Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation
Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However,...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 51; no. 2; pp. 684 - 693 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.06.2010
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2010.02.025 |
Cover
| Abstract | Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration–segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods. |
|---|---|
| AbstractList | Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods. Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods.Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods. |
| Author | Gilmore, John H. Shen, Dinggang Shi, Feng Yap, Pew-Thian Lin, Weili Fan, Yong |
| AuthorAffiliation | 3 MRI Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill 1 IDEA Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill 2 Department of Psychiatry, University of North Carolina at Chapel Hill |
| AuthorAffiliation_xml | – name: 2 Department of Psychiatry, University of North Carolina at Chapel Hill – name: 1 IDEA Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill – name: 3 MRI Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill |
| Author_xml | – sequence: 1 givenname: Feng surname: Shi fullname: Shi, Feng organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 2 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 3 givenname: Yong surname: Fan fullname: Fan, Yong organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 4 givenname: John H. surname: Gilmore fullname: Gilmore, John H. organization: Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 5 givenname: Weili surname: Lin fullname: Lin, Weili organization: MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20171290$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkt9rFDEQxxep2B_6L8iCDz7tmWTza19EPbQtVARR8C1ks5MzZzapyW6h_71Zrr1qXzwYSCb5zieTmTmtjkIMUFU1RiuMMH-zXQWYU3Sj3sCKoHKMSDH2pDrBqGNNxwQ5WvasbSTG3XF1mvMWIdRhKp9VxyVEYNKhk-rHOoY8pdlMLoY62nqc_eSaBJviN_eOhQTBQK0nrzPk2sZUB4hBT9rXfdIu1J-_XtYZNiOESS-s59VTq32GF3frWfX908dv64vm6sv55fr9VWM4xlNDBlJyJWYQxgqQoucctLRC2KFDRjDLNLcWKGsx7QkFae2AKGVC9hhaw9uz6u2Oez33IwymvJ-0V9epFCfdqqid-vcmuJ9qE28UkYwLJArg9R0gxd8z5EmNLhvwXpcfzlkJyngrMGr_r2xb2VFKF-arR8ptnFModVCYIS5bJviievl36vuc77tTBHInMCnmXNqwl2CklkFQW_UwCEscUogUYw9l2Ycat2tMKYLzhwA-7ABQmnfjIKls3DIEg0tgJjVEdwjk3SOI8S44o_0vuD0M8Qfk0-2x |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2012_01_095 crossref_primary_10_1002_cpe_7541 crossref_primary_10_1002_hbm_26126 crossref_primary_10_1016_j_compmedimag_2010_11_007 crossref_primary_10_1016_j_neuroimage_2011_07_036 crossref_primary_10_1016_j_compmedimag_2014_05_012 crossref_primary_10_1016_j_neuroimage_2011_01_051 crossref_primary_10_1371_journal_pone_0018746 crossref_primary_10_1016_j_aej_2023_06_040 crossref_primary_10_1016_j_neures_2014_01_003 crossref_primary_10_1109_TCYB_2017_2786161 crossref_primary_10_1007_s12021_021_09528_5 crossref_primary_10_1016_j_neuroimage_2013_08_008 crossref_primary_10_1002_mp_14609 crossref_primary_10_1016_j_neuroimage_2010_10_019 crossref_primary_10_1080_21681163_2019_1573380 crossref_primary_10_1371_journal_pone_0166112 crossref_primary_10_1109_TCYB_2018_2797905 crossref_primary_10_1155_2014_182909 crossref_primary_10_1016_j_compmedimag_2016_04_002 crossref_primary_10_1109_JBHI_2019_2897020 crossref_primary_10_1016_j_jneumeth_2012_09_018 crossref_primary_10_1002_hbm_23003 crossref_primary_10_1016_j_media_2020_101910 crossref_primary_10_1016_j_bspc_2019_101613 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1016_j_neuroimage_2013_07_025 crossref_primary_10_1109_TBME_2021_3102015 crossref_primary_10_1118_1_4816654 crossref_primary_10_1016_j_cmpb_2011_07_015 crossref_primary_10_1007_s00429_018_1707_0 crossref_primary_10_1016_j_neuroimage_2014_07_001 crossref_primary_10_1007_s12553_023_00737_3 crossref_primary_10_1007_s12652_020_02200_x crossref_primary_10_1109_JBHI_2024_3452310 crossref_primary_10_1002_hbm_22502 crossref_primary_10_1016_j_neuroimage_2018_04_052 crossref_primary_10_1093_cercor_bhy244 crossref_primary_10_3389_fninf_2017_00001 crossref_primary_10_3389_fninf_2017_00002 crossref_primary_10_1016_j_neuroimage_2014_12_042 crossref_primary_10_3389_fnhum_2015_00021 crossref_primary_10_1016_j_neuroimage_2011_09_062 crossref_primary_10_1016_j_neuroimage_2015_05_099 crossref_primary_10_1080_00207454_2019_1695609 crossref_primary_10_1016_j_compmedimag_2019_101660 crossref_primary_10_1016_j_neuroimage_2018_03_042 crossref_primary_10_1016_j_media_2015_04_015 crossref_primary_10_1016_j_media_2016_02_006 crossref_primary_10_1038_s41598_017_00525_w crossref_primary_10_1109_TMI_2011_2162529 crossref_primary_10_1016_j_neuroimage_2018_04_003 crossref_primary_10_1162_imag_a_00180 crossref_primary_10_1109_TMI_2019_2901712 crossref_primary_10_1166_jmihi_2021_3849 crossref_primary_10_1002_hbm_24199 crossref_primary_10_1016_j_compbiomed_2015_06_016 crossref_primary_10_1007_s11042_019_07829_1 crossref_primary_10_1016_j_artmed_2015_04_005 crossref_primary_10_1016_j_nicl_2015_01_008 crossref_primary_10_1109_TMI_2011_2154385 crossref_primary_10_1016_j_earlhumdev_2017_05_009 crossref_primary_10_1002_hbm_24948 crossref_primary_10_1016_j_bspc_2022_104017 crossref_primary_10_1016_j_media_2015_10_001 crossref_primary_10_1016_j_bspc_2022_103644 crossref_primary_10_1016_j_bspc_2021_102458 crossref_primary_10_1007_s10278_012_9460_z crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_1002_hbm_24027 crossref_primary_10_1016_j_neuroimage_2013_12_038 crossref_primary_10_1007_s00429_014_0917_3 |
| Cites_doi | 10.1016/j.neuroimage.2007.05.004 10.1109/34.56205 10.1016/j.media.2008.06.005 10.1016/j.neuroimage.2009.04.068 10.1016/j.media.2009.10.001 10.1126/science.1136800 10.1109/34.87344 10.1016/j.neuroimage.2009.07.066 10.1016/j.neuroimage.2008.07.060 10.1016/j.neuroimage.2003.11.010 10.1006/nimg.2001.0978 10.1007/978-3-540-75757-3_107 10.1016/j.neuroimage.2009.09.069 10.1016/j.media.2005.05.007 10.1109/TMI.2008.2011480 10.1016/S1053-8119(03)00006-5 10.1016/j.neuroimage.2004.07.068 10.1016/j.neuroimage.2007.09.031 10.1016/j.neuroimage.2005.02.018 10.1109/TMI.2002.803111 10.1109/TMI.2004.828354 10.1016/j.patcog.2006.08.012 10.1007/978-3-540-75759-7_66 10.1016/j.media.2007.07.001 10.1016/j.neuroimage.2006.05.061 10.1016/j.neuroimage.2005.11.044 10.1016/j.neuroimage.2006.01.015 10.1109/TMI.2004.830803 10.1016/j.neuroimage.2009.02.018 10.1007/978-3-540-85990-1_125 10.1016/j.neuroimage.2007.07.030 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. Copyright 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jun 1, 2010 |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jun 1, 2010 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
| DOI | 10.1016/j.neuroimage.2010.02.025 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 693 |
| ExternalDocumentID | PMC2856707 3244838461 20171290 10_1016_j_neuroimage_2010_02_025 S105381191000193X |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH088520 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NINDS NIH HHS grantid: NS055754 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NIBIB NIH HHS grantid: EB006733 – fundername: NIBIB NIH HHS grantid: EB008374 – fundername: NIMH NIH HHS grantid: MH070890 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIMH NIH HHS grantid: RC1 MH088520 – fundername: NIMH NIH HHS grantid: MH064065 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION PUEGO AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
| ID | FETCH-LOGICAL-c611t-2d25722cd7cf7e87b66ea8f77fd90c75f5a6ffe45314b24e8ffd044578b1e3c63 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Sep 30 17:03:43 EDT 2025 Tue Oct 07 10:06:38 EDT 2025 Thu Oct 02 12:03:43 EDT 2025 Tue Oct 07 06:35:28 EDT 2025 Mon Jul 21 05:54:51 EDT 2025 Wed Oct 01 02:57:59 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Oct 14 19:33:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright 2010 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c611t-2d25722cd7cf7e87b66ea8f77fd90c75f5a6ffe45314b24e8ffd044578b1e3c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 20171290 |
| PQID | 1506835767 |
| PQPubID | 2031077 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856707 proquest_miscellaneous_745637103 proquest_miscellaneous_733894447 proquest_journals_1506835767 pubmed_primary_20171290 crossref_primary_10_1016_j_neuroimage_2010_02_025 crossref_citationtrail_10_1016_j_neuroimage_2010_02_025 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_02_025 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_02_025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-06-01 |
| PublicationDateYYYYMMDD | 2010-06-01 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Borg, Groenen (bib6) 2005 Yeo, Sabuncu, Desikan, Fischl, Golland (bib34) 2008; 12 Vincent, Soille (bib28) 1991; 13 Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bib33) 2007; 38 Blezek, Miller (bib5) 2007; 11 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib35) 2006; 31 Joshi, Davis, Jomier, Gerig (bib14) 2004; 23 Rohlfing, Russakoff, Maurer (bib20) 2004; 23 Altaye, Holland, Wilke, Gaser (bib2) 2008; 43 Warfield, Zou, Wells (bib29) 2004; 23 Frey, Dueck (bib9) 2007; 315 Prastawa, Gilmore, Lin, Gerig (bib18) 2005; 9 Wolz, Aljabar, Hajnal, Hammers, Rueckert (bib32) 2010; 49 Ashburner, Friston (bib3) 2005; 26 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bib11) 2006; 33 Weisenfeld, Mewes, Warfield (bib31) 2006 Pohl, Fisher, Grimson, Kikinis, Wells (bib17) 2006; 31 Isgum, Staring, Rutten, Prokop, Viergever, van Ginneken (bib13) 2009; 28 Kazemi, Moghaddam, Grebe, Gondry-Jouet, Wallois (bib15) 2007; 37 Brodmann (bib7) 1909 Shen, Davatzikos (bib23) 2002; 21 Ca, Kwan, Evans (bib8) 1997; 5 Song, Z., Awate, S.P., Licht, D.J., Gee, J.C., 2007. Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors. MICCAI 2007, pp. 883–890. van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bib27) 2010; 14 Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib21) 2008; 39 Shi, Fan, Tang, Gilmore, Lin, Shen (bib24) 2010; 49 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib26) 2002; 15 Ide, J., Chen, R., Shen, D., Herskovits, E.H., 2008. Robust Brain Registration Using Adaptive Probabilistic Atlas. MICCAI 2008. Springer, pp. 1041–1049. Shen (bib22) 2007; 40 Perona, Malik (bib16) 1990; 12 Han, X., Hibbard, L., Willcut, V., 2009. GPU-accelerated, Gradient-free MI Deformable Registration for Atlas-based MR Brain Image Segmentation. MMBIA 2009, Miami, FL. Bhatia, K.K., Hajnal, J.V., Hammers, A., Rueckert, D., 2007. Similarity Metrics for Groupwise Non-rigid Registration. MICCAI 2007. Springer, pp. 544–552. Rohlfing, Brandt, Menzel, Maurer (bib19) 2004; 21 Weisenfeld, Warfield (bib30) 2009; 47 Zhu, Jiang (bib36) 2003; 18 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bib1) 2009; 46 Shen (10.1016/j.neuroimage.2010.02.025_bib22) 2007; 40 Weisenfeld (10.1016/j.neuroimage.2010.02.025_bib31) 2006 Kazemi (10.1016/j.neuroimage.2010.02.025_bib15) 2007; 37 Joshi (10.1016/j.neuroimage.2010.02.025_bib14) 2004; 23 Zhu (10.1016/j.neuroimage.2010.02.025_bib36) 2003; 18 Shattuck (10.1016/j.neuroimage.2010.02.025_bib21) 2008; 39 Heckemann (10.1016/j.neuroimage.2010.02.025_bib11) 2006; 33 Isgum (10.1016/j.neuroimage.2010.02.025_bib13) 2009; 28 Tzourio-Mazoyer (10.1016/j.neuroimage.2010.02.025_bib26) 2002; 15 10.1016/j.neuroimage.2010.02.025_bib10 Warfield (10.1016/j.neuroimage.2010.02.025_bib29) 2004; 23 10.1016/j.neuroimage.2010.02.025_bib12 Weisenfeld (10.1016/j.neuroimage.2010.02.025_bib30) 2009; 47 Yushkevich (10.1016/j.neuroimage.2010.02.025_bib35) 2006; 31 Shi (10.1016/j.neuroimage.2010.02.025_bib24) 2010; 49 Perona (10.1016/j.neuroimage.2010.02.025_bib16) 1990; 12 10.1016/j.neuroimage.2010.02.025_bib4 Ashburner (10.1016/j.neuroimage.2010.02.025_bib3) 2005; 26 Ca (10.1016/j.neuroimage.2010.02.025_bib8) 1997; 5 Pohl (10.1016/j.neuroimage.2010.02.025_bib17) 2006; 31 Xue (10.1016/j.neuroimage.2010.02.025_bib33) 2007; 38 Shen (10.1016/j.neuroimage.2010.02.025_bib23) 2002; 21 Prastawa (10.1016/j.neuroimage.2010.02.025_bib18) 2005; 9 10.1016/j.neuroimage.2010.02.025_bib25 Altaye (10.1016/j.neuroimage.2010.02.025_bib2) 2008; 43 Borg (10.1016/j.neuroimage.2010.02.025_bib6) 2005 Brodmann (10.1016/j.neuroimage.2010.02.025_bib7) 1909 Wolz (10.1016/j.neuroimage.2010.02.025_bib32) 2010; 49 Yeo (10.1016/j.neuroimage.2010.02.025_bib34) 2008; 12 Blezek (10.1016/j.neuroimage.2010.02.025_bib5) 2007; 11 Rohlfing (10.1016/j.neuroimage.2010.02.025_bib20) 2004; 23 Frey (10.1016/j.neuroimage.2010.02.025_bib9) 2007; 315 Rohlfing (10.1016/j.neuroimage.2010.02.025_bib19) 2004; 21 Aljabar (10.1016/j.neuroimage.2010.02.025_bib1) 2009; 46 van Rikxoort (10.1016/j.neuroimage.2010.02.025_bib27) 2010; 14 Vincent (10.1016/j.neuroimage.2010.02.025_bib28) 1991; 13 |
| References_xml | – volume: 38 start-page: 461 year: 2007 end-page: 477 ident: bib33 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage – volume: 40 start-page: 1161 year: 2007 end-page: 1172 ident: bib22 article-title: Image registration by local histogram matching publication-title: Pattern Recognition – volume: 5 year: 1997 ident: bib8 article-title: BrainWeb: online interface to a 3-D MRI simulated brain database publication-title: NeuroImage – reference: Ide, J., Chen, R., Shen, D., Herskovits, E.H., 2008. Robust Brain Registration Using Adaptive Probabilistic Atlas. MICCAI 2008. Springer, pp. 1041–1049. – volume: 18 start-page: 685 year: 2003 end-page: 696 ident: bib36 article-title: Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images publication-title: NeuroImage – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib9 article-title: Clustering by passing messages between data points publication-title: Science – volume: 11 start-page: 443 year: 2007 end-page: 457 ident: bib5 article-title: Atlas stratification publication-title: Med. Image Anal. – volume: 49 start-page: 391 year: 2010 end-page: 400 ident: bib24 article-title: Neonatal brain image segmentation in longitudinal MRI studies publication-title: NeuroImage – volume: 23 start-page: 151 year: 2004 end-page: 160 ident: bib14 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage – volume: 37 start-page: 463 year: 2007 end-page: 473 ident: bib15 article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results publication-title: NeuroImage – volume: 9 start-page: 457 year: 2005 end-page: 466 ident: bib18 article-title: Automatic segmentation of MR images of the developing newborn brain publication-title: Med. Image Anal. – reference: Bhatia, K.K., Hajnal, J.V., Hammers, A., Rueckert, D., 2007. Similarity Metrics for Groupwise Non-rigid Registration. MICCAI 2007. Springer, pp. 544–552. – volume: 31 start-page: 228 year: 2006 end-page: 239 ident: bib17 article-title: A Bayesian model for joint segmentation and registration publication-title: NeuroImage – volume: 43 start-page: 721 year: 2008 end-page: 730 ident: bib2 article-title: Infant brain probability templates for MRI segmentation and normalization publication-title: NeuroImage – reference: Han, X., Hibbard, L., Willcut, V., 2009. GPU-accelerated, Gradient-free MI Deformable Registration for Atlas-based MR Brain Image Segmentation. MMBIA 2009, Miami, FL. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib3 article-title: Unified segmentation publication-title: NeuroImage – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bib11 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib35 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage – year: 2005 ident: bib6 article-title: Modern Multidimensional Scaling: Theory and Applications – volume: 12 start-page: 629 year: 1990 end-page: 639 ident: bib16 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib26 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 21 start-page: 1428 year: 2004 end-page: 1442 ident: bib19 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: NeuroImage – volume: 13 start-page: 583 year: 1991 end-page: 598 ident: bib28 article-title: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 1000 year: 2009 end-page: 1010 ident: bib13 article-title: Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans publication-title: IEEE Trans. Med. Imaging – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bib1 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – volume: 12 start-page: 603 year: 2008 end-page: 615 ident: bib34 article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy publication-title: Med. Image Anal. – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bib21 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: NeuroImage – reference: Song, Z., Awate, S.P., Licht, D.J., Gee, J.C., 2007. Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors. MICCAI 2007, pp. 883–890. – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: bib29 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging – year: 1909 ident: bib7 article-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues – volume: 23 start-page: 983 year: 2004 end-page: 994 ident: bib20 article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 39 year: 2010 end-page: 49 ident: bib27 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. – volume: 47 start-page: 564 year: 2009 end-page: 572 ident: bib30 article-title: Automatic segmentation of newborn brain MRI publication-title: NeuroImage – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bib23 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging – volume: 49 start-page: 1316 year: 2010 end-page: 1325 ident: bib32 article-title: LEAP: learning embeddings for atlas propagation publication-title: NeuroImage – start-page: 766 year: 2006 end-page: 769 ident: bib31 article-title: Segmentation of newborn brain MRI publication-title: Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano – volume: 37 start-page: 463 year: 2007 ident: 10.1016/j.neuroimage.2010.02.025_bib15 article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.05.004 – volume: 12 start-page: 629 year: 1990 ident: 10.1016/j.neuroimage.2010.02.025_bib16 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: 12 start-page: 603 year: 2008 ident: 10.1016/j.neuroimage.2010.02.025_bib34 article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.06.005 – ident: 10.1016/j.neuroimage.2010.02.025_bib10 – volume: 47 start-page: 564 year: 2009 ident: 10.1016/j.neuroimage.2010.02.025_bib30 article-title: Automatic segmentation of newborn brain MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.068 – volume: 14 start-page: 39 year: 2010 ident: 10.1016/j.neuroimage.2010.02.025_bib27 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.10.001 – volume: 315 start-page: 972 year: 2007 ident: 10.1016/j.neuroimage.2010.02.025_bib9 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – year: 1909 ident: 10.1016/j.neuroimage.2010.02.025_bib7 – volume: 13 start-page: 583 year: 1991 ident: 10.1016/j.neuroimage.2010.02.025_bib28 article-title: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.87344 – volume: 49 start-page: 391 year: 2010 ident: 10.1016/j.neuroimage.2010.02.025_bib24 article-title: Neonatal brain image segmentation in longitudinal MRI studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.07.066 – volume: 43 start-page: 721 year: 2008 ident: 10.1016/j.neuroimage.2010.02.025_bib2 article-title: Infant brain probability templates for MRI segmentation and normalization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.060 – volume: 21 start-page: 1428 year: 2004 ident: 10.1016/j.neuroimage.2010.02.025_bib19 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.010 – volume: 5 year: 1997 ident: 10.1016/j.neuroimage.2010.02.025_bib8 article-title: BrainWeb: online interface to a 3-D MRI simulated brain database publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2010.02.025_bib26 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – ident: 10.1016/j.neuroimage.2010.02.025_bib25 doi: 10.1007/978-3-540-75757-3_107 – volume: 49 start-page: 1316 year: 2010 ident: 10.1016/j.neuroimage.2010.02.025_bib32 article-title: LEAP: learning embeddings for atlas propagation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.069 – volume: 9 start-page: 457 year: 2005 ident: 10.1016/j.neuroimage.2010.02.025_bib18 article-title: Automatic segmentation of MR images of the developing newborn brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.05.007 – volume: 28 start-page: 1000 year: 2009 ident: 10.1016/j.neuroimage.2010.02.025_bib13 article-title: Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2011480 – volume: 18 start-page: 685 year: 2003 ident: 10.1016/j.neuroimage.2010.02.025_bib36 article-title: Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00006-5 – volume: 23 start-page: 151 year: 2004 ident: 10.1016/j.neuroimage.2010.02.025_bib14 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.neuroimage.2010.02.025_bib21 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2010.02.025_bib3 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 21 start-page: 1421 year: 2002 ident: 10.1016/j.neuroimage.2010.02.025_bib23 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 23 start-page: 903 year: 2004 ident: 10.1016/j.neuroimage.2010.02.025_bib29 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828354 – year: 2005 ident: 10.1016/j.neuroimage.2010.02.025_bib6 – volume: 40 start-page: 1161 year: 2007 ident: 10.1016/j.neuroimage.2010.02.025_bib22 article-title: Image registration by local histogram matching publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.08.012 – ident: 10.1016/j.neuroimage.2010.02.025_bib4 doi: 10.1007/978-3-540-75759-7_66 – volume: 11 start-page: 443 year: 2007 ident: 10.1016/j.neuroimage.2010.02.025_bib5 article-title: Atlas stratification publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.07.001 – volume: 33 start-page: 115 year: 2006 ident: 10.1016/j.neuroimage.2010.02.025_bib11 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 31 start-page: 228 year: 2006 ident: 10.1016/j.neuroimage.2010.02.025_bib17 article-title: A Bayesian model for joint segmentation and registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.11.044 – start-page: 766 year: 2006 ident: 10.1016/j.neuroimage.2010.02.025_bib31 article-title: Segmentation of newborn brain MRI – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.neuroimage.2010.02.025_bib35 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 23 start-page: 983 year: 2004 ident: 10.1016/j.neuroimage.2010.02.025_bib20 article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.830803 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.neuroimage.2010.02.025_bib1 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – ident: 10.1016/j.neuroimage.2010.02.025_bib12 doi: 10.1007/978-3-540-85990-1_125 – volume: 38 start-page: 461 year: 2007 ident: 10.1016/j.neuroimage.2010.02.025_bib33 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.030 |
| SSID | ssj0009148 |
| Score | 2.3330352 |
| Snippet | Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 684 |
| SubjectTerms | Accuracy Atlases as Topic Brain - anatomy & histology Brain Mapping - methods Humans Image Interpretation, Computer-Assisted - methods Infant, Newborn Magnetic Resonance Imaging Methods Population |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61qYR6QVCgBEq1B65WvOt9RZyqiioFpYdCpdxWa3sWUlGnUsL_Z9Zeuw0IFAnJFz_Gimfn8cWe-QbgPcU_jjzwjJdBZFKRz3mNkjxe24osBos69g7Pr_TsRn5aqMUenPe9MLGsMsX-Lqa30TodmSRtTu6Xy8kXQgaUbuj_RotTisU-HFD-sXYEB2eXn2dXD9y7XHYdcarIokAq6OnKvFrayOUdOW-q8xK0qb9lqT9R6O_FlI-y08UzeJpgJTvrfvlz2MPmCJ7M04fzF7CIgzl7qli2CqwtJMziWIZVk_U7qfeP-Q1halwzArSswfh-ne5dxmESbH59ydb47S61LDUv4ebi49fzWZaGKmSV5nyTiZqcVIiqjnxEaE2pNXobjAn1NK-MCsrrEFCSb8pSSLQh1LmU5Nglx6LSxSsYNasGXwPTNfogSP9TFNIK7602GCStrlW-VmEMpleiqxLjeBx88cP1pWW37kH9Lqrf5YI2NQY-SN53rBs7yEz7dXJ9VynFQUepYQfZD4PslvXtKH3Sm4VLEWDtInMjoVujzRjYcJp8N36Q8bR2P9fOFAQXpZT_uoQAbkEosBjDcWdng0JEpDoS05zUvGWBwwWROXz7TLP83jKIC6u0yc2b_3rst3DYlVLEV1InMCIjxneE0DblafLAX-ywPmQ priority: 102 providerName: Elsevier |
| Title | Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191000193X https://dx.doi.org/10.1016/j.neuroimage.2010.02.025 https://www.ncbi.nlm.nih.gov/pubmed/20171290 https://www.proquest.com/docview/1506835767 https://www.proquest.com/docview/733894447 https://www.proquest.com/docview/745637103 https://pubmed.ncbi.nlm.nih.gov/PMC2856707 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_aBMZeRvedtQt62Ks3S9aHTRmjKy3ptoQSVsibkG2p61idjmSv_dt3siVn3VgJGBtjnzGnu9MP6e53AG8w_lFLHU1o6VjCBfqckZajx8u8QouxWe1rh6czObngnxZisQOzWAvj0ypjTGwDdb2s_Br5O8-Eh2hBSfXh5mfiu0b53dXYQsOE1gr1-5ZibBeGzDNjDWD48WR2Pt_Q8FLeFceJLMkpLUJuT5fx1TJIXl2jH4eUL4aH-N-E9S8g_Tuv8o-J6nQPHgWESY46k3gMO7Z5Ag-mYQ_9KSx8j87IGkuWjrQ5hYnv0LBskngTygCJWSO8tiuC2JY01i-147dL31eCTOdnZGUvr0P1UvMMLk5Pvh5PktBfIakkpeuE1eivjFW1pyayuSqltCZ3Srm6SCslnDDSOcvRTXnJuM2dq1PO0cdLarNKZs9h0Cwb-xKIrK1xDKFHYRnPmTG5VNZxHOhcmFq4EaioRF0F8nHfA-OHjllm3_VG_dqrX6cMDzEC2kvedAQcW8gUcZx0LDDFkKhxlthC9rCXDSCkAxdbSh9Es9AhGKz0xnRHQPrH6MZ-b8bg2P1aaZUhcuSc3_cKYt0MAWE2ghednfUKYZ71iBUpqvmOBfYveBLxu0-aq28tmTjLhVSpenX_j-_Dwy5twi8_HcAArdS-RjS2Lsew-_aW4lkt1BiGR8fzL-f-evZ5MhsH9_sN9OI9Mg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDcLBXyAY0Ts-JEIVYhHq13aXaGqlfZmnMSGIpotyiLEn-O3MU7sLAVR7aVSLqvE0Wr8zfiLPfMNwDOMf9RSRxNaOpZwgT5npOXo8TKvEDE2q33t8HQmx8f8_VzMN-BXrIXxaZUxJnaBul5Ufo_8hVfCQ7agpHp19i3xXaP86WpsoWFCa4V6p5MYC4Ud-_bnD_yEa3cm73C-nzO2t3v0dpyELgNJJSldJqxG1DJW1V6gx-aqlNKa3Cnl6iKtlHDCSOcsR7DyknGbO1ennCPSS2qzSmb43iuwxTNe4Mff1pvd2YfDlewv5X0xnsiSnNIi5BL1GWadYuXJKcaNkGLG8BL_WyD_JcB_53H-sTDu3YQbgdGS1z0Eb8GGbW7D1Wk4s78Dc98TNKrUkoUjXQ5j4jtCLJok_ghlh8Qskc7bliCXJo31W_v47tL3sSDTwwlp7afTUC3V3IXjS7H0PdhsFo19AETW1jiGVKewjOfMmFwq6zgCKxemFm4EKhpRV0Hs3Pfc-KpjVtsXvTK_9ubXKcNLjIAOI896wY81xhRxnnQsaMUQrHFVWmPsy2FsID09mVlz9HaEhQ7Bp9UrVxkBGW5j2PBnQQbn7nurVYZMlXN-0SPIrTMkoNkI7vc4GwzCvMoSK1I08zkEDg940fLzd5qTz514OcuFVKl6ePEffwrXxkfTA30wme0_gut9yobf-tqGTUSsfYxMcFk-Ce5G4ONle_hvh9Z14A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcqvLetoAPcIwaO35FFUKIsupStkKISnszediliGaLsqjir_HrGCd2loKo9lIplyhxtBp_M_7W_mYG4DnGP2qpowktHUu4QJ8rpOXo8VJXiBib1T53eHosD0_4u5mYrcGvmAvjZZUxJnaBup5Xfo98z1fCQ7agpNpzQRbx4WD86uJ74jtI-ZPW2E6jh8iR_XmJf9_al5MDnOsXjI3ffnpzmIQOA0klKV0krEbEMlbVvjiP1aqU0hbaKeXqPK2UcKKQzlmOQOUl41Y7V6ecI8pLarNKZvjdW3BbZVnu5YRqppYFfynv0_BElmhK86Ai6rVlXa3Ks3OMGEFcxvAS_1sa_6W-fys4_1gSx1uwGbgsed2D7y6s2eYebEzDaf19mPluoLE-LZk70qkXE98LYt4k8SYkHJJigUTetgRZNGms39THb5e-gwWZfpyQ1p6ehzyp5gGc3IidH8J6M2_sYyCytoVjSHJyy7hmRaGlso4jpLQoauFGoKIRTRXKnPtuG99M1LN9NUvzG29-kzK8xAjoMPKiL_Wxwpg8zpOJqawYfA2uRyuM3R_GBrrT05gVR-9GWJgQdlqzdJIRkOExBgx_ClTg3P1oDYJV55zz615BVp0h9cxG8KjH2WAQ5usrsTxFM19B4PCCL1d-9Ulz9qUrW860kCpV29f_8GewgX5t3k-Oj3bgTq_V8Hteu7COgLVPkAIuyqedrxH4fNPO_RtiwXN6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+multi-region-multi-reference+atlases+for+neonatal+brain+MRI+segmentation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shi%2C+Feng&rft.au=Yap%2C+Pew-Thian&rft.au=Fan%2C+Yong&rft.au=Gilmore%2C+John+H&rft.date=2010-06-01&rft.issn=1053-8119&rft.volume=51&rft.issue=2&rft.spage=684&rft.epage=693&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.02.025&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |