Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips

Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features....

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 28; no. 12; pp. 1295 - 1299
Main Authors Kosuri, Sriram, Eroshenko, Nikolai, LeProust, Emily M, Super, Michael, Way, Jeffrey, Li, Jin Billy, Church, George M
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.12.2010
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/nbt.1716

Cover

Abstract Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology 1 . Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis 2 . Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude 3 , 4 , 5 , yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
AbstractList Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology 1 . Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis 2 . Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude 3 , 4 , 5 , yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. [PUBLICATION ABSTRACT]
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of 35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding 2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology (1). Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis (2). Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude (3-5), yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
Audience Academic
Author LeProust, Emily M
Super, Michael
Way, Jeffrey
Eroshenko, Nikolai
Kosuri, Sriram
Li, Jin Billy
Church, George M
Author_xml – sequence: 1
  givenname: Sriram
  surname: Kosuri
  fullname: Kosuri, Sriram
  email: sri.kosuri@wyss.harvard.edu
  organization: Wyss Institute for Biologically Inspired Engineering, Department of Genetics, Harvard Medical School
– sequence: 2
  givenname: Nikolai
  surname: Eroshenko
  fullname: Eroshenko, Nikolai
  email: eroshenk@wyss.harvard.edu
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard School of Engineering and Applied Sciences
– sequence: 3
  givenname: Emily M
  surname: LeProust
  fullname: LeProust, Emily M
  organization: Agilent Technologies
– sequence: 4
  givenname: Michael
  surname: Super
  fullname: Super, Michael
  organization: Wyss Institute for Biologically Inspired Engineering
– sequence: 5
  givenname: Jeffrey
  surname: Way
  fullname: Way, Jeffrey
  organization: Wyss Institute for Biologically Inspired Engineering
– sequence: 6
  givenname: Jin Billy
  surname: Li
  fullname: Li, Jin Billy
  organization: Department of Genetics, Harvard Medical School, Present address: Department of Genetics, Stanford University, Stanford, California, USA
– sequence: 7
  givenname: George M
  surname: Church
  fullname: Church, George M
  organization: Wyss Institute for Biologically Inspired Engineering, Department of Genetics, Harvard Medical School
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23693636$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21113165$$D View this record in MEDLINE/PubMed
BookMark eNqN0u9r1DAYB_AgE7edgn-BBIdMwZ5J0ybty2Pzx2A4cOo7KWn65C6jTc8-qXj_vTnv3Hk60AaaUj7PA3nyPSYHvvdAyGPOppyJ4pWvw5QrLu-RI55nMuGylAfxmxUqYTyXh-QY8YYxJjMpH5DDlHMuuMyPyJdro1tdt0Dn4IHiyocFoENaryhCCya4b0B1t2yddUYH13vaW3r-fkaXfd8itUPf0YWbLxLrGmhdWNHOmaE3C7fEh-S-1S3Co-0-IZ_evP549i65vHp7cTa7TIzkPCQWatY0RpsmyxuTlzyz8TFMGgAhU6VkrrjQXDVMNMbmpbYqzQWzXKi6yTIxIaebvsuh_zoChqpzaKBttYd-xKpQGS9Eydi_JZeqTIuyjPLpH_KmHwcfj7FGUvFUFBGdbNBct1A5b_swaLNuWc3SLEuVyMS61fQOFVcDcVbxKq2L__cKXuwVRBPge5jrEbG6uP7w__bq8759-ZutR3QeML4w3l_ATckef7IdwVh30FTLwXV6WFW_4hPBsy3QGHNkB-2Nw50TshQyrgl5vnExGIgD2FvCWbVOcBUTXK0TvJvVLTUu_MxdnJlr7yrYnh9jTz-HYXdPf9kfXSj8Pg
CODEN NABIF9
CitedBy_id crossref_primary_10_1007_s40259_015_0126_5
crossref_primary_10_15252_msb_20167233
crossref_primary_10_1016_j_tibtech_2011_10_002
crossref_primary_10_1038_s41598_019_41519_0
crossref_primary_10_1021_acs_analchem_5b02893
crossref_primary_10_1093_nar_gkv538
crossref_primary_10_1093_nar_gks546
crossref_primary_10_1016_j_cbpa_2011_03_015
crossref_primary_10_1038_nmeth_2918
crossref_primary_10_1038_s41467_023_38697_x
crossref_primary_10_1002_ange_201109058
crossref_primary_10_1007_s11095_011_0549_8
crossref_primary_10_3390_ijms20081861
crossref_primary_10_1088_0957_4484_22_28_285302
crossref_primary_10_1371_journal_pone_0029949
crossref_primary_10_1016_j_tibtech_2011_04_003
crossref_primary_10_3390_bios13030307
crossref_primary_10_1002_prot_26067
crossref_primary_10_1021_acssynbio_5b00133
crossref_primary_10_1038_nrg2924
crossref_primary_10_1093_nar_gkae332
crossref_primary_10_1126_science_1241460
crossref_primary_10_1016_j_copbio_2016_03_005
crossref_primary_10_1002_elsc_201600121
crossref_primary_10_1093_synbio_ysx008
crossref_primary_10_1093_nar_gkab505
crossref_primary_10_1021_nn302322j
crossref_primary_10_1080_26388081_2021_1886872
crossref_primary_10_1038_nrmicro2717
crossref_primary_10_1038_ncomms9634
crossref_primary_10_1039_C6NR08224F
crossref_primary_10_1038_nmeth_2649
crossref_primary_10_2144_000114298
crossref_primary_10_1093_nar_gkw1226
crossref_primary_10_1007_s40484_017_0101_x
crossref_primary_10_1016_j_engmic_2022_100067
crossref_primary_10_1063_1_4926616
crossref_primary_10_1016_j_nbt_2015_11_005
crossref_primary_10_1038_nmeth_3696
crossref_primary_10_1038_nbt_1847
crossref_primary_10_1038_nbt_1723
crossref_primary_10_1002_anie_202212011
crossref_primary_10_1186_s12896_018_0439_9
crossref_primary_10_1016_j_ces_2023_119135
crossref_primary_10_15252_msb_20188605
crossref_primary_10_1021_acssynbio_0c00419
crossref_primary_10_1038_s41596_021_00653_8
crossref_primary_10_1038_nprot_2014_082
crossref_primary_10_1016_j_jbiotec_2012_02_012
crossref_primary_10_1089_ten_teb_2014_0494
crossref_primary_10_1002_adfm_201103103
crossref_primary_10_1093_nar_gku428
crossref_primary_10_1016_j_ymben_2011_12_007
crossref_primary_10_1101_cshperspect_a023812
crossref_primary_10_1002_wnan_1204
crossref_primary_10_1016_j_jmb_2015_09_003
crossref_primary_10_1016_j_cbpa_2012_05_001
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1016_j_tibtech_2012_08_002
crossref_primary_10_1016_j_cell_2014_02_039
crossref_primary_10_1038_nrg3956
crossref_primary_10_1016_j_ymben_2012_10_006
crossref_primary_10_1002_ange_202212011
crossref_primary_10_1038_msb_2012_66
crossref_primary_10_1039_D1NR00197C
crossref_primary_10_1093_nar_gkv1087
crossref_primary_10_1002_prot_24463
crossref_primary_10_1016_j_jscs_2021_101382
crossref_primary_10_1093_synbio_ysae019
crossref_primary_10_1371_journal_pone_0119927
crossref_primary_10_1073_pnas_1323862111
crossref_primary_10_3917_rindu_131_0024
crossref_primary_10_1021_sb4001068
crossref_primary_10_1093_nar_gkz1110
crossref_primary_10_1038_s41598_017_06428_0
crossref_primary_10_5483_BMBRep_2011_44_11_705
crossref_primary_10_1038_s42003_020_01141_7
crossref_primary_10_1126_science_1232033
crossref_primary_10_1021_acsomega_0c05299
crossref_primary_10_1093_nar_gky112
crossref_primary_10_1038_s41592_021_01369_z
crossref_primary_10_1126_science_abb5352
crossref_primary_10_1038_nmeth_2503
crossref_primary_10_1002_biot_202100240
crossref_primary_10_1038_nature13761
crossref_primary_10_1099_mic_0_079376_0
crossref_primary_10_1016_j_copbio_2013_03_003
crossref_primary_10_1016_j_jmb_2018_06_034
crossref_primary_10_3109_07388551_2014_989423
crossref_primary_10_1038_s41598_023_29575_z
crossref_primary_10_1371_journal_pone_0052498
crossref_primary_10_1002_cbic_202100507
crossref_primary_10_1016_j_addr_2020_07_018
crossref_primary_10_1021_sb5001565
crossref_primary_10_1016_j_copbio_2011_04_019
crossref_primary_10_1093_nar_gkaa600
crossref_primary_10_1016_j_biotechadv_2013_04_003
crossref_primary_10_1021_acsnano_2c11241
crossref_primary_10_1093_nar_gku405
crossref_primary_10_1021_acs_biochem_7b00886
crossref_primary_10_1038_s41587_021_00988_3
crossref_primary_10_3724_SP_J_1005_2011_01102
crossref_primary_10_1038_nbt_3718
crossref_primary_10_1039_D0CS01430C
crossref_primary_10_1007_s10059_013_0333_1
crossref_primary_10_1371_journal_pone_0021622
crossref_primary_10_1002_adma_201300875
crossref_primary_10_1007_s10529_022_03295_2
crossref_primary_10_1038_ncomms11179
crossref_primary_10_1371_journal_pone_0167088
crossref_primary_10_1002_9780470559277_ch110190
crossref_primary_10_1038_nrg3094
crossref_primary_10_1007_s11693_015_9184_8
crossref_primary_10_1007_s10059_013_0127_5
crossref_primary_10_1016_j_ymeth_2015_05_020
crossref_primary_10_1016_j_febslet_2012_01_053
crossref_primary_10_1016_j_heliyon_2024_e26967
crossref_primary_10_1002_anie_201109058
crossref_primary_10_1021_acssynbio_0c00051
crossref_primary_10_1002_wnan_1518
crossref_primary_10_1039_D3CS00469D
crossref_primary_10_1073_pnas_1801646115
crossref_primary_10_3390_chemosensors6040046
crossref_primary_10_1016_j_jscs_2023_101709
crossref_primary_10_1021_acssynbio_5b00062
crossref_primary_10_1021_acssynbio_3c00665
crossref_primary_10_3389_fbioe_2019_00248
crossref_primary_10_1021_acssynbio_1c00482
crossref_primary_10_1080_19420862_2022_2115200
crossref_primary_10_1039_C4LC00509K
crossref_primary_10_1038_ncomms14698
crossref_primary_10_1002_ijch_201300032
crossref_primary_10_1126_science_aao5167
crossref_primary_10_1038_nbt_4150
crossref_primary_10_1134_S0026893321030109
crossref_primary_10_1021_acssynbio_0c00586
crossref_primary_10_1016_j_tetlet_2024_155106
crossref_primary_10_1016_j_tibtech_2021_02_001
crossref_primary_10_1016_j_ymeth_2012_06_017
crossref_primary_10_1126_science_aaj2038
crossref_primary_10_1016_j_cbpa_2012_06_009
crossref_primary_10_1038_s41570_022_00456_9
crossref_primary_10_1007_s00439_018_1916_x
crossref_primary_10_1109_TMBMC_2016_2537305
crossref_primary_10_1007_s00253_021_11533_2
crossref_primary_10_1038_nmeth_2137
crossref_primary_10_1021_acssynbio_3c00694
crossref_primary_10_1038_473403a
crossref_primary_10_1038_nbt_1710
crossref_primary_10_1093_nar_gkx691
crossref_primary_10_1038_s41467_018_05525_6
crossref_primary_10_1038_nsmb_2944
crossref_primary_10_1016_j_gene_2016_11_008
crossref_primary_10_1021_sb300069k
crossref_primary_10_1002_adhm_201900184
crossref_primary_10_1007_s10529_011_0832_0
crossref_primary_10_1038_ncomms7073
crossref_primary_10_1093_nar_gkr887
crossref_primary_10_1016_j_cbpa_2015_07_009
crossref_primary_10_1038_nnano_2011_187
crossref_primary_10_1109_TMBMC_2023_3331579
crossref_primary_10_1016_j_tig_2014_09_004
crossref_primary_10_18699_VJ18_387
crossref_primary_10_1016_j_molcel_2021_07_027
crossref_primary_10_1021_acssynbio_0c00079
crossref_primary_10_1016_j_cbpa_2011_05_017
crossref_primary_10_1016_j_ymeth_2019_02_017
crossref_primary_10_1016_j_semcancer_2022_09_003
crossref_primary_10_21769_BioProtoc_4464
crossref_primary_10_1039_C7LC00576H
crossref_primary_10_1073_pnas_1105422108
crossref_primary_10_1021_sb500341a
crossref_primary_10_1007_s10295_018_2056_y
crossref_primary_10_1038_nmeth_1610
crossref_primary_10_1093_nar_gkv1177
crossref_primary_10_1126_science_1241459
crossref_primary_10_1186_s13059_023_02880_6
crossref_primary_10_1021_acsnano_5b05782
crossref_primary_10_3109_07388551_2016_1141394
Cites_doi 10.1126/science.1190719
10.1093/nar/gkp687
10.1126/science.1170995
10.1016/j.mee.2006.01.143
10.1101/gr.092213.109
10.1073/pnas.0812506106
10.1016/0378-1119(95)00685-0
10.1038/nbt.1590
10.1038/nbt.1589
10.1038/nmeth1110
10.1186/1471-2105-6-31
10.1093/nar/gkh879
10.1038/nature03151
10.1093/nar/gkq163
10.1093/nar/gnh160
10.1038/nmeth1136
10.1073/pnas.54.5.1378
10.1038/nmeth1010
10.3109/08830189309061696
10.1093/nar/gkq092
10.1093/nar/gkn991
10.1039/b822268c
10.1073/pnas.0914803107
10.1093/nar/gkh793
10.1073/pnas.47.10.1588
ContentType Journal Article
Copyright Springer Nature America, Inc. 2010
2015 INIST-CNRS
COPYRIGHT 2010 Nature Publishing Group
Copyright Nature Publishing Group Dec 2010
Copyright_xml – notice: Springer Nature America, Inc. 2010
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
RC3
7X8
F1W
H95
L.G
DOI 10.1038/nbt.1716
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Business: Insights
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList MEDLINE

Research Library Prep
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 1299
ExternalDocumentID 2207874801
A244273439
21113165
23693636
10_1038_nbt_1716
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: P50 HG003170
– fundername: NHGRI NIH HHS
  grantid: P50 HG005550
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ACMFV
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
IQODW
NFIDA
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
F1W
H95
L.G
ID FETCH-LOGICAL-c611t-feb0ddcacd45dc5914ffffc06cee3627765713a17d03dcf59af72530f137bd443
IEDL.DBID 7X7
ISSN 1087-0156
1546-1696
IngestDate Thu Sep 04 16:31:32 EDT 2025
Fri Sep 05 12:08:58 EDT 2025
Sat Aug 23 13:23:36 EDT 2025
Tue Jun 17 21:34:53 EDT 2025
Tue Jun 10 20:35:57 EDT 2025
Fri Jun 27 04:56:55 EDT 2025
Fri Jun 27 04:22:27 EDT 2025
Thu Jun 26 21:03:55 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Mon Jul 21 09:16:22 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Tue Jul 01 04:29:31 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Amplification
Synthesis
Gene
DNA
DNA chip
Joining
System on a chip
Selectivity
Method
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-feb0ddcacd45dc5914ffffc06cee3627765713a17d03dcf59af72530f137bd443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3139991
PMID 21113165
PQID 816671238
PQPubID 47191
PageCount 5
ParticipantIDs proquest_miscellaneous_874183900
proquest_miscellaneous_816792899
proquest_journals_816671238
gale_infotracmisc_A244273439
gale_infotracacademiconefile_A244273439
gale_incontextgauss_ISR_A244273439
gale_incontextgauss_IOV_A244273439
gale_businessinsightsgauss_A244273439
pubmed_primary_21113165
pascalfrancis_primary_23693636
crossref_primary_10_1038_nbt_1716
crossref_citationtrail_10_1038_nbt_1716
springer_journals_10_1038_nbt_1716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2010
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Gibson (CR9) 2009; 37
LeProust (CR15) 2010; 38
Huston (CR22) 1993; 10
Shao, Zhao, Zhao (CR12) 2009; 37
Carr, Church (CR1) 2009; 27
Cormack, Valdivia, Falkow (CR26) 1996; 173
Carr (CR23) 2004; 32
Zhou (CR5) 2004; 32
Slater, Birney (CR24) 2005; 6
Porreca (CR20) 2007; 4
Nirenberg, Matthaei (CR6) 1961; 47
Li (CR19) 2009; 324
Tian (CR3) 2004; 432
Kim (CR14) 2006; 83
Patwardhan (CR16) 2009; 27
Schlabach (CR17) 2010; 107
Li, Elledge (CR10) 2007; 4
Lee, Snyder, Quake (CR13) 2010; 38
Bang, Church (CR11) 2008; 5
CR25
Li (CR18) 2009; 19
Tian, Ma, Saaem (CR2) 2009; 5
Gibson (CR8) 2010; 329
Xu (CR21) 2009; 106
Söll (CR7) 1965; 54
Richmond (CR4) 2004; 32
KE Richmond (BFnbt1716_CR4) 2004; 32
J Tian (BFnbt1716_CR2) 2009; 5
C-C Lee (BFnbt1716_CR13) 2010; 38
RP Patwardhan (BFnbt1716_CR16) 2009; 27
GJ Porreca (BFnbt1716_CR20) 2007; 4
PA Carr (BFnbt1716_CR23) 2004; 32
X Zhou (BFnbt1716_CR5) 2004; 32
MW Nirenberg (BFnbt1716_CR6) 1961; 47
PA Carr (BFnbt1716_CR1) 2009; 27
Z Shao (BFnbt1716_CR12) 2009; 37
JB Li (BFnbt1716_CR18) 2009; 19
Q Xu (BFnbt1716_CR21) 2009; 106
JS Huston (BFnbt1716_CR22) 1993; 10
J Tian (BFnbt1716_CR3) 2004; 432
D Bang (BFnbt1716_CR11) 2008; 5
BFnbt1716_CR25
DG Gibson (BFnbt1716_CR8) 2010; 329
D Söll (BFnbt1716_CR7) 1965; 54
BP Cormack (BFnbt1716_CR26) 1996; 173
MR Schlabach (BFnbt1716_CR17) 2010; 107
JB Li (BFnbt1716_CR19) 2009; 324
EM LeProust (BFnbt1716_CR15) 2010; 38
GS Slater (BFnbt1716_CR24) 2005; 6
MZ Li (BFnbt1716_CR10) 2007; 4
C Kim (BFnbt1716_CR14) 2006; 83
DG Gibson (BFnbt1716_CR9) 2009; 37
21164523 - Nat Rev Genet. 2011 Jan;12(1):6. doi: 10.1038/nrg2924.
References_xml – volume: 329
  start-page: 52
  year: 2010
  end-page: 56
  ident: CR8
  article-title: Creation of a bacterial cell controlled by a chemically synthesized genome
  publication-title: Science
  doi: 10.1126/science.1190719
– volume: 37
  start-page: 6984
  year: 2009
  end-page: 6990
  ident: CR9
  article-title: Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp687
– volume: 324
  start-page: 1210
  year: 2009
  end-page: 1213
  ident: CR19
  article-title: Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing
  publication-title: Science
  doi: 10.1126/science.1170995
– volume: 83
  start-page: 1613
  year: 2006
  end-page: 1616
  ident: CR14
  article-title: Progress in gene assembly from a MAS-driven DNA microarray
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2006.01.143
– volume: 19
  start-page: 1606
  year: 2009
  end-page: 1615
  ident: CR18
  article-title: Multiplex padlock targeted sequencing reveals human hypermutable CpG variations
  publication-title: Genome Res.
  doi: 10.1101/gr.092213.109
– volume: 106
  start-page: 2289
  year: 2009
  end-page: 2294
  ident: CR21
  article-title: Design of 240,000 orthogonal 25mer DNA barcode probes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0812506106
– volume: 173
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR26
  article-title: FACS-optimized mutants of the green fluorescent protein (GFP)
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00685-0
– volume: 27
  start-page: 1151
  year: 2009
  end-page: 1162
  ident: CR1
  article-title: Genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1590
– ident: CR25
– volume: 27
  start-page: 1173
  year: 2009
  end-page: 1175
  ident: CR16
  article-title: High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1589
– volume: 4
  start-page: 931
  year: 2007
  end-page: 936
  ident: CR20
  article-title: Multiplex amplification of large sets of human exons
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1110
– volume: 6
  start-page: 31
  year: 2005
  ident: CR24
  article-title: Automated generation of heuristics for biological sequence comparison
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-31
– volume: 32
  start-page: 5409
  year: 2004
  end-page: 5417
  ident: CR5
  article-title: Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh879
– volume: 432
  start-page: 1050
  year: 2004
  end-page: 1054
  ident: CR3
  article-title: Accurate multiplex gene synthesis from programmable DNA microchips
  publication-title: Nature
  doi: 10.1038/nature03151
– volume: 38
  start-page: 2522
  year: 2010
  end-page: 2540
  ident: CR15
  article-title: Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq163
– volume: 32
  start-page: e162
  year: 2004
  ident: CR23
  article-title: Protein-mediated error correction for de novo DNA synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh160
– volume: 5
  start-page: 37
  year: 2008
  end-page: 39
  ident: CR11
  article-title: Gene synthesis by circular assembly amplification
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1136
– volume: 54
  start-page: 1378
  year: 1965
  end-page: 1385
  ident: CR7
  article-title: Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.54.5.1378
– volume: 4
  start-page: 251
  year: 2007
  end-page: 256
  ident: CR10
  article-title: Harnessing homologous recombination to generate recombinant DNA via SLIC
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1010
– volume: 10
  start-page: 195
  year: 1993
  end-page: 217
  ident: CR22
  article-title: Medical applications of single-chain antibodies
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830189309061696
– volume: 38
  start-page: 2514
  year: 2010
  end-page: 2521
  ident: CR13
  article-title: A microfluidic oligonucleotide synthesizer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq092
– volume: 37
  start-page: e16
  year: 2009
  ident: CR12
  article-title: DNA assembler, an genetic method for rapid construction of biochemical pathways
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn991
– volume: 5
  start-page: 714
  year: 2009
  end-page: 722
  ident: CR2
  article-title: Advancing high-throughput gene synthesis technology
  publication-title: Mol. Biosyst.
  doi: 10.1039/b822268c
– volume: 107
  start-page: 2538
  year: 2010
  end-page: 2543
  ident: CR17
  article-title: Synthetic design of strong promoters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914803107
– volume: 32
  start-page: 5011
  year: 2004
  end-page: 5018
  ident: CR4
  article-title: Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh793
– volume: 47
  start-page: 1588
  year: 1961
  end-page: 1602
  ident: CR6
  article-title: The dependence of cell-free protein synthesis in upon naturally occurring or synthetic polyribonucleotides
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.47.10.1588
– volume: 6
  start-page: 31
  year: 2005
  ident: BFnbt1716_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-31
– volume: 106
  start-page: 2289
  year: 2009
  ident: BFnbt1716_CR21
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0812506106
– volume: 32
  start-page: 5011
  year: 2004
  ident: BFnbt1716_CR4
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh793
– volume: 38
  start-page: 2514
  year: 2010
  ident: BFnbt1716_CR13
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq092
– volume: 329
  start-page: 52
  year: 2010
  ident: BFnbt1716_CR8
  publication-title: Science
  doi: 10.1126/science.1190719
– volume: 47
  start-page: 1588
  year: 1961
  ident: BFnbt1716_CR6
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.47.10.1588
– volume: 19
  start-page: 1606
  year: 2009
  ident: BFnbt1716_CR18
  publication-title: Genome Res.
  doi: 10.1101/gr.092213.109
– volume: 10
  start-page: 195
  year: 1993
  ident: BFnbt1716_CR22
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830189309061696
– volume: 5
  start-page: 37
  year: 2008
  ident: BFnbt1716_CR11
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1136
– volume: 37
  start-page: e16
  year: 2009
  ident: BFnbt1716_CR12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn991
– volume: 4
  start-page: 931
  year: 2007
  ident: BFnbt1716_CR20
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1110
– volume: 324
  start-page: 1210
  year: 2009
  ident: BFnbt1716_CR19
  publication-title: Science
  doi: 10.1126/science.1170995
– volume: 37
  start-page: 6984
  year: 2009
  ident: BFnbt1716_CR9
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp687
– volume: 27
  start-page: 1151
  year: 2009
  ident: BFnbt1716_CR1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1590
– volume: 432
  start-page: 1050
  year: 2004
  ident: BFnbt1716_CR3
  publication-title: Nature
  doi: 10.1038/nature03151
– volume: 107
  start-page: 2538
  year: 2010
  ident: BFnbt1716_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914803107
– volume: 32
  start-page: e162
  year: 2004
  ident: BFnbt1716_CR23
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh160
– volume: 54
  start-page: 1378
  year: 1965
  ident: BFnbt1716_CR7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.54.5.1378
– volume: 38
  start-page: 2522
  year: 2010
  ident: BFnbt1716_CR15
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq163
– volume: 27
  start-page: 1173
  year: 2009
  ident: BFnbt1716_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1589
– volume: 32
  start-page: 5409
  year: 2004
  ident: BFnbt1716_CR5
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh879
– volume: 4
  start-page: 251
  year: 2007
  ident: BFnbt1716_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1010
– volume: 173
  start-page: 33
  year: 1996
  ident: BFnbt1716_CR26
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00685-0
– volume: 5
  start-page: 714
  year: 2009
  ident: BFnbt1716_CR2
  publication-title: Mol. Biosyst.
  doi: 10.1039/b822268c
– ident: BFnbt1716_CR25
– volume: 83
  start-page: 1613
  year: 2006
  ident: BFnbt1716_CR14
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2006.01.143
– reference: 21164523 - Nat Rev Genet. 2011 Jan;12(1):6. doi: 10.1038/nrg2924.
SSID ssj0006466
Score 2.4586976
Snippet Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and...
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance...
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology (1). Currently, the...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1295
SubjectTerms 631/1647/1888/1890
631/1647/2017/2079
631/92/95
Agriculture
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cloning, Molecular - methods
Deoxyribonucleic acid
Diverse techniques
DNA
DNA - chemical synthesis
DNA - chemistry
DNA microarrays
DNA synthesis
Fundamental and applied biological sciences. Psychology
Genes, Synthetic
Genetic engineering
Genetic technics
Humans
letter
Life Sciences
Methods
Methods. Procedures. Technologies
Molecular and cellular biology
Nucleic Acid Amplification Techniques - methods
Nucleic Acid Hybridization - methods
Oligonucleotide Array Sequence Analysis - instrumentation
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotides
Physiological aspects
Process engineering
Protein synthesis
Semiconductors
Synthetic Biology - methods
Synthetic digonucleotides and genes. Sequencing
Title Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips
URI https://link.springer.com/article/10.1038/nbt.1716
https://www.ncbi.nlm.nih.gov/pubmed/21113165
https://www.proquest.com/docview/816671238
https://www.proquest.com/docview/816792899
https://www.proquest.com/docview/874183900
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgEwiEEBQYZaMyCLSnaHEcO_ETKrAykFbQxlBfpihxbDYJ0oLbh_577hInW2CayENecopj-3J39p2_j5BXFkIhFQkTxCyHBYo2IlCxToPYxNYolVhhcR_ycCoPTuJPMzHztTnOl1W2NrE21OVc4x75Hua3EjCz6ZvFrwBJozC56hk0bpJNBoEIMjcks269Bc62TlWyMMXqSiFb7Fme7lUFsvEiyfklb-Rt8r1F7mB8bENscVXk-U_WtHZGkwfkvo8i6biZ9ofkhqkG5FbDK7kekLuXUAYH5Pahz58_IqfH0CQelqKgN4a6dQXxnzt3tFhTVzPigPGjOVaZW7-ZR-eWvp-OKXJxOYqnUShCHAcW8bEghKc_saRPn50v3GNyMtn_-u4g8AQLgZaMLQNrirAsda7LWJRaKBZbuHQowXOCY0sSKWANm7OkDHmprVC5TSLBQ8t4UpRxzJ-QjWpemaeEas1SBKuTrER4nzCP4lIVuRRGcW6kGZLddqAz7dHHkQTjR1ZnwXmawZRkOCVD8qKTXDSIG1fIvMa5yjxRJ9wcbmW47_nKuWwMIQui9nA1JC9rOQS6qLCSphH4-PnbfwgdH_WEdr2QncN3w5g1pxeg9wig1ZPc6UnC76p7j0c9_er6GHGpuOTQt-1W4TJvT1zWaf-Q0O4pvhlL5CozX9UiicLl8zUiCFXEVRgOyVajyRetg8_jTAoYjFa1L1r_e_ifXfuJ2-RO1NX87JCN5e-VeQ6R27IY1f8n3NPJhxHZfLs__XL0BzBNRAI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ76EEJSvsjEMYtpTtCSOnfphQoVtatla0D7QXlBIHBsmQVpwK9Q_jv-Nu8TJVpgmXpaHvOQUx_bl7uw7_36EvDIQCsmQay8KUligKM09GamuF-nIaCljww3uQw5Hon8cvTvhJ0vkd30WBssqa5tYGup8rHCPfBPzWzGY2e7ryQ8PSaMwuVozaKSOWSHfKhHG3LmOPT3_BSs4uzXYhuleD8PdnaO3fc-RDHhKBMHUMzrz81ylKo94rrgMIgOX8gV4DzDucSw4rOPSIM59livDZWrikDPfBCzO8ihi8N5rZDnC_ZMWWX6zM_pw0LgCUSVLA7-L9Z1c1Oi3rLtZZMgHjDTr5_yh8wp3JqmFGTIVtcZFse8_edvSHe7eI3ddHEt7leLdJ0u6aJPrFbPlvE1un8M5bJMbQ5fBf0A-HUKTeFyLguZqaucFRKD21NJsTm3JyQPml6ZY527cdiIdG7o96lFkA7MUz8NQBFn2DCJ0wSKCfseiQvX1dGIfkuMrGf1HpFWMC_2EUKWCLsLliSBHgCE_DaNcZqngWjKmhe6QjXqgE-Xwz5GG41tS5uFZN4EpSXBKOuRFIzmpMD8ukFnHuUocVSjcLG6m2C_pzNqkB0ET4gYx2SEvSzmE2iiwlqcSGLz_-B9ChwcLQhtOyIzhu2HMqvMT0HuE8FqQXF2QBIOhFh6vLehX08eQCckEg76t1AqXOItmk-b_6xDaPMU3Y5FeocezUiSWuIC_RATBkpj0_Q55XGnyWevgdVkgOAxGrdpnrf89_E8v_cTn5Gb_aLif7A9GeyvkVthUIK2S1vTnTD-DOHKarbm_lZLPV20g_gBHD4aW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJqYhhKAwKBvDIKY9RUvi2KkfJlToqpWxMu0D7QWFxLFhEqQFt0L9E_mvuEucbIVp4mV96EtOSWxf7sN3_v0IeWUgFJIh114UpJCgKM09GamOF-nIaCljww3uQx4Mxd5p9O6Mny2Q3_VZGGyrrG1iaajzkcI98m2sb8VgZjvbxnVFHPb6r8c_PCSQwkJrzaaROpaFfKdEG3NnPPb17Bdkc3Zn0IOl3wzD_u7J2z3PEQ54SgTBxDM68_NcpSqPeK64DCIDP-UL8CRg6ONYcMjp0iDOfZYrw2Vq4pAz3wQszvIoYnDfW2QpBqcPeeDSm93h4VHjFkRVOA38DvZ6clEj4cKIigy5gZFy_ZJvdB7i7ji1sFqmotm4Kg7-p4Zbusb-fXLPxbS0WynhA7Kgixa5XbFczlrkziXMwxZZPnDV_Ifk0zE8Eo9uUdBiTe2sgGjUnluazagt-XnAFNMUe96N21qkI0N7wy5FZjBL8WwMRcBlzyBaFyQU9Ds2GKqv52P7iJzeyOyvksViVOgnhCoVdBA6TwQ5gg35aRjlMksF15IxLXSbbNUTnSiHhY6UHN-SsibPOgksSYJL0iYvGslxhf9xhcwmrlXiaEPhz-LGiv2STq1NuhBAIYYQk23yspRD2I0CNbgSGHz4-B9Cx0dzQltOyIzgvWHOqrMUMHqE85qTXJ-TBOOh5i5vzOlXM8aQCckEg7Gt1QqXOOtmk-ZbbBPaXMU7Y8NeoUfTUiSWmMxfI4LASUz6fps8rjT54unggVkgOExGrdoXT_97-p9e-4rPyTIYiuT9YLi_RlbCphlpnSxOfk71MwgpJ9mG-1gp-XzT9uEP0X-K2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+gene+synthesis+by+selective+amplification+of+DNA+pools+from+high-fidelity+microchips&rft.jtitle=Nature+biotechnology&rft.au=Kosuri%2C+Sriram&rft.au=Eroshenko%2C+Nikolai&rft.au=LeProust%2C+Emily+M&rft.au=Super%2C+Michael&rft.date=2010-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=28&rft.issue=12&rft.spage=1295&rft_id=info:doi/10.1038%2Fnbt.1716&rft.externalDocID=A244273439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon