Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination

Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Neverthele...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 17; no. 1; pp. 160 - 11
Main Authors Lusivika-Nzinga, Clovis, Selinger-Leneman, Hana, Grabar, Sophie, Costagliola, Dominique, Carrat, Fabrice
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.12.2017
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-017-0434-1

Cover

Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
AbstractList The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.BACKGROUNDThe Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.METHODSWe specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.RESULTSOverall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.CONCLUSIONCox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
BACKGROUND:The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.METHODS:We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.RESULTS:Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.CONCLUSION:Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
ArticleNumber 160
Audience Academic
Author Selinger-Leneman, Hana
Grabar, Sophie
Carrat, Fabrice
Lusivika-Nzinga, Clovis
Costagliola, Dominique
Author_xml – sequence: 1
  givenname: Clovis
  surname: Lusivika-Nzinga
  fullname: Lusivika-Nzinga, Clovis
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 2
  givenname: Hana
  surname: Selinger-Leneman
  fullname: Selinger-Leneman, Hana
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 3
  givenname: Sophie
  surname: Grabar
  fullname: Grabar, Sophie
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Unité de Biostatistique et d’épidémiologie Groupe hospitalier Cochin Broca Hôtel-Dieu, Assistance Publique Hôpitaux de Paris (AP-HP), and Université Paris Descartes, Sorbonne Paris Cité
– sequence: 4
  givenname: Dominique
  surname: Costagliola
  fullname: Costagliola, Dominique
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 5
  givenname: Fabrice
  orcidid: 0000-0002-8672-7918
  surname: Carrat
  fullname: Carrat, Fabrice
  email: fabrice.carrat@iplesp.upmc.fr
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Unité de Santé Publique, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29202691$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-02310904$$DView record in HAL
BookMark eNqNkstu1DAUhiNURC_wAGxQJDYsSLFzc7xBGlVAK40EC1hbjn2c8SixBzuZ0h2PzpnJUHUqVKEs4jjf_5_reXLivIMkeU3JJaVN_SHSvGFlRijLSFmUGX2WnNGS0SzPm-bkwfk0OY9xTRBsivpFcprznOQ1p2fJ728QjA-DdApSb9JxBekgQ2ed7NM4hkmNU8Cj8r_SwWvoU6RTiKMd5Ghdl1qn7dbqCRnpdLr21oFOwRhQY9w7BpDjAA6_OrsFhwp0G1qMMFrvXibPjewjvDq8L5Ifnz99v7rOll-_3FwtlpmqaT5mvFGFYYWUTVUVZcOAVGVBWM0MY6Q2ha45KFC0rTUB4EgQTThpG6lLyRG4SG5mX-3lWmwC5h_uhJdW7C986IQMo1U9CCZpXrakapVkJWeM0wLA5KaitNYFK9Ern70mt5F3t7Lv7w0pEbvRiHk0AjsudqMRFEUfZ9FmagfQCjuCjT3K5PiPsyvR-a2oGK0wNBq8nw1Wj2TXi6WwLkIYBMkLimWX2x3-7hAv-J8TTkwMNiroe-nAT1FQzgpCecMJom9ntJNYvnXGYwJqh4tFVdZFjRXsqr78B4WPhsEq3Exj8f5I8OZhxfc5_90-BOgMqOBjDGD-q43skUbZcb9JmI3tn1QephYxiusgiLWfAu55fEL0B2HzDYE
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2866049
crossref_primary_10_1088_1755_1315_332_3_032005
crossref_primary_10_1016_j_cgh_2022_06_011
crossref_primary_10_1016_j_xkme_2024_100896
crossref_primary_10_1002_ijc_32730
crossref_primary_10_1080_24709360_2023_2171537
crossref_primary_10_1136_gutjnl_2019_318932
crossref_primary_10_1016_j_ssci_2024_106562
crossref_primary_10_1186_s41512_021_00092_9
crossref_primary_10_1016_j_drugalcdep_2020_108137
crossref_primary_10_1007_s10742_020_00228_2
crossref_primary_10_1007_s12094_024_03459_8
crossref_primary_10_1097_QAI_0000000000003436
Cites_doi 10.1097/00001648-200009000-00011
10.1002/sim.5317
10.1002/bimj.201300159
10.1016/j.jclinepi.2013.03.020
10.1097/QAI.0000000000000523
10.1097/EDE.0b013e3181ba333c
10.1198/016214501753168154
10.1023/A:1005285815569
10.1002/sim.5753
10.1200/JCO.2012.44.5486
10.1002/sim.5686
10.1007/s10928-005-9002-0
10.1177/0962280213505804
10.1093/aje/kwk116
10.1080/03610918.2016.1248574
10.1097/01.ede.0000128401.55545.c6
10.1002/sim.5994
10.1007/s10985-013-9255-7
10.1097/QAD.0b013e32835935b3
10.1097/01.ede.0000135174.63482.43
10.1080/01621459.2013.872650
10.1201/9781420011579.ch23
10.1097/EDE.0b013e31824d1ccb
10.1002/sim.7266
10.1093/aje/kwg206
10.1016/0270-0255(86)90088-6
10.1111/j.1541-0420.2005.00377.x
10.2202/1557-4679.1208
10.1093/ije/dyu002
10.1007/s10985-009-9135-3
10.1093/aje/kwn164
10.1002/sim.5705
10.1093/aje/kwh131
10.1016/S1470-2045(09)70282-7
10.1002/sim.5472
10.1080/01621459.1994.10476818
10.1177/0962280216668554
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12874-017-0434-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 11
ExternalDocumentID oai_doaj_org_article_7a124b05bca74977913eef2f5116d374
10.1186/s12874-017-0434-1
PMC5715511
oai:HAL:inserm-02310904v1
A546364344
29202691
10_1186_s12874_017_0434_1
Genre Journal Article
GrantInformation_xml – fundername: Agence Nationale de Recherches sur le Sida et les Hepatites Virales
  funderid: http://dx.doi.org/10.13039/501100003323
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
UNPAY
ID FETCH-LOGICAL-c612t-98c3f73aa8553487e05430767f7706f3d69ecec1b6d0ee94870d090b8ad4a96f3
IEDL.DBID M48
ISSN 1471-2288
IngestDate Fri Oct 03 12:48:24 EDT 2025
Sun Oct 26 04:11:34 EDT 2025
Tue Sep 30 16:51:01 EDT 2025
Tue Oct 14 20:01:58 EDT 2025
Fri Sep 05 12:51:38 EDT 2025
Mon Oct 20 21:55:29 EDT 2025
Mon Oct 20 16:39:25 EDT 2025
Thu Jan 02 22:39:11 EST 2025
Wed Oct 01 05:06:54 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Sat Sep 06 07:35:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Causal inference
Time-dependent confounding
Longitudinal data
Marginal structural models
Multitherapy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-98c3f73aa8553487e05430767f7706f3d69ecec1b6d0ee94870d090b8ad4a96f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5715511
ORCID 0000-0002-8672-7918
0000-0003-4457-4228
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-017-0434-1
PMID 29202691
PQID 1973019890
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7a124b05bca74977913eef2f5116d374
unpaywall_primary_10_1186_s12874_017_0434_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715511
hal_primary_oai_HAL_inserm_02310904v1
proquest_miscellaneous_1973019890
gale_infotracmisc_A546364344
gale_infotracacademiconefile_A546364344
pubmed_primary_29202691
crossref_primary_10_1186_s12874_017_0434_1
crossref_citationtrail_10_1186_s12874_017_0434_1
springer_journals_10_1186_s12874_017_0434_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-04
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References SR Cole (434_CR11) 2003; 158
SR Cole (434_CR27) 2008; 168
H Lopez-Gatell (434_CR10) 2007; 165
M Guiguet (434_CR24) 2009; 10
G Vourli (434_CR15) 2015; 57
M Pang (434_CR39) 2016; 25
434_CR14
434_CR38
C Chao (434_CR40) 2012; 26
JM Robins (434_CR2) 1986; 7
Y Xiao (434_CR18) 2014; 109
LM Bodnar (434_CR12) 2004; 159
MA Hernan (434_CR1) 2004; 15
IB Tager (434_CR8) 2004; 15
H Bang (434_CR31) 2005; 61
JM Robins (434_CR5) 2000; 11
MA Hernan (434_CR6) 2001; 96
M van Der Laan (434_CR33) 2010; 6
D Westreich (434_CR16) 2012; 31
Y Xiao (434_CR17) 2010; 6
CJ Howe (434_CR9) 2012; 23
JG Young (434_CR19) 2010; 16
TJ VanderWeele (434_CR28) 2009; 20
JM Robins (434_CR32) 1994; 89
ME Karim (434_CR30) 2017; 36
434_CR21
M van Der Laan (434_CR34) 2010; 6
WG Havercroft (434_CR13) 2012; 31
JG Young (434_CR20) 2014; 33
JM Robins (434_CR3) 1999; 121
434_CR4
C Csajka (434_CR29) 2006; 33
RM Daniel (434_CR35) 2013; 32
DF McCaffrey (434_CR36) 2013; 32
C Piketty (434_CR26) 2012; 30
M Bruyand (434_CR23) 2015; 68
RA Ali (434_CR22) 2014; 20
M Mary-Krause (434_CR25) 2014; 43
AR Ellis (434_CR7) 2013; 66
PC Austin (434_CR37) 2013; 32
References_xml – volume: 11
  start-page: 550
  issue: 5
  year: 2000
  ident: 434_CR5
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00011
– volume: 31
  start-page: 2098
  issue: 19
  year: 2012
  ident: 434_CR16
  publication-title: Stat Med
  doi: 10.1002/sim.5317
– volume: 57
  start-page: 254
  issue: 2
  year: 2015
  ident: 434_CR15
  publication-title: Biom J
  doi: 10.1002/bimj.201300159
– volume: 66
  start-page: S51
  issue: 8 Suppl
  year: 2013
  ident: 434_CR7
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2013.03.020
– volume: 68
  start-page: 568
  issue: 5
  year: 2015
  ident: 434_CR23
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0000000000000523
– ident: 434_CR21
– volume: 20
  start-page: 863
  issue: 6
  year: 2009
  ident: 434_CR28
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ba333c
– volume: 96
  start-page: 440
  year: 2001
  ident: 434_CR6
  publication-title: J Am Stat Asso
  doi: 10.1198/016214501753168154
– volume: 121
  start-page: 151
  issue: 1
  year: 1999
  ident: 434_CR3
  publication-title: Synthese
  doi: 10.1023/A:1005285815569
– volume: 32
  start-page: 3388
  issue: 19
  year: 2013
  ident: 434_CR36
  publication-title: Stat Med
  doi: 10.1002/sim.5753
– volume: 30
  start-page: 4360
  issue: 35
  year: 2012
  ident: 434_CR26
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.44.5486
– volume: 32
  start-page: 1584
  issue: 9
  year: 2013
  ident: 434_CR35
  publication-title: Stat Med
  doi: 10.1002/sim.5686
– volume: 33
  start-page: 227
  issue: 3
  year: 2006
  ident: 434_CR29
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-005-9002-0
– volume: 6
  start-page: 3
  issue: 2
  year: 2010
  ident: 434_CR34
  publication-title: Int J Biostat
– volume: 25
  start-page: 1925
  issue: 5
  year: 2016
  ident: 434_CR39
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213505804
– volume: 165
  start-page: 1134
  issue: 10
  year: 2007
  ident: 434_CR10
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwk116
– ident: 434_CR14
  doi: 10.1080/03610918.2016.1248574
– volume: 15
  start-page: 479
  issue: 4
  year: 2004
  ident: 434_CR8
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000128401.55545.c6
– volume: 33
  start-page: 1001
  issue: 6
  year: 2014
  ident: 434_CR20
  publication-title: Stat Med
  doi: 10.1002/sim.5994
– volume: 20
  start-page: 106
  issue: 1
  year: 2014
  ident: 434_CR22
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-013-9255-7
– volume: 26
  start-page: 2223
  issue: 17
  year: 2012
  ident: 434_CR40
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32835935b3
– volume: 15
  start-page: 615
  year: 2004
  ident: 434_CR1
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– volume: 109
  start-page: 455
  issue: 506
  year: 2014
  ident: 434_CR18
  publication-title: J Am Stat Asso
  doi: 10.1080/01621459.2013.872650
– ident: 434_CR4
  doi: 10.1201/9781420011579.ch23
– volume: 23
  start-page: 574
  issue: 4
  year: 2012
  ident: 434_CR9
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31824d1ccb
– volume: 36
  start-page: 2032
  issue: 13
  year: 2017
  ident: 434_CR30
  publication-title: Stat Med
  doi: 10.1002/sim.7266
– volume: 6
  start-page: 2
  issue: 2
  year: 2010
  ident: 434_CR33
  publication-title: Int J Biostat
– volume: 158
  start-page: 687
  issue: 7
  year: 2003
  ident: 434_CR11
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwg206
– volume: 7
  start-page: 1393
  year: 1986
  ident: 434_CR2
  publication-title: Mathematical Modelling
  doi: 10.1016/0270-0255(86)90088-6
– volume: 61
  start-page: 962
  issue: 4
  year: 2005
  ident: 434_CR31
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00377.x
– volume: 6
  issue: 2
  year: 2010
  ident: 434_CR17
  publication-title: Int J Biostat
  doi: 10.2202/1557-4679.1208
– volume: 43
  start-page: 1425
  issue: 5
  year: 2014
  ident: 434_CR25
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyu002
– volume: 16
  start-page: 71
  issue: 1
  year: 2010
  ident: 434_CR19
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-009-9135-3
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  ident: 434_CR27
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwn164
– volume: 32
  start-page: 2837
  issue: 16
  year: 2013
  ident: 434_CR37
  publication-title: Stat Med
  doi: 10.1002/sim.5705
– volume: 159
  start-page: 926
  issue: 10
  year: 2004
  ident: 434_CR12
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh131
– volume: 10
  start-page: 1152
  issue: 12
  year: 2009
  ident: 434_CR24
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(09)70282-7
– volume: 31
  start-page: 4190
  issue: 30
  year: 2012
  ident: 434_CR13
  publication-title: Stat Med
  doi: 10.1002/sim.5472
– volume: 89
  start-page: 846
  issue: 427
  year: 1994
  ident: 434_CR32
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476818
– ident: 434_CR38
  doi: 10.1177/0962280216668554
SSID ssj0017836
Score 2.267596
Snippet Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and...
The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to...
BACKGROUND:The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and...
Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Algorithms
Analysis
Anus Neoplasms - chemically induced
Anus Neoplasms - epidemiology
Causal inference
CD4 Lymphocyte Count
Data analysis
Female
Health Sciences
Highly active antiretroviral therapy
HIV Infections - drug therapy
HIV Infections - epidemiology
HIV Infections - immunology
HIV Protease Inhibitors - adverse effects
HIV Protease Inhibitors - therapeutic use
Humans
Life Sciences
Longitudinal data
Male
Marginal structural models
Medicine
Medicine & Public Health
Multitherapy
Pharmaceutical sciences
Proportional Hazards Models
Protease inhibitors
Proteases
Research Article
Santé publique et épidémiologie
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Theory of Medicine/Bioethics
Time-dependent confounding
Treatment Outcome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBx4HxJuFgowEQqKKam8cOz4uiGqFKOJApd4sv9IW7Warblvgxk9nxnFCo0rthetmPJt4xuNv5PE3hLyxkG5VXrAihMpBghJ0gb1GC9jtGmdDpZzA28i7X-V8T3zer_YvtPrCmrCOHribuG1lYQdyrHIe1AJY0byMsZk2ABRkKFViAmW17pOpfH6AdxPyGSav5faaI617gRGZiVIUfLQLJbL-ISTfPMSKyMtw83LV5HB0epfcPmuP7e-fdrG4sDvt3Cf3Mqyks-5zHpAbsX1Ibu3mg_NH5M-3fxcE6KqhAPvo0p6knli045BF_g3qV79oao5DQZoiAwci2vaAHg0Xt6htA_2xArWB5mqQpLGvWF_TA4ygMAK0LSHxTrZ_TPZ2Pn3_OC9y84XCA-g5LXTty0aV1tZVVUJWEwHbQTyQqlGKyaYMUkcfPXcysBg1SLDANHO1DcJqEHhCNtpVG58RCibnQXHLrWQiQMhohCuRZ83JiHSDE8J6YxifmcmxQcbCpAyllqaznwH7GbSf4RPyfhhy3NFyXCX8AS08CCKjdvoB_MxkPzPX-dmEvEP_MLju4eW8zdcX4BORQcvMsK8AwDsBkpsjSVivfvT4LXjY6GXmsy8gDSFnaZCOD6ZRnMNbv-590KAKLIZr4-psbbjGsKxrzSbkaeeTgzpsPjaVGkarkbeO_m_8pD06TLTilUL4DCO3er82OZ6tr5rbrcH1r7fE8_9hiRfkzhRXMtYUiU2yAWskvgRkeOpepSDwF17YXAk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiDcLBRkJhEQV1d44dnxcKqoVoogDlXqz_EpbtJtUbMvjxk9nxvGGRkVFXDfjWSfz8Fgz8w0hLy1ctyovWBFC5eCCEnSBs0YLOO0aZ0OlnMBu5L2Pcr4v3h9UBxksGnthzufveS23VxwB2Qv0pUyUooCLzjU4o2TKy8qdIWGAzQg5afnXZaNjJ6HzDz746hGWQF6MLy-WSQ650lvkxll7Yn9-t4vFueNo9w65neNIOusFf5dcie09cn0vZ8rvk1-f_nQE0K6hEOfRpf2ahmDRHjQWATeo737QNA2HAjVFyA0MYdtDejx0alHbBvqlA7aB5vKPxHFdor6ih-gyYQVwW8JNOwn7Adnfffd5Z17kaQuFhyjntNC1LxtVWltXVQnXmAjBHDgAqRqlmGzKIHX00XMnA4tRAwULTDNX2yCsBoKHZKPt2viYUJAxD4pbbiUTAXxEI1yJwGpORsQXnBC2FobxGYocJ2IsTLqS1NL08jMgP4PyM3xC3gxLTnocjsuI36KEB0KE0E4_gGaZbJFGWQhtHKucB32FKFjzMsZm2kAEKkOpxIS8Rv0waOiwOW9zvwK8IkJmmRkOEoB4TgDl5ogSDNSPHr8CDRttZj77ANTgY5YG8ffgM4pvsOsXax00yAKr39rYna0M1-iHda3ZhDzqdXJgh9PGplLDajXS1tH_jZ-0x0cJR7xSGC_Dyq21XpvswFaXfdutQfX_LYkn_8X7Kbk5RZPFaiGxSTbAGOIziPlO3fNk7b8BOpdMmg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6VVOJ44D4CBS0SCInK6Tper72PAVFFiJY-EKk8rfZyG5rYUZNwPfHTmfFFTVEREm9RPLuxxzuz32RnviHkmYZwK7acBc7FBgIUJwPsNRrAbpcZ7eLEcKxG3tsX4wl_exgfbpD3TS2MmVvYBSDSrBooF7PB2TL0Wem74YM92Vm4rDL5VOwsQ6RtD9DjMh7xAMKhTREDOO-Rzcn-wehjWWOUhMFwmKb12eYfx3V2p5LEv3XVl44xU_I8DD2fTdkeqV4jV9b5Qn_7omezM7vW7g2yaJ63SlY5GaxXZmC__0YF-R8VcpNcrxEuHVVL8hbZ8PltcnmvPsO_Q34c_KpVoEVGAYHSuT4t23PRis4WqUCoLb7Ssk8PBWmKZCAIrvMjOm1ryKjOHf1UwLSO1okp5YxN8vySHqEzhxEw29xMq38-75LJ7psPr8dB3QcisIC_VoFMbZQlkdZpHEcQYHmAmeCaRJIlCRNZ5IT01tvQCMe8lyDBHJPMpNpxLUHgHunlRe4fEAqrL3RJqEMtGHfgvTJuIqR8M8Ij82GfsOb9K1uTpGOvjpkqg6VUqEqzCjSrULMq7JOX7ZBFxRBykfArXFStIJJ7l18Up0eq9hUq0QC6DIuNBUsCfC7DyPtsmAE2Fi5KeJ-8wCWp0AXhq9d1JQU8IpJ5qRG2OACkyUFyqyMJrsN2Lj-HRd25mfHoHUiD95srZAYENfLPcNdPm2WvcArMy8t9sV6qUOIOIVPJ-uR-ZQbtdNgHbSgkjE46BtL5ve6VfHpcMpzHCSJ5GLndmJKqXevyIt1ut9b29zfx8J-kH5GrQzQmzGPiW6QHxuAfAxpdmSe1h_kJknKDFg
  priority: 102
  providerName: Unpaywall
Title Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination
URI https://link.springer.com/article/10.1186/s12874-017-0434-1
https://www.ncbi.nlm.nih.gov/pubmed/29202691
https://www.proquest.com/docview/1973019890
https://inserm.hal.science/inserm-02310904
https://pubmed.ncbi.nlm.nih.gov/PMC5715511
https://bmcmedresmethodol.biomedcentral.com/track/pdf/10.1186/s12874-017-0434-1
https://doaj.org/article/7a124b05bca74977913eef2f5116d374
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M48
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2IfHxgPimMCojgZCYMpLGseMHhNpqU4VoVU1UKrxYTux0Q20y2g22N_507twkI9o0xEul1mfXzX34rr77HSGvNYRbUcp8z5gogQDFSA97jXpw2mWJNpFIGFYjD0d8MGGfptF0g1TtrcoHuLo2tMN-UpPlfO_8x8VHUPgPTuFj_n4VIGi7h_bWZyHzIBjahoNKYieHIbu8VMCCBVdsJAKv04nj8pLz2iUax5RD869t9uYRpkxe9UevplXWd6t3ye2z_ERf_NLz-V_H18F9cq_0O2l3LSgPyIbNH5Jbw_Jm_RH5Pb6sIKBFRsEvpAu9dE2z6BpkFgE6aFqcU9c9hwI1RYgOdHnzGT2uK7uozg39XsCyhpbpIm7FKqV9RWdoYmEGrLaAyNwJx2MyOdj_0h94ZXcGLwWv6NSTcRpmItQ6jqIQwh4Lzh8YDC4yIXyehYZLm9o0SLjxrZVA4RvgSRJrw7QEgidkKy9y-4xQkInAiEAHmvvMgE3JWBIiEFvCLeIRtohfMUOlJXQ5dtCYKxfCxFyt-aeAfwr5p4IWeVdPOVnjdtxE3EMO14QIue0-KJYzVWqwEhpcocSPkhTkG7xmGYTWZp0MPFZuQsFa5C3Kh0JRhc2luqxvgJ-IEFuqi40HwP9jQLnToASFThvDb0DCGpsZdD8DNdikhUK8PniM7Cfs-lUlgwqXwGy53BZnKxVItNsyln6LPF3LZL0cdifrcAmzRUNaG9_XHMmPjxzueCTQv4aZu5Vcq0pfb3q2u7Xo_5sTz_-HbS_InQ5qLCYXsR2yBbpgX4KLeJq0yaaYijbZ7u2Pxofwrs_7bfd3S9uZBHg97H2D8clo3P36BzMZY6Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgkxg8IL4pDDASCIkpwmkcJ34MiKmUdkJik_Zm-SvdUJtM68bHG386d4kTiIaGeG3O18T34Tv57neEvNCQbqWWs8i51ECC4mSEs0YjOO1Ko12aGY7dyPM9MTng08P0MPRxr7tq9-5KsvHUjVnn4s06Rmj2CL0q4wmPIOXZxBorsMbNoph-nvaXB9iYEC4w_7pwcAQ1SP29P756hOWQF2PNiyWT_b3pDbJ1Xp3oH9_0cvnH0bR7i9wMMSUtWiW4Ta746g65Ng-35nfJz0-_uwNoXVKI-ehKnzYDsWgLIIvgG9TW32kzGYcCNUX4DQxnqwU97ru2qK4c_VIDW0dDKUjDsStXX9MFuk9YAdxWkHU3gr9HDnbf77-bRGHyQmQh4jmLZG6TMku0hg1OIKXxENiBMxBZmWVMlIkT0ltvYyMc814CBXNMMpNrx7UEgvtko6or_5BQkHfssljHWjDuwF-U3CQIsmaER6zBEWGdMJQNsOQ4HWOpmvQkF6qVnwL5KZSfikfkdb_kpMXkuIz4LUq4J0Q47eaH-nShgnWqTEOYY1hqLOguRMQyTrwvxyVEo8IlGR-RV6gfCo0eXs7q0LsAn4jwWarAoQIQ23Gg3B5QgrHaweOXoGGDl5kUM6AGf7NSiMUH28i_wls_73RQIQushKt8fb5WsUSfLHPJRuRBq5M9O5w8NhYSVmcDbR383_BJdXzUYIqnGcbOsHKn02sVnNn6sr3d6VX_35J49F-8n5Gtyf58pmYf9j4-JtfHaL5YRcS3yQYYhn8CseCZeRps_xctmVTz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BkQo9IN4NFFgkEBKV1XW83vUeQyAK0FY9UKm31b6cFiV21KQ8bvx0ZvwCq6iIazw7WXseO6Od-YaQlwbSrdRxFnmfWkhQvIpw1mgEp11ujU-l5diNfHAopsf840l60sw5XbXV7u2VZN3TgChNxXpv6fPaxDOxt4oRpj1CD8t4wiNIf25wONxwhMFYjLtrBGxRaK4y_7qsdxhVmP2dZ75-ioWRl6POy8WT3Q3qFrl5USzNj29mPv_jkJrcIbeb6JKOanW4S66F4h7ZPGjuz--Tn0e_-wRomVOI_ujCnFejsWgNJYswHNSV32k1I4cCNUUgDgxsixk96_q3qCk8_VICW0-bopCKY1u4vqIzdKSwArgtIP-uVOABOZ68_zyeRs0MhshB7LOOVOaSXCbGZGmaQHITIMQDtyBkLiUTeeKFCi642ArPQlBAwTxTzGbGc6OA4CHZKMoibBMKko-9jE1sBOMePEfObYJwa1YERB0cENYKQ7sGoBznZMx1lahkQtfy0yA_jfLT8YC86ZYsa3SOq4jfooQ7QgTWrn4oz2e6sVMtDQQ8lqXWgRZDbKziJIR8mENcKnwi-YC8Rv3QaP6wOWeaLgZ4RQTS0iMcLwBRHgfKnR4lmK3rPX4FGtbbzHS0D9TgeRYaUfngM_KvsOsXrQ5qZIE1cUUoL1Y6VuidVabYgDyqdbJjhzPIhkLBatnT1t7_9Z8UZ6cVungqMYqGlbutXuvGra2u-ra7ner_WxKP_4v3c7J59G6i9z8cfnpCbg3RerGciO-QDbCL8BSCwrV9Vhn-L1TxV9A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6VVOJ44D4CBS0SCInK6Tper72PAVFFiJY-EKk8rfZyG5rYUZNwPfHTmfFFTVEREm9RPLuxxzuz32RnviHkmYZwK7acBc7FBgIUJwPsNRrAbpcZ7eLEcKxG3tsX4wl_exgfbpD3TS2MmVvYBSDSrBooF7PB2TL0Wem74YM92Vm4rDL5VOwsQ6RtD9DjMh7xAMKhTREDOO-Rzcn-wehjWWOUhMFwmKb12eYfx3V2p5LEv3XVl44xU_I8DD2fTdkeqV4jV9b5Qn_7omezM7vW7g2yaJ63SlY5GaxXZmC__0YF-R8VcpNcrxEuHVVL8hbZ8PltcnmvPsO_Q34c_KpVoEVGAYHSuT4t23PRis4WqUCoLb7Ssk8PBWmKZCAIrvMjOm1ryKjOHf1UwLSO1okp5YxN8vySHqEzhxEw29xMq38-75LJ7psPr8dB3QcisIC_VoFMbZQlkdZpHEcQYHmAmeCaRJIlCRNZ5IT01tvQCMe8lyDBHJPMpNpxLUHgHunlRe4fEAqrL3RJqEMtGHfgvTJuIqR8M8Ij82GfsOb9K1uTpGOvjpkqg6VUqEqzCjSrULMq7JOX7ZBFxRBykfArXFStIJJ7l18Up0eq9hUq0QC6DIuNBUsCfC7DyPtsmAE2Fi5KeJ-8wCWp0AXhq9d1JQU8IpJ5qRG2OACkyUFyqyMJrsN2Lj-HRd25mfHoHUiD95srZAYENfLPcNdPm2WvcArMy8t9sV6qUOIOIVPJ-uR-ZQbtdNgHbSgkjE46BtL5ve6VfHpcMpzHCSJ5GLndmJKqXevyIt1ut9b29zfx8J-kH5GrQzQmzGPiW6QHxuAfAxpdmSe1h_kJknKDFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+the+marginal+structural+cox+model+for+estimating+individual+and+joined+effects+of+treatments+given+in+combination&rft.jtitle=BMC+medical+research+methodology&rft.au=Lusivika-Nzinga%2C+Clovis&rft.au=Selinger-Leneman%2C+Hana&rft.au=Grabar%2C+Sophie&rft.au=Costagliola%2C+Dominique&rft.date=2017-12-04&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-017-0434-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_017_0434_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon