Comparison of multivariate classifiers and response normalizations for pattern-information fMRI

A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to “decode” the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, litt...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 53; no. 1; pp. 103 - 118
Main Authors Misaki, Masaya, Kim, Youn, Bandettini, Peter A., Kriegeskorte, Nikolaus
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2010
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.05.051

Cover

Abstract A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to “decode” the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60min per subject with 3T fMRI.
AbstractList A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to "decode" the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60min per subject with 3T fMRI.A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to "decode" the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60min per subject with 3T fMRI.
A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to “decode” the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60min per subject with 3T fMRI.
A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to "decode" the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naive Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3 T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60 min per subject with 3T fMRI.
A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to "decode" the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta- ort-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, ak-nearest-neighbors classifier, Fisher's linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function kernel) support vector machines. We compared these classifiers' accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher's linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns byt-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based ont-value patterns may perform best in the present scenario of visual object representations measured for about 60min per subject with 3T fMRI.
A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to “decode” the stimuli from the response patterns with a multivariate classifier. The sensitivity for detecting the information depends on the particular classifier used. However, little is known about the relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers and investigated how the response-amplitude estimate used (beta or t-value) and different pattern normalizations affect classification performance. The compared classifiers were a pattern-correlation classifier, a k-nearest-neighbors classifier, Fisher’s linear discriminant, Gaussian naïve Bayes, and linear and nonlinear (radial-basis-function-kernel) support vector machines. We compared these classifiers’ accuracy at decoding the category of visual objects from response patterns in human early visual and inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and isotropic voxels of about 2-mm width. Overall, Fisher’s linear discriminant (with an optimal-shrinkage covariance estimator) and the linear support vector machine performed best. The pattern-correlation classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization to independent runs (which more safely ensures independence of the test set) is more challenging than generalization to novel stimuli within the same category. Independent selection of fewer more visually responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and standard deviation of the response patterns either across stimuli or across voxels had no significant effect on decoding performance. Overall our results suggest that linear decoders based on t-value patterns may perform best in the present scenario of visual object representations measured for about 60-minutes per subject with 3T fMRI.
Author Bandettini, Peter A.
Kim, Youn
Kriegeskorte, Nikolaus
Misaki, Masaya
AuthorAffiliation 3 Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, United Kingdom
1 Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Maryland, USA
2 Department electrical engineering, University of California, San Diego, California, USA
AuthorAffiliation_xml – name: 3 Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, United Kingdom
– name: 2 Department electrical engineering, University of California, San Diego, California, USA
– name: 1 Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Maryland, USA
Author_xml – sequence: 1
  givenname: Masaya
  surname: Misaki
  fullname: Misaki, Masaya
  email: misakim@mail.nih.gov
  organization: Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
– sequence: 2
  givenname: Youn
  surname: Kim
  fullname: Kim, Youn
  organization: Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
– sequence: 3
  givenname: Peter A.
  surname: Bandettini
  fullname: Bandettini, Peter A.
  organization: Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
– sequence: 4
  givenname: Nikolaus
  surname: Kriegeskorte
  fullname: Kriegeskorte, Nikolaus
  email: nikolaus.kriegeskorte@mrc-cbu.cam.ac.uk
  organization: Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20580933$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAUDbLifuhfkIIPPnW8aZM2eRF18GNhRRB9Dml6u2ZMkzFpB9Zfb-qss7ovDlxIbs7J4XLuOScnPngkpKCwokCbF5uVxzkGO-prXFWQn4Hnog_IGQXJS8nb6mS587oUlMpTcp7SBgAkZeIROa2AC5B1fUbUOoxbHW0KvghDMc5usrvc6wkL43RKdrAYU6F9X0RM2-ATFj7EUTv7U08298UQYrHV04TRl9YPC7gAxfDx8-Vj8nDQLuGT2_OCfH339sv6Q3n16f3l-vVVaRpKp1IbI6HpGNYN07KiuuUd60BKRvmgQfTYMQ5DX0MvO8F76CqRESa4FMjbob4gL_e627kbsTfop6id2sbsUbxRQVv1L-LtN3UddqrKllBWZ4HntwIx_JgxTWq0yaBz2mOYk2o5E7Jhjfg_k0moqKwW5rN7zE2Yo88-KMqhpQ3U7cJ6-vfoh5n_LCkTxJ5gYkgp4nCgUFBLHtRG3eVBLXlQwHPRO1sOX42dfm8nm2DdMQJv9gKYl7fLUVDJWPQGexvRTKoP9hiRV_dEjLPeGu2-481xEr8A3EPwbA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_03_067
crossref_primary_10_1038_s42003_022_03858_z
crossref_primary_10_1016_j_mri_2012_11_009
crossref_primary_10_1371_journal_pcbi_1005508
crossref_primary_10_1002_hbm_24581
crossref_primary_10_1073_pnas_2003480117
crossref_primary_10_1111_psyp_12665
crossref_primary_10_1523_JNEUROSCI_2857_20_2021
crossref_primary_10_1016_j_neuroimage_2017_09_001
crossref_primary_10_1016_j_neuropsychologia_2018_10_008
crossref_primary_10_1007_s12021_019_09435_w
crossref_primary_10_1523_JNEUROSCI_0351_14_2014
crossref_primary_10_1371_journal_pone_0013775
crossref_primary_10_1016_j_conb_2016_02_001
crossref_primary_10_1016_j_patcog_2011_04_007
crossref_primary_10_3389_fnsys_2020_615129
crossref_primary_10_1016_j_neuroimage_2021_118033
crossref_primary_10_1002_eat_22538
crossref_primary_10_1094_PHYTO_05_20_0185_R
crossref_primary_10_1038_s41467_024_47749_9
crossref_primary_10_3233_THC_171332
crossref_primary_10_3951_sobim_45_1_21
crossref_primary_10_1016_j_actpsy_2024_104569
crossref_primary_10_1038_s42003_021_02002_7
crossref_primary_10_3389_fnhum_2016_00128
crossref_primary_10_1007_s00521_016_2451_0
crossref_primary_10_1371_journal_pone_0069684
crossref_primary_10_1162_jocn_a_02021
crossref_primary_10_1371_journal_pcbi_1003553
crossref_primary_10_1002_hipo_22531
crossref_primary_10_1111_jopy_12658
crossref_primary_10_1371_journal_pone_0069566
crossref_primary_10_1162_jocn_a_00403
crossref_primary_10_3389_fninf_2014_00088
crossref_primary_10_3389_fnins_2021_715549
crossref_primary_10_1016_j_neuropsychologia_2020_107489
crossref_primary_10_1016_j_cortex_2020_02_020
crossref_primary_10_1016_j_neuroimage_2010_12_035
crossref_primary_10_1093_scan_nsz037
crossref_primary_10_1016_j_tics_2012_04_006
crossref_primary_10_1016_j_cortex_2019_11_021
crossref_primary_10_1007_s00429_022_02465_2
crossref_primary_10_3389_fpsyt_2016_00177
crossref_primary_10_1002_hbm_25575
crossref_primary_10_1016_j_neuroimage_2018_08_029
crossref_primary_10_1016_j_neuropsychologia_2018_03_023
crossref_primary_10_1097_WCO_0b013e32834028c7
crossref_primary_10_1016_j_neuroimage_2012_07_013
crossref_primary_10_1371_journal_pone_0207083
crossref_primary_10_7554_eLife_00425
crossref_primary_10_1016_j_neulet_2019_134344
crossref_primary_10_1162_netn_a_00264
crossref_primary_10_1523_JNEUROSCI_4389_13_2014
crossref_primary_10_1162_netn_a_00144
crossref_primary_10_1016_j_neuropsychologia_2019_05_032
crossref_primary_10_1016_j_cortex_2021_03_004
crossref_primary_10_1016_j_neuroimage_2011_06_053
crossref_primary_10_1523_JNEUROSCI_1061_17_2017
crossref_primary_10_1016_j_jneumeth_2018_08_021
crossref_primary_10_1080_19312458_2018_1520823
crossref_primary_10_1016_j_neuroimage_2012_10_069
crossref_primary_10_1002_hbm_25445
crossref_primary_10_1016_j_neuroimage_2016_01_045
crossref_primary_10_3389_fnins_2019_00692
crossref_primary_10_1007_s13139_019_00571_4
crossref_primary_10_1523_JNEUROSCI_3392_15_2016
crossref_primary_10_1016_j_cortex_2021_01_020
crossref_primary_10_1093_cercor_bhw379
crossref_primary_10_1093_cercor_bhw257
crossref_primary_10_1016_j_neuroimage_2015_05_002
crossref_primary_10_1523_JNEUROSCI_1318_17_2017
crossref_primary_10_1016_j_neuroimage_2016_11_019
crossref_primary_10_1109_TNNLS_2013_2253563
crossref_primary_10_1016_j_neuroimage_2021_118825
crossref_primary_10_1016_j_ajp_2023_103721
crossref_primary_10_1523_JNEUROSCI_4770_11_2012
crossref_primary_10_1002_hbm_23015
crossref_primary_10_1016_j_neuropsychologia_2017_12_027
crossref_primary_10_1016_j_neuron_2012_04_034
crossref_primary_10_1162_jocn_a_00505
crossref_primary_10_1016_j_cub_2021_08_012
crossref_primary_10_1523_JNEUROSCI_4588_10_2011
crossref_primary_10_1093_cercor_bhy345
crossref_primary_10_1146_annurev_neuro_080317_061906
crossref_primary_10_1523_JNEUROSCI_0182_15_2015
crossref_primary_10_1088_1741_2560_12_6_066026
crossref_primary_10_1523_JNEUROSCI_2562_17_2018
crossref_primary_10_1093_bjps_axx012
crossref_primary_10_1016_j_neuroimage_2014_12_062
crossref_primary_10_1162_jocn_a_01121
crossref_primary_10_1016_j_neuroimage_2014_05_034
crossref_primary_10_1016_j_neuroimage_2021_117816
crossref_primary_10_1021_acs_jpcb_0c05981
crossref_primary_10_1038_s41598_018_25127_y
crossref_primary_10_1016_j_neuroimage_2016_04_061
crossref_primary_10_1162_nol_a_00035
crossref_primary_10_1016_j_eswa_2022_117417
crossref_primary_10_5607_en23016
crossref_primary_10_1007_s12161_016_0568_5
crossref_primary_10_3389_fpsyg_2020_581701
crossref_primary_10_1016_j_dcn_2014_12_003
crossref_primary_10_1016_j_neuroimage_2021_118230
crossref_primary_10_1093_scan_nsy039
crossref_primary_10_1109_TNSRE_2018_2878587
crossref_primary_10_1016_j_bandl_2023_105304
crossref_primary_10_3389_fpsyg_2015_01328
crossref_primary_10_1016_j_neuroimage_2017_01_002
crossref_primary_10_1016_j_neuroimage_2012_07_046
crossref_primary_10_1016_j_neuroimage_2025_121131
crossref_primary_10_1523_JNEUROSCI_5242_13_2014
crossref_primary_10_1016_j_dsp_2014_12_012
crossref_primary_10_1002_hbm_26391
crossref_primary_10_1162_jocn_a_00161
crossref_primary_10_3390_bioengineering11060609
crossref_primary_10_1016_j_neuroimage_2020_117410
crossref_primary_10_1007_s10548_014_0371_9
crossref_primary_10_1097_j_pain_0000000000003207
crossref_primary_10_1016_j_neuroimage_2013_10_067
crossref_primary_10_1007_s11682_018_9926_9
crossref_primary_10_1016_j_visres_2012_03_019
crossref_primary_10_1016_j_neuron_2020_04_010
crossref_primary_10_1371_journal_pone_0017191
crossref_primary_10_1002_ima_22398
crossref_primary_10_1016_j_neuroimage_2017_11_004
crossref_primary_10_1038_s41598_020_62071_2
crossref_primary_10_1016_j_neuroimage_2013_09_067
crossref_primary_10_1371_journal_pcbi_1005604
crossref_primary_10_1016_j_adhoc_2022_103026
crossref_primary_10_3389_fnhum_2018_00257
crossref_primary_10_1002_wcs_141
crossref_primary_10_1145_3051125
crossref_primary_10_1016_j_cell_2021_05_022
crossref_primary_10_1523_JNEUROSCI_1704_15_2016
crossref_primary_10_3389_fnhum_2015_00151
crossref_primary_10_1016_j_neuroimage_2016_03_006
crossref_primary_10_1016_j_neuroimage_2018_08_064
crossref_primary_10_1111_bdi_12222
crossref_primary_10_3389_fnins_2017_00543
crossref_primary_10_1162_jocn_a_01904
crossref_primary_10_1016_j_patcog_2011_04_023
crossref_primary_10_1371_journal_pbio_1002577
crossref_primary_10_1002_hbm_22490
crossref_primary_10_1155_2012_961257
crossref_primary_10_1093_cercor_bhz205
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_3758_s13415_024_01232_6
crossref_primary_10_1016_j_cortex_2021_06_004
crossref_primary_10_1016_j_neuroimage_2012_03_076
crossref_primary_10_1093_bjps_axx023
crossref_primary_10_1038_s41598_021_86328_6
crossref_primary_10_1016_j_pain_2014_02_013
crossref_primary_10_1523_ENEURO_0091_24_2024
crossref_primary_10_1523_JNEUROSCI_1663_17_2017
crossref_primary_10_1016_j_neuroimage_2011_01_061
crossref_primary_10_1038_nn_3337
crossref_primary_10_1038_s41467_019_08857_z
crossref_primary_10_1093_cercor_bhu302
crossref_primary_10_3389_fnhum_2017_00496
crossref_primary_10_1016_j_neuroimage_2015_10_089
crossref_primary_10_1142_S0129065720500240
crossref_primary_10_1371_journal_pone_0134717
crossref_primary_10_1093_scan_nsx037
crossref_primary_10_1016_j_neuroimage_2017_06_043
crossref_primary_10_1002_hbm_26243
crossref_primary_10_1017_S0021859618000539
crossref_primary_10_1523_JNEUROSCI_0376_23_2023
crossref_primary_10_1523_JNEUROSCI_2641_20_2021
crossref_primary_10_1016_j_eswa_2021_115549
crossref_primary_10_1371_journal_pbio_3001930
crossref_primary_10_1016_j_neuroimage_2010_07_073
crossref_primary_10_1109_JBHI_2023_3317508
crossref_primary_10_1146_annurev_psych_120710_100412
crossref_primary_10_1007_s10916_011_9788_9
crossref_primary_10_1016_j_neuroimage_2018_02_019
crossref_primary_10_1177_1754073913512519
crossref_primary_10_1016_j_neuroimage_2018_02_013
crossref_primary_10_1016_j_plrev_2024_04_012
crossref_primary_10_1097_j_pain_0000000000001237
crossref_primary_10_7554_eLife_66884
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1162_imag_a_00484
crossref_primary_10_1016_j_nbd_2012_10_001
crossref_primary_10_1016_j_cortex_2015_01_020
crossref_primary_10_1016_j_neuroimage_2015_12_012
crossref_primary_10_1016_j_nicl_2013_05_001
crossref_primary_10_1016_j_neuroimage_2022_119597
crossref_primary_10_1016_j_nicl_2021_102718
crossref_primary_10_1016_j_neuroimage_2011_01_044
crossref_primary_10_1016_j_neuroimage_2017_05_068
crossref_primary_10_1038_nn_3749
crossref_primary_10_1111_j_1460_9568_2012_08053_x
crossref_primary_10_3389_fnins_2020_00289
crossref_primary_10_1073_pnas_2003110117
crossref_primary_10_1111_ppa_13891
crossref_primary_10_2196_10885
crossref_primary_10_1016_j_neuroimage_2021_118565
crossref_primary_10_1016_j_neuroimage_2021_118686
crossref_primary_10_1162_nol_a_00001
crossref_primary_10_1016_j_pscychresns_2015_10_002
crossref_primary_10_1002_hbm_22421
crossref_primary_10_1002_hbm_70065
crossref_primary_10_1002_hbm_70184
crossref_primary_10_1093_cercor_bhx195
crossref_primary_10_1093_cercor_bhy289
crossref_primary_10_1016_j_neuropsychologia_2016_01_018
crossref_primary_10_1002_hbm_25851
crossref_primary_10_1523_ENEURO_0008_15_2015
crossref_primary_10_1111_ejn_12547
crossref_primary_10_1093_cercor_bhw302
crossref_primary_10_1016_j_neuroimage_2018_09_031
crossref_primary_10_1152_jn_00106_2011
crossref_primary_10_1007_s10898_013_0134_2
crossref_primary_10_1016_j_neures_2023_01_001
crossref_primary_10_1098_rspb_2012_2339
crossref_primary_10_1016_j_neuroimage_2019_04_044
crossref_primary_10_1073_pnas_1819993116
crossref_primary_10_1016_j_cortex_2020_08_025
crossref_primary_10_1093_cercor_bht029
crossref_primary_10_1007_s10548_013_0322_x
crossref_primary_10_1016_j_neuroimage_2018_06_012
crossref_primary_10_1371_journal_pone_0117126
crossref_primary_10_1523_JNEUROSCI_3795_14_2015
crossref_primary_10_1080_23273798_2016_1272703
crossref_primary_10_3389_fninf_2018_00060
crossref_primary_10_1371_journal_pone_0090782
crossref_primary_10_1093_texcom_tgab049
crossref_primary_10_3389_fnins_2017_00740
crossref_primary_10_1109_ACCESS_2017_2698068
crossref_primary_10_1101_lm_023671_111
crossref_primary_10_1016_j_neuroimage_2022_119499
crossref_primary_10_1093_scan_nsz097
crossref_primary_10_3389_fpsyg_2014_01435
crossref_primary_10_1038_ncomms10904
crossref_primary_10_1016_j_neuroimage_2014_03_076
crossref_primary_10_3389_fnins_2018_00737
crossref_primary_10_1016_j_neuroimage_2014_03_074
crossref_primary_10_1016_j_neuroimage_2017_07_033
crossref_primary_10_1016_j_neuroimage_2021_118428
crossref_primary_10_1007_s00221_018_5395_z
crossref_primary_10_1016_j_jneumeth_2023_110004
crossref_primary_10_1111_j_1467_7687_2011_01055_x
crossref_primary_10_1523_JNEUROSCI_1128_17_2017
crossref_primary_10_1371_journal_pone_0232551
crossref_primary_10_1115_1_4030128
crossref_primary_10_1073_pnas_1818575116
crossref_primary_10_3389_fnins_2020_616906
crossref_primary_10_1093_cercor_bhae303
crossref_primary_10_1021_acsami_4c04858
crossref_primary_10_1007_s40708_016_0049_z
crossref_primary_10_1002_hbm_25353
crossref_primary_10_1093_cercor_bht292
crossref_primary_10_1177_24705470231203655
crossref_primary_10_1002_hbm_26681
crossref_primary_10_1016_j_neuroimage_2017_08_005
crossref_primary_10_1371_journal_pone_0104586
crossref_primary_10_3389_fnins_2023_1233416
crossref_primary_10_1093_cercor_bhu022
crossref_primary_10_1007_s00221_016_4765_7
crossref_primary_10_1007_s11031_021_09900_7
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1073_pnas_1311989110
crossref_primary_10_1093_cercor_bhab324
crossref_primary_10_1098_rstb_2017_0124
crossref_primary_10_1016_j_neuroscience_2013_05_025
crossref_primary_10_1007_s00429_014_0902_x
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1016_j_neuroimage_2018_06_076
crossref_primary_10_1007_s00429_018_1740_z
crossref_primary_10_1016_j_neuroimage_2022_119311
crossref_primary_10_1016_j_neuroimage_2017_08_019
crossref_primary_10_1016_j_cmpb_2021_106549
crossref_primary_10_1109_JIOT_2022_3199712
crossref_primary_10_1111_ejn_12215
crossref_primary_10_1523_JNEUROSCI_1556_11_2011
crossref_primary_10_1016_j_neuropsychologia_2011_11_007
crossref_primary_10_1016_j_neuroimage_2020_116716
crossref_primary_10_1016_j_cortex_2023_08_018
crossref_primary_10_1017_S1355617718000590
crossref_primary_10_1089_brain_2012_0133
crossref_primary_10_1109_ACCESS_2020_3012918
crossref_primary_10_1371_journal_pone_0058632
crossref_primary_10_1371_journal_pone_0223660
crossref_primary_10_1016_j_neuroimage_2013_01_008
crossref_primary_10_1002_hbm_25215
crossref_primary_10_1016_j_neuroimage_2013_06_061
crossref_primary_10_1093_cercor_bhac420
crossref_primary_10_1371_journal_pone_0074665
crossref_primary_10_7554_eLife_31873
crossref_primary_10_1073_pnas_2119931119
crossref_primary_10_1016_j_neuropsychologia_2024_108815
crossref_primary_10_1007_s13534_011_0021_z
crossref_primary_10_1111_desc_13409
crossref_primary_10_1016_j_jneumeth_2018_06_017
crossref_primary_10_1186_s12993_024_00233_2
crossref_primary_10_1073_pnas_2110474118
crossref_primary_10_1093_cercor_bhv136
crossref_primary_10_1016_j_neuroimage_2022_119227
crossref_primary_10_3389_fnhum_2014_00339
crossref_primary_10_1093_cercor_bhv134
crossref_primary_10_1016_j_neuropsychologia_2024_109000
crossref_primary_10_1093_cercor_bhw344
crossref_primary_10_1073_pnas_2412881121
crossref_primary_10_1093_chemse_bjaa068
crossref_primary_10_7554_eLife_63551
crossref_primary_10_1016_j_neuroimage_2012_05_057
crossref_primary_10_1016_j_neuroimage_2016_02_033
crossref_primary_10_1016_j_bpsc_2016_05_001
crossref_primary_10_1162_jocn_a_01068
crossref_primary_10_1016_j_neuropsychologia_2017_02_025
crossref_primary_10_3389_fnins_2018_00038
crossref_primary_10_1007_s11042_023_15935_4
crossref_primary_10_1093_texcom_tgaa038
crossref_primary_10_1002_hbm_25127
crossref_primary_10_1093_cercor_bhaa018
crossref_primary_10_1016_j_neuroimage_2019_02_030
crossref_primary_10_1038_s41598_017_14424_7
crossref_primary_10_1038_s41598_019_50801_0
crossref_primary_10_1088_1752_7163_aa6ac6
crossref_primary_10_1016_j_neuropsychologia_2012_07_007
crossref_primary_10_1111_ejn_14774
crossref_primary_10_1162_jocn_a_02041
crossref_primary_10_1073_pnas_1610686113
crossref_primary_10_1162_jocn_a_00787
crossref_primary_10_1016_j_jneumeth_2012_11_004
crossref_primary_10_1038_nn_3973
crossref_primary_10_1016_j_neuroimage_2015_09_031
crossref_primary_10_1016_j_neuroimage_2011_08_076
Cites_doi 10.1162/089976698300017197
10.1523/JNEUROSCI.16-13-04207.1996
10.1016/j.mri.2008.02.016
10.1016/j.tics.2006.07.005
10.1016/j.neuroimage.2007.02.022
10.1038/nrn2578
10.1126/science.1063736
10.1038/nrn1931
10.1023/A:1024068626366
10.1093/scan/nsn044
10.1038/nn.2303
10.1016/j.neuroimage.2005.06.070
10.1038/nn1445
10.1073/pnas.0600244103
10.1016/j.neuroimage.2008.06.037
10.1016/j.neuron.2008.10.043
10.1109/TPAMI.2005.127
10.1016/j.neuroimage.2005.01.048
10.2202/1544-6115.1175
10.1016/j.neuroimage.2004.05.020
10.1023/B:MACH.0000035475.85309.1b
10.1038/nature06713
10.1002/ima.20166
10.1126/science.1152876
10.1016/j.neuroimage.2008.11.007
10.1073/pnas.0705654104
10.1016/j.neuroimage.2006.01.022
10.1016/S1053-8119(03)00049-1
10.1016/S0927-5398(03)00007-0
10.1038/nn1444
ContentType Journal Article
Copyright 2010
Published by Elsevier Inc.
Copyright Elsevier Limited Oct 15, 2010
Copyright_xml – notice: 2010
– notice: Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Oct 15, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.05.051
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic

Engineering Research Database

ProQuest One Psychology

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 118
ExternalDocumentID PMC2914143
3245854931
20580933
10_1016_j_neuroimage_2010_05_051
S1053811910007834
Genre Comparative Study
Research Support, N.I.H., Intramural
Evaluation Study
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 MH999999
– fundername: Medical Research Council
  grantid: MC_U105597120
– fundername: Intramural NIH HHS
  grantid: ZIA MH002783
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AIGII
AJUYK
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
PUEGO
R2-
SEW
WUQ
XPP
Z5R
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c611t-acc906b4e364a921a75b4b099415fa08deb450fd30d9b85d0b2815f48598e57f3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Tue Sep 30 16:00:48 EDT 2025
Tue Oct 07 09:21:15 EDT 2025
Thu Oct 02 11:06:43 EDT 2025
Tue Oct 07 06:38:54 EDT 2025
Mon Jul 21 05:15:45 EDT 2025
Wed Oct 01 02:58:00 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Oct 14 19:33:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fMRI
Multi-voxel pattern analysis
pattern-information analysis
normalization
decoding
classification analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-acc906b4e364a921a75b4b099415fa08deb450fd30d9b85d0b2815f48598e57f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 20580933
PQID 1507160378
PQPubID 2031077
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2914143
proquest_miscellaneous_754896468
proquest_miscellaneous_749021928
proquest_journals_1507160378
pubmed_primary_20580933
crossref_primary_10_1016_j_neuroimage_2010_05_051
crossref_citationtrail_10_1016_j_neuroimage_2010_05_051
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_05_051
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_05_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-15
PublicationDateYYYYMMDD 2010-10-15
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Norman, Polyn, Detre, Haxby (bib38) 2006; 10
Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bib13) 2001; 293
Kriegeskorte, Bandettini (bib19) 2007; 38
Kriegeskorte, Goebel, Bandettini (bib20) 2006; 103
Ledoit, Wolf (bib30) 2003; 10
Schölkopf, Smola (bib42) 2001
Kamitani, Tong (bib16) 2005; 8
Kriegeskorte, N., 2004. Functional magnetic resonance imaging of the human object-vision system. PhD Thesis. Universiteit Maastricht.
Haynes, Rees (bib14) 2005; 8
Mitchell (bib32) 1997
Guyon, Elisseeff (bib11) 2003; 3
Kriegeskorte, Mur, Ruff, Kiani, Bodurka, Esteky, Tanaka, Bandettini (bib22) 2008; 60
Mur, Bandettini, Kriegeskorte (bib36) 2009; 4
Chang, C.-C., Lin, C.-J., 2001. LIBSVM: a library for support vector machines, Software available at
Mitchell, Shinkareva, Carlson, Chang, Malave, Mason, Just (bib34) 2008; 320
Nadeau, Bengio (bib37) 2003; 52
Ku, Gretton, Macke, Logothetis (bib28) 2008; 26
De Martino, Valente, Staeren, Ashburner, Goebel, Formisano (bib7) 2008; 43
Demšar (bib8) 2006; 7
Krzanowski (bib27) 1988
Pereira, Mitchell, Botvinick (bib39) 2009; 45
Kriegeskorte, Formisano, Sorger, Goebel (bib21) 2007; 104
Mourao-Miranda, Bokde, Born, Hampel, Stetter (bib35) 2005; 28
Hastie, Tibshirani, Friedman (bib12) 2009
Vapnik (bib43) 1995
Dietterich (bib9) 1998; 10
Boynton, Engel, Glover, Heeger (bib3) 1996; 16
Kriegeskorte, Simmons, Bellgowan, Baker (bib25) 2009; 12
Martínez-Ramón, Koltchinskii, Heileman, Posse (bib31) 2006; 31
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (bib33) 2004; 57
LaConte, Strother, Cherkassky, Anderson, Hu (bib29) 2005; 26
Björnsdotter Åberg, Löken, Wessberg (bib2) 2008; 2
Duda, Hart, Stork (bib10) 2000
Cox, Savoy (bib5) 2003; 19
.
Kriegeskorte, Bodurka, Bandettini (bib23) 2008; 18
Krishnapuram, Carin, Figueiredo, Hartemink (bib26) 2005; 27
Cristianini, Shawe-Taylor (bib6) 2000
Bishop (bib1) 2007
Kay, Naselaris, Prenger, Gallant (bib17) 2008; 452
Haynes, Rees (bib15) 2006; 7
Kriegeskorte, Mur, Bandettini (bib24) 2008; 2
Quian Quiroga, Panzeri (bib40) 2009; 10
Schafer, Strimmer (bib41) 2005; 4
Hanson, Matsuka, Haxby (bib44) 2004; 23
Martínez-Ramón (10.1016/j.neuroimage.2010.05.051_bib31) 2006; 31
Norman (10.1016/j.neuroimage.2010.05.051_bib38) 2006; 10
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib22) 2008; 60
Hanson (10.1016/j.neuroimage.2010.05.051_bib44) 2004; 23
Demšar (10.1016/j.neuroimage.2010.05.051_bib8) 2006; 7
Hastie (10.1016/j.neuroimage.2010.05.051_bib12) 2009
Cox (10.1016/j.neuroimage.2010.05.051_bib5) 2003; 19
Dietterich (10.1016/j.neuroimage.2010.05.051_bib9) 1998; 10
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib21) 2007; 104
Mitchell (10.1016/j.neuroimage.2010.05.051_bib33) 2004; 57
Pereira (10.1016/j.neuroimage.2010.05.051_bib39) 2009; 45
Kamitani (10.1016/j.neuroimage.2010.05.051_bib16) 2005; 8
Mitchell (10.1016/j.neuroimage.2010.05.051_bib32) 1997
Björnsdotter Åberg (10.1016/j.neuroimage.2010.05.051_bib2) 2008; 2
Krzanowski (10.1016/j.neuroimage.2010.05.051_bib27) 1988
De Martino (10.1016/j.neuroimage.2010.05.051_bib7) 2008; 43
10.1016/j.neuroimage.2010.05.051_bib4
Haynes (10.1016/j.neuroimage.2010.05.051_bib15) 2006; 7
Haynes (10.1016/j.neuroimage.2010.05.051_bib14) 2005; 8
Mur (10.1016/j.neuroimage.2010.05.051_bib36) 2009; 4
Quian Quiroga (10.1016/j.neuroimage.2010.05.051_bib40) 2009; 10
Duda (10.1016/j.neuroimage.2010.05.051_bib10) 2000
Ledoit (10.1016/j.neuroimage.2010.05.051_bib30) 2003; 10
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib24) 2008; 2
LaConte (10.1016/j.neuroimage.2010.05.051_bib29) 2005; 26
Boynton (10.1016/j.neuroimage.2010.05.051_bib3) 1996; 16
Krishnapuram (10.1016/j.neuroimage.2010.05.051_bib26) 2005; 27
Schölkopf (10.1016/j.neuroimage.2010.05.051_bib42) 2001
Vapnik (10.1016/j.neuroimage.2010.05.051_bib43) 1995
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib20) 2006; 103
Mourao-Miranda (10.1016/j.neuroimage.2010.05.051_bib35) 2005; 28
Guyon (10.1016/j.neuroimage.2010.05.051_bib11) 2003; 3
Mitchell (10.1016/j.neuroimage.2010.05.051_bib34) 2008; 320
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib25) 2009; 12
Nadeau (10.1016/j.neuroimage.2010.05.051_bib37) 2003; 52
Bishop (10.1016/j.neuroimage.2010.05.051_bib1) 2007
Haxby (10.1016/j.neuroimage.2010.05.051_bib13) 2001; 293
Schafer (10.1016/j.neuroimage.2010.05.051_bib41) 2005; 4
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib19) 2007; 38
Kriegeskorte (10.1016/j.neuroimage.2010.05.051_bib23) 2008; 18
Ku (10.1016/j.neuroimage.2010.05.051_bib28) 2008; 26
Cristianini (10.1016/j.neuroimage.2010.05.051_bib6) 2000
Kay (10.1016/j.neuroimage.2010.05.051_bib17) 2008; 452
10.1016/j.neuroimage.2010.05.051_bib18
References_xml – volume: 60
  start-page: 1126
  year: 2008
  end-page: 1141
  ident: bib22
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
– volume: 52
  start-page: 239
  year: 2003
  end-page: 281
  ident: bib37
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
– year: 1995
  ident: bib43
  article-title: The Nature of Statistical Learning Theory
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: bib5
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
– volume: 26
  start-page: 1007
  year: 2008
  end-page: 1014
  ident: bib28
  article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys
  publication-title: Magn. Reson. Imaging
– volume: 28
  start-page: 980
  year: 2005
  end-page: 995
  ident: bib35
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: NeuroImage
– volume: 27
  start-page: 957
  year: 2005
  end-page: 968
  ident: bib26
  article-title: Sparse multinomial logistic regression: fast algorithms and generalization bounds
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 317
  year: 2005
  end-page: 329
  ident: bib29
  article-title: Support vector machines for temporal classification of block design fMRI data
  publication-title: NeuroImage
– volume: 320
  start-page: 1191
  year: 2008
  end-page: 1195
  ident: bib34
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
– year: 2000
  ident: bib6
  article-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
– volume: 2
  start-page: 302
  year: 2008
  end-page: 307
  ident: bib2
  article-title: An evolutionary approach to multivariate feature selection for fMRI pattern analysis
  publication-title: Biosignals
– volume: 38
  start-page: 649
  year: 2007
  end-page: 662
  ident: bib19
  article-title: Analyzing for information, not activation, to exploit high-resolution fMRI
  publication-title: NeuroImage
– volume: 104
  start-page: 20600
  year: 2007
  end-page: 20605
  ident: bib21
  article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: bib20
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2
  start-page: 1
  year: 2008
  end-page: 28
  ident: bib24
  article-title: Representational similarity analysis—connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 4
  year: 2005
  ident: bib41
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Stat. Appl. Genet. Mol. Biol.
– year: 1988
  ident: bib27
  article-title: Principles of Multivariate Analysis: A User's Perspective
– volume: 18
  start-page: 345
  year: 2008
  end-page: 349
  ident: bib23
  article-title: Artifactual time course correlations in echo-planar fMRI with implications for studies of brain function
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  ident: bib3
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  ident: bib16
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
– reference: Kriegeskorte, N., 2004. Functional magnetic resonance imaging of the human object-vision system. PhD Thesis. Universiteit Maastricht.
– volume: 4
  start-page: 101
  year: 2009
  end-page: 109
  ident: bib36
  article-title: Revealing representational content with pattern-information fMRI—an introductory guide
  publication-title: Soc. Cogn. Affect. Neurosci.
– year: 2000
  ident: bib10
  article-title: Pattern Classification
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: bib33
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
– reference: Chang, C.-C., Lin, C.-J., 2001. LIBSVM: a library for support vector machines, Software available at
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib11
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 156
  year: 2004
  end-page: 166
  ident: bib44
  article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?
  publication-title: NeuroImage
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib8
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: bib12
  article-title: The Elements of Statistical Learning
  publication-title: Data Mining, Inference, and Prediction
– volume: 31
  start-page: 1129
  year: 2006
  end-page: 1141
  ident: bib31
  article-title: fMRI pattern classification using neuroanatomically constrained boosting
  publication-title: NeuroImage
– year: 2001
  ident: bib42
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  publication-title: Adaptive Computation and Machine Learning
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bib15
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
– year: 1997
  ident: bib32
  article-title: Machine Learning
– reference: .
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  ident: bib13
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
– volume: 10
  start-page: 603
  year: 2003
  end-page: 621
  ident: bib30
  article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
  publication-title: J. Empirical Finance
– volume: 10
  start-page: 173
  year: 2009
  end-page: 185
  ident: bib40
  article-title: Extracting information from neuronal populations: information theory and decoding approaches
  publication-title: Nat. Rev. Neurosci.
– volume: 8
  start-page: 686
  year: 2005
  end-page: 691
  ident: bib14
  article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: bib9
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib17
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– volume: 43
  start-page: 44
  year: 2008
  end-page: 58
  ident: bib7
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
  publication-title: NeuroImage
– volume: 10
  start-page: 424
  year: 2006
  end-page: 430
  ident: bib38
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bib39
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
– year: 2007
  ident: bib1
  article-title: Pattern Recognition and Machine Learning
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  ident: bib25
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 1895
  year: 1998
  ident: 10.1016/j.neuroimage.2010.05.051_bib9
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– year: 2000
  ident: 10.1016/j.neuroimage.2010.05.051_bib10
– volume: 16
  start-page: 4207
  year: 1996
  ident: 10.1016/j.neuroimage.2010.05.051_bib3
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– volume: 26
  start-page: 1007
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib28
  article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.02.016
– volume: 2
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib24
  article-title: Representational similarity analysis—connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 10
  start-page: 424
  year: 2006
  ident: 10.1016/j.neuroimage.2010.05.051_bib38
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 38
  start-page: 649
  year: 2007
  ident: 10.1016/j.neuroimage.2010.05.051_bib19
  article-title: Analyzing for information, not activation, to exploit high-resolution fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.022
– volume: 10
  start-page: 173
  year: 2009
  ident: 10.1016/j.neuroimage.2010.05.051_bib40
  article-title: Extracting information from neuronal populations: information theory and decoding approaches
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2578
– ident: 10.1016/j.neuroimage.2010.05.051_bib18
– year: 2000
  ident: 10.1016/j.neuroimage.2010.05.051_bib6
– year: 2009
  ident: 10.1016/j.neuroimage.2010.05.051_bib12
  article-title: The Elements of Statistical Learning
– volume: 293
  start-page: 2425
  year: 2001
  ident: 10.1016/j.neuroimage.2010.05.051_bib13
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 7
  start-page: 523
  year: 2006
  ident: 10.1016/j.neuroimage.2010.05.051_bib15
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1931
– volume: 52
  start-page: 239
  year: 2003
  ident: 10.1016/j.neuroimage.2010.05.051_bib37
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
– year: 2007
  ident: 10.1016/j.neuroimage.2010.05.051_bib1
– volume: 4
  start-page: 101
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.05.051_bib36
  article-title: Revealing representational content with pattern-information fMRI—an introductory guide
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsn044
– year: 1997
  ident: 10.1016/j.neuroimage.2010.05.051_bib32
– volume: 12
  start-page: 535
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2010.05.051_bib25
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2303
– volume: 28
  start-page: 980
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib35
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.070
– year: 2001
  ident: 10.1016/j.neuroimage.2010.05.051_bib42
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2010.05.051_bib8
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 686
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib14
  article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1445
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.neuroimage.2010.05.051_bib11
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 103
  start-page: 3863
  year: 2006
  ident: 10.1016/j.neuroimage.2010.05.051_bib20
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0600244103
– volume: 2
  start-page: 302
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib2
  article-title: An evolutionary approach to multivariate feature selection for fMRI pattern analysis
  publication-title: Biosignals
– volume: 43
  start-page: 44
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib7
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.037
– volume: 60
  start-page: 1126
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib22
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.043
– volume: 27
  start-page: 957
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib26
  article-title: Sparse multinomial logistic regression: fast algorithms and generalization bounds
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.127
– volume: 26
  start-page: 317
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib29
  article-title: Support vector machines for temporal classification of block design fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.048
– volume: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib41
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1175
– volume: 23
  start-page: 156
  year: 2004
  ident: 10.1016/j.neuroimage.2010.05.051_bib44
  article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.020
– volume: 57
  start-page: 145
  year: 2004
  ident: 10.1016/j.neuroimage.2010.05.051_bib33
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 452
  start-page: 352
  issue: 7185
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib17
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– year: 1988
  ident: 10.1016/j.neuroimage.2010.05.051_bib27
– ident: 10.1016/j.neuroimage.2010.05.051_bib4
– volume: 18
  start-page: 345
  issue: 5–6
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib23
  article-title: Artifactual time course correlations in echo-planar fMRI with implications for studies of brain function
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.20166
– volume: 320
  start-page: 1191
  issue: 5880
  year: 2008
  ident: 10.1016/j.neuroimage.2010.05.051_bib34
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
  doi: 10.1126/science.1152876
– volume: 45
  start-page: S199
  year: 2009
  ident: 10.1016/j.neuroimage.2010.05.051_bib39
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 104
  start-page: 20600
  year: 2007
  ident: 10.1016/j.neuroimage.2010.05.051_bib21
  article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0705654104
– year: 1995
  ident: 10.1016/j.neuroimage.2010.05.051_bib43
– volume: 31
  start-page: 1129
  year: 2006
  ident: 10.1016/j.neuroimage.2010.05.051_bib31
  article-title: fMRI pattern classification using neuroanatomically constrained boosting
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.022
– volume: 19
  start-page: 261
  year: 2003
  ident: 10.1016/j.neuroimage.2010.05.051_bib5
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 10
  start-page: 603
  year: 2003
  ident: 10.1016/j.neuroimage.2010.05.051_bib30
  article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
  publication-title: J. Empirical Finance
  doi: 10.1016/S0927-5398(03)00007-0
– volume: 8
  start-page: 679
  year: 2005
  ident: 10.1016/j.neuroimage.2010.05.051_bib16
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1444
SSID ssj0009148
Score 2.5226197
Snippet A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to “decode” the stimuli from the response...
A popular method for investigating whether stimulus information is present in fMRI response patterns is to attempt to "decode" the stimuli from the response...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Adult
Algorithms
Classification
classification analysis
decoding
Discriminant analysis
Evoked Potentials, Visual - physiology
Female
fMRI
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Methods
Multi-voxel pattern analysis
Multivariate Analysis
normalization
Pattern Recognition, Automated - methods
pattern-information analysis
Reproducibility of Results
Sensitivity and Specificity
Support vector machines
Visual Cortex - physiology
Visual Perception - physiology
SummonAdditionalLinks – databaseName: ProQuest Central - New (Subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEA72hNKXYu0PT23Jg6-hyW6ySZBSWlFs4Y4iFXwLySZLT3Tvqqd_v5PdZK-2VA7ysiQDSzLJfLv55huEDiBiiyDrggQIx4SrhhPlrSVCOmpt5UJZxtzhybQ6PeffL8TFBprmXJhIq8xnYndQ-3kd_5F_7IBLRUupPi9-k1g1Kt6u5hIaNpVW8J86ibFnaLOIylgjtPn1ePrjbCXDy3ifHCdKohjTidvTM746BcnZNezjRPkS0Nj_Ata_gPRvXuUfgepkC71MCBN_6V3iFdoI7TZ6Pkl36K-RORpKD-J5gztG4T08A-jEdcTSsyaWx8a29fimZ9AG3EZoe5VzNjEgXbzolDlbkqRXYwduJmff3qDzk-OfR6cklVkgdcXYksDcaVo5HsqKW10wK4XjDpAjxPbGUuWD44I2vqReOyU8dYWCHq6EVkHIpnyLRu28DTsIq4J72PDUBskBmVgH8Cbe7MJwyQoXxkjmuTR10iCPpTCuTCabXZrVKpi4CoYKaGyM2GC56HU41rDReblMzjOFk9FAsFjD9nCwTVikxxhrWu9n7zDpTLg1Kw8eIzx0w26OVzS2DfO7WyO5BtCli6eGwDemrngFQ9717jZMSEGFin-oYJofOeIwIGqJP-5pZ786TXFYIw7QeffpF99DLzr2RGxiH42WN3fhPYCypfuQdtoDdyg6OQ
  priority: 102
  providerName: ProQuest
Title Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910007834
https://dx.doi.org/10.1016/j.neuroimage.2010.05.051
https://www.ncbi.nlm.nih.gov/pubmed/20580933
https://www.proquest.com/docview/1507160378
https://www.proquest.com/docview/749021928
https://www.proquest.com/docview/754896468
https://pubmed.ncbi.nlm.nih.gov/PMC2914143
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7aFMZexn4vXRf0sFctsi1ZMnvqQku6LaFkK-RNSLZMPTontGkf97fvZMvusrERGAgbWzqwJd3dZ-u7E8Bb9NjCyTymDt0x5arkVBXGUCEtMya1Lkl87PBsnk4v-MelWO7BpIuF8bTKYPtbm95Y63BnHHpzvK6q8RdEBuhu8Huj8XMJ34cD9D9KDeDg-OzTdH6fezfibUScSKgXCISelubVpI2svqPyBp6XwBL9zUv9iUJ_J1P-4p1OH8OjACvJcfvkT2DP1U_hwSwsnD8DPen3GySrkjQ0wju8RqRJcg-gq9LviU1MXZDrljbrSO3x7FUXqEkQ3pJ1k46zpiHfqq8g5Wxx9hwuTk--TqY07K1A8zSKNtTkecZSy12ScpPFkZHCcotwER16aZgqnOWClUXCiswqUTAbK6zhSmTKCVkmL2BQr2r3CoiKeYFazoyTHOGIsYhp_HIuNpdRbN0QZNeXOg-Jx_3-F1e6Y5h90_ejoP0oaCawREOIesl1m3xjB5msGy7dBZeiOdToIXaQfd_Lbk3CHaWPutmhgyG40Q3eTlki1RBIX40q7NdlTO1Wtzda8gyRVhb_qwl-WGYpT7HJy3a69R0SM6H8byns5q2J2DfwCcS3a-rqskkkjmPEES8f_tdrv4aHDaPCF3EEg831rXuDQG1jR7D_7keER7mUI1TKyeLz-SgoJ54_nMzPFz8B6KdFfg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJsFeEL9XGOAHeLSwEzuxhSY0xqaWrRWaNmlvxk4c0WlLy9qB-Of423ZO7JSBmPoyyS-RfVHks-8-x3ffIfQGPLZweZEQB-6YcFlxIktjiMgtNSazLk197vBwlPWP-ecTcbKCfsdcGB9WGW1iY6jLSeH_kb9rgEtG01x-mH4nvmqUv12NJTRMKK1QbjUUYyGxY9_9-glHuNnW4BPo-22S7O0e7fRJqDJAioyxOQFRRTPLXZpxoxJmcmG5BeAErq0yVJbOckGrMqWlslKU1CYSergUSjqRVym89w5a4ylXcPhb-7g7-nK4oP1lvE3GEymRjKkQS9RGmDWMleNzsBshxExAY_9zkP8C4L_jOP9wjHsP0P2AaPF2uwQfohVXP0J3h-HO_jHSO12pQzypcBPB-AOeAeTiwmP3ceXLcWNTl_iijdh1uPZQ-izmiGJA1njaMIHWJFC9-g5cDQ8HT9DxrUz4U7RaT2q3gbBMeAkGhhqXc0BCxgKc8jfJMDxniXU9lMe51EXgPPelN850DG471QstaK8FTQU01kOsk5y2vB9LyKioLh3zWsESa3BOS8i-72QD9mkxzZLSm3F16GCDZnqxY3oId91gPfyVkKnd5HKmc64A5KnkpiFwplUZz2DIs3a5dROSUCH9HzGY5msLsRvgucuv99Tjbw2HOeiIA1R_fvOHv0b3-kfDA30wGO2_QOtN5IZvYhOtzi8u3UsAhHP7Kuw6jL7e9ka_ArWZdp8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCZeEL_pGOAHeLRmO3ZsCyGENqqV0QkhJvXN2ImjFY20WzsQ_xp_HefESRmIqS-T_BLZV1W-892X-Ls7hF5AxJZBFZwECMdE6EoQXTpHpPLUudyHLIu5w-Oj_OBYvJ_IyQb61eXCRFpl5xMbR13OiviNfLcBLjnNlN6tEi3i4_7wzfyMxA5S8aa1a6fRmshh-PkDXt8Wr0f7oOuXnA_ffd47IKnDAClyxpbEFYWhuRchy4UznDklvfAAmiCsVY7qMnghaVVmtDRey5J6rmFGaGl0kKrK4HdvoJsqy0ykE6qJWhX8ZaJNw5MZ0YyZxCJquWVNrcrpN_AYiVwmYbD_hcZ_oe_fDM4_QuLwDrqdsCx-2xrfXbQR6ntoa5xu6-8ju9c3OcSzCjfcxe_wDPAWFxG1T6vYiBu7usTnLVc34DqC6NMuOxQDpsbzpgZoTVKR1ziBq_Gn0QN0fC3b_RBt1rM6PEZYc1GCa6EuKAEYyHkAUvEOGZYrxn0YINXtpS1StfPYdOPUdrS2r3alBRu1YKmEwQaI9ZLztuLHGjKmU5ftMlrBB1sIS2vIvuplE-pp0cya0judddjkfRZ2dVYGCPfT4DfiZZCrw-xiYZUwAO8Mv2oJvM2aXOSw5FFrbv2GcCp1_BYG23zJEPsFsWr55Zl6etJULwcdCQDp21f_8edoC463_TA6OnyCbjWUjTjkDtpcnl-Ep4AEl_5Zc-Qw-nLdZ_w3gOp0OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+multivariate+classifiers+and+response+normalizations+for+pattern-information+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Misaki%2C+Masaya&rft.au=Kim%2C+Youn&rft.au=Bandettini%2C+Peter+A.&rft.au=Kriegeskorte%2C+Nikolaus&rft.date=2010-10-15&rft.issn=1053-8119&rft.volume=53&rft.issue=1&rft.spage=103&rft.epage=118&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.05.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2010_05_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon