Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips
Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features....
Saved in:
Published in | Nature biotechnology Vol. 28; no. 12; pp. 1295 - 1299 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.12.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/nbt.1716 |
Cover
Abstract | Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri
et al
. improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features.
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology
1
. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis
2
. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude
3
,
4
,
5
, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. |
---|---|
AbstractList | Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri et al . improve the fidelity and scalability of this process, enabling synthesis of 40 antibody fragments having repetitive regions and other challenging sequence features. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology 1 . Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis 2 . Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude 3 , 4 , 5 , yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. [PUBLICATION ABSTRACT] Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of 35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding 2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology (1). Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis (2). Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude (3-5), yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. |
Audience | Academic |
Author | LeProust, Emily M Super, Michael Way, Jeffrey Eroshenko, Nikolai Kosuri, Sriram Li, Jin Billy Church, George M |
Author_xml | – sequence: 1 givenname: Sriram surname: Kosuri fullname: Kosuri, Sriram email: sri.kosuri@wyss.harvard.edu organization: Wyss Institute for Biologically Inspired Engineering, Department of Genetics, Harvard Medical School – sequence: 2 givenname: Nikolai surname: Eroshenko fullname: Eroshenko, Nikolai email: eroshenk@wyss.harvard.edu organization: Wyss Institute for Biologically Inspired Engineering, Harvard School of Engineering and Applied Sciences – sequence: 3 givenname: Emily M surname: LeProust fullname: LeProust, Emily M organization: Agilent Technologies – sequence: 4 givenname: Michael surname: Super fullname: Super, Michael organization: Wyss Institute for Biologically Inspired Engineering – sequence: 5 givenname: Jeffrey surname: Way fullname: Way, Jeffrey organization: Wyss Institute for Biologically Inspired Engineering – sequence: 6 givenname: Jin Billy surname: Li fullname: Li, Jin Billy organization: Department of Genetics, Harvard Medical School, Present address: Department of Genetics, Stanford University, Stanford, California, USA – sequence: 7 givenname: George M surname: Church fullname: Church, George M organization: Wyss Institute for Biologically Inspired Engineering, Department of Genetics, Harvard Medical School |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23693636$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21113165$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0u9r1DAYB_AgE7edgn-BBIdMwZ5J0ybty2Pzx2A4cOo7KWn65C6jTc8-qXj_vTnv3Hk60AaaUj7PA3nyPSYHvvdAyGPOppyJ4pWvw5QrLu-RI55nMuGylAfxmxUqYTyXh-QY8YYxJjMpH5DDlHMuuMyPyJdro1tdt0Dn4IHiyocFoENaryhCCya4b0B1t2yddUYH13vaW3r-fkaXfd8itUPf0YWbLxLrGmhdWNHOmaE3C7fEh-S-1S3Co-0-IZ_evP549i65vHp7cTa7TIzkPCQWatY0RpsmyxuTlzyz8TFMGgAhU6VkrrjQXDVMNMbmpbYqzQWzXKi6yTIxIaebvsuh_zoChqpzaKBttYd-xKpQGS9Eydi_JZeqTIuyjPLpH_KmHwcfj7FGUvFUFBGdbNBct1A5b_swaLNuWc3SLEuVyMS61fQOFVcDcVbxKq2L__cKXuwVRBPge5jrEbG6uP7w__bq8759-ZutR3QeML4w3l_ATckef7IdwVh30FTLwXV6WFW_4hPBsy3QGHNkB-2Nw50TshQyrgl5vnExGIgD2FvCWbVOcBUTXK0TvJvVLTUu_MxdnJlr7yrYnh9jTz-HYXdPf9kfXSj8Pg |
CODEN | NABIF9 |
CitedBy_id | crossref_primary_10_1007_s40259_015_0126_5 crossref_primary_10_15252_msb_20167233 crossref_primary_10_1016_j_tibtech_2011_10_002 crossref_primary_10_1038_s41598_019_41519_0 crossref_primary_10_1021_acs_analchem_5b02893 crossref_primary_10_1093_nar_gkv538 crossref_primary_10_1093_nar_gks546 crossref_primary_10_1016_j_cbpa_2011_03_015 crossref_primary_10_1038_nmeth_2918 crossref_primary_10_1038_s41467_023_38697_x crossref_primary_10_1002_ange_201109058 crossref_primary_10_1007_s11095_011_0549_8 crossref_primary_10_3390_ijms20081861 crossref_primary_10_1088_0957_4484_22_28_285302 crossref_primary_10_1371_journal_pone_0029949 crossref_primary_10_1016_j_tibtech_2011_04_003 crossref_primary_10_3390_bios13030307 crossref_primary_10_1002_prot_26067 crossref_primary_10_1021_acssynbio_5b00133 crossref_primary_10_1038_nrg2924 crossref_primary_10_1093_nar_gkae332 crossref_primary_10_1126_science_1241460 crossref_primary_10_1016_j_copbio_2016_03_005 crossref_primary_10_1002_elsc_201600121 crossref_primary_10_1093_synbio_ysx008 crossref_primary_10_1093_nar_gkab505 crossref_primary_10_1021_nn302322j crossref_primary_10_1080_26388081_2021_1886872 crossref_primary_10_1038_nrmicro2717 crossref_primary_10_1038_ncomms9634 crossref_primary_10_1039_C6NR08224F crossref_primary_10_1038_nmeth_2649 crossref_primary_10_2144_000114298 crossref_primary_10_1093_nar_gkw1226 crossref_primary_10_1007_s40484_017_0101_x crossref_primary_10_1016_j_engmic_2022_100067 crossref_primary_10_1063_1_4926616 crossref_primary_10_1016_j_nbt_2015_11_005 crossref_primary_10_1038_nmeth_3696 crossref_primary_10_1038_nbt_1847 crossref_primary_10_1038_nbt_1723 crossref_primary_10_1002_anie_202212011 crossref_primary_10_1186_s12896_018_0439_9 crossref_primary_10_1016_j_ces_2023_119135 crossref_primary_10_15252_msb_20188605 crossref_primary_10_1021_acssynbio_0c00419 crossref_primary_10_1038_s41596_021_00653_8 crossref_primary_10_1038_nprot_2014_082 crossref_primary_10_1016_j_jbiotec_2012_02_012 crossref_primary_10_1089_ten_teb_2014_0494 crossref_primary_10_1002_adfm_201103103 crossref_primary_10_1093_nar_gku428 crossref_primary_10_1016_j_ymben_2011_12_007 crossref_primary_10_1101_cshperspect_a023812 crossref_primary_10_1002_wnan_1204 crossref_primary_10_1016_j_jmb_2015_09_003 crossref_primary_10_1016_j_cbpa_2012_05_001 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1016_j_tibtech_2012_08_002 crossref_primary_10_1016_j_cell_2014_02_039 crossref_primary_10_1038_nrg3956 crossref_primary_10_1016_j_ymben_2012_10_006 crossref_primary_10_1002_ange_202212011 crossref_primary_10_1038_msb_2012_66 crossref_primary_10_1039_D1NR00197C crossref_primary_10_1093_nar_gkv1087 crossref_primary_10_1002_prot_24463 crossref_primary_10_1016_j_jscs_2021_101382 crossref_primary_10_1093_synbio_ysae019 crossref_primary_10_1371_journal_pone_0119927 crossref_primary_10_1073_pnas_1323862111 crossref_primary_10_3917_rindu_131_0024 crossref_primary_10_1021_sb4001068 crossref_primary_10_1093_nar_gkz1110 crossref_primary_10_1038_s41598_017_06428_0 crossref_primary_10_5483_BMBRep_2011_44_11_705 crossref_primary_10_1038_s42003_020_01141_7 crossref_primary_10_1126_science_1232033 crossref_primary_10_1021_acsomega_0c05299 crossref_primary_10_1093_nar_gky112 crossref_primary_10_1038_s41592_021_01369_z crossref_primary_10_1126_science_abb5352 crossref_primary_10_1038_nmeth_2503 crossref_primary_10_1002_biot_202100240 crossref_primary_10_1038_nature13761 crossref_primary_10_1099_mic_0_079376_0 crossref_primary_10_1016_j_copbio_2013_03_003 crossref_primary_10_1016_j_jmb_2018_06_034 crossref_primary_10_3109_07388551_2014_989423 crossref_primary_10_1038_s41598_023_29575_z crossref_primary_10_1371_journal_pone_0052498 crossref_primary_10_1002_cbic_202100507 crossref_primary_10_1016_j_addr_2020_07_018 crossref_primary_10_1021_sb5001565 crossref_primary_10_1016_j_copbio_2011_04_019 crossref_primary_10_1093_nar_gkaa600 crossref_primary_10_1016_j_biotechadv_2013_04_003 crossref_primary_10_1021_acsnano_2c11241 crossref_primary_10_1093_nar_gku405 crossref_primary_10_1021_acs_biochem_7b00886 crossref_primary_10_1038_s41587_021_00988_3 crossref_primary_10_3724_SP_J_1005_2011_01102 crossref_primary_10_1038_nbt_3718 crossref_primary_10_1039_D0CS01430C crossref_primary_10_1007_s10059_013_0333_1 crossref_primary_10_1371_journal_pone_0021622 crossref_primary_10_1002_adma_201300875 crossref_primary_10_1007_s10529_022_03295_2 crossref_primary_10_1038_ncomms11179 crossref_primary_10_1371_journal_pone_0167088 crossref_primary_10_1002_9780470559277_ch110190 crossref_primary_10_1038_nrg3094 crossref_primary_10_1007_s11693_015_9184_8 crossref_primary_10_1007_s10059_013_0127_5 crossref_primary_10_1016_j_ymeth_2015_05_020 crossref_primary_10_1016_j_febslet_2012_01_053 crossref_primary_10_1016_j_heliyon_2024_e26967 crossref_primary_10_1002_anie_201109058 crossref_primary_10_1021_acssynbio_0c00051 crossref_primary_10_1002_wnan_1518 crossref_primary_10_1039_D3CS00469D crossref_primary_10_1073_pnas_1801646115 crossref_primary_10_3390_chemosensors6040046 crossref_primary_10_1016_j_jscs_2023_101709 crossref_primary_10_1021_acssynbio_5b00062 crossref_primary_10_1021_acssynbio_3c00665 crossref_primary_10_3389_fbioe_2019_00248 crossref_primary_10_1021_acssynbio_1c00482 crossref_primary_10_1080_19420862_2022_2115200 crossref_primary_10_1039_C4LC00509K crossref_primary_10_1038_ncomms14698 crossref_primary_10_1002_ijch_201300032 crossref_primary_10_1126_science_aao5167 crossref_primary_10_1038_nbt_4150 crossref_primary_10_1134_S0026893321030109 crossref_primary_10_1021_acssynbio_0c00586 crossref_primary_10_1016_j_tetlet_2024_155106 crossref_primary_10_1016_j_tibtech_2021_02_001 crossref_primary_10_1016_j_ymeth_2012_06_017 crossref_primary_10_1126_science_aaj2038 crossref_primary_10_1016_j_cbpa_2012_06_009 crossref_primary_10_1038_s41570_022_00456_9 crossref_primary_10_1007_s00439_018_1916_x crossref_primary_10_1109_TMBMC_2016_2537305 crossref_primary_10_1007_s00253_021_11533_2 crossref_primary_10_1038_nmeth_2137 crossref_primary_10_1021_acssynbio_3c00694 crossref_primary_10_1038_473403a crossref_primary_10_1038_nbt_1710 crossref_primary_10_1093_nar_gkx691 crossref_primary_10_1038_s41467_018_05525_6 crossref_primary_10_1038_nsmb_2944 crossref_primary_10_1016_j_gene_2016_11_008 crossref_primary_10_1021_sb300069k crossref_primary_10_1002_adhm_201900184 crossref_primary_10_1007_s10529_011_0832_0 crossref_primary_10_1038_ncomms7073 crossref_primary_10_1093_nar_gkr887 crossref_primary_10_1016_j_cbpa_2015_07_009 crossref_primary_10_1038_nnano_2011_187 crossref_primary_10_1109_TMBMC_2023_3331579 crossref_primary_10_1016_j_tig_2014_09_004 crossref_primary_10_18699_VJ18_387 crossref_primary_10_1016_j_molcel_2021_07_027 crossref_primary_10_1021_acssynbio_0c00079 crossref_primary_10_1016_j_cbpa_2011_05_017 crossref_primary_10_1016_j_ymeth_2019_02_017 crossref_primary_10_1016_j_semcancer_2022_09_003 crossref_primary_10_21769_BioProtoc_4464 crossref_primary_10_1039_C7LC00576H crossref_primary_10_1073_pnas_1105422108 crossref_primary_10_1021_sb500341a crossref_primary_10_1007_s10295_018_2056_y crossref_primary_10_1038_nmeth_1610 crossref_primary_10_1093_nar_gkv1177 crossref_primary_10_1126_science_1241459 crossref_primary_10_1186_s13059_023_02880_6 crossref_primary_10_1021_acsnano_5b05782 crossref_primary_10_3109_07388551_2016_1141394 |
Cites_doi | 10.1126/science.1190719 10.1093/nar/gkp687 10.1126/science.1170995 10.1016/j.mee.2006.01.143 10.1101/gr.092213.109 10.1073/pnas.0812506106 10.1016/0378-1119(95)00685-0 10.1038/nbt.1590 10.1038/nbt.1589 10.1038/nmeth1110 10.1186/1471-2105-6-31 10.1093/nar/gkh879 10.1038/nature03151 10.1093/nar/gkq163 10.1093/nar/gnh160 10.1038/nmeth1136 10.1073/pnas.54.5.1378 10.1038/nmeth1010 10.3109/08830189309061696 10.1093/nar/gkq092 10.1093/nar/gkn991 10.1039/b822268c 10.1073/pnas.0914803107 10.1093/nar/gkh793 10.1073/pnas.47.10.1588 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2010 2015 INIST-CNRS COPYRIGHT 2010 Nature Publishing Group Copyright Nature Publishing Group Dec 2010 |
Copyright_xml | – notice: Springer Nature America, Inc. 2010 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RC3 7X8 F1W H95 L.G |
DOI | 10.1038/nbt.1716 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Business: Insights Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 1299 |
ExternalDocumentID | 2207874801 A244273439 21113165 23693636 10_1038_nbt_1716 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: P50 HG003170 – fundername: NHGRI NIH HHS grantid: P50 HG005550 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ACMFV ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP IQODW NFIDA PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM PMFND 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO F1W H95 L.G |
ID | FETCH-LOGICAL-c611t-feb0ddcacd45dc5914ffffc06cee3627765713a17d03dcf59af72530f137bd443 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Thu Sep 04 16:31:32 EDT 2025 Fri Sep 05 12:08:58 EDT 2025 Sat Aug 23 13:23:36 EDT 2025 Tue Jun 17 21:34:53 EDT 2025 Tue Jun 10 20:35:57 EDT 2025 Fri Jun 27 04:56:55 EDT 2025 Fri Jun 27 04:22:27 EDT 2025 Thu Jun 26 21:03:55 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Mon Jul 21 09:16:22 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Tue Jul 01 04:29:31 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Amplification Synthesis Gene DNA DNA chip Joining System on a chip Selectivity Method |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c611t-feb0ddcacd45dc5914ffffc06cee3627765713a17d03dcf59af72530f137bd443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3139991 |
PMID | 21113165 |
PQID | 816671238 |
PQPubID | 47191 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_874183900 proquest_miscellaneous_816792899 proquest_journals_816671238 gale_infotracmisc_A244273439 gale_infotracacademiconefile_A244273439 gale_incontextgauss_ISR_A244273439 gale_incontextgauss_IOV_A244273439 gale_businessinsightsgauss_A244273439 pubmed_primary_21113165 pascalfrancis_primary_23693636 crossref_primary_10_1038_nbt_1716 crossref_citationtrail_10_1038_nbt_1716 springer_journals_10_1038_nbt_1716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2010 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Gibson (CR9) 2009; 37 LeProust (CR15) 2010; 38 Huston (CR22) 1993; 10 Shao, Zhao, Zhao (CR12) 2009; 37 Carr, Church (CR1) 2009; 27 Cormack, Valdivia, Falkow (CR26) 1996; 173 Carr (CR23) 2004; 32 Zhou (CR5) 2004; 32 Slater, Birney (CR24) 2005; 6 Porreca (CR20) 2007; 4 Nirenberg, Matthaei (CR6) 1961; 47 Li (CR19) 2009; 324 Tian (CR3) 2004; 432 Kim (CR14) 2006; 83 Patwardhan (CR16) 2009; 27 Schlabach (CR17) 2010; 107 Li, Elledge (CR10) 2007; 4 Lee, Snyder, Quake (CR13) 2010; 38 Bang, Church (CR11) 2008; 5 CR25 Li (CR18) 2009; 19 Tian, Ma, Saaem (CR2) 2009; 5 Gibson (CR8) 2010; 329 Xu (CR21) 2009; 106 Söll (CR7) 1965; 54 Richmond (CR4) 2004; 32 KE Richmond (BFnbt1716_CR4) 2004; 32 J Tian (BFnbt1716_CR2) 2009; 5 C-C Lee (BFnbt1716_CR13) 2010; 38 RP Patwardhan (BFnbt1716_CR16) 2009; 27 GJ Porreca (BFnbt1716_CR20) 2007; 4 PA Carr (BFnbt1716_CR23) 2004; 32 X Zhou (BFnbt1716_CR5) 2004; 32 MW Nirenberg (BFnbt1716_CR6) 1961; 47 PA Carr (BFnbt1716_CR1) 2009; 27 Z Shao (BFnbt1716_CR12) 2009; 37 JB Li (BFnbt1716_CR18) 2009; 19 Q Xu (BFnbt1716_CR21) 2009; 106 JS Huston (BFnbt1716_CR22) 1993; 10 J Tian (BFnbt1716_CR3) 2004; 432 D Bang (BFnbt1716_CR11) 2008; 5 BFnbt1716_CR25 DG Gibson (BFnbt1716_CR8) 2010; 329 D Söll (BFnbt1716_CR7) 1965; 54 BP Cormack (BFnbt1716_CR26) 1996; 173 MR Schlabach (BFnbt1716_CR17) 2010; 107 JB Li (BFnbt1716_CR19) 2009; 324 EM LeProust (BFnbt1716_CR15) 2010; 38 GS Slater (BFnbt1716_CR24) 2005; 6 MZ Li (BFnbt1716_CR10) 2007; 4 C Kim (BFnbt1716_CR14) 2006; 83 DG Gibson (BFnbt1716_CR9) 2009; 37 21164523 - Nat Rev Genet. 2011 Jan;12(1):6. doi: 10.1038/nrg2924. |
References_xml | – volume: 329 start-page: 52 year: 2010 end-page: 56 ident: CR8 article-title: Creation of a bacterial cell controlled by a chemically synthesized genome publication-title: Science doi: 10.1126/science.1190719 – volume: 37 start-page: 6984 year: 2009 end-page: 6990 ident: CR9 article-title: Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp687 – volume: 324 start-page: 1210 year: 2009 end-page: 1213 ident: CR19 article-title: Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing publication-title: Science doi: 10.1126/science.1170995 – volume: 83 start-page: 1613 year: 2006 end-page: 1616 ident: CR14 article-title: Progress in gene assembly from a MAS-driven DNA microarray publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2006.01.143 – volume: 19 start-page: 1606 year: 2009 end-page: 1615 ident: CR18 article-title: Multiplex padlock targeted sequencing reveals human hypermutable CpG variations publication-title: Genome Res. doi: 10.1101/gr.092213.109 – volume: 106 start-page: 2289 year: 2009 end-page: 2294 ident: CR21 article-title: Design of 240,000 orthogonal 25mer DNA barcode probes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812506106 – volume: 173 start-page: 33 year: 1996 end-page: 38 ident: CR26 article-title: FACS-optimized mutants of the green fluorescent protein (GFP) publication-title: Gene doi: 10.1016/0378-1119(95)00685-0 – volume: 27 start-page: 1151 year: 2009 end-page: 1162 ident: CR1 article-title: Genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1590 – ident: CR25 – volume: 27 start-page: 1173 year: 2009 end-page: 1175 ident: CR16 article-title: High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1589 – volume: 4 start-page: 931 year: 2007 end-page: 936 ident: CR20 article-title: Multiplex amplification of large sets of human exons publication-title: Nat. Methods doi: 10.1038/nmeth1110 – volume: 6 start-page: 31 year: 2005 ident: CR24 article-title: Automated generation of heuristics for biological sequence comparison publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-31 – volume: 32 start-page: 5409 year: 2004 end-page: 5417 ident: CR5 article-title: Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh879 – volume: 432 start-page: 1050 year: 2004 end-page: 1054 ident: CR3 article-title: Accurate multiplex gene synthesis from programmable DNA microchips publication-title: Nature doi: 10.1038/nature03151 – volume: 38 start-page: 2522 year: 2010 end-page: 2540 ident: CR15 article-title: Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq163 – volume: 32 start-page: e162 year: 2004 ident: CR23 article-title: Protein-mediated error correction for de novo DNA synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnh160 – volume: 5 start-page: 37 year: 2008 end-page: 39 ident: CR11 article-title: Gene synthesis by circular assembly amplification publication-title: Nat. Methods doi: 10.1038/nmeth1136 – volume: 54 start-page: 1378 year: 1965 end-page: 1385 ident: CR7 article-title: Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.54.5.1378 – volume: 4 start-page: 251 year: 2007 end-page: 256 ident: CR10 article-title: Harnessing homologous recombination to generate recombinant DNA via SLIC publication-title: Nat. Methods doi: 10.1038/nmeth1010 – volume: 10 start-page: 195 year: 1993 end-page: 217 ident: CR22 article-title: Medical applications of single-chain antibodies publication-title: Int. Rev. Immunol. doi: 10.3109/08830189309061696 – volume: 38 start-page: 2514 year: 2010 end-page: 2521 ident: CR13 article-title: A microfluidic oligonucleotide synthesizer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq092 – volume: 37 start-page: e16 year: 2009 ident: CR12 article-title: DNA assembler, an genetic method for rapid construction of biochemical pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn991 – volume: 5 start-page: 714 year: 2009 end-page: 722 ident: CR2 article-title: Advancing high-throughput gene synthesis technology publication-title: Mol. Biosyst. doi: 10.1039/b822268c – volume: 107 start-page: 2538 year: 2010 end-page: 2543 ident: CR17 article-title: Synthetic design of strong promoters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914803107 – volume: 32 start-page: 5011 year: 2004 end-page: 5018 ident: CR4 article-title: Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh793 – volume: 47 start-page: 1588 year: 1961 end-page: 1602 ident: CR6 article-title: The dependence of cell-free protein synthesis in upon naturally occurring or synthetic polyribonucleotides publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.47.10.1588 – volume: 6 start-page: 31 year: 2005 ident: BFnbt1716_CR24 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-31 – volume: 106 start-page: 2289 year: 2009 ident: BFnbt1716_CR21 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812506106 – volume: 32 start-page: 5011 year: 2004 ident: BFnbt1716_CR4 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh793 – volume: 38 start-page: 2514 year: 2010 ident: BFnbt1716_CR13 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq092 – volume: 329 start-page: 52 year: 2010 ident: BFnbt1716_CR8 publication-title: Science doi: 10.1126/science.1190719 – volume: 47 start-page: 1588 year: 1961 ident: BFnbt1716_CR6 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.47.10.1588 – volume: 19 start-page: 1606 year: 2009 ident: BFnbt1716_CR18 publication-title: Genome Res. doi: 10.1101/gr.092213.109 – volume: 10 start-page: 195 year: 1993 ident: BFnbt1716_CR22 publication-title: Int. Rev. Immunol. doi: 10.3109/08830189309061696 – volume: 5 start-page: 37 year: 2008 ident: BFnbt1716_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth1136 – volume: 37 start-page: e16 year: 2009 ident: BFnbt1716_CR12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn991 – volume: 4 start-page: 931 year: 2007 ident: BFnbt1716_CR20 publication-title: Nat. Methods doi: 10.1038/nmeth1110 – volume: 324 start-page: 1210 year: 2009 ident: BFnbt1716_CR19 publication-title: Science doi: 10.1126/science.1170995 – volume: 37 start-page: 6984 year: 2009 ident: BFnbt1716_CR9 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp687 – volume: 27 start-page: 1151 year: 2009 ident: BFnbt1716_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1590 – volume: 432 start-page: 1050 year: 2004 ident: BFnbt1716_CR3 publication-title: Nature doi: 10.1038/nature03151 – volume: 107 start-page: 2538 year: 2010 ident: BFnbt1716_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914803107 – volume: 32 start-page: e162 year: 2004 ident: BFnbt1716_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnh160 – volume: 54 start-page: 1378 year: 1965 ident: BFnbt1716_CR7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.54.5.1378 – volume: 38 start-page: 2522 year: 2010 ident: BFnbt1716_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq163 – volume: 27 start-page: 1173 year: 2009 ident: BFnbt1716_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1589 – volume: 32 start-page: 5409 year: 2004 ident: BFnbt1716_CR5 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh879 – volume: 4 start-page: 251 year: 2007 ident: BFnbt1716_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth1010 – volume: 173 start-page: 33 year: 1996 ident: BFnbt1716_CR26 publication-title: Gene doi: 10.1016/0378-1119(95)00685-0 – volume: 5 start-page: 714 year: 2009 ident: BFnbt1716_CR2 publication-title: Mol. Biosyst. doi: 10.1039/b822268c – ident: BFnbt1716_CR25 – volume: 83 start-page: 1613 year: 2006 ident: BFnbt1716_CR14 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2006.01.143 – reference: 21164523 - Nat Rev Genet. 2011 Jan;12(1):6. doi: 10.1038/nrg2924. |
SSID | ssj0006466 |
Score | 2.4586976 |
Snippet | Long DNA molecules, such as those encoding genes, can be assembled from short oligonucleotides created on a microarray. Kosuri
et al
. improve the fidelity and... Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance... Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology (1). Currently, the... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1295 |
SubjectTerms | 631/1647/1888/1890 631/1647/2017/2079 631/92/95 Agriculture Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cloning, Molecular - methods Deoxyribonucleic acid Diverse techniques DNA DNA - chemical synthesis DNA - chemistry DNA microarrays DNA synthesis Fundamental and applied biological sciences. Psychology Genes, Synthetic Genetic engineering Genetic technics Humans letter Life Sciences Methods Methods. Procedures. Technologies Molecular and cellular biology Nucleic Acid Amplification Techniques - methods Nucleic Acid Hybridization - methods Oligonucleotide Array Sequence Analysis - instrumentation Oligonucleotide Array Sequence Analysis - methods Oligonucleotides Physiological aspects Process engineering Protein synthesis Semiconductors Synthetic Biology - methods Synthetic digonucleotides and genes. Sequencing |
Title | Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips |
URI | https://link.springer.com/article/10.1038/nbt.1716 https://www.ncbi.nlm.nih.gov/pubmed/21113165 https://www.proquest.com/docview/816671238 https://www.proquest.com/docview/816792899 https://www.proquest.com/docview/874183900 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgEwiEEBQYZaMyCLSnaHEcO_ETKrAykFbQxlBfpihxbDYJ0oLbh_577hInW2CayENecopj-3J39p2_j5BXFkIhFQkTxCyHBYo2IlCxToPYxNYolVhhcR_ycCoPTuJPMzHztTnOl1W2NrE21OVc4x75Hua3EjCz6ZvFrwBJozC56hk0bpJNBoEIMjcks269Bc62TlWyMMXqSiFb7Fme7lUFsvEiyfklb-Rt8r1F7mB8bENscVXk-U_WtHZGkwfkvo8i6biZ9ofkhqkG5FbDK7kekLuXUAYH5Pahz58_IqfH0CQelqKgN4a6dQXxnzt3tFhTVzPigPGjOVaZW7-ZR-eWvp-OKXJxOYqnUShCHAcW8bEghKc_saRPn50v3GNyMtn_-u4g8AQLgZaMLQNrirAsda7LWJRaKBZbuHQowXOCY0sSKWANm7OkDHmprVC5TSLBQ8t4UpRxzJ-QjWpemaeEas1SBKuTrER4nzCP4lIVuRRGcW6kGZLddqAz7dHHkQTjR1ZnwXmawZRkOCVD8qKTXDSIG1fIvMa5yjxRJ9wcbmW47_nKuWwMIQui9nA1JC9rOQS6qLCSphH4-PnbfwgdH_WEdr2QncN3w5g1pxeg9wig1ZPc6UnC76p7j0c9_er6GHGpuOTQt-1W4TJvT1zWaf-Q0O4pvhlL5CozX9UiicLl8zUiCFXEVRgOyVajyRetg8_jTAoYjFa1L1r_e_ifXfuJ2-RO1NX87JCN5e-VeQ6R27IY1f8n3NPJhxHZfLs__XL0BzBNRAI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ76EEJSvsjEMYtpTtCSOnfphQoVtatla0D7QXlBIHBsmQVpwK9Q_jv-Nu8TJVpgmXpaHvOQUx_bl7uw7_36EvDIQCsmQay8KUligKM09GamuF-nIaCljww3uQw5Hon8cvTvhJ0vkd30WBssqa5tYGup8rHCPfBPzWzGY2e7ryQ8PSaMwuVozaKSOWSHfKhHG3LmOPT3_BSs4uzXYhuleD8PdnaO3fc-RDHhKBMHUMzrz81ylKo94rrgMIgOX8gV4DzDucSw4rOPSIM59livDZWrikDPfBCzO8ihi8N5rZDnC_ZMWWX6zM_pw0LgCUSVLA7-L9Z1c1Oi3rLtZZMgHjDTr5_yh8wp3JqmFGTIVtcZFse8_edvSHe7eI3ddHEt7leLdJ0u6aJPrFbPlvE1un8M5bJMbQ5fBf0A-HUKTeFyLguZqaucFRKD21NJsTm3JyQPml6ZY527cdiIdG7o96lFkA7MUz8NQBFn2DCJ0wSKCfseiQvX1dGIfkuMrGf1HpFWMC_2EUKWCLsLliSBHgCE_DaNcZqngWjKmhe6QjXqgE-Xwz5GG41tS5uFZN4EpSXBKOuRFIzmpMD8ukFnHuUocVSjcLG6m2C_pzNqkB0ET4gYx2SEvSzmE2iiwlqcSGLz_-B9ChwcLQhtOyIzhu2HMqvMT0HuE8FqQXF2QBIOhFh6vLehX08eQCckEg76t1AqXOItmk-b_6xDaPMU3Y5FeocezUiSWuIC_RATBkpj0_Q55XGnyWevgdVkgOAxGrdpnrf89_E8v_cTn5Gb_aLif7A9GeyvkVthUIK2S1vTnTD-DOHKarbm_lZLPV20g_gBHD4aW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJqYhhKAwKBvDIKY9RUvi2KkfJlToqpWxMu0D7QWFxLFhEqQFt0L9E_mvuEucbIVp4mV96EtOSWxf7sN3_v0IeWUgFJIh114UpJCgKM09GamOF-nIaCljww3uQx4Mxd5p9O6Mny2Q3_VZGGyrrG1iaajzkcI98m2sb8VgZjvbxnVFHPb6r8c_PCSQwkJrzaaROpaFfKdEG3NnPPb17Bdkc3Zn0IOl3wzD_u7J2z3PEQ54SgTBxDM68_NcpSqPeK64DCIDP-UL8CRg6ONYcMjp0iDOfZYrw2Vq4pAz3wQszvIoYnDfW2QpBqcPeeDSm93h4VHjFkRVOA38DvZ6clEj4cKIigy5gZFy_ZJvdB7i7ji1sFqmotm4Kg7-p4Zbusb-fXLPxbS0WynhA7Kgixa5XbFczlrkziXMwxZZPnDV_Ifk0zE8Eo9uUdBiTe2sgGjUnluazagt-XnAFNMUe96N21qkI0N7wy5FZjBL8WwMRcBlzyBaFyQU9Ds2GKqv52P7iJzeyOyvksViVOgnhCoVdBA6TwQ5gg35aRjlMksF15IxLXSbbNUTnSiHhY6UHN-SsibPOgksSYJL0iYvGslxhf9xhcwmrlXiaEPhz-LGiv2STq1NuhBAIYYQk23yspRD2I0CNbgSGHz4-B9Cx0dzQltOyIzgvWHOqrMUMHqE85qTXJ-TBOOh5i5vzOlXM8aQCckEg7Gt1QqXOOtmk-ZbbBPaXMU7Y8NeoUfTUiSWmMxfI4LASUz6fps8rjT54unggVkgOExGrdoXT_97-p9e-4rPyTIYiuT9YLi_RlbCphlpnSxOfk71MwgpJ9mG-1gp-XzT9uEP0X-K2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+gene+synthesis+by+selective+amplification+of+DNA+pools+from+high-fidelity+microchips&rft.jtitle=Nature+biotechnology&rft.au=Kosuri%2C+Sriram&rft.au=Eroshenko%2C+Nikolai&rft.au=LeProust%2C+Emily+M&rft.au=Super%2C+Michael&rft.date=2010-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=28&rft.issue=12&rft.spage=1295&rft_id=info:doi/10.1038%2Fnbt.1716&rft.externalDocID=A244273439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |