Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation

Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However,...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 51; no. 2; pp. 684 - 693
Main Authors Shi, Feng, Yap, Pew-Thian, Fan, Yong, Gilmore, John H., Lin, Weili, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2010
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.02.025

Cover

Abstract Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration–segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods.
AbstractList Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods.
Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods.Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging pre-segmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation. For each region of a brain parcellation, a population of spatially normalized pre-segmented images is clustered into a number of sub-populations. Each sub-population of a region represents an independent distribution from which a regional probability atlas can be generated. A selection of these regional atlases, across different sub-regions, will in the end be adaptively combined to form an overall atlas specific to the query image. Given a query image, the determination of the appropriate set of regional atlases is achieved by comparing the query image regionally with the reference, or exemplar, of each sub-population. Upon obtaining an overall atlas, an atlas-based joint registration-segmentation strategy is employed to segment the query image. Since the proposed method generates an atlas which is significant more similar to the query image than the traditional average-shape atlas, better tissue segmentation results can be expected. This is validated by applying the proposed method on a large set of neonatal brain images available in our institute. Experimental results on a randomly selected set of 10 neonatal brain images indicate that the proposed method achieves higher tissue overlap rates and lower standard deviations (SDs) in comparison with manual segmentations, i.e., 0.86 (SD 0.02) for GM, 0.83 (SD 0.03) for WM, and 0.80 (SD 0.05) for CSF. The proposed method also outperforms two other average-shape atlas-based segmentation methods.
Author Gilmore, John H.
Shen, Dinggang
Shi, Feng
Yap, Pew-Thian
Lin, Weili
Fan, Yong
AuthorAffiliation 3 MRI Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill
1 IDEA Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill
2 Department of Psychiatry, University of North Carolina at Chapel Hill
AuthorAffiliation_xml – name: 2 Department of Psychiatry, University of North Carolina at Chapel Hill
– name: 1 IDEA Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill
– name: 3 MRI Lab, Department of Radiology and BRIC, University of North, Carolina at Chapel Hill
Author_xml – sequence: 1
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Yong
  surname: Fan
  fullname: Fan, Yong
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: John H.
  surname: Gilmore
  fullname: Gilmore, John H.
  organization: Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 5
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20171290$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9rFDEQxxep2B_6L8iCDz7tmWTza19EPbQtVARR8C1ks5MzZzapyW6h_71Zrr1qXzwYSCb5zieTmTmtjkIMUFU1RiuMMH-zXQWYU3Sj3sCKoHKMSDH2pDrBqGNNxwQ5WvasbSTG3XF1mvMWIdRhKp9VxyVEYNKhk-rHOoY8pdlMLoY62nqc_eSaBJviN_eOhQTBQK0nrzPk2sZUB4hBT9rXfdIu1J-_XtYZNiOESS-s59VTq32GF3frWfX908dv64vm6sv55fr9VWM4xlNDBlJyJWYQxgqQoucctLRC2KFDRjDLNLcWKGsx7QkFae2AKGVC9hhaw9uz6u2Oez33IwymvJ-0V9epFCfdqqid-vcmuJ9qE28UkYwLJArg9R0gxd8z5EmNLhvwXpcfzlkJyngrMGr_r2xb2VFKF-arR8ptnFModVCYIS5bJviievl36vuc77tTBHInMCnmXNqwl2CklkFQW_UwCEscUogUYw9l2Ycat2tMKYLzhwA-7ABQmnfjIKls3DIEg0tgJjVEdwjk3SOI8S44o_0vuD0M8Qfk0-2x
CitedBy_id crossref_primary_10_1016_j_neuroimage_2012_01_095
crossref_primary_10_1002_cpe_7541
crossref_primary_10_1002_hbm_26126
crossref_primary_10_1016_j_compmedimag_2010_11_007
crossref_primary_10_1016_j_neuroimage_2011_07_036
crossref_primary_10_1016_j_compmedimag_2014_05_012
crossref_primary_10_1016_j_neuroimage_2011_01_051
crossref_primary_10_1371_journal_pone_0018746
crossref_primary_10_1016_j_aej_2023_06_040
crossref_primary_10_1016_j_neures_2014_01_003
crossref_primary_10_1109_TCYB_2017_2786161
crossref_primary_10_1007_s12021_021_09528_5
crossref_primary_10_1016_j_neuroimage_2013_08_008
crossref_primary_10_1002_mp_14609
crossref_primary_10_1016_j_neuroimage_2010_10_019
crossref_primary_10_1080_21681163_2019_1573380
crossref_primary_10_1371_journal_pone_0166112
crossref_primary_10_1109_TCYB_2018_2797905
crossref_primary_10_1155_2014_182909
crossref_primary_10_1016_j_compmedimag_2016_04_002
crossref_primary_10_1109_JBHI_2019_2897020
crossref_primary_10_1016_j_jneumeth_2012_09_018
crossref_primary_10_1002_hbm_23003
crossref_primary_10_1016_j_media_2020_101910
crossref_primary_10_1016_j_bspc_2019_101613
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1016_j_neuroimage_2013_07_025
crossref_primary_10_1109_TBME_2021_3102015
crossref_primary_10_1118_1_4816654
crossref_primary_10_1016_j_cmpb_2011_07_015
crossref_primary_10_1007_s00429_018_1707_0
crossref_primary_10_1016_j_neuroimage_2014_07_001
crossref_primary_10_1007_s12553_023_00737_3
crossref_primary_10_1007_s12652_020_02200_x
crossref_primary_10_1109_JBHI_2024_3452310
crossref_primary_10_1002_hbm_22502
crossref_primary_10_1016_j_neuroimage_2018_04_052
crossref_primary_10_1093_cercor_bhy244
crossref_primary_10_3389_fninf_2017_00001
crossref_primary_10_3389_fninf_2017_00002
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_3389_fnhum_2015_00021
crossref_primary_10_1016_j_neuroimage_2011_09_062
crossref_primary_10_1016_j_neuroimage_2015_05_099
crossref_primary_10_1080_00207454_2019_1695609
crossref_primary_10_1016_j_compmedimag_2019_101660
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_1016_j_media_2015_04_015
crossref_primary_10_1016_j_media_2016_02_006
crossref_primary_10_1038_s41598_017_00525_w
crossref_primary_10_1109_TMI_2011_2162529
crossref_primary_10_1016_j_neuroimage_2018_04_003
crossref_primary_10_1162_imag_a_00180
crossref_primary_10_1109_TMI_2019_2901712
crossref_primary_10_1166_jmihi_2021_3849
crossref_primary_10_1002_hbm_24199
crossref_primary_10_1016_j_compbiomed_2015_06_016
crossref_primary_10_1007_s11042_019_07829_1
crossref_primary_10_1016_j_artmed_2015_04_005
crossref_primary_10_1016_j_nicl_2015_01_008
crossref_primary_10_1109_TMI_2011_2154385
crossref_primary_10_1016_j_earlhumdev_2017_05_009
crossref_primary_10_1002_hbm_24948
crossref_primary_10_1016_j_bspc_2022_104017
crossref_primary_10_1016_j_media_2015_10_001
crossref_primary_10_1016_j_bspc_2022_103644
crossref_primary_10_1016_j_bspc_2021_102458
crossref_primary_10_1007_s10278_012_9460_z
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1002_hbm_24027
crossref_primary_10_1016_j_neuroimage_2013_12_038
crossref_primary_10_1007_s00429_014_0917_3
Cites_doi 10.1016/j.neuroimage.2007.05.004
10.1109/34.56205
10.1016/j.media.2008.06.005
10.1016/j.neuroimage.2009.04.068
10.1016/j.media.2009.10.001
10.1126/science.1136800
10.1109/34.87344
10.1016/j.neuroimage.2009.07.066
10.1016/j.neuroimage.2008.07.060
10.1016/j.neuroimage.2003.11.010
10.1006/nimg.2001.0978
10.1007/978-3-540-75757-3_107
10.1016/j.neuroimage.2009.09.069
10.1016/j.media.2005.05.007
10.1109/TMI.2008.2011480
10.1016/S1053-8119(03)00006-5
10.1016/j.neuroimage.2004.07.068
10.1016/j.neuroimage.2007.09.031
10.1016/j.neuroimage.2005.02.018
10.1109/TMI.2002.803111
10.1109/TMI.2004.828354
10.1016/j.patcog.2006.08.012
10.1007/978-3-540-75759-7_66
10.1016/j.media.2007.07.001
10.1016/j.neuroimage.2006.05.061
10.1016/j.neuroimage.2005.11.044
10.1016/j.neuroimage.2006.01.015
10.1109/TMI.2004.830803
10.1016/j.neuroimage.2009.02.018
10.1007/978-3-540-85990-1_125
10.1016/j.neuroimage.2007.07.030
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jun 1, 2010
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jun 1, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.02.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database



ProQuest One Psychology
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 693
ExternalDocumentID PMC2856707
3244838461
20171290
10_1016_j_neuroimage_2010_02_025
S105381191000193X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH088520
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NINDS NIH HHS
  grantid: NS055754
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIMH NIH HHS
  grantid: MH070890
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: RC1 MH088520
– fundername: NIMH NIH HHS
  grantid: MH064065
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c611t-2d25722cd7cf7e87b66ea8f77fd90c75f5a6ffe45314b24e8ffd044578b1e3c63
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Tue Sep 30 17:03:43 EDT 2025
Tue Oct 07 10:06:38 EDT 2025
Thu Oct 02 12:03:43 EDT 2025
Tue Oct 07 06:35:28 EDT 2025
Mon Jul 21 05:54:51 EDT 2025
Wed Oct 01 02:57:59 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Oct 14 19:33:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-2d25722cd7cf7e87b66ea8f77fd90c75f5a6ffe45314b24e8ffd044578b1e3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20171290
PQID 1506835767
PQPubID 2031077
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856707
proquest_miscellaneous_745637103
proquest_miscellaneous_733894447
proquest_journals_1506835767
pubmed_primary_20171290
crossref_primary_10_1016_j_neuroimage_2010_02_025
crossref_citationtrail_10_1016_j_neuroimage_2010_02_025
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_02_025
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Borg, Groenen (bib6) 2005
Yeo, Sabuncu, Desikan, Fischl, Golland (bib34) 2008; 12
Vincent, Soille (bib28) 1991; 13
Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bib33) 2007; 38
Blezek, Miller (bib5) 2007; 11
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib35) 2006; 31
Joshi, Davis, Jomier, Gerig (bib14) 2004; 23
Rohlfing, Russakoff, Maurer (bib20) 2004; 23
Altaye, Holland, Wilke, Gaser (bib2) 2008; 43
Warfield, Zou, Wells (bib29) 2004; 23
Frey, Dueck (bib9) 2007; 315
Prastawa, Gilmore, Lin, Gerig (bib18) 2005; 9
Wolz, Aljabar, Hajnal, Hammers, Rueckert (bib32) 2010; 49
Ashburner, Friston (bib3) 2005; 26
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bib11) 2006; 33
Weisenfeld, Mewes, Warfield (bib31) 2006
Pohl, Fisher, Grimson, Kikinis, Wells (bib17) 2006; 31
Isgum, Staring, Rutten, Prokop, Viergever, van Ginneken (bib13) 2009; 28
Kazemi, Moghaddam, Grebe, Gondry-Jouet, Wallois (bib15) 2007; 37
Brodmann (bib7) 1909
Shen, Davatzikos (bib23) 2002; 21
Ca, Kwan, Evans (bib8) 1997; 5
Song, Z., Awate, S.P., Licht, D.J., Gee, J.C., 2007. Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors. MICCAI 2007, pp. 883–890.
van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bib27) 2010; 14
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib21) 2008; 39
Shi, Fan, Tang, Gilmore, Lin, Shen (bib24) 2010; 49
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib26) 2002; 15
Ide, J., Chen, R., Shen, D., Herskovits, E.H., 2008. Robust Brain Registration Using Adaptive Probabilistic Atlas. MICCAI 2008. Springer, pp. 1041–1049.
Shen (bib22) 2007; 40
Perona, Malik (bib16) 1990; 12
Han, X., Hibbard, L., Willcut, V., 2009. GPU-accelerated, Gradient-free MI Deformable Registration for Atlas-based MR Brain Image Segmentation. MMBIA 2009, Miami, FL.
Bhatia, K.K., Hajnal, J.V., Hammers, A., Rueckert, D., 2007. Similarity Metrics for Groupwise Non-rigid Registration. MICCAI 2007. Springer, pp. 544–552.
Rohlfing, Brandt, Menzel, Maurer (bib19) 2004; 21
Weisenfeld, Warfield (bib30) 2009; 47
Zhu, Jiang (bib36) 2003; 18
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bib1) 2009; 46
Shen (10.1016/j.neuroimage.2010.02.025_bib22) 2007; 40
Weisenfeld (10.1016/j.neuroimage.2010.02.025_bib31) 2006
Kazemi (10.1016/j.neuroimage.2010.02.025_bib15) 2007; 37
Joshi (10.1016/j.neuroimage.2010.02.025_bib14) 2004; 23
Zhu (10.1016/j.neuroimage.2010.02.025_bib36) 2003; 18
Shattuck (10.1016/j.neuroimage.2010.02.025_bib21) 2008; 39
Heckemann (10.1016/j.neuroimage.2010.02.025_bib11) 2006; 33
Isgum (10.1016/j.neuroimage.2010.02.025_bib13) 2009; 28
Tzourio-Mazoyer (10.1016/j.neuroimage.2010.02.025_bib26) 2002; 15
10.1016/j.neuroimage.2010.02.025_bib10
Warfield (10.1016/j.neuroimage.2010.02.025_bib29) 2004; 23
10.1016/j.neuroimage.2010.02.025_bib12
Weisenfeld (10.1016/j.neuroimage.2010.02.025_bib30) 2009; 47
Yushkevich (10.1016/j.neuroimage.2010.02.025_bib35) 2006; 31
Shi (10.1016/j.neuroimage.2010.02.025_bib24) 2010; 49
Perona (10.1016/j.neuroimage.2010.02.025_bib16) 1990; 12
10.1016/j.neuroimage.2010.02.025_bib4
Ashburner (10.1016/j.neuroimage.2010.02.025_bib3) 2005; 26
Ca (10.1016/j.neuroimage.2010.02.025_bib8) 1997; 5
Pohl (10.1016/j.neuroimage.2010.02.025_bib17) 2006; 31
Xue (10.1016/j.neuroimage.2010.02.025_bib33) 2007; 38
Shen (10.1016/j.neuroimage.2010.02.025_bib23) 2002; 21
Prastawa (10.1016/j.neuroimage.2010.02.025_bib18) 2005; 9
10.1016/j.neuroimage.2010.02.025_bib25
Altaye (10.1016/j.neuroimage.2010.02.025_bib2) 2008; 43
Borg (10.1016/j.neuroimage.2010.02.025_bib6) 2005
Brodmann (10.1016/j.neuroimage.2010.02.025_bib7) 1909
Wolz (10.1016/j.neuroimage.2010.02.025_bib32) 2010; 49
Yeo (10.1016/j.neuroimage.2010.02.025_bib34) 2008; 12
Blezek (10.1016/j.neuroimage.2010.02.025_bib5) 2007; 11
Rohlfing (10.1016/j.neuroimage.2010.02.025_bib20) 2004; 23
Frey (10.1016/j.neuroimage.2010.02.025_bib9) 2007; 315
Rohlfing (10.1016/j.neuroimage.2010.02.025_bib19) 2004; 21
Aljabar (10.1016/j.neuroimage.2010.02.025_bib1) 2009; 46
van Rikxoort (10.1016/j.neuroimage.2010.02.025_bib27) 2010; 14
Vincent (10.1016/j.neuroimage.2010.02.025_bib28) 1991; 13
References_xml – volume: 38
  start-page: 461
  year: 2007
  end-page: 477
  ident: bib33
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
– volume: 40
  start-page: 1161
  year: 2007
  end-page: 1172
  ident: bib22
  article-title: Image registration by local histogram matching
  publication-title: Pattern Recognition
– volume: 5
  year: 1997
  ident: bib8
  article-title: BrainWeb: online interface to a 3-D MRI simulated brain database
  publication-title: NeuroImage
– reference: Ide, J., Chen, R., Shen, D., Herskovits, E.H., 2008. Robust Brain Registration Using Adaptive Probabilistic Atlas. MICCAI 2008. Springer, pp. 1041–1049.
– volume: 18
  start-page: 685
  year: 2003
  end-page: 696
  ident: bib36
  article-title: Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images
  publication-title: NeuroImage
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib9
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 11
  start-page: 443
  year: 2007
  end-page: 457
  ident: bib5
  article-title: Atlas stratification
  publication-title: Med. Image Anal.
– volume: 49
  start-page: 391
  year: 2010
  end-page: 400
  ident: bib24
  article-title: Neonatal brain image segmentation in longitudinal MRI studies
  publication-title: NeuroImage
– volume: 23
  start-page: 151
  year: 2004
  end-page: 160
  ident: bib14
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
– volume: 37
  start-page: 463
  year: 2007
  end-page: 473
  ident: bib15
  article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results
  publication-title: NeuroImage
– volume: 9
  start-page: 457
  year: 2005
  end-page: 466
  ident: bib18
  article-title: Automatic segmentation of MR images of the developing newborn brain
  publication-title: Med. Image Anal.
– reference: Bhatia, K.K., Hajnal, J.V., Hammers, A., Rueckert, D., 2007. Similarity Metrics for Groupwise Non-rigid Registration. MICCAI 2007. Springer, pp. 544–552.
– volume: 31
  start-page: 228
  year: 2006
  end-page: 239
  ident: bib17
  article-title: A Bayesian model for joint segmentation and registration
  publication-title: NeuroImage
– volume: 43
  start-page: 721
  year: 2008
  end-page: 730
  ident: bib2
  article-title: Infant brain probability templates for MRI segmentation and normalization
  publication-title: NeuroImage
– reference: Han, X., Hibbard, L., Willcut, V., 2009. GPU-accelerated, Gradient-free MI Deformable Registration for Atlas-based MR Brain Image Segmentation. MMBIA 2009, Miami, FL.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib3
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bib11
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib35
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
– year: 2005
  ident: bib6
  article-title: Modern Multidimensional Scaling: Theory and Applications
– volume: 12
  start-page: 629
  year: 1990
  end-page: 639
  ident: bib16
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib26
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 21
  start-page: 1428
  year: 2004
  end-page: 1442
  ident: bib19
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: NeuroImage
– volume: 13
  start-page: 583
  year: 1991
  end-page: 598
  ident: bib28
  article-title: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 1000
  year: 2009
  end-page: 1010
  ident: bib13
  article-title: Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Trans. Med. Imaging
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bib1
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– volume: 12
  start-page: 603
  year: 2008
  end-page: 615
  ident: bib34
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bib21
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
– reference: Song, Z., Awate, S.P., Licht, D.J., Gee, J.C., 2007. Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors. MICCAI 2007, pp. 883–890.
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bib29
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 1909
  ident: bib7
  article-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues
– volume: 23
  start-page: 983
  year: 2004
  end-page: 994
  ident: bib20
  article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 39
  year: 2010
  end-page: 49
  ident: bib27
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
– volume: 47
  start-page: 564
  year: 2009
  end-page: 572
  ident: bib30
  article-title: Automatic segmentation of newborn brain MRI
  publication-title: NeuroImage
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  ident: bib23
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 49
  start-page: 1316
  year: 2010
  end-page: 1325
  ident: bib32
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: NeuroImage
– start-page: 766
  year: 2006
  end-page: 769
  ident: bib31
  article-title: Segmentation of newborn brain MRI
  publication-title: Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano
– volume: 37
  start-page: 463
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.025_bib15
  article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.05.004
– volume: 12
  start-page: 629
  year: 1990
  ident: 10.1016/j.neuroimage.2010.02.025_bib16
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– volume: 12
  start-page: 603
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.025_bib34
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.06.005
– ident: 10.1016/j.neuroimage.2010.02.025_bib10
– volume: 47
  start-page: 564
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.025_bib30
  article-title: Automatic segmentation of newborn brain MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.04.068
– volume: 14
  start-page: 39
  year: 2010
  ident: 10.1016/j.neuroimage.2010.02.025_bib27
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.10.001
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.025_bib9
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– year: 1909
  ident: 10.1016/j.neuroimage.2010.02.025_bib7
– volume: 13
  start-page: 583
  year: 1991
  ident: 10.1016/j.neuroimage.2010.02.025_bib28
  article-title: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.87344
– volume: 49
  start-page: 391
  year: 2010
  ident: 10.1016/j.neuroimage.2010.02.025_bib24
  article-title: Neonatal brain image segmentation in longitudinal MRI studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.07.066
– volume: 43
  start-page: 721
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.025_bib2
  article-title: Infant brain probability templates for MRI segmentation and normalization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.060
– volume: 21
  start-page: 1428
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.025_bib19
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 5
  year: 1997
  ident: 10.1016/j.neuroimage.2010.02.025_bib8
  article-title: BrainWeb: online interface to a 3-D MRI simulated brain database
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.025_bib26
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– ident: 10.1016/j.neuroimage.2010.02.025_bib25
