Soft optical metamaterials

Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical met...

Full description

Saved in:
Bibliographic Details
Published inNano convergence Vol. 7; no. 1; pp. 18 - 17
Main Authors Chen, Yixin, Ai, Bin, Wong, Zi Jing
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 26.05.2020
Springer Nature B.V
SpringerOpen
나노기술연구협의회
Subjects
Online AccessGet full text
ISSN2196-5404
2196-5404
DOI10.1186/s40580-020-00226-7

Cover

Abstract Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.
AbstractList Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.
Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.
Abstract Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.
Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in nextgeneration metamaterial devices are identified. KCI Citation Count: 0
ArticleNumber 18
Author Chen, Yixin
Ai, Bin
Wong, Zi Jing
Author_xml – sequence: 1
  givenname: Yixin
  surname: Chen
  fullname: Chen, Yixin
  organization: Department of Aerospace Engineering, Texas A&M University
– sequence: 2
  givenname: Bin
  surname: Ai
  fullname: Ai, Bin
  organization: Department of Aerospace Engineering, Texas A&M University
– sequence: 3
  givenname: Zi Jing
  surname: Wong
  fullname: Wong, Zi Jing
  email: zijing@tamu.edu
  organization: Department of Aerospace Engineering, Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32451734$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002705253$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kk9v1DAQxS1UREvpF-gBVeICh4DHnnicC1JV8WelSkhQzpbjdRZvk3ixs5X49ng3pbQ99GBNZP_e8xtnXrKDMY6esVPg7wG0-pCR15pXXJTFhVAVPWNHAhpV1cjx4N73ITvJec05B1ISQb9gh1JgDSTxiJ3-iN10FjdTcLY_G_xkBzv5FGyfX7HnXSn-5LYes5-fP11dfK0uv31ZXJxfVk6BnCqpCAg8cgteCAd1C0IrpXSnPVrlO1_ilds11QJc47TultC1LVmUKKmWx-zd7Dumzly7YKIN-7qK5jqZ8-9XC9MQCU2ysIuZXUa7NpsUBpv-7AX7jZhWxqbSS-8NF7VvOdKSaocWSDeyFQoVoaC2BVW8Ps5em207-KXz45Rs_8D04ckYfpVMN4YEalA7g7e3Bin-3vo8mSFk5_vejj5usxHIVYNNLbCgbx6h67hNY3nWPYWEQE2hXt9PdBfl3-8qgJgBl2LOyXd3CHCzGwszj0VpvqzdWBgqIv1I5MJkpxB3XYX-aamcpbncM658-h_7CdVfTIPGoA
CitedBy_id crossref_primary_10_1016_j_compstruct_2024_118783
crossref_primary_10_1016_j_engstruct_2024_119597
crossref_primary_10_1364_OE_530404
crossref_primary_10_1021_acsphotonics_1c01833
crossref_primary_10_1016_j_compositesa_2023_107893
crossref_primary_10_1021_acsphotonics_2c01324
crossref_primary_10_3390_mi15101267
crossref_primary_10_1002_adpr_202000205
crossref_primary_10_1088_1361_648X_ad6110
crossref_primary_10_3390_bios12030180
crossref_primary_10_1016_j_ijmecsci_2023_108614
crossref_primary_10_1016_j_matdes_2023_112189
crossref_primary_10_1016_j_optlastec_2023_110383
crossref_primary_10_1109_ACCESS_2022_3201020
crossref_primary_10_3390_nano13101633
crossref_primary_10_1016_j_ijleo_2023_171575
crossref_primary_10_1021_acs_jpclett_3c01620
crossref_primary_10_1080_15397734_2023_2267653
crossref_primary_10_3389_fphy_2020_586087
crossref_primary_10_1039_D1MA00783A
crossref_primary_10_1186_s40580_021_00296_1
crossref_primary_10_1007_s12206_021_0243_7
crossref_primary_10_1186_s40580_022_00331_9
crossref_primary_10_1002_adfm_202108437
crossref_primary_10_1002_admt_202101725
crossref_primary_10_1088_1361_6463_acb8c7
crossref_primary_10_1007_s00707_024_04158_9
crossref_primary_10_1088_1361_6463_ac0faa
crossref_primary_10_1063_5_0153856
crossref_primary_10_1109_JSEN_2021_3073078
crossref_primary_10_1364_AO_469263
crossref_primary_10_56767_jfpe_2023_2_1_97
crossref_primary_10_1021_acsami_1c05049
crossref_primary_10_3390_photonics11090788
crossref_primary_10_1002_aisy_202100105
crossref_primary_10_3390_app11178084
crossref_primary_10_1007_s10483_025_3219_6
crossref_primary_10_1007_s12200_021_1121_8
crossref_primary_10_1039_D3NR02834H
crossref_primary_10_1021_acsphotonics_2c01341
crossref_primary_10_1016_j_optlastec_2020_106660
crossref_primary_10_3390_nano12010153
crossref_primary_10_1108_RPJ_11_2023_0415
crossref_primary_10_1016_j_molliq_2022_120305
crossref_primary_10_3389_frsfm_2022_1079063
crossref_primary_10_1038_s41578_024_00714_w
crossref_primary_10_1016_j_eml_2021_101166
crossref_primary_10_1016_j_matdes_2021_109632
crossref_primary_10_1039_D0NA01039A
crossref_primary_10_1002_mgea_73
crossref_primary_10_1021_acs_nanolett_0c04593
crossref_primary_10_1016_j_jsamd_2023_100585
crossref_primary_10_1038_s41598_024_63204_7
crossref_primary_10_3390_nano12061027
crossref_primary_10_1016_j_matt_2024_06_048
crossref_primary_10_1051_e3sconf_202455201100
crossref_primary_10_3390_nano11102674
crossref_primary_10_1002_adom_202200750
crossref_primary_10_1109_JSEN_2024_3469028
crossref_primary_10_1364_OE_454980
crossref_primary_10_3390_biomimetics9050285
crossref_primary_10_3390_bios12110962
crossref_primary_10_1016_j_mser_2023_100745
crossref_primary_10_1016_j_mtcomm_2025_112070
crossref_primary_10_1016_j_compositesa_2023_107881
crossref_primary_10_7498_aps_73_20240861
crossref_primary_10_1007_s10999_024_09707_7
crossref_primary_10_1039_D4CC06236A
crossref_primary_10_1016_j_ijmecsci_2022_107854
crossref_primary_10_1002_smll_202405140
crossref_primary_10_1038_s41378_021_00307_5
crossref_primary_10_1002_adfm_202305734
crossref_primary_10_1016_j_tws_2024_111764
crossref_primary_10_1038_s41598_024_71566_1
crossref_primary_10_1088_2632_959X_abe652
crossref_primary_10_1021_acsaom_4c00386
Cites_doi 10.1021/acs.nanolett.7b05190
10.1063/1.2795345
10.1080/15421406.2011.571966
10.1063/1.1491003
10.1063/1.2759463
10.1021/nl204118h
10.1364/OE.14.008247
10.1038/nmat4164
10.1364/OE.17.019459
10.1021/acs.nanolett.5b00680
10.1038/nmat4031
10.1038/srep13535
10.1038/s41586-018-0034-1
10.1109/22.798002
10.1186/s40580-016-0081-y
10.1021/acs.nanolett.7b00807
10.1063/1.4929449
10.1038/s41598-019-45091-5
10.1088/0022-3727/48/17/175105
10.1038/srep27432
10.1063/1.3182857
10.1038/ncomms11329
10.1038/srep34147
10.1038/lsa.2016.254
10.1002/adma.201907077
10.1002/adom.201900074
10.1364/OL.38.002008
10.1073/pnas.0808478106
10.1088/1361-6528/aa6144
10.1038/nature10889
10.1364/OE.27.0A1241
10.1103/PhysRevB.86.165103
10.1364/OE.23.021809
10.1364/OE.15.003342
10.1038/s41598-017-06456-w
10.1103/RevModPhys.64.645
10.1038/ncomms12911
10.1364/OE.20.015781
10.1002/adfm.201707309
10.1021/acsami.8b17258
10.1038/ncomms7590
10.1021/nn5015775
10.1021/nl071893x
10.1038/nphoton.2011.154
10.1364/OL.31.002592
10.1038/ncomms11618
10.1002/adma.201702669
10.1021/nl401642z
10.1002/adma.201302938
10.1364/OE.25.013822
10.1002/adma.201901364
10.1126/science.1186351
10.1038/srep27621
10.1021/acs.nanolett.0c00422
10.1039/C3NR04012G
10.1002/adma.201504467
10.1038/s41467-019-09939-8
10.1126/science.aac9411
10.1126/sciadv.aar8535
10.1038/nmat2141
10.1063/1.3695165
10.1038/ncomms8021
10.1126/science.aaw6747
10.1038/nphoton.2013.243
10.1103/PhysRevB.78.085112
10.1364/OE.17.004360
10.1021/acs.accounts.9b00264
10.1021/ar400232h
10.1126/science.1096796
10.1103/PhysRevLett.101.103902
10.1126/science.1187949
10.1016/j.cap.2013.06.028
10.1021/acsnano.8b02566
10.1063/1.2335812
10.1021/acs.nanolett.7b02350
10.1126/science.1108759
10.1364/OE.15.014129
10.1016/j.solmat.2015.02.019
10.1002/adom.201901182
10.1063/1.4773238
10.1021/acsphotonics.7b01343
10.1021/acs.nanolett.8b00475
10.1038/nphoton.2006.49
10.1126/science.1157566
10.1021/nn301358n
10.1021/nl2014982
10.1021/nl200791r
10.1002/adfm.201601154
10.1364/OE.17.005723
10.1088/1367-2630/12/11/113006
10.1063/1.5025400
10.1364/OE.23.012766
10.1016/j.metmat.2007.02.001
10.1038/nature07247
10.1126/science.1241727
10.1038/ncomms8337
10.1021/nn204647b
10.1021/acsami.7b11139
10.1103/PhysRevLett.100.207402
10.1126/sciadv.aaw2205
10.1021/acsnano.5b00723
10.1021/acs.nanolett.6b00618
10.1103/PhysRevB.79.045111
10.1063/1.3427429
10.1038/ncomms8325
10.1021/acs.jpclett.7b01307
10.1002/adma.200500804
10.1063/1.4764054
10.1103/PhysRevB.75.235114
10.1002/adma.201102430
10.1002/adma.201200419
10.1063/1.4914502
10.1039/C9NR04068D
10.1021/acsnano.5b05954
10.1103/PhysRevB.67.113103
10.1021/acsphotonics.7b00249
10.1021/nl102684x
10.1038/nnano.2013.25
10.1016/j.ijleo.2016.02.067
10.1021/acsami.5b08334
10.1038/ncomms3948
10.1364/OE.19.002754
10.1038/natrevmats.2017.66
10.1002/adfm.201400526
10.1063/1.3655332
10.1002/adma.201700412
10.1021/jacs.6b03966
10.1021/acsnano.8b04889
10.1021/acsphotonics.7b00546
10.1021/nl1004114
10.1002/lpor.201600144
10.1016/j.physb.2013.12.040
10.1126/science.1252876
10.1021/acsphotonics.7b01497
10.1021/acs.nanolett.5b05142
10.1126/science.1058847
10.1002/adom.201801167
10.1063/1.4976504
10.1038/s41467-018-03155-6
10.1364/OE.23.028170
10.1021/acsphotonics.5b00470
10.1038/nnano.2011.82
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.1186/s40580-020-00226-7
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2196-5404
EndPage 17
ExternalDocumentID oai_kci_go_kr_ARTI_9772873
oai_doaj_org_article_025eb047d75c4a17893b26467427bb16
PMC7248166
32451734
10_1186_s40580_020_00226_7
Genre Journal Article
Review
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
D1I
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KB.
KQ8
M~E
OK1
PDBOC
PGMZT
PIMPY
PROAC
RPM
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
AAYZJ
ACYCR
AFNRJ
AHBXF
AHSBF
EJD
ID FETCH-LOGICAL-c613t-367171e40a1e22c15b1286668f8e4a6efe02200087521c9c88fd1fbb7a4343753
IEDL.DBID C6C
ISSN 2196-5404
IngestDate Tue Nov 21 21:26:17 EST 2023
Wed Aug 27 01:28:02 EDT 2025
Thu Aug 21 18:07:36 EDT 2025
Fri Sep 05 07:07:53 EDT 2025
Fri Jul 25 11:12:04 EDT 2025
Mon Jul 21 05:49:58 EDT 2025
Tue Jul 01 01:41:57 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Fri Feb 21 02:29:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Soft matter
Nanophotonics
Metasurfaces
Nanofabrication
Metamaterials
Reconfigurable metamaterials
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-367171e40a1e22c15b1286668f8e4a6efe02200087521c9c88fd1fbb7a4343753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
https://nanoconvergencejournal.springeropen.com/articles/10.1186/s40580-020-00226-7
OpenAccessLink https://doi.org/10.1186/s40580-020-00226-7
PMID 32451734
PQID 2406474179
PQPubID 2034688
PageCount 17
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9772873
doaj_primary_oai_doaj_org_article_025eb047d75c4a17893b26467427bb16
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7248166
proquest_miscellaneous_2406949524
proquest_journals_2406474179
pubmed_primary_32451734
crossref_primary_10_1186_s40580_020_00226_7
crossref_citationtrail_10_1186_s40580_020_00226_7
springer_journals_10_1186_s40580_020_00226_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-26
PublicationDateYYYYMMDD 2020-05-26
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-26
  day: 26
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: England
– name: Heidleberg
PublicationTitle Nano convergence
PublicationTitleAbbrev Nano Convergence
PublicationTitleAlternate Nano Converg
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
나노기술연구협의회
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
– name: 나노기술연구협의회
References ZouQLiuWShenYJinCNanoscale201911114371:CAS:528:DC%2BC1MXhtVKit7rP10.1039/C9NR04068D
LiXShaWEChoyWCFungDDXieFJ. Phys. Chem.201211672001:CAS:528:DC%2BC38XjslKnsr4%3D
WangHSivanVPMitchellARosengartenGPhelanPWangLSol. Energy Mater. Sol. Cells201513723510.1016/j.solmat.2015.02.0191:CAS:528:DC%2BC2MXjsF2rs7Y%3D
ZhangHGuoXWuJFangDZhangYSci. Adv.20184eaar853510.1126/sciadv.aar85351:CAS:528:DC%2BC1cXisVGktb3K
CaiWShalaevVOptical metamaterials: fundamentals and applications2009BerlinSpringer
YahiaouiRTanSCongLSinghRYanFZhangWJ. Appl. Phys.201511808310310.1063/1.49294491:CAS:528:DC%2BC2MXhsVSltL3J
JacobZAlekseyevLVNarimanovEOpt. Express200614824710.1364/OE.14.008247
GuoXYingYTongLAcc. Chem. Res.20134765610.1021/ar400232h1:CAS:528:DC%2BC2cXhsl2nsQ%3D%3D
ArbabiEArbabiAKamaliSMHorieYFaraji-DanaMFaraonANat. Commun.2018981210.1038/s41467-018-03155-61:CAS:528:DC%2BC1cXhtFWkt7nM
KomarAPaniagua-DomínguezRMiroshnichenkoAYuYFKivsharYSKuznetsovAINeshevDACS Photonics2018517421:CAS:528:DC%2BC1cXitl2ls7s%3D10.1021/acsphotonics.7b01343
Di FalcoAPloschnerMKraussTFNew J. Phys.20101211300610.1088/1367-2630/12/11/1130061:CAS:528:DC%2BC3cXhsVeqtb3N
LiJShahCMWithayachumnankulWUngBSYMitchellASriramSBhaskaranMChangSAbbottDAppl. Phys. Lett.201310212110110.1063/1.47732381:CAS:528:DC%2BC3sXksFOntb8%3D
EvansPWurtzGHendrenWAtkinsonRDicksonWZayatsAPollardRAppl. Phys. Lett.20079104310110.1063/1.27594631:CAS:528:DC%2BD2sXovFKrtb0%3D
VallecchiAAlbaniMCapolinoFOpt. Express20111927541:CAS:528:DC%2BC3MXhvFahsbY%3D10.1364/OE.19.002754
KimRChungKKimJYNamYParkS-HKShinJACS Photonics2018511881:CAS:528:DC%2BC1cXjvFKjsb4%3D10.1021/acsphotonics.7b01497
ShamoninaESolymarLMetamaterials200711210.1016/j.metmat.2007.02.001
WuZChenXWangMDongJZhengYACS Nano20181250301:CAS:528:DC%2BC1cXosFOnsrY%3D10.1021/acsnano.8b02566
LeeSKangBKeumHAhmedNRogersJAFerreiraPMKimSMinBSci. Rep.20166276211:CAS:528:DC%2BC28XpvF2qsL4%3D10.1038/srep27621
RamahiOMAlmoneefTSAlShareefMBoybayMSAppl. Phys. Lett.201210117390310.1063/1.47640541:CAS:528:DC%2BC38XhsFCltb%2FE
TsengMLYangJSemmlingerMZhangCNordlanderPHalasNJNano Lett.20171760341:CAS:528:DC%2BC2sXhsVeksL7F10.1021/acs.nanolett.7b02350
MalekSCEeH-SAgarwalRNano Lett.20171736411:CAS:528:DC%2BC2sXnt1Gku7w%3D10.1021/acs.nanolett.7b00807
XuXPengBLiDZhangJWongLMZhangQWangSXiongQNano Lett.20111132321:CAS:528:DC%2BC3MXotlGnur0%3D10.1021/nl2014982
ShalaevVMNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D10.1038/nphoton.2006.49
FranklinDChenYVazquez-GuardadoAModakSBoroumandJXuDWuS-TChandaDNat. Commun.2015673371:CAS:528:DC%2BC2MXhtFylt7jI10.1038/ncomms8337
PendryJBHoldenAJRobbinsDJStewartWIEEE Trans. Microw. Theory Tech.199947207510.1109/22.798002
ErginTStengerNBrennerPPendryJBWegenerMScience201032859763373391:CAS:528:DC%2BC3cXks1Sgtb4%3D10.1126/science.1186351
X. Zhang, In 2018 conference on lasers and electro-optics pacific rim (CLEO-PR), pp. 1 (2018)
PtasinskiJKimSWPangLKhooI-CFainmanYOpt. Lett.20133820081:CAS:528:DC%2BC3sXht1artrrJ10.1364/OL.38.002008
ChoYHuhJ-HParkKJKimKLeeJLeeSOpt. Express201725138221:CAS:528:DC%2BC1cXmvV2htro%3D10.1364/OE.25.013822
LeeMJeonHKimSNano Lett.20151533581:CAS:528:DC%2BC2MXlsFejtr4%3D10.1021/acs.nanolett.5b00680
BarceloSLiZNanoimprint lithography for nanodevice fabricationNano Convergence20163211:CAS:528:DC%2BC28XhslWntLjK10.1186/s40580-016-0081-y
MaFWuJHHuangMZhangWZhangSJ. Phys. D20154817510510.1088/0022-3727/48/17/1751051:CAS:528:DC%2BC2MXntFWqurc%3D
WenXLiGZhangJZhangQPengBWongLMWangSXiongQNanoscale201461321:CAS:528:DC%2BC3sXhvV2hs73I10.1039/C3NR04012G
EeH-SAgarwalRNano Lett.20161628181:CAS:528:DC%2BC28XksVGrtrg%3D10.1021/acs.nanolett.6b00618
ZhangFKangLZhaoQZhouJZhaoXLippensDOpt. Express20091743601:CAS:528:DC%2BD1MXjslCrsb4%3D10.1364/OE.17.004360
PryceIMAydinKKelaitaYABriggsRMAtwaterHANano Lett.20101042221:CAS:528:DC%2BC3cXhtFygsb7P10.1021/nl102684x
NiXWongZJMrejenMWangYZhangXScience201534913101:CAS:528:DC%2BC2MXhsV2gtLjP10.1126/science.aac9411
WangXKwonD-HWernerDHKhooI-CKildishevAVShalaevVMAppl. Phys. Lett.20079114312210.1063/1.27953451:CAS:528:DC%2BD2sXhtF2murjO
MinovichAAppl. Phys. Lett.201210012111310.1063/1.36951651:CAS:528:DC%2BC38XksVCmu78%3D
ChandaDNat. Nanotechnol.201164021:CAS:528:DC%2BC3MXnslSmt7s%3D10.1038/nnano.2011.82
LiuZXuYJiC-YChenSLiXZhangXYaoYLiJAdv. Mater.20203219070771:CAS:528:DC%2BB3cXht1Giu78%3D10.1002/adma.201907077
PratibhaRParkKSmalyukhIParkWOpt. Express200917194591:CAS:528:DC%2BD1MXhtlGmsr7N10.1364/OE.17.019459
AhnH-YYooSChoNHKimRMKimHHuhJ-HLeeSNamKTAcc. Chem. Res.20195227681:CAS:528:DC%2BC1MXhsl2nsr3J10.1021/acs.accounts.9b00264
BelovPMarquesRMaslovskiSNefedovISilveirinhaMSimovskiCTretyakovSPhys. Rev. B20036711310310.1103/PhysRevB.67.1131031:CAS:528:DC%2BD3sXis1yls7s%3D
LiSQXuXMaruthiyodan VeetilRValuckasVPaniagua-DomínguezRKuznetsovAIScience201936410871:CAS:528:DC%2BC1MXhtFOitrbL10.1126/science.aaw6747
Di FalcoAZhaoYAlúAAppl. Phys. Lett.20119916311010.1063/1.36553321:CAS:528:DC%2BC3MXhtlGntr%2FK
SautterJStaudeIDeckerMRusakENeshevDNBrenerIKivsharYSACS Nano2015943081:CAS:528:DC%2BC2MXjvFygtrc%3D10.1021/acsnano.5b00723
ChenWACS Nano201812106831:CAS:528:DC%2BC1cXhslOrurnE10.1021/acsnano.8b04889
FangNLeeHSunCZhangXScience20053085341:CAS:528:DC%2BD2MXjtlOjtrs%3D10.1126/science.1108759
ChuKCChaoCYChenYFWuYCChenC-CAppl. Phys. Lett.20068910310710.1063/1.23358121:CAS:528:DC%2BD28XpvVyqt7o%3D
LewandowskiWFruhnertMMieczkowskiJRockstuhlCGóreckaENat. Commun.20156659010.1038/ncomms75901:CAS:528:DC%2BC2MXosFeksrY%3D
WangPGaitanarosSLeeSBatheMShihWMKeYJ. Am. Chem. Soc.201613877331:CAS:528:DC%2BC28Xos12nt7Y%3D10.1021/jacs.6b03966
ChenZGuoBYangYChengCPhysica B Condens. Matter201443811:CAS:528:DC%2BC2cXislGqs7o%3D10.1016/j.physb.2013.12.040
LysyakovaLLomadzeNNeherDMaximovaKKabashinAVSanterSJ. Phys. Chem.201511937621:CAS:528:DC%2BC2MXosVKmsw%3D%3D
YaoJLiuZLiuYWangYSunCBartalGStacyAMZhangXScience20083219301:CAS:528:DC%2BD1cXpslWrtLo%3D10.1126/science.1157566
WernerDHKwonD-HKhooI-CKildishevAVShalaevVMOpt. Express200715334210.1364/OE.15.003342
MinovichANeshevDNPowellDAShadrivovIVKivsharYSAppl. Phys. Lett.20109619310310.1063/1.34274291:CAS:528:DC%2BC3cXlvVelu7c%3D
PratibhaRParkWSmalyukhIIApplJPhysics2010107063511
RenM-XWuWCaiWPiBZhangX-ZXuJ-JLight Sci. Appl.20176e162541:CAS:528:DC%2BC2sXpt1KqtL0%3D10.1038/lsa.2016.254
SilverbergJLEvansAAMcLeodLHaywardRCHullTSantangeloCDCohenIScience20143456471:CAS:528:DC%2BC2cXht12gtLjF10.1126/science.1252876
MüllerJSönnichsenCVon PoschingerHVon PlessenGKlarTFeldmannJAppl. Phys. Lett.20028117110.1063/1.14910031:CAS:528:DC%2BD38XkvFOkur0%3D
ZhangXLiuZNat. Mater.200874351:CAS:528:DC%2BD1cXmsVejt7o%3D10.1038/nmat2141
MaryARodrigoSGGarcia-VidalFMartin-MorenoLPhys. Rev. Lett.20081011039021:STN:280:DC%2BD1cnls12qtg%3D%3D10.1103/PhysRevLett.101.103902
AlùAEnghetaNPhys. Rev. B20087808511210.1103/PhysRevB.78.0851121:CAS:528:DC%2BD1cXhtVKitLfP
KuboSDiazATangYMayerTSKhooICMalloukTENano Lett.2007734181:CAS:528:DC%2BD2sXhtFOitb3L10.1021/nl071893x
ValenteJOuJ-YPlumEYoungsIJZheludevNINat. Commun.2015670211:CAS:528:DC%2BC2MXhtF2itLzL10.1038/ncomms8021
SchreiberRNat. Commun.20134294810.1038/ncomms39481:CAS:528:DC%2BC2cXhsFelt7g%3D
ParkKJSci. Rep.20177604510.1038/s41598-017-06456-w1:CAS:528:DC%2BC1cXhtlemurnK
ZhangGHsuCLanCGaoRWenYZhouJApplACSMater. Interfaces20191122541:CAS:528:DC%2BC1cXisFKiur7M10.1021/acsami.8b17258
OuJ-YPlumEZhangJZheludevNINat. Nanotechnol.201382521:CAS:528:DC%2BC3sXktVKgtL0%3D10.1038/nnano.2013.25
FengSHaltermanKPhys. Rev. B20128616510310.1103/PhysRevB.86.1651031:CAS:528:DC%2BC38XhslylsL7N
LeeH-ENature20185563601:CAS:528:DC%2BC1cXosVCmsLk%3D10.1038/s41586-018-0034-1
OuJYPlumEZhangJZheludevNIAdv. Mater.2016287291:CAS:528:DC%2BC2MXhvFemsr3I10.1002/adma.201504467
M. Tsuruta, J. Valente, B. Gholipour, K. MacDonald, E. Plum, and N. Zheludev, 2016 In Conference on lasers and electro-optics (CLEO) (2016)
ŠvandaJKalachyovaYSlepičkaPŠvorčíkVLyutakovOApplACSMater. Interfaces2016822510.1021/acsami.5b083341:CAS:528:DC%2BC2MXhvFylurjL
SmithDRPendryJBWiltshireMCScience20043057881:CAS:528:DC%2BD2cXmt1Krtr8%3D10.1126/science.1096796
KwonHKimSACS Photonics2015216751:CAS:528:DC%2BC2MXhvVehs7fP10.1021/acsphotonics.5b00470
BohnJBucherTChongKEKomarAChoiD-YNeshevDNKivsharYSPertschTStaudeINano Lett.20181834611:CAS:528:DC%2BC1cXosFOnt7g%3D10.1021/acs.nanolett.8b00475
SheikholeslamiSNAlaeianHKohALDionneJANano Lett.20131341371:CAS:528:DC%2BC3sXht1ars7jJ10.1021/nl401642z
LiuXHuangZZhuCWangLZangJNano Lett.20181814351:CAS:528:DC%2BC2sXitVSntLvP10.1021/acs.nanolett.7b05190
PoddubnyAIorshIBelovPKivsharYNat. Photonics201379481:CAS:528:DC%2BC3sXhvVGru7nO10.1038/nphoton.2013.243
LeeSKimSKimT-TKimYChoiMLeeSHKimJ-YMinBAdv. Mater.20122434911:CAS:528:DC%2BC38XosVantro%3D10.1002/adma.201200419
BrunetTLengJMondain-MonvalOScience20133423231:CAS:528:DC%2BC3sXhsl2gtb7P10.1126/science.1241727
AlùAEnghetaNOpt. Express200917572310.1364/OE.17.0057231:CAS:528:DC%2BD1MXktl2qsrg%3D
XinFLuTSci. Rep.20166274321:CAS:528:DC%2BC28Xps1yhtr0%3D10.1038/srep27432
SunMXuXSunXWLiangXAValuckasVZhengYPaniagua-DomínguezRKuznetsovAISci. Rep.20199867310.1038/s41598-019-45091-51:CAS:528:DC%2BC1MXhtFymu7fK
AndryieuskiAKuznetsovaSMZhukovskySVKivsharYSLavrinenkoAVSci. Rep.20155135351:CAS:528:DC%2BC2MXhsVKhtLvF10.1038/srep13535
B. Kirkpatrick, P. Reader-Harris, Y. Shen, J. Wu, and A. Di Falco, In Photonic and phononic properties of engineered nanostructures V (International society for optics and photonics, 2015), p. 93710Z
YangJKramerNJSchramkeKSWheelerLMBesteiroLVHoganCJJrGovorovAOKortshagenURNano Lett.20161614721:CAS:528:DC%2BC28XhtlygtLY%3D10.1021/acs.nanolett.5b05142
CuiYFungKHXuJMaHJinYHeSFangNXNano Lett.20121214431:CAS:528:DC%2BC38XhvVSrt7g%3D10.1021/nl204118h
LeeYACS Photonics2017419541:CAS:528:DC%2BC2sXhtV2ru73J10.1021/acsphotonics.7b00249
BertoldiKVitelliVChristensenJvan HeckeMNat. Rev. Mater.20172170661:CAS:528:DC%2BC2sXhs1Kgtr3O10.1038/natrevmats.2017.66
EnkrichCPérez-WillardFGerthsenDZhouJFKoschnyTSoukoulisCMWegenerMLindenSAdv. Mater.20051725471:CAS:528:DC%2BD2MXht1Cgt7vM10.1002/adma.200500804
OuJ-YPlumEJiangLZheludevNINano Lett.20111121421:CAS:528:DC%2BC3MXksFamurg%3D10.1021/nl200791r
NagasakiYGholipourBOuJ-YTsurutaM
H Kwon (226_CR74) 2015; 2
M Sharma (226_CR106) 2020; 8
226_CR123
P Wang (226_CR146) 2016; 138
X Liu (226_CR126) 2018; 18
S Lee (226_CR43) 2012; 24
226_CR96
S Lee (226_CR138) 2015; 23
Y Cui (226_CR16) 2012; 12
X Li (226_CR84) 2012; 116
J Lee (226_CR145) 2018; 28
W Lewandowski (226_CR122) 2015; 6
L Gao (226_CR82) 2014; 8
F Ma (226_CR36) 2015; 48
T Brunet (226_CR35) 2013; 342
H Alaeian (226_CR137) 2012; 20
K Kim (226_CR30) 2019; 7
T Brunet (226_CR37) 2015; 14
Z Wang (226_CR41) 2017; 29
226_CR90
J Peng (226_CR110) 2019; 5
H-Y Ahn (226_CR80) 2019; 52
L Lysyakova (226_CR99) 2015; 119
J Müller (226_CR101) 2002; 81
CM Soukoulis (226_CR3) 2011; 5
N Fang (226_CR24) 2005; 308
DH Werner (226_CR52) 2007; 15
R Schreiber (226_CR76) 2013; 4
H Wang (226_CR26) 2015; 137
M-X Ren (226_CR97) 2017; 6
SJ Palmer (226_CR34) 2019; 10
M Kim (226_CR148) 2015; 23
S Barcelo (226_CR135) 2016; 3
P Wang (226_CR144) 2019; 31
M Kim (226_CR150) 2017; 8
E Arbabi (226_CR116) 2018; 9
A Fernandez-Nieves (226_CR29) 2016
MJ Rozin (226_CR33) 2015; 6
X Wang (226_CR51) 2007; 91
KJ Park (226_CR149) 2017; 7
Z Zhou (226_CR111) 2017; 9
SN Sheikholeslami (226_CR65) 2013; 13
T Ergin (226_CR22) 2010; 328
IM Pryce (226_CR85) 2010; 10
K Kim (226_CR67) 2017; 4
H Zhang (226_CR50) 2018; 4
J Bohn (226_CR119) 2018; 18
JB Pendry (226_CR6) 1999; 47
Z Liu (226_CR128) 2020; 32
M Kolle (226_CR31) 2018; 30
W Cai (226_CR2) 2009
S Lee (226_CR139) 2015; 23
J Ptasinski (226_CR58) 2013; 38
Z Chen (226_CR27) 2014; 438
H-S Ee (226_CR130) 2016; 16
J Valentine (226_CR5) 2008; 455
IC Khoo (226_CR55) 2006; 31
C Enkrich (226_CR8) 2005; 17
JL Silverberg (226_CR48) 2014; 345
Q Zou (226_CR114) 2019; 11
H-E Lee (226_CR78) 2018; 556
A Alù (226_CR60) 2008; 78
X Jia (226_CR95) 2016; 127
S Kubo (226_CR64) 2007; 7
A Kuzyk (226_CR77) 2014; 13
P Belov (226_CR9) 2003; 67
A Minovich (226_CR54) 2012; 100
S Aksu (226_CR94) 2011; 23
SS Kruk (226_CR19) 2016; 7
A Di Falco (226_CR89) 2011; 99
R Pratibha (226_CR57) 2010; 107
X Xu (226_CR91) 2011; 11
Y Jiang (226_CR49) 2016; 6
C Simovski (226_CR63) 2009; 79
A Minovich (226_CR53) 2010; 96
J Sautter (226_CR121) 2015; 9
S Feng (226_CR15) 2012; 86
J-Y Ou (226_CR117) 2011; 11
JA Fan (226_CR142) 2010; 328
R Kim (226_CR147) 2018; 5
W Chen (226_CR127) 2018; 12
K Bertoldi (226_CR47) 2017; 2
X Guo (226_CR10) 2013; 47
M Lee (226_CR72) 2015; 15
A Komar (226_CR120) 2018; 5
E Shamonina (226_CR1) 2007; 1
J Li (226_CR44) 2013; 102
K Kim (226_CR140) 2019; 27
JY Kim (226_CR151) 2016; 7
M Sun (226_CR109) 2019; 9
X Zhang (226_CR23) 2008; 7
D Franklin (226_CR104) 2015; 6
RA Shelby (226_CR7) 2001; 292
N Gogurla (226_CR73) 2017; 28
KC Chu (226_CR102) 2006; 89
A Vallecchi (226_CR61) 2011; 19
Y Cho (226_CR69) 2017; 25
P-G De Gennes (226_CR28) 1992; 64
A Di Falco (226_CR88) 2010; 12
G Zhang (226_CR98) 2019; 11
SM Kamali (226_CR133) 2016; 7
A Alù (226_CR136) 2009; 17
Y Lee (226_CR108) 2017; 4
A Andryieuski (226_CR39) 2015; 5
D Chanda (226_CR81) 2011; 6
M Choi (226_CR87) 2013; 13
VM Shalaev (226_CR4) 2007; 1
OM Ramahi (226_CR17) 2012; 101
J-H Huh (226_CR68) 2020
Y Cui (226_CR93) 2012; 6
BP Partlow (226_CR71) 2014; 24
SC Malek (226_CR132) 2017; 17
KL Young (226_CR143) 2014; 26
O Vazquez-Mena (226_CR134) 2012; 6
R Merlin (226_CR62) 2009; 106
JY Ou (226_CR100) 2016; 28
J-Y Ou (226_CR112) 2013; 8
226_CR32
R Pratibha (226_CR56) 2009; 17
Z Wu (226_CR79) 2018; 12
S Xiao (226_CR118) 2009; 95
Y Nagasaki (226_CR124) 2018; 113
SM Kamali (226_CR131) 2016; 10
F Zhang (226_CR42) 2015; 106
X Liu (226_CR92) 2016; 26
P Gutruf (226_CR83) 2016; 10
X Ni (226_CR21) 2015; 349
SQ Li (226_CR107) 2019; 364
F Huang (226_CR125) 2010; 10
ML Tseng (226_CR129) 2017; 17
M Kafesaki (226_CR12) 2007; 75
F Zhang (226_CR40) 2009; 17
P Evans (226_CR103) 2007; 91
J Valente (226_CR113) 2015; 6
DR Smith (226_CR14) 2004; 305
J Švanda (226_CR115) 2016; 8
X Wen (226_CR86) 2014; 6
R Yahiaoui (226_CR45) 2015; 118
A Komar (226_CR105) 2017; 110
S Lee (226_CR46) 2016; 6
DF Gardner (226_CR141) 2011; 545
A Poddubny (226_CR20) 2013; 7
J Yao (226_CR11) 2008; 321
A Kuzyk (226_CR75) 2012; 483
Z Jacob (226_CR25) 2006; 14
J Yang (226_CR66) 2016; 16
A Mary (226_CR13) 2008; 101
F Xin (226_CR38) 2016; 6
Y Cho (226_CR70) 2019; 7
NI Landy (226_CR18) 2008; 100
YA Urzhumov (226_CR59) 2007; 15
References_xml – reference: LeeSKimJOpt. Express201523218091:CAS:528:DC%2BC2sXjsFOnsLs%3D10.1364/OE.23.021809
– reference: XinFLuTSci. Rep.20166274321:CAS:528:DC%2BC28Xps1yhtr0%3D10.1038/srep27432
– reference: LiuXHuangZZhuCWangLZangJNano Lett.20181814351:CAS:528:DC%2BC2sXitVSntLvP10.1021/acs.nanolett.7b05190
– reference: PalmerSJXiaoXPazos-PerezNGuerriniLCorrea-DuarteMAMaierSACrasterRVAlvarez-PueblaRAGianniniVNat. Commun.201910211810.1038/s41467-019-09939-81:CAS:528:DC%2BC1MXpsVWht7o%3D
– reference: WangPHuhJ-HLeeJKimKParkKJLeeSKeYAdv. Mater.201931190136410.1002/adma.2019013641:CAS:528:DC%2BC1MXhtVOjt7fP
– reference: FangNLeeHSunCZhangXScience20053085341:CAS:528:DC%2BD2MXjtlOjtrs%3D10.1126/science.1108759
– reference: YangJKramerNJSchramkeKSWheelerLMBesteiroLVHoganCJJrGovorovAOKortshagenURNano Lett.20161614721:CAS:528:DC%2BC28XhtlygtLY%3D10.1021/acs.nanolett.5b05142
– reference: KwonHKimSACS Photonics2015216751:CAS:528:DC%2BC2MXhvVehs7fP10.1021/acsphotonics.5b00470
– reference: WenXLiGZhangJZhangQPengBWongLMWangSXiongQNanoscale201461321:CAS:528:DC%2BC3sXhvV2hs73I10.1039/C3NR04012G
– reference: WangPGaitanarosSLeeSBatheMShihWMKeYJ. Am. Chem. Soc.201613877331:CAS:528:DC%2BC28Xos12nt7Y%3D10.1021/jacs.6b03966
– reference: PendryJBHoldenAJRobbinsDJStewartWIEEE Trans. Microw. Theory Tech.199947207510.1109/22.798002
– reference: WuZChenXWangMDongJZhengYACS Nano20181250301:CAS:528:DC%2BC1cXosFOnsrY%3D10.1021/acsnano.8b02566
– reference: JiaXMengQYuanCZhouZWangXOptik201612757381:CAS:528:DC%2BC28Xls1Ojt7w%3D10.1016/j.ijleo.2016.02.067
– reference: BrunetTLengJMondain-MonvalOScience20133423231:CAS:528:DC%2BC3sXhsl2gtb7P10.1126/science.1241727
– reference: AndryieuskiAKuznetsovaSMZhukovskySVKivsharYSLavrinenkoAVSci. Rep.20155135351:CAS:528:DC%2BC2MXhsVKhtLvF10.1038/srep13535
– reference: LiuXWangJTangLXieLYingYAdv. Funct. Mater.20162655151:CAS:528:DC%2BC28XptVWjtrg%3D10.1002/adfm.201601154
– reference: OuJYPlumEZhangJZheludevNIAdv. Mater.2016287291:CAS:528:DC%2BC2MXhvFemsr3I10.1002/adma.201504467
– reference: LiJShahCMWithayachumnankulWUngBSYMitchellASriramSBhaskaranMChangSAbbottDAppl. Phys. Lett.201310212110110.1063/1.47732381:CAS:528:DC%2BC3sXksFOntb8%3D
– reference: KimKParkHParkKJParkSHKimHHLeeSAdv. Opt. Mater.20197190007410.1002/adom.2019000741:CAS:528:DC%2BC1MXosFKgsL0%3D
– reference: WernerDHKwonD-HKhooI-CKildishevAVShalaevVMOpt. Express200715334210.1364/OE.15.003342
– reference: ShelbyRASmithDRSchultzSScience2001292771:CAS:528:DC%2BD3MXis1GrsL8%3D10.1126/science.1058847
– reference: Di FalcoAZhaoYAlúAAppl. Phys. Lett.20119916311010.1063/1.36553321:CAS:528:DC%2BC3MXhtlGntr%2FK
– reference: EnkrichCPérez-WillardFGerthsenDZhouJFKoschnyTSoukoulisCMWegenerMLindenSAdv. Mater.20051725471:CAS:528:DC%2BD2MXht1Cgt7vM10.1002/adma.200500804
– reference: SheikholeslamiSNAlaeianHKohALDionneJANano Lett.20131341371:CAS:528:DC%2BC3sXht1ars7jJ10.1021/nl401642z
– reference: BarceloSLiZNanoimprint lithography for nanodevice fabricationNano Convergence20163211:CAS:528:DC%2BC28XhslWntLjK10.1186/s40580-016-0081-y
– reference: LeeSKangBKeumHAhmedNRogersJAFerreiraPMKimSMinBSci. Rep.20166276211:CAS:528:DC%2BC28XpvF2qsL4%3D10.1038/srep27621
– reference: Vazquez-MenaOSannomiyaTTosunMVillanuevaLGSavuVVorosJBruggerJACS Nano2012654741:CAS:528:DC%2BC38Xnt1Wqsbc%3D10.1021/nn301358n
– reference: ZhangGHsuCLanCGaoRWenYZhouJApplACSMater. Interfaces20191122541:CAS:528:DC%2BC1cXisFKiur7M10.1021/acsami.8b17258
– reference: CaiWShalaevVOptical metamaterials: fundamentals and applications2009BerlinSpringer
– reference: WangHSivanVPMitchellARosengartenGPhelanPWangLSol. Energy Mater. Sol. Cells201513723510.1016/j.solmat.2015.02.0191:CAS:528:DC%2BC2MXjsF2rs7Y%3D
– reference: ValentineJZhangSZentgrafTUlin-AvilaEGenovDABartalGZhangXNature20084553761:CAS:528:DC%2BD1cXhtFamsL7P10.1038/nature07247
– reference: LiSQXuXMaruthiyodan VeetilRValuckasVPaniagua-DomínguezRKuznetsovAIScience201936410871:CAS:528:DC%2BC1MXhtFOitrbL10.1126/science.aaw6747
– reference: Fernandez-NievesAPuertasAMFluids, colloids and soft materials: an introduction to soft matter physics2016New YorkWiley
– reference: MinovichAAppl. Phys. Lett.201210012111310.1063/1.36951651:CAS:528:DC%2BC38XksVCmu78%3D
– reference: SimovskiCTretyakovSPhys. Rev. B20097904511110.1103/PhysRevB.79.0451111:CAS:528:DC%2BD1MXhtlGiur0%3D
– reference: ChoYHuhJ-HParkKJKimKLeeJLeeSOpt. Express201725138221:CAS:528:DC%2BC1cXmvV2htro%3D10.1364/OE.25.013822
– reference: MaFWuJHHuangMZhangWZhangSJ. Phys. D20154817510510.1088/0022-3727/48/17/1751051:CAS:528:DC%2BC2MXntFWqurc%3D
– reference: KomarAPaniagua-DomínguezRMiroshnichenkoAYuYFKivsharYSKuznetsovAINeshevDACS Photonics2018517421:CAS:528:DC%2BC1cXitl2ls7s%3D10.1021/acsphotonics.7b01343
– reference: LeeMJeonHKimSNano Lett.20151533581:CAS:528:DC%2BC2MXlsFejtr4%3D10.1021/acs.nanolett.5b00680
– reference: MalekSCEeH-SAgarwalRNano Lett.20171736411:CAS:528:DC%2BC2sXnt1Gku7w%3D10.1021/acs.nanolett.7b00807
– reference: AlùAEnghetaNOpt. Express200917572310.1364/OE.17.0057231:CAS:528:DC%2BD1MXktl2qsrg%3D
– reference: B. Kirkpatrick, P. Reader-Harris, Y. Shen, J. Wu, and A. Di Falco, In Photonic and phononic properties of engineered nanostructures V (International society for optics and photonics, 2015), p. 93710Z
– reference: EeH-SAgarwalRNano Lett.20161628181:CAS:528:DC%2BC28XksVGrtrg%3D10.1021/acs.nanolett.6b00618
– reference: AksuSHuangMArtarAYanikAASelvarasahSDokmeciMRAltugHAdv. Mater.20112344221:CAS:528:DC%2BC3MXhtVOnu7fE10.1002/adma.201102430
– reference: BertoldiKVitelliVChristensenJvan HeckeMNat. Rev. Mater.20172170661:CAS:528:DC%2BC2sXhs1Kgtr3O10.1038/natrevmats.2017.66
– reference: ChenWACS Nano201812106831:CAS:528:DC%2BC1cXhslOrurnE10.1021/acsnano.8b04889
– reference: ParkKJSci. Rep.20177604510.1038/s41598-017-06456-w1:CAS:528:DC%2BC1cXhtlemurnK
– reference: GutrufPZouCWithayachumnankulWBhaskaranMSriramSFumeauxCACS Nano2016101331:CAS:528:DC%2BC2MXhvFWrsb7E10.1021/acsnano.5b05954
– reference: KafesakiMTsiapaIKatsarakisNKoschnyTSoukoulisCEconomouEPhys. Rev. B20077523511410.1103/PhysRevB.75.2351141:CAS:528:DC%2BD2sXnsFamsLo%3D
– reference: UrzhumovYAShvetsGFanJCapassoFBrandlDNordlanderPOpt. Express2007151412910.1364/OE.15.014129
– reference: KhooICWernerDHLiangXDiazAWeinerBOpt. Lett.20063125921:CAS:528:DC%2BD28XpsFeisr4%3D10.1364/OL.31.002592
– reference: ZhangFFengSQiuKLiuZFanYZhangWZhaoQZhouJAppl. Phys. Lett.201510609190710.1063/1.49145021:CAS:528:DC%2BC2MXjvF2jurY%3D
– reference: ZhangHGuoXWuJFangDZhangYSci. Adv.20184eaar853510.1126/sciadv.aar85351:CAS:528:DC%2BC1cXisVGktb3K
– reference: RamahiOMAlmoneefTSAlShareefMBoybayMSAppl. Phys. Lett.201210117390310.1063/1.47640541:CAS:528:DC%2BC38XhsFCltb%2FE
– reference: ChoiMChoeJ-HKangBChoiC-GCurr. Appl. Phys.201313172310.1016/j.cap.2013.06.028
– reference: LandyNISajuyigbeSMockJJSmithDRPadillaWJPhys. Rev. Lett.20081002074021:STN:280:DC%2BD1czlsV2kug%3D%3D10.1103/PhysRevLett.100.207402
– reference: ZouQLiuWShenYJinCNanoscale201911114371:CAS:528:DC%2BC1MXhtVKit7rP10.1039/C9NR04068D
– reference: KuzykASchreiberRZhangHGovorovAOLiedlTLiuNNat. Mater.2014138621:CAS:528:DC%2BC2cXhtFSlsLjN10.1038/nmat4031
– reference: HuhJ-HLeeJLeeSNano Lett.202010.1021/acs.nanolett.0c00422
– reference: FranklinDChenYVazquez-GuardadoAModakSBoroumandJXuDWuS-TChandaDNat. Commun.2015673371:CAS:528:DC%2BC2MXhtFylt7jI10.1038/ncomms8337
– reference: KimMJ. Phys. Chem. Lett2017837451:CAS:528:DC%2BC2sXht1eks7%2FO10.1021/acs.jpclett.7b01307
– reference: RozinMJRosenDADillTJTaoARNat. Commun.2015673251:CAS:528:DC%2BC2MXhtF2kt7rF10.1038/ncomms8325
– reference: Di FalcoAPloschnerMKraussTFNew J. Phys.20101211300610.1088/1367-2630/12/11/1130061:CAS:528:DC%2BC3cXhsVeqtb3N
– reference: ChoYHuhJ-HKimKLeeSAdv. Opt. Mater.20197180116710.1002/adom.2018011671:CAS:528:DC%2BC1cXisVSgur3E
– reference: ValenteJOuJ-YPlumEYoungsIJZheludevNINat. Commun.2015670211:CAS:528:DC%2BC2MXhtF2itLzL10.1038/ncomms8021
– reference: GaoLShigetaKVazquez-GuardadoAProglerCJBogartGRRogersJAChandaDACS Nano2014855351:CAS:528:DC%2BC2cXmtVOmsbw%3D10.1021/nn5015775
– reference: ŠvandaJKalachyovaYSlepičkaPŠvorčíkVLyutakovOApplACSMater. Interfaces2016822510.1021/acsami.5b083341:CAS:528:DC%2BC2MXhvFylurjL
– reference: EvansPWurtzGHendrenWAtkinsonRDicksonWZayatsAPollardRAppl. Phys. Lett.20079104310110.1063/1.27594631:CAS:528:DC%2BD2sXovFKrtb0%3D
– reference: SoukoulisCMWegenerMNat. Photonics201155231:CAS:528:DC%2BC3MXhtV2qurjL10.1038/nphoton.2011.154
– reference: AhnH-YYooSChoNHKimRMKimHHuhJ-HLeeSNamKTAcc. Chem. Res.20195227681:CAS:528:DC%2BC1MXhsl2nsr3J10.1021/acs.accounts.9b00264
– reference: GogurlaNKunduSCRaySKNanotechnology20172814520210.1088/1361-6528/aa61441:CAS:528:DC%2BC1cXkvVKqtb4%3D
– reference: KimKLeeSOpt. Express201927A12411:CAS:528:DC%2BC1MXit1yisrfI10.1364/OE.27.0A1241
– reference: ErginTStengerNBrennerPPendryJBWegenerMScience201032859763373391:CAS:528:DC%2BC3cXks1Sgtb4%3D10.1126/science.1186351
– reference: MinovichANeshevDNPowellDAShadrivovIVKivsharYSAppl. Phys. Lett.20109619310310.1063/1.34274291:CAS:528:DC%2BC3cXlvVelu7c%3D
– reference: SharmaMHendlerNEllenbogenTJAOMAdv. Optical Mater.2020819011821:CAS:528:DC%2BB3cXht1Gkurw%3D10.1002/adom.201901182
– reference: KolleMLeeSAdv. Mater.201830170266910.1002/adma.2017026691:CAS:528:DC%2BC2sXhs12lsrvL
– reference: ChuKCChaoCYChenYFWuYCChenC-CAppl. Phys. Lett.20068910310710.1063/1.23358121:CAS:528:DC%2BD28XpvVyqt7o%3D
– reference: KamaliSMArbabiAArbabiEHorieYFaraonAJNCNat. Commun.20167116181:CAS:528:DC%2BC28Xotleht7o%3D10.1038/ncomms11618
– reference: ZhangFKangLZhaoQZhouJZhaoXLippensDOpt. Express20091743601:CAS:528:DC%2BD1MXjslCrsb4%3D10.1364/OE.17.004360
– reference: JiangYWangQSci. Rep.20166341471:CAS:528:DC%2BC28XhsFynur7J10.1038/srep34147
– reference: PoddubnyAIorshIBelovPKivsharYNat. Photonics201379481:CAS:528:DC%2BC3sXhvVGru7nO10.1038/nphoton.2013.243
– reference: WangZJingLYaoKYangYZhengBSoukoulisCMChenHLiuYAdv. Mater.201729170041210.1002/adma.2017004121:CAS:528:DC%2BC2sXntlynsL4%3D
– reference: OuJ-YPlumEJiangLZheludevNINano Lett.20111121421:CAS:528:DC%2BC3MXksFamurg%3D10.1021/nl200791r
– reference: ChenZGuoBYangYChengCPhysica B Condens. Matter201443811:CAS:528:DC%2BC2cXislGqs7o%3D10.1016/j.physb.2013.12.040
– reference: De GennesP-GRev. Mod. Phys.19926464510.1103/RevModPhys.64.645
– reference: ShalaevVMNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D10.1038/nphoton.2006.49
– reference: P. Reader-Harris, B. C. Kirkpatrick, and A. Di Falco, In Quantum sensing and nanophotonic devices XI (International Society for Optics and Photonics, 2014), p. 89930P
– reference: WangXKwonD-HWernerDHKhooI-CKildishevAVShalaevVMAppl. Phys. Lett.20079114312210.1063/1.27953451:CAS:528:DC%2BD2sXhtF2murjO
– reference: PartlowBPAdv. Funct. Mater.20142446151:CAS:528:DC%2BC2cXmsVKrsb4%3D10.1002/adfm.201400526
– reference: LeeYACS Photonics2017419541:CAS:528:DC%2BC2sXhtV2ru73J10.1021/acsphotonics.7b00249
– reference: YoungKLAdv. Mater.2014266531:CAS:528:DC%2BC3sXhs1yksbvE10.1002/adma.201302938
– reference: RenM-XWuWCaiWPiBZhangX-ZXuJ-JLight Sci. Appl.20176e162541:CAS:528:DC%2BC2sXpt1KqtL0%3D10.1038/lsa.2016.254
– reference: LewandowskiWFruhnertMMieczkowskiJRockstuhlCGóreckaENat. Commun.20156659010.1038/ncomms75901:CAS:528:DC%2BC2MXosFeksrY%3D
– reference: PtasinskiJKimSWPangLKhooI-CFainmanYOpt. Lett.20133820081:CAS:528:DC%2BC3sXht1artrrJ10.1364/OL.38.002008
– reference: BrunetTMerlinAMascaroBZimnyKLengJPonceletOAristeguiCMondain-MonvalONat. Mater.2015143841:CAS:528:DC%2BC2cXitFKltLfN10.1038/nmat4164
– reference: MaryARodrigoSGGarcia-VidalFMartin-MorenoLPhys. Rev. Lett.20081011039021:STN:280:DC%2BD1cnls12qtg%3D%3D10.1103/PhysRevLett.101.103902
– reference: CuiYFungKHXuJMaHJinYHeSFangNXNano Lett.20121214431:CAS:528:DC%2BC38XhvVSrt7g%3D10.1021/nl204118h
– reference: ZhangXLiuZNat. Mater.200874351:CAS:528:DC%2BD1cXmsVejt7o%3D10.1038/nmat2141
– reference: KomarAAppl. Phys. Lett.201711007110910.1063/1.49765041:CAS:528:DC%2BC2sXislGmt7c%3D
– reference: XiaoSChettiarUKKildishevAVDrachevVKhooIShalaevVMAppl. Phys. Lett.20099503311510.1063/1.31828571:CAS:528:DC%2BD1MXptVOlsrs%3D
– reference: YahiaouiRTanSCongLSinghRYanFZhangWJ. Appl. Phys.201511808310310.1063/1.49294491:CAS:528:DC%2BC2MXhsVSltL3J
– reference: PryceIMAydinKKelaitaYABriggsRMAtwaterHANano Lett.20101042221:CAS:528:DC%2BC3cXhtFygsb7P10.1021/nl102684x
– reference: MüllerJSönnichsenCVon PoschingerHVon PlessenGKlarTFeldmannJAppl. Phys. Lett.20028117110.1063/1.14910031:CAS:528:DC%2BD38XkvFOkur0%3D
– reference: PratibhaRParkKSmalyukhIParkWOpt. Express200917194591:CAS:528:DC%2BD1MXhtlGmsr7N10.1364/OE.17.019459
– reference: HuangFBaumbergJJNano Lett.20101017871:CAS:528:DC%2BC3cXltVygt7k%3D10.1021/nl1004114
– reference: VallecchiAAlbaniMCapolinoFOpt. Express20111927541:CAS:528:DC%2BC3MXhvFahsbY%3D10.1364/OE.19.002754
– reference: KuzykASchreiberRFanZPardatscherGRollerE-MHögeleASimmelFCGovorovAOLiedlTNature20124833111:CAS:528:DC%2BC38XktVaru7k%3D10.1038/nature10889
– reference: GuoXYingYTongLAcc. Chem. Res.20134765610.1021/ar400232h1:CAS:528:DC%2BC2cXhsl2nsQ%3D%3D
– reference: SunMXuXSunXWLiangXAValuckasVZhengYPaniagua-DomínguezRKuznetsovAISci. Rep.20199867310.1038/s41598-019-45091-51:CAS:528:DC%2BC1MXhtFymu7fK
– reference: NiXWongZJMrejenMWangYZhangXScience201534913101:CAS:528:DC%2BC2MXhsV2gtLjP10.1126/science.aac9411
– reference: PratibhaRParkWSmalyukhIIApplJPhysics2010107063511
– reference: NagasakiYGholipourBOuJ-YTsurutaMPlumEMacDonaldKFTakaharaJZheludevNIAppl. Phys. Lett.201811302110510.1063/1.50254001:CAS:528:DC%2BC1cXhtlWqurzN
– reference: PengJJeongH-HLinQCormierSLiangH-LDe VolderMFLVignoliniSBaumbergJJSci. Adv.20195220510.1126/sciadv.aaw2205
– reference: BohnJBucherTChongKEKomarAChoiD-YNeshevDNKivsharYSPertschTStaudeINano Lett.20181834611:CAS:528:DC%2BC1cXosFOnt7g%3D10.1021/acs.nanolett.8b00475
– reference: M. Tsuruta, J. Valente, B. Gholipour, K. MacDonald, E. Plum, and N. Zheludev, 2016 In Conference on lasers and electro-optics (CLEO) (2016)
– reference: KimJYNat. Commun.20167129111:CAS:528:DC%2BC28Xhs1Smu7rE10.1038/ncomms12911
– reference: LeeH-ENature20185563601:CAS:528:DC%2BC1cXosVCmsLk%3D10.1038/s41586-018-0034-1
– reference: SilverbergJLEvansAAMcLeodLHaywardRCHullTSantangeloCDCohenIScience20143456471:CAS:528:DC%2BC2cXht12gtLjF10.1126/science.1252876
– reference: LysyakovaLLomadzeNNeherDMaximovaKKabashinAVSanterSJ. Phys. Chem.201511937621:CAS:528:DC%2BC2MXosVKmsw%3D%3D
– reference: OuJ-YPlumEZhangJZheludevNINat. Nanotechnol.201382521:CAS:528:DC%2BC3sXktVKgtL0%3D10.1038/nnano.2013.25
– reference: SmithDRPendryJBWiltshireMCScience20043057881:CAS:528:DC%2BD2cXmt1Krtr8%3D10.1126/science.1096796
– reference: KrukSSWongZJPshenay-SeverinEO’BrienKNeshevDNKivsharYSZhangXNat. Commun.20167113291:CAS:528:DC%2BC28Xmt1Sjtr4%3D10.1038/ncomms11329
– reference: JacobZAlekseyevLVNarimanovEOpt. Express200614824710.1364/OE.14.008247
– reference: XuXPengBLiDZhangJWongLMZhangQWangSXiongQNano Lett.20111132321:CAS:528:DC%2BC3MXotlGnur0%3D10.1021/nl2014982
– reference: CuiYZhouJTammaVAParkWACS Nano2012623851:CAS:528:DC%2BC38XitlOltrk%3D10.1021/nn204647b
– reference: KamaliSMArbabiEArbabiAHorieYFaraonALaser Photonics Rev.20161010021:CAS:528:DC%2BC28XhvV2gtrbM10.1002/lpor.201600144
– reference: ChandaDNat. Nanotechnol.201164021:CAS:528:DC%2BC3MXnslSmt7s%3D10.1038/nnano.2011.82
– reference: LiXShaWEChoyWCFungDDXieFJ. Phys. Chem.201211672001:CAS:528:DC%2BC38XjslKnsr4%3D
– reference: KimMLeeSLeeJKimDKHwangYJLeeGYiG-RSongYJOpt. Express201523127661:CAS:528:DC%2BC2sXks1Wmu7k%3D10.1364/OE.23.012766
– reference: KimKYooSHuhJ-HParkQHLeeSACS Photonics2017422981:CAS:528:DC%2BC2sXht1ylsrnP10.1021/acsphotonics.7b00546
– reference: SautterJStaudeIDeckerMRusakENeshevDNBrenerIKivsharYSACS Nano2015943081:CAS:528:DC%2BC2MXjvFygtrc%3D10.1021/acsnano.5b00723
– reference: X. Zhang, In 2018 conference on lasers and electro-optics pacific rim (CLEO-PR), pp. 1 (2018)
– reference: LeeSKimSKimT-TKimYChoiMLeeSHKimJ-YMinBAdv. Mater.20122434911:CAS:528:DC%2BC38XosVantro%3D10.1002/adma.201200419
– reference: YaoJLiuZLiuYWangYSunCBartalGStacyAMZhangXScience20083219301:CAS:528:DC%2BD1cXpslWrtLo%3D10.1126/science.1157566
– reference: AlùAEnghetaNPhys. Rev. B20087808511210.1103/PhysRevB.78.0851121:CAS:528:DC%2BD1cXhtVKitLfP
– reference: LeeJHuhJ-HKimKLeeSAdv. Funct. Mater.201828170730910.1002/adfm.2017073091:CAS:528:DC%2BC1cXisFCjsro%3D
– reference: FengSHaltermanKPhys. Rev. B20128616510310.1103/PhysRevB.86.1651031:CAS:528:DC%2BC38XhslylsL7N
– reference: KuboSDiazATangYMayerTSKhooICMalloukTENano Lett.2007734181:CAS:528:DC%2BD2sXhtFOitb3L10.1021/nl071893x
– reference: AlaeianHDionneJAOpt. Express201220157811:CAS:528:DC%2BC38XhtVWgsbrI10.1364/OE.20.015781
– reference: ShamoninaESolymarLMetamaterials200711210.1016/j.metmat.2007.02.001
– reference: LeeSOpt. Express201523281701:CAS:528:DC%2BC2sXltFKmtLY%3D10.1364/OE.23.028170
– reference: FanJAScience201032811351:CAS:528:DC%2BC3cXmsVGjs7s%3D10.1126/science.1187949
– reference: KimRChungKKimJYNamYParkS-HKShinJACS Photonics2018511881:CAS:528:DC%2BC1cXjvFKjsb4%3D10.1021/acsphotonics.7b01497
– reference: MerlinRProc. Natl. Acad. Sci.200910616931:CAS:528:DC%2BD1MXitVGntbk%3D10.1073/pnas.0808478106
– reference: ArbabiEArbabiAKamaliSMHorieYFaraji-DanaMFaraonANat. Commun.2018981210.1038/s41467-018-03155-61:CAS:528:DC%2BC1cXhtFWkt7nM
– reference: SchreiberRNat. Commun.20134294810.1038/ncomms39481:CAS:528:DC%2BC2cXhsFelt7g%3D
– reference: ZhouZACS Appl. Mater. Interfaces.20179352441:CAS:528:DC%2BC2sXhsFWhu73M10.1021/acsami.7b11139
– reference: LiuZXuYJiC-YChenSLiXZhangXYaoYLiJAdv. Mater.20203219070771:CAS:528:DC%2BB3cXht1Giu78%3D10.1002/adma.201907077
– reference: BelovPMarquesRMaslovskiSNefedovISilveirinhaMSimovskiCTretyakovSPhys. Rev. B20036711310310.1103/PhysRevB.67.1131031:CAS:528:DC%2BD3sXis1yls7s%3D
– reference: TsengMLYangJSemmlingerMZhangCNordlanderPHalasNJNano Lett.20171760341:CAS:528:DC%2BC2sXhsVeksL7F10.1021/acs.nanolett.7b02350
– reference: GardnerDFEvansJSSmalyukhIIMol. Cryst. Liq. Cryst.2011545122710.1080/15421406.2011.5719661:CAS:528:DC%2BC3MXovFGgsL4%3D
– volume: 18
  start-page: 1435
  year: 2018
  ident: 226_CR126
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05190
– volume: 91
  start-page: 143122
  year: 2007
  ident: 226_CR51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2795345
– volume: 545
  start-page: 1227
  year: 2011
  ident: 226_CR141
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2011.571966
– volume: 81
  start-page: 171
  year: 2002
  ident: 226_CR101
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1491003
– volume: 91
  start-page: 043101
  year: 2007
  ident: 226_CR103
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2759463
– volume: 12
  start-page: 1443
  year: 2012
  ident: 226_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl204118h
– volume: 116
  start-page: 7200
  year: 2012
  ident: 226_CR84
  publication-title: J. Phys. Chem.
– volume: 14
  start-page: 8247
  year: 2006
  ident: 226_CR25
  publication-title: Opt. Express
  doi: 10.1364/OE.14.008247
– volume-title: Optical metamaterials: fundamentals and applications
  year: 2009
  ident: 226_CR2
– volume: 14
  start-page: 384
  year: 2015
  ident: 226_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4164
– volume: 17
  start-page: 19459
  year: 2009
  ident: 226_CR56
  publication-title: Opt. Express
  doi: 10.1364/OE.17.019459
– volume: 15
  start-page: 3358
  year: 2015
  ident: 226_CR72
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00680
– volume: 13
  start-page: 862
  year: 2014
  ident: 226_CR77
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4031
– volume: 5
  start-page: 13535
  year: 2015
  ident: 226_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep13535
– volume: 556
  start-page: 360
  year: 2018
  ident: 226_CR78
  publication-title: Nature
  doi: 10.1038/s41586-018-0034-1
– volume: 47
  start-page: 2075
  year: 1999
  ident: 226_CR6
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.798002
– volume: 3
  start-page: 21
  year: 2016
  ident: 226_CR135
  publication-title: Nano Convergence
  doi: 10.1186/s40580-016-0081-y
– volume: 119
  start-page: 3762
  year: 2015
  ident: 226_CR99
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 3641
  year: 2017
  ident: 226_CR132
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00807
– volume: 118
  start-page: 083103
  year: 2015
  ident: 226_CR45
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4929449
– volume: 9
  start-page: 8673
  year: 2019
  ident: 226_CR109
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45091-5
– volume: 48
  start-page: 175105
  year: 2015
  ident: 226_CR36
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/48/17/175105
– volume: 6
  start-page: 27432
  year: 2016
  ident: 226_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep27432
– volume: 95
  start-page: 033115
  year: 2009
  ident: 226_CR118
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3182857
– volume: 7
  start-page: 11329
  year: 2016
  ident: 226_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11329
– volume: 6
  start-page: 34147
  year: 2016
  ident: 226_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/srep34147
– volume: 6
  start-page: e16254
  year: 2017
  ident: 226_CR97
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.254
– volume: 32
  start-page: 1907077
  year: 2020
  ident: 226_CR128
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907077
– volume: 7
  start-page: 1900074
  year: 2019
  ident: 226_CR30
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900074
– volume: 38
  start-page: 2008
  year: 2013
  ident: 226_CR58
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.002008
– volume: 106
  start-page: 1693
  year: 2009
  ident: 226_CR62
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0808478106
– volume: 28
  start-page: 145202
  year: 2017
  ident: 226_CR73
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa6144
– volume: 483
  start-page: 311
  year: 2012
  ident: 226_CR75
  publication-title: Nature
  doi: 10.1038/nature10889
– volume: 27
  start-page: A1241
  year: 2019
  ident: 226_CR140
  publication-title: Opt. Express
  doi: 10.1364/OE.27.0A1241
– volume: 86
  start-page: 165103
  year: 2012
  ident: 226_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.165103
– volume: 23
  start-page: 21809
  year: 2015
  ident: 226_CR139
  publication-title: Opt. Express
  doi: 10.1364/OE.23.021809
– volume: 15
  start-page: 3342
  year: 2007
  ident: 226_CR52
  publication-title: Opt. Express
  doi: 10.1364/OE.15.003342
– volume: 7
  start-page: 6045
  year: 2017
  ident: 226_CR149
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06456-w
– volume: 64
  start-page: 645
  year: 1992
  ident: 226_CR28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.645
– volume: 7
  start-page: 12911
  year: 2016
  ident: 226_CR151
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12911
– volume: 20
  start-page: 15781
  year: 2012
  ident: 226_CR137
  publication-title: Opt. Express
  doi: 10.1364/OE.20.015781
– volume: 28
  start-page: 1707309
  year: 2018
  ident: 226_CR145
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707309
– volume: 11
  start-page: 2254
  year: 2019
  ident: 226_CR98
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.8b17258
– volume: 6
  start-page: 6590
  year: 2015
  ident: 226_CR122
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7590
– volume: 8
  start-page: 5535
  year: 2014
  ident: 226_CR82
  publication-title: ACS Nano
  doi: 10.1021/nn5015775
– volume: 7
  start-page: 3418
  year: 2007
  ident: 226_CR64
  publication-title: Nano Lett.
  doi: 10.1021/nl071893x
– volume: 5
  start-page: 523
  year: 2011
  ident: 226_CR3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.154
– volume: 31
  start-page: 2592
  year: 2006
  ident: 226_CR55
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.002592
– ident: 226_CR90
– volume: 7
  start-page: 11618
  year: 2016
  ident: 226_CR133
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11618
– volume: 30
  start-page: 1702669
  year: 2018
  ident: 226_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702669
– volume: 13
  start-page: 4137
  year: 2013
  ident: 226_CR65
  publication-title: Nano Lett.
  doi: 10.1021/nl401642z
– volume: 26
  start-page: 653
  year: 2014
  ident: 226_CR143
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302938
– volume: 25
  start-page: 13822
  year: 2017
  ident: 226_CR69
  publication-title: Opt. Express
  doi: 10.1364/OE.25.013822
– volume: 31
  start-page: 1901364
  year: 2019
  ident: 226_CR144
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901364
– volume: 328
  start-page: 337
  issue: 5976
  year: 2010
  ident: 226_CR22
  publication-title: Science
  doi: 10.1126/science.1186351
– volume: 6
  start-page: 27621
  year: 2016
  ident: 226_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/srep27621
– year: 2020
  ident: 226_CR68
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00422
– volume: 6
  start-page: 132
  year: 2014
  ident: 226_CR86
  publication-title: Nanoscale
  doi: 10.1039/C3NR04012G
– volume: 28
  start-page: 729
  year: 2016
  ident: 226_CR100
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504467
– volume: 10
  start-page: 2118
  year: 2019
  ident: 226_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09939-8
– volume: 349
  start-page: 1310
  year: 2015
  ident: 226_CR21
  publication-title: Science
  doi: 10.1126/science.aac9411
– volume: 4
  start-page: eaar8535
  year: 2018
  ident: 226_CR50
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar8535
– volume: 7
  start-page: 435
  year: 2008
  ident: 226_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2141
– volume: 100
  start-page: 121113
  year: 2012
  ident: 226_CR54
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3695165
– volume: 6
  start-page: 7021
  year: 2015
  ident: 226_CR113
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8021
– volume: 364
  start-page: 1087
  year: 2019
  ident: 226_CR107
  publication-title: Science
  doi: 10.1126/science.aaw6747
– volume: 7
  start-page: 948
  year: 2013
  ident: 226_CR20
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.243
– volume: 78
  start-page: 085112
  year: 2008
  ident: 226_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.085112
– volume: 17
  start-page: 4360
  year: 2009
  ident: 226_CR40
  publication-title: Opt. Express
  doi: 10.1364/OE.17.004360
– volume: 52
  start-page: 2768
  year: 2019
  ident: 226_CR80
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00264
– volume: 47
  start-page: 656
  year: 2013
  ident: 226_CR10
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400232h
– volume: 305
  start-page: 788
  year: 2004
  ident: 226_CR14
  publication-title: Science
  doi: 10.1126/science.1096796
– volume: 101
  start-page: 103902
  year: 2008
  ident: 226_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.103902
– volume: 328
  start-page: 1135
  year: 2010
  ident: 226_CR142
  publication-title: Science
  doi: 10.1126/science.1187949
– volume: 13
  start-page: 1723
  year: 2013
  ident: 226_CR87
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2013.06.028
– volume: 12
  start-page: 5030
  year: 2018
  ident: 226_CR79
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02566
– volume: 89
  start-page: 103107
  year: 2006
  ident: 226_CR102
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2335812
– volume: 17
  start-page: 6034
  year: 2017
  ident: 226_CR129
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02350
– volume: 308
  start-page: 534
  year: 2005
  ident: 226_CR24
  publication-title: Science
  doi: 10.1126/science.1108759
– volume: 15
  start-page: 14129
  year: 2007
  ident: 226_CR59
  publication-title: Opt. Express
  doi: 10.1364/OE.15.014129
– volume: 137
  start-page: 235
  year: 2015
  ident: 226_CR26
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.02.019
– volume: 8
  start-page: 1901182
  year: 2020
  ident: 226_CR106
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201901182
– volume: 102
  start-page: 121101
  year: 2013
  ident: 226_CR44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4773238
– volume: 5
  start-page: 1742
  year: 2018
  ident: 226_CR120
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01343
– volume: 18
  start-page: 3461
  year: 2018
  ident: 226_CR119
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00475
– volume: 1
  start-page: 41
  year: 2007
  ident: 226_CR4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2006.49
– volume: 321
  start-page: 930
  year: 2008
  ident: 226_CR11
  publication-title: Science
  doi: 10.1126/science.1157566
– volume: 6
  start-page: 5474
  year: 2012
  ident: 226_CR134
  publication-title: ACS Nano
  doi: 10.1021/nn301358n
– volume: 11
  start-page: 3232
  year: 2011
  ident: 226_CR91
  publication-title: Nano Lett.
  doi: 10.1021/nl2014982
– volume: 11
  start-page: 2142
  year: 2011
  ident: 226_CR117
  publication-title: Nano Lett.
  doi: 10.1021/nl200791r
– volume: 26
  start-page: 5515
  year: 2016
  ident: 226_CR92
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601154
– volume: 17
  start-page: 5723
  year: 2009
  ident: 226_CR136
  publication-title: Opt. Express
  doi: 10.1364/OE.17.005723
– volume: 12
  start-page: 113006
  year: 2010
  ident: 226_CR88
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/11/113006
– volume: 113
  start-page: 021105
  year: 2018
  ident: 226_CR124
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5025400
– volume: 23
  start-page: 12766
  year: 2015
  ident: 226_CR148
  publication-title: Opt. Express
  doi: 10.1364/OE.23.012766
– volume: 1
  start-page: 12
  year: 2007
  ident: 226_CR1
  publication-title: Metamaterials
  doi: 10.1016/j.metmat.2007.02.001
– volume: 455
  start-page: 376
  year: 2008
  ident: 226_CR5
  publication-title: Nature
  doi: 10.1038/nature07247
– volume: 342
  start-page: 323
  year: 2013
  ident: 226_CR35
  publication-title: Science
  doi: 10.1126/science.1241727
– volume: 6
  start-page: 7337
  year: 2015
  ident: 226_CR104
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8337
– volume: 6
  start-page: 2385
  year: 2012
  ident: 226_CR93
  publication-title: ACS Nano
  doi: 10.1021/nn204647b
– volume: 9
  start-page: 35244
  year: 2017
  ident: 226_CR111
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b11139
– volume: 100
  start-page: 207402
  year: 2008
  ident: 226_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 5
  start-page: 2205
  year: 2019
  ident: 226_CR110
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2205
– ident: 226_CR96
– volume: 9
  start-page: 4308
  year: 2015
  ident: 226_CR121
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00723
– volume: 16
  start-page: 2818
  year: 2016
  ident: 226_CR130
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00618
– volume: 79
  start-page: 045111
  year: 2009
  ident: 226_CR63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.045111
– ident: 226_CR123
– volume: 96
  start-page: 193103
  year: 2010
  ident: 226_CR53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3427429
– volume: 6
  start-page: 7325
  year: 2015
  ident: 226_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8325
– volume: 8
  start-page: 3745
  year: 2017
  ident: 226_CR150
  publication-title: J. Phys. Chem. Lett
  doi: 10.1021/acs.jpclett.7b01307
– volume: 17
  start-page: 2547
  year: 2005
  ident: 226_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500804
– volume: 101
  start-page: 173903
  year: 2012
  ident: 226_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4764054
– volume: 75
  start-page: 235114
  year: 2007
  ident: 226_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.235114
– volume: 107
  start-page: 063511
  year: 2010
  ident: 226_CR57
  publication-title: Physics
– volume: 23
  start-page: 4422
  year: 2011
  ident: 226_CR94
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102430
– volume: 24
  start-page: 3491
  year: 2012
  ident: 226_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200419
– volume: 106
  start-page: 091907
  year: 2015
  ident: 226_CR42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4914502
– volume: 11
  start-page: 11437
  year: 2019
  ident: 226_CR114
  publication-title: Nanoscale
  doi: 10.1039/C9NR04068D
– volume: 10
  start-page: 133
  year: 2016
  ident: 226_CR83
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05954
– volume: 67
  start-page: 113103
  year: 2003
  ident: 226_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.113103
– volume: 4
  start-page: 1954
  year: 2017
  ident: 226_CR108
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00249
– volume: 10
  start-page: 4222
  year: 2010
  ident: 226_CR85
  publication-title: Nano Lett.
  doi: 10.1021/nl102684x
– volume: 8
  start-page: 252
  year: 2013
  ident: 226_CR112
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.25
– volume: 127
  start-page: 5738
  year: 2016
  ident: 226_CR95
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.02.067
– volume: 8
  start-page: 225
  year: 2016
  ident: 226_CR115
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.5b08334
– volume: 4
  start-page: 2948
  year: 2013
  ident: 226_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3948
– volume: 19
  start-page: 2754
  year: 2011
  ident: 226_CR61
  publication-title: Opt. Express
  doi: 10.1364/OE.19.002754
– volume: 2
  start-page: 17066
  year: 2017
  ident: 226_CR47
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.66
– volume: 24
  start-page: 4615
  year: 2014
  ident: 226_CR71
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400526
– volume: 99
  start-page: 163110
  year: 2011
  ident: 226_CR89
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3655332
– volume: 29
  start-page: 1700412
  year: 2017
  ident: 226_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700412
– volume: 138
  start-page: 7733
  year: 2016
  ident: 226_CR146
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03966
– volume: 12
  start-page: 10683
  year: 2018
  ident: 226_CR127
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04889
– volume: 4
  start-page: 2298
  year: 2017
  ident: 226_CR67
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00546
– volume: 10
  start-page: 1787
  year: 2010
  ident: 226_CR125
  publication-title: Nano Lett.
  doi: 10.1021/nl1004114
– volume: 10
  start-page: 1002
  year: 2016
  ident: 226_CR131
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201600144
– volume: 438
  start-page: 1
  year: 2014
  ident: 226_CR27
  publication-title: Physica B Condens. Matter
  doi: 10.1016/j.physb.2013.12.040
– volume: 345
  start-page: 647
  year: 2014
  ident: 226_CR48
  publication-title: Science
  doi: 10.1126/science.1252876
– volume: 5
  start-page: 1188
  year: 2018
  ident: 226_CR147
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01497
– volume: 16
  start-page: 1472
  year: 2016
  ident: 226_CR66
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05142
– volume: 292
  start-page: 77
  year: 2001
  ident: 226_CR7
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 7
  start-page: 1801167
  year: 2019
  ident: 226_CR70
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801167
– volume: 110
  start-page: 071109
  year: 2017
  ident: 226_CR105
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4976504
– volume: 9
  start-page: 812
  year: 2018
  ident: 226_CR116
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03155-6
– volume: 23
  start-page: 28170
  year: 2015
  ident: 226_CR138
  publication-title: Opt. Express
  doi: 10.1364/OE.23.028170
– volume: 2
  start-page: 1675
  year: 2015
  ident: 226_CR74
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00470
– volume: 6
  start-page: 402
  year: 2011
  ident: 226_CR81
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.82
– ident: 226_CR32
– volume-title: Fluids, colloids and soft materials: an introduction to soft matter physics
  year: 2016
  ident: 226_CR29
SSID ssj0001763418
Score 2.434061
SecondaryResourceType review_article
Snippet Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials...
Abstract Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Advance in Photonic Devices Scaling Down to the Nanoscale
Chemistry and Materials Science
Image resolution
Materials Science
Metamaterials
Metasurfaces
Nanofabrication
Nanophotonics
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optical properties
Reconfigurable metamaterials
Review
Soft matter
Stealth technology
Visibility
고분자공학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1VnNpD1Q8oSwEF1BtYrDdej_dIKxAg0UuLxM2ynTEg6AaF8P879m7SpLT00lOktVdy3tj75vnjGeCTa-qgXURRNlUQSmEQHocolPEREQl9TFMD51_1yYU6u6wvF676SnvCOnvgDrgD5mTypcIR1kE5icyvnklcs6RD72U22y6bckFM5dkVHjZKmtkpGaMPHjgzMaVIainxlha4xETZsJ_5pZ3EP-WaT7dM_rZumuno-A287vPIwWHX_rfwgtp38GrBXfA9bHzjT-xgfJ9nqwc_aOo4O-063CpcHB99_3Ii-qsQRGC-nYqhZtklSZVOUlUFWXvmFVYeJhpSTlOkdGI229NXMjTBmDiS0Xt06eQoS5I1WGnHLa3DgDEzxjFLIynlIzWeGk0U-ZNZjpxyBcgZLDb0PuHpuoo7m_WC0baD0jKUNkNpsYC9-Tv3nUvGs7U_J7TnNZPDdX7Acbd93O2_4l7ALsfK3oab_H76vRrb24llHXBqOatlKTgsYHMWStuPzQebchiF6ea1AnbmxTyq0lKJa2n82NVpWDtWqoAPXeTnzeUUtJY45BJc6hNL_2e5pL25zs7dWKm0TlvA_qz3_GrW3_Ha-B94fYSXVe78aVPjJqxMJ4-0xfnU1G_nofMTzbYUqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOiPJMadGCuIHVOOt4nANCLWpVkFghoFJvlu3YbVVIlu32_zN2kt0uj54ixbZkj2c83-fHDMBrU5VOmoAsrwrHhEDHLE6QCWUDInq0IW4NfJ7K4xPx6bQ83YDp8BYmXqsc1sS0UNeti3vke9HzCIz5st7PfrGYNSqerg4pNEyfWqF-l0KM3YHNImZVHsHmweH0y9fVrguZk-BqeD2j5N4VIRaVs8iioj-TDNc8VArkT36nmYd_YdC_r1L-cZ6a3NTRA7jf48vxfqcQW7Dhm4dw70bUwUew_Y2W3nE7S7vY459-YQi1dor4GE6ODr9_OGZ9igTmyA8v2EQSHeNe5Ib7onC8tORviJGooLww0gcfX9KmsPUFd5VTKtQ8WIsmviglqvIERk3b-GcwtlwqZch7oxfCBl9ZX0nvAy2leW2EyYAPYtGujx8e01j80IlHKKk7UWoSpU6i1JjBm2WbWRc949baB1Hay5ox8nX60c7PdG9IVL_0NhdYY-mE4Uh4yxKok0Tx0dIYMnhFc6Uv3UVqH79nrb6ca-IHHzWhXaKIkwx2hqnUvc1e6ZWGZfByWUzWFo9QTOPb665ORZyyEBk87WZ-2V2CpiXHCZXgmk6sjWe9pLk4TxG9sRDx_DaDt4P2rLr1f3lt3z6K53C3SGodrzHuwGgxv_a7hKAW9kVvFr8BqEMULg
  priority: 102
  providerName: ProQuest
Title Soft optical metamaterials
URI https://link.springer.com/article/10.1186/s40580-020-00226-7
https://www.ncbi.nlm.nih.gov/pubmed/32451734
https://www.proquest.com/docview/2406474179
https://www.proquest.com/docview/2406949524
https://pubmed.ncbi.nlm.nih.gov/PMC7248166
https://doaj.org/article/025eb047d75c4a17893b26467427bb16
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002705253
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nano Convergence, 2020, 7(18), , pp.1-17
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxsxDLYGvGwPaBvbOGBVN-1ti3a55uLcY6korNIQGkPiLUrSZEPAFZXy_3Fy10IHQ-IpUuJIiR3Hn53EAfhiqtJJE5DlVeGYEOiYxR4yoWxARI82xNDAz0N5cCJGp-VpmyYnvoW5f37Plfx-TYBC5Sw6OdHcSIYrsFbSxhuv7w3k4C6eQooiuJq_i3m065LtSSn6yaLU0_AYunx4SfKfk9JkgIavYb1Fjt1-I-o38MLXb-HVvXyCG7B1TJtqd3KV4tPdSz8zhEebJfYOToZ7vwcHrP38gDmysDPWk-RocS9yw31ROF5asiTka6igvDDSBx_fyKaE9AV3lVMqjHmwFk18K0pOyHtYrSe134Su5VIpQ3YZvRA2-Mr6SnofaJPMx0aYDPicLdq1mcHjBxUXOnkISuqGlZpYqRMrNWbwddHnqsmL8ST1buT2gjLmtE4VJGrdqgjRl97mAsdYOmE4EpKyBNckOe9oaQ4ZfCZZ6XN3lvrH8s9En081If8fmnAsOX-9DHbmotStNl7riFoExr_WMvi0aCY9iocjpvaTm4amIm-xEBl8aCS_GC6BzpJjj1pwaU0szWe5pT77m3J1YyHiyWwG3-ar525Y_-fX1vPIt-FlkZZ5vLC4A6uz6Y3_SFhpZjuwoob7HVjr90fHIyp39w6PflHtoBCdpECdFIW4BZREDCQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4IN6kFAgITmA1DyfjHCpEodUubVcIWqk3YztOqQrJsrsV4s_x2xg7yS7Lo7eeIsW2ZI_n8Y3tmQF4porM5KpCFhWJYZyjYRpTZFzoChEt6sodDRyM8sERf3ecHa_Azz4Wxj2r7HWiV9RlY9wZ-aazPBxdvaxX42_MVY1yt6t9CQ3VlVYot3yKsS6wY8_--E4u3HRr-Jb2-3mS7O4cvhmwrsoAM2TKZizNyaOJLY9UbJPExJkmlU2gXlTCcpXbyrpgVJ_5PYlNYYSoyrjSGpULykRXNYJMwBrBjpSkam17Z_T-w-KUh8SXx6KP1hH55pQQkoiY89qc_cwZLllEXziA7Fw9qf6Fef9-uvnH_a03i7s34HqHZ8PXLQPehBVb34Jrv2U5vA3rH0nVh83Yn5qHX-1MEUpuGf8OHF0Kse7Cat3U9j6EOs6FUIQW0HKuK1toW-TWVqS6o1JxFUDck0WaLl-5K5vxRXq_ReSyJaUkUkpPSokBvJiPGbfZOi7sve2oPe_pMm37H83kRHaCS_0zqyOOJWaGqxgJ32kCkTnyBDWtIYCntFfyzJz68e570siziSR_ZCgJXZNLmgaw0W-l7HTEVC44OoAn82aSbndlo2rbnLd9CvJhEx7AvXbn59MlKJzFmFILLvHE0nqWW-rTzz6DOCbc3RcH8LLnnsW0_k-v9YtX8RiuDA4P9uX-cLT3AK4mnsXdE8oNWJ1Nzu1DQm8z_agTkRA-XbZU_gKWWE7n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQ0LwgPgmY0BB8ARRk9TJOQ8IAaOsDCYkmLQ3Y7v2mLYlpe2E-Nf467hzkpbysbc9RYptyT7fx-_O9h3AY13mttAe46TMbCwE2tjgAGMhjUdEh8ZzaODDbrG9J97t5_tr8LN7C8PXKjudGBT1uLYcI--z5RHI9bL6vr0W8XFr-GLyLeYKUnzS2pXTaFhkx_34Tu7b7Ploi_b6SZYN33x-vR23FQZiS2ZsHg8K8mZSJxKduiyzaW5IXROgl146oQvnHT9EDVnfs9SWVko_Tr0xqPlBJnLFCFL_F7jUC0uUHL5dxndIcEUqu3c6sujPCBvJJGZ_jS1nEeOKLQwlA8jCVVP_L7T796XNP05ug0EcXoUrLZLtvWxY7xqsueo6XP4tv-EN2PhESr5XT0K8vHfi5prwccPyN2HvXEh1C9arunJ3oGfSQkpNOAGdEMa70riycM6T0k7GWugI0o4syraZyrlgxrEKHossVENKRaRUgZQKI3i6GDNp8nSc2fsVU3vRk3Nshx_19EC1Ikv9c2cSgWPMrdApErIzBB8LFBkaWkMEj2iv1JE9DOP5e1Cro6kiT2SkCFeTMzqIYLPbStVqh5la8nIEDxfNJNd8WKMrV582fUryXjMRwe1m5xfTJRCcpzigFlzhiZX1rLZUh19D7nDMBJ8UR_Cs457ltP5Pr42zV_EALpIsqvej3Z27cCkLHM53JzdhfT49dfcIts3N_SAfPfhy3gL5C1HGTIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+optical+metamaterials&rft.jtitle=Nano+convergence&rft.au=Chen%2C+Yixin&rft.au=Ai%2C+Bin&rft.au=Wong%2C+Zi+Jing&rft.date=2020-05-26&rft.pub=Springer+Singapore&rft.eissn=2196-5404&rft.volume=7&rft_id=info:doi/10.1186%2Fs40580-020-00226-7&rft_id=info%3Apmid%2F32451734&rft.externalDocID=PMC7248166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5404&client=summon