page: 1435 year: 2018 ident: 226_CR126 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05190 – volume: 91 start-page: 143122 year: 2007 ident: 226_CR51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2795345 – volume: 545 start-page: 1227 year: 2011 ident: 226_CR141 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2011.571966 – volume: 81 start-page: 171 year: 2002 ident: 226_CR101 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1491003 – volume: 91 start-page: 043101 year: 2007 ident: 226_CR103 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2759463 – volume: 12 start-page: 1443 year: 2012 ident: 226_CR16 publication-title: Nano Lett. doi: 10.1021/nl204118h – volume: 116 start-page: 7200 year: 2012 ident: 226_CR84 publication-title: J. Phys. Chem. – volume: 14 start-page: 8247 year: 2006 ident: 226_CR25 publication-title: Opt. Express doi: 10.1364/OE.14.008247 – volume-title: Optical metamaterials: fundamentals and applications year: 2009 ident: 226_CR2 – volume: 14 start-page: 384 year: 2015 ident: 226_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat4164 – volume: 17 start-page: 19459 year: 2009 ident: 226_CR56 publication-title: Opt. Express doi: 10.1364/OE.17.019459 – volume: 15 start-page: 3358 year: 2015 ident: 226_CR72 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00680 – volume: 13 start-page: 862 year: 2014 ident: 226_CR77 publication-title: Nat. Mater. doi: 10.1038/nmat4031 – volume: 5 start-page: 13535 year: 2015 ident: 226_CR39 publication-title: Sci. Rep. doi: 10.1038/srep13535 – volume: 556 start-page: 360 year: 2018 ident: 226_CR78 publication-title: Nature doi: 10.1038/s41586-018-0034-1 – volume: 47 start-page: 2075 year: 1999 ident: 226_CR6 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.798002 – volume: 3 start-page: 21 year: 2016 ident: 226_CR135 publication-title: Nano Convergence doi: 10.1186/s40580-016-0081-y – volume: 119 start-page: 3762 year: 2015 ident: 226_CR99 publication-title: J. Phys. Chem. – volume: 17 start-page: 3641 year: 2017 ident: 226_CR132 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00807 – volume: 118 start-page: 083103 year: 2015 ident: 226_CR45 publication-title: J. Appl. Phys. doi: 10.1063/1.4929449 – volume: 9 start-page: 8673 year: 2019 ident: 226_CR109 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45091-5 – volume: 48 start-page: 175105 year: 2015 ident: 226_CR36 publication-title: J. Phys. D doi: 10.1088/0022-3727/48/17/175105 – volume: 6 start-page: 27432 year: 2016 ident: 226_CR38 publication-title: Sci. Rep. doi: 10.1038/srep27432 – volume: 95 start-page: 033115 year: 2009 ident: 226_CR118 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3182857 – volume: 7 start-page: 11329 year: 2016 ident: 226_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms11329 – volume: 6 start-page: 34147 year: 2016 ident: 226_CR49 publication-title: Sci. Rep. doi: 10.1038/srep34147 – volume: 6 start-page: e16254 year: 2017 ident: 226_CR97 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.254 – volume: 32 start-page: 1907077 year: 2020 ident: 226_CR128 publication-title: Adv. Mater. doi: 10.1002/adma.201907077 – volume: 7 start-page: 1900074 year: 2019 ident: 226_CR30 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900074 – volume: 38 start-page: 2008 year: 2013 ident: 226_CR58 publication-title: Opt. Lett. doi: 10.1364/OL.38.002008 – volume: 106 start-page: 1693 year: 2009 ident: 226_CR62 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0808478106 – volume: 28 start-page: 145202 year: 2017 ident: 226_CR73 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa6144 – volume: 483 start-page: 311 year: 2012 ident: 226_CR75 publication-title: Nature doi: 10.1038/nature10889 – volume: 27 start-page: A1241 year: 2019 ident: 226_CR140 publication-title: Opt. Express doi: 10.1364/OE.27.0A1241 – volume: 86 start-page: 165103 year: 2012 ident: 226_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.165103 – volume: 23 start-page: 21809 year: 2015 ident: 226_CR139 publication-title: Opt. Express doi: 10.1364/OE.23.021809 – volume: 15 start-page: 3342 year: 2007 ident: 226_CR52 publication-title: Opt. Express doi: 10.1364/OE.15.003342 – volume: 7 start-page: 6045 year: 2017 ident: 226_CR149 publication-title: Sci. Rep. doi: 10.1038/s41598-017-06456-w – volume: 64 start-page: 645 year: 1992 ident: 226_CR28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.645 – volume: 7 start-page: 12911 year: 2016 ident: 226_CR151 publication-title: Nat. Commun. doi: 10.1038/ncomms12911 – volume: 20 start-page: 15781 year: 2012 ident: 226_CR137 publication-title: Opt. Express doi: 10.1364/OE.20.015781 – volume: 28 start-page: 1707309 year: 2018 ident: 226_CR145 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707309 – volume: 11 start-page: 2254 year: 2019 ident: 226_CR98 publication-title: Mater. Interfaces doi: 10.1021/acsami.8b17258 – volume: 6 start-page: 6590 year: 2015 ident: 226_CR122 publication-title: Nat. Commun. doi: 10.1038/ncomms7590 – volume: 8 start-page: 5535 year: 2014 ident: 226_CR82 publication-title: ACS Nano doi: 10.1021/nn5015775 – volume: 7 start-page: 3418 year: 2007 ident: 226_CR64 publication-title: Nano Lett. doi: 10.1021/nl071893x – volume: 5 start-page: 523 year: 2011 ident: 226_CR3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.154 – volume: 31 start-page: 2592 year: 2006 ident: 226_CR55 publication-title: Opt. Lett. doi: 10.1364/OL.31.002592 – ident: 226_CR90 – volume: 7 start-page: 11618 year: 2016 ident: 226_CR133 publication-title: Nat. Commun. doi: 10.1038/ncomms11618 – volume: 30 start-page: 1702669 year: 2018 ident: 226_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201702669 – volume: 13 start-page: 4137 year: 2013 ident: 226_CR65 publication-title: Nano Lett. doi: 10.1021/nl401642z – volume: 26 start-page: 653 year: 2014 ident: 226_CR143 publication-title: Adv. Mater. doi: 10.1002/adma.201302938 – volume: 25 start-page: 13822 year: 2017 ident: 226_CR69 publication-title: Opt. Express doi: 10.1364/OE.25.013822 – volume: 31 start-page: 1901364 year: 2019 ident: 226_CR144 publication-title: Adv. Mater. doi: 10.1002/adma.201901364 – volume: 328 start-page: 337 issue: 5976 year: 2010 ident: 226_CR22 publication-title: Science doi: 10.1126/science.1186351 – volume: 6 start-page: 27621 year: 2016 ident: 226_CR46 publication-title: Sci. Rep. doi: 10.1038/srep27621 – year: 2020 ident: 226_CR68 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00422 – volume: 6 start-page: 132 year: 2014 ident: 226_CR86 publication-title: Nanoscale doi: 10.1039/C3NR04012G – volume: 28 start-page: 729 year: 2016 ident: 226_CR100 publication-title: Adv. Mater. doi: 10.1002/adma.201504467 – volume: 10 start-page: 2118 year: 2019 ident: 226_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09939-8 – volume: 349 start-page: 1310 year: 2015 ident: 226_CR21 publication-title: Science doi: 10.1126/science.aac9411 – volume: 4 start-page: eaar8535 year: 2018 ident: 226_CR50 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar8535 – volume: 7 start-page: 435 year: 2008 ident: 226_CR23 publication-title: Nat. Mater. doi: 10.1038/nmat2141 – volume: 100 start-page: 121113 year: 2012 ident: 226_CR54 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3695165 – volume: 6 start-page: 7021 year: 2015 ident: 226_CR113 publication-title: Nat. Commun. doi: 10.1038/ncomms8021 – volume: 364 start-page: 1087 year: 2019 ident: 226_CR107 publication-title: Science doi: 10.1126/science.aaw6747 – volume: 7 start-page: 948 year: 2013 ident: 226_CR20 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.243 – volume: 78 start-page: 085112 year: 2008 ident: 226_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.085112 – volume: 17 start-page: 4360 year: 2009 ident: 226_CR40 publication-title: Opt. Express doi: 10.1364/OE.17.004360 – volume: 52 start-page: 2768 year: 2019 ident: 226_CR80 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00264 – volume: 47 start-page: 656 year: 2013 ident: 226_CR10 publication-title: Acc. Chem. Res. doi: 10.1021/ar400232h – volume: 305 start-page: 788 year: 2004 ident: 226_CR14 publication-title: Science doi: 10.1126/science.1096796 – volume: 101 start-page: 103902 year: 2008 ident: 226_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.103902 – volume: 328 start-page: 1135 year: 2010 ident: 226_CR142 publication-title: Science doi: 10.1126/science.1187949 – volume: 13 start-page: 1723 year: 2013 ident: 226_CR87 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2013.06.028 – volume: 12 start-page: 5030 year: 2018 ident: 226_CR79 publication-title: ACS Nano doi: 10.1021/acsnano.8b02566 – volume: 89 start-page: 103107 year: 2006 ident: 226_CR102 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2335812 – volume: 17 start-page: 6034 year: 2017 ident: 226_CR129 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02350 – volume: 308 start-page: 534 year: 2005 ident: 226_CR24 publication-title: Science doi: 10.1126/science.1108759 – volume: 15 start-page: 14129 year: 2007 ident: 226_CR59 publication-title: Opt. Express doi: 10.1364/OE.15.014129 – volume: 137 start-page: 235 year: 2015 ident: 226_CR26 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.02.019 – volume: 8 start-page: 1901182 year: 2020 ident: 226_CR106 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901182 – volume: 102 start-page: 121101 year: 2013 ident: 226_CR44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4773238 – volume: 5 start-page: 1742 year: 2018 ident: 226_CR120 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01343 – volume: 18 start-page: 3461 year: 2018 ident: 226_CR119 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00475 – volume: 1 start-page: 41 year: 2007 ident: 226_CR4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2006.49 – volume: 321 start-page: 930 year: 2008 ident: 226_CR11 publication-title: Science doi: 10.1126/science.1157566 – volume: 6 start-page: 5474 year: 2012 ident: 226_CR134 publication-title: ACS Nano doi: 10.1021/nn301358n – volume: 11 start-page: 3232 year: 2011 ident: 226_CR91 publication-title: Nano Lett. doi: 10.1021/nl2014982 – volume: 11 start-page: 2142 year: 2011 ident: 226_CR117 publication-title: Nano Lett. doi: 10.1021/nl200791r – volume: 26 start-page: 5515 year: 2016 ident: 226_CR92 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601154 – volume: 17 start-page: 5723 year: 2009 ident: 226_CR136 publication-title: Opt. Express doi: 10.1364/OE.17.005723 – volume: 12 start-page: 113006 year: 2010 ident: 226_CR88 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/11/113006 – volume: 113 start-page: 021105 year: 2018 ident: 226_CR124 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5025400 – volume: 23 start-page: 12766 year: 2015 ident: 226_CR148 publication-title: Opt. Express doi: 10.1364/OE.23.012766 – volume: 1 start-page: 12 year: 2007 ident: 226_CR1 publication-title: Metamaterials doi: 10.1016/j.metmat.2007.02.001 – volume: 455 start-page: 376 year: 2008 ident: 226_CR5 publication-title: Nature doi: 10.1038/nature07247 – volume: 342 start-page: 323 year: 2013 ident: 226_CR35 publication-title: Science doi: 10.1126/science.1241727 – volume: 6 start-page: 7337 year: 2015 ident: 226_CR104 publication-title: Nat. Commun. doi: 10.1038/ncomms8337 – volume: 6 start-page: 2385 year: 2012 ident: 226_CR93 publication-title: ACS Nano doi: 10.1021/nn204647b – volume: 9 start-page: 35244 year: 2017 ident: 226_CR111 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b11139 – volume: 100 start-page: 207402 year: 2008 ident: 226_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 5 start-page: 2205 year: 2019 ident: 226_CR110 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2205 – ident: 226_CR96 – volume: 9 start-page: 4308 year: 2015 ident: 226_CR121 publication-title: ACS Nano doi: 10.1021/acsnano.5b00723 – volume: 16 start-page: 2818 year: 2016 ident: 226_CR130 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00618 – volume: 79 start-page: 045111 year: 2009 ident: 226_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.045111 – ident: 226_CR123 – volume: 96 start-page: 193103 year: 2010 ident: 226_CR53 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3427429 – volume: 6 start-page: 7325 year: 2015 ident: 226_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms8325 – volume: 8 start-page: 3745 year: 2017 ident: 226_CR150 publication-title: J. Phys. Chem. Lett doi: 10.1021/acs.jpclett.7b01307 – volume: 17 start-page: 2547 year: 2005 ident: 226_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.200500804 – volume: 101 start-page: 173903 year: 2012 ident: 226_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4764054 – volume: 75 start-page: 235114 year: 2007 ident: 226_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.235114 – volume: 107 start-page: 063511 year: 2010 ident: 226_CR57 publication-title: Physics – volume: 23 start-page: 4422 year: 2011 ident: 226_CR94 publication-title: Adv. Mater. doi: 10.1002/adma.201102430 – volume: 24 start-page: 3491 year: 2012 ident: 226_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.201200419 – volume: 106 start-page: 091907 year: 2015 ident: 226_CR42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4914502 – volume: 11 start-page: 11437 year: 2019 ident: 226_CR114 publication-title: Nanoscale doi: 10.1039/C9NR04068D – volume: 10 start-page: 133 year: 2016 ident: 226_CR83 publication-title: ACS Nano doi: 10.1021/acsnano.5b05954 – volume: 67 start-page: 113103 year: 2003 ident: 226_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.113103 – volume: 4 start-page: 1954 year: 2017 ident: 226_CR108 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00249 – volume: 10 start-page: 4222 year: 2010 ident: 226_CR85 publication-title: Nano Lett. doi: 10.1021/nl102684x – volume: 8 start-page: 252 year: 2013 ident: 226_CR112 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.25 – volume: 127 start-page: 5738 year: 2016 ident: 226_CR95 publication-title: Optik doi: 10.1016/j.ijleo.2016.02.067 – volume: 8 start-page: 225 year: 2016 ident: 226_CR115 publication-title: Mater. Interfaces doi: 10.1021/acsami.5b08334 – volume: 4 start-page: 2948 year: 2013 ident: 226_CR76 publication-title: Nat. Commun. doi: 10.1038/ncomms3948 – volume: 19 start-page: 2754 year: 2011 ident: 226_CR61 publication-title: Opt. Express doi: 10.1364/OE.19.002754 – volume: 2 start-page: 17066 year: 2017 ident: 226_CR47 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.66 – volume: 24 start-page: 4615 year: 2014 ident: 226_CR71 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400526 – volume: 99 start-page: 163110 year: 2011 ident: 226_CR89 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3655332 – volume: 29 start-page: 1700412 year: 2017 ident: 226_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201700412 – volume: 138 start-page: 7733 year: 2016 ident: 226_CR146 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03966 – volume: 12 start-page: 10683 year: 2018 ident: 226_CR127 publication-title: ACS Nano doi: 10.1021/acsnano.8b04889 – volume: 4 start-page: 2298 year: 2017 ident: 226_CR67 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00546 – volume: 10 start-page: 1787 year: 2010 ident: 226_CR125 publication-title: Nano Lett. doi: 10.1021/nl1004114 – volume: 10 start-page: 1002 year: 2016 ident: 226_CR131 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201600144 – volume: 438 start-page: 1 year: 2014 ident: 226_CR27 publication-title: Physica B Condens. Matter doi: 10.1016/j.physb.2013.12.040 – volume: 345 start-page: 647 year: 2014 ident: 226_CR48 publication-title: Science doi: 10.1126/science.1252876 – volume: 5 start-page: 1188 year: 2018 ident: 226_CR147 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01497 – volume: 16 start-page: 1472 year: 2016 ident: 226_CR66 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05142 – volume: 292 start-page: 77 year: 2001 ident: 226_CR7 publication-title: Science doi: 10.1126/science.1058847 – volume: 7 start-page: 1801167 year: 2019 ident: 226_CR70 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801167 – volume: 110 start-page: 071109 year: 2017 ident: 226_CR105 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976504 – volume: 9 start-page: 812 year: 2018 ident: 226_CR116 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03155-6 – volume: 23 start-page: 28170 year: 2015 ident: 226_CR138 publication-title: Opt. Express doi: 10.1364/OE.23.028170 – volume: 2 start-page: 1675 year: 2015 ident: 226_CR74 publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00470 – volume: 6 start-page: 402 year: 2011 ident: 226_CR81 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.82 – ident: 226_CR32 – volume-title: Fluids, colloids and soft materials: an introduction to soft matter physics year: 2016 ident: 226_CR29 |
SSID | ssj0001763418 |
Score | 2.434061 |
SecondaryResourceType | review_article |
Snippet | Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials... Abstract Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18 |
SubjectTerms | Advance in Photonic Devices Scaling Down to the Nanoscale Chemistry and Materials Science Image resolution Materials Science Metamaterials Metasurfaces Nanofabrication Nanophotonics Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optical properties Reconfigurable metamaterials Review Soft matter Stealth technology Visibility 고분자공학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1VnNpD1Q8oSwEF1BtYrDdej_dIKxAg0UuLxM2ynTEg6AaF8P879m7SpLT00lOktVdy3tj75vnjGeCTa-qgXURRNlUQSmEQHocolPEREQl9TFMD51_1yYU6u6wvF676SnvCOnvgDrgD5mTypcIR1kE5icyvnklcs6RD72U22y6bckFM5dkVHjZKmtkpGaMPHjgzMaVIainxlha4xETZsJ_5pZ3EP-WaT7dM_rZumuno-A287vPIwWHX_rfwgtp38GrBXfA9bHzjT-xgfJ9nqwc_aOo4O-063CpcHB99_3Ii-qsQRGC-nYqhZtklSZVOUlUFWXvmFVYeJhpSTlOkdGI229NXMjTBmDiS0Xt06eQoS5I1WGnHLa3DgDEzxjFLIynlIzWeGk0U-ZNZjpxyBcgZLDb0PuHpuoo7m_WC0baD0jKUNkNpsYC9-Tv3nUvGs7U_J7TnNZPDdX7Acbd93O2_4l7ALsfK3oab_H76vRrb24llHXBqOatlKTgsYHMWStuPzQebchiF6ea1AnbmxTyq0lKJa2n82NVpWDtWqoAPXeTnzeUUtJY45BJc6hNL_2e5pL25zs7dWKm0TlvA_qz3_GrW3_Ha-B94fYSXVe78aVPjJqxMJ4-0xfnU1G_nofMTzbYUqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOiPJMadGCuIHVOOt4nANCLWpVkFghoFJvlu3YbVVIlu32_zN2kt0uj54ixbZkj2c83-fHDMBrU5VOmoAsrwrHhEDHLE6QCWUDInq0IW4NfJ7K4xPx6bQ83YDp8BYmXqsc1sS0UNeti3vke9HzCIz5st7PfrGYNSqerg4pNEyfWqF-l0KM3YHNImZVHsHmweH0y9fVrguZk-BqeD2j5N4VIRaVs8iioj-TDNc8VArkT36nmYd_YdC_r1L-cZ6a3NTRA7jf48vxfqcQW7Dhm4dw70bUwUew_Y2W3nE7S7vY459-YQi1dor4GE6ODr9_OGZ9igTmyA8v2EQSHeNe5Ib7onC8tORviJGooLww0gcfX9KmsPUFd5VTKtQ8WIsmviglqvIERk3b-GcwtlwqZch7oxfCBl9ZX0nvAy2leW2EyYAPYtGujx8e01j80IlHKKk7UWoSpU6i1JjBm2WbWRc949baB1Hay5ox8nX60c7PdG9IVL_0NhdYY-mE4Uh4yxKok0Tx0dIYMnhFc6Uv3UVqH79nrb6ca-IHHzWhXaKIkwx2hqnUvc1e6ZWGZfByWUzWFo9QTOPb665ORZyyEBk87WZ-2V2CpiXHCZXgmk6sjWe9pLk4TxG9sRDx_DaDt4P2rLr1f3lt3z6K53C3SGodrzHuwGgxv_a7hKAW9kVvFr8BqEMULg priority: 102 providerName: ProQuest |
Title | Soft optical metamaterials |
URI | https://link.springer.com/article/10.1186/s40580-020-00226-7 https://www.ncbi.nlm.nih.gov/pubmed/32451734 https://www.proquest.com/docview/2406474179 https://www.proquest.com/docview/2406949524 https://pubmed.ncbi.nlm.nih.gov/PMC7248166 https://doaj.org/article/025eb047d75c4a17893b26467427bb16 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002705253 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nano Convergence, 2020, 7(18), , pp.1-17 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxsxDLYGvGwPaBvbOGBVN-1ti3a55uLcY6korNIQGkPiLUrSZEPAFZXy_3Fy10IHQ-IpUuJIiR3Hn53EAfhiqtJJE5DlVeGYEOiYxR4yoWxARI82xNDAz0N5cCJGp-VpmyYnvoW5f37Plfx-TYBC5Sw6OdHcSIYrsFbSxhuv7w3k4C6eQooiuJq_i3m065LtSSn6yaLU0_AYunx4SfKfk9JkgIavYb1Fjt1-I-o38MLXb-HVvXyCG7B1TJtqd3KV4tPdSz8zhEebJfYOToZ7vwcHrP38gDmysDPWk-RocS9yw31ROF5asiTka6igvDDSBx_fyKaE9AV3lVMqjHmwFk18K0pOyHtYrSe134Su5VIpQ3YZvRA2-Mr6SnofaJPMx0aYDPicLdq1mcHjBxUXOnkISuqGlZpYqRMrNWbwddHnqsmL8ST1buT2gjLmtE4VJGrdqgjRl97mAsdYOmE4EpKyBNckOe9oaQ4ZfCZZ6XN3lvrH8s9En081If8fmnAsOX-9DHbmotStNl7riFoExr_WMvi0aCY9iocjpvaTm4amIm-xEBl8aCS_GC6BzpJjj1pwaU0szWe5pT77m3J1YyHiyWwG3-ar525Y_-fX1vPIt-FlkZZ5vLC4A6uz6Y3_SFhpZjuwoob7HVjr90fHIyp39w6PflHtoBCdpECdFIW4BZREDCQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4IN6kFAgITmA1DyfjHCpEodUubVcIWqk3YztOqQrJsrsV4s_x2xg7yS7Lo7eeIsW2ZI_n8Y3tmQF4porM5KpCFhWJYZyjYRpTZFzoChEt6sodDRyM8sERf3ecHa_Azz4Wxj2r7HWiV9RlY9wZ-aazPBxdvaxX42_MVY1yt6t9CQ3VlVYot3yKsS6wY8_--E4u3HRr-Jb2-3mS7O4cvhmwrsoAM2TKZizNyaOJLY9UbJPExJkmlU2gXlTCcpXbyrpgVJ_5PYlNYYSoyrjSGpULykRXNYJMwBrBjpSkam17Z_T-w-KUh8SXx6KP1hH55pQQkoiY89qc_cwZLllEXziA7Fw9qf6Fef9-uvnH_a03i7s34HqHZ8PXLQPehBVb34Jrv2U5vA3rH0nVh83Yn5qHX-1MEUpuGf8OHF0Kse7Cat3U9j6EOs6FUIQW0HKuK1toW-TWVqS6o1JxFUDck0WaLl-5K5vxRXq_ReSyJaUkUkpPSokBvJiPGbfZOi7sve2oPe_pMm37H83kRHaCS_0zqyOOJWaGqxgJ32kCkTnyBDWtIYCntFfyzJz68e570siziSR_ZCgJXZNLmgaw0W-l7HTEVC44OoAn82aSbndlo2rbnLd9CvJhEx7AvXbn59MlKJzFmFILLvHE0nqWW-rTzz6DOCbc3RcH8LLnnsW0_k-v9YtX8RiuDA4P9uX-cLT3AK4mnsXdE8oNWJ1Nzu1DQm8z_agTkRA-XbZU_gKWWE7n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQ0LwgPgmY0BB8ARRk9TJOQ8IAaOsDCYkmLQ3Y7v2mLYlpe2E-Nf467hzkpbysbc9RYptyT7fx-_O9h3AY13mttAe46TMbCwE2tjgAGMhjUdEh8ZzaODDbrG9J97t5_tr8LN7C8PXKjudGBT1uLYcI--z5RHI9bL6vr0W8XFr-GLyLeYKUnzS2pXTaFhkx_34Tu7b7Ploi_b6SZYN33x-vR23FQZiS2ZsHg8K8mZSJxKduiyzaW5IXROgl146oQvnHT9EDVnfs9SWVko_Tr0xqPlBJnLFCFL_F7jUC0uUHL5dxndIcEUqu3c6sujPCBvJJGZ_jS1nEeOKLQwlA8jCVVP_L7T796XNP05ug0EcXoUrLZLtvWxY7xqsueo6XP4tv-EN2PhESr5XT0K8vHfi5prwccPyN2HvXEh1C9arunJ3oGfSQkpNOAGdEMa70riycM6T0k7GWugI0o4syraZyrlgxrEKHossVENKRaRUgZQKI3i6GDNp8nSc2fsVU3vRk3Nshx_19EC1Ikv9c2cSgWPMrdApErIzBB8LFBkaWkMEj2iv1JE9DOP5e1Cro6kiT2SkCFeTMzqIYLPbStVqh5la8nIEDxfNJNd8WKMrV582fUryXjMRwe1m5xfTJRCcpzigFlzhiZX1rLZUh19D7nDMBJ8UR_Cs457ltP5Pr42zV_EALpIsqvej3Z27cCkLHM53JzdhfT49dfcIts3N_SAfPfhy3gL5C1HGTIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+optical+metamaterials&rft.jtitle=Nano+convergence&rft.au=Chen%2C+Yixin&rft.au=Ai%2C+Bin&rft.au=Wong%2C+Zi+Jing&rft.date=2020-05-26&rft.pub=Springer+Singapore&rft.eissn=2196-5404&rft.volume=7&rft_id=info:doi/10.1186%2Fs40580-020-00226-7&rft_id=info%3Apmid%2F32451734&rft.externalDocID=PMC7248166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5404&client=summon |