  doi: 10.1007/978-3-540-75757-3_107
– volume: 49
  start-page: 1316
  year: 2010
  ident: 10.1016/j.neuroimage.2010.02.025_bib32
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.069
– volume: 9
  start-page: 457
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.025_bib18
  article-title: Automatic segmentation of MR images of the developing newborn brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.05.007
– volume: 28
  start-page: 1000
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.025_bib13
  article-title: Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2011480
– volume: 18
  start-page: 685
  year: 2003
  ident: 10.1016/j.neuroimage.2010.02.025_bib36
  article-title: Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00006-5
– volume: 23
  start-page: 151
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.025_bib14
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.068
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.025_bib21
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.025_bib3
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 21
  start-page: 1421
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.025_bib23
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 23
  start-page: 903
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.025_bib29
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– year: 2005
  ident: 10.1016/j.neuroimage.2010.02.025_bib6
– volume: 40
  start-page: 1161
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.025_bib22
  article-title: Image registration by local histogram matching
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.08.012
– ident: 10.1016/j.neuroimage.2010.02.025_bib4
  doi: 10.1007/978-3-540-75759-7_66
– volume: 11
  start-page: 443
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.025_bib5
  article-title: Atlas stratification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.07.001
– volume: 33
  start-page: 115
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.025_bib11
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 31
  start-page: 228
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.025_bib17
  article-title: A Bayesian model for joint segmentation and registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.11.044
– start-page: 766
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.025_bib31
  article-title: Segmentation of newborn brain MRI
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.025_bib35
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 23
  start-page: 983
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.025_bib20
  article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.830803
– volume: 46
  start-page: 726
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.025_bib1
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– ident: 10.1016/j.neuroimage.2010.02.025_bib12
  doi: 10.1007/978-3-540-85990-1_125
– volume: 38
  start-page: 461
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.025_bib33
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.030
SSID ssj0009148
Score 2.3330352
Snippet Neonatal brain MRI segmentation is a challenging problem due to its poor image quality. Atlas-based segmentation approaches have been widely used for guiding...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 684
SubjectTerms Accuracy
Atlases as Topic
Brain - anatomy & histology
Brain Mapping - methods
Humans
Image Interpretation, Computer-Assisted - methods
Infant, Newborn
Magnetic Resonance Imaging
Methods
Population
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61qYR6QVCgBEq1B65WvOt9RZyqiioFpYdCpdxWa3sWUlGnUsL_Z9Zeuw0IFAnJFz_Gimfn8cWe-QbgPcU_jjzwjJdBZFKRz3mNkjxe24osBos69g7Pr_TsRn5aqMUenPe9MLGsMsX-Lqa30TodmSRtTu6Xy8kXQgaUbuj_RotTisU-HFD-sXYEB2eXn2dXD9y7XHYdcarIokAq6OnKvFrayOUdOW-q8xK0qb9lqT9R6O_FlI-y08UzeJpgJTvrfvlz2MPmCJ7M04fzF7CIgzl7qli2CqwtJMziWIZVk_U7qfeP-Q1halwzArSswfh-ne5dxmESbH59ydb47S61LDUv4ebi49fzWZaGKmSV5nyTiZqcVIiqjnxEaE2pNXobjAn1NK-MCsrrEFCSb8pSSLQh1LmU5Nglx6LSxSsYNasGXwPTNfogSP9TFNIK7602GCStrlW-VmEMpleiqxLjeBx88cP1pWW37kH9Lqrf5YI2NQY-SN53rBs7yEz7dXJ9VynFQUepYQfZD4PslvXtKH3Sm4VLEWDtInMjoVujzRjYcJp8N36Q8bR2P9fOFAQXpZT_uoQAbkEosBjDcWdng0JEpDoS05zUvGWBwwWROXz7TLP83jKIC6u0yc2b_3rst3DYlVLEV1InMCIjxneE0DblafLAX-ywPmQ
  priority: 102
  providerName: Elsevier
Title Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191000193X
https://dx.doi.org/10.1016/j.neuroimage.2010.02.025
https://www.ncbi.nlm.nih.gov/pubmed/20171290
https://www.proquest.com/docview/1506835767
https://www.proquest.com/docview/733894447
https://www.proquest.com/docview/745637103
https://pubmed.ncbi.nlm.nih.gov/PMC2856707
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_aBMZeRvedtQt62Ks3S9aHTRmjKy3ptoQSVsibkG2p61idjmSv_dt3siVn3VgJGBtjnzGnu9MP6e53AG8w_lFLHU1o6VjCBfqckZajx8u8QouxWe1rh6czObngnxZisQOzWAvj0ypjTGwDdb2s_Br5O8-Eh2hBSfXh5mfiu0b53dXYQsOE1gr1-5ZibBeGzDNjDWD48WR2Pt_Q8FLeFceJLMkpLUJuT5fx1TJIXl2jH4eUL4aH-N-E9S8g_Tuv8o-J6nQPHgWESY46k3gMO7Z5Ag-mYQ_9KSx8j87IGkuWjrQ5hYnv0LBskngTygCJWSO8tiuC2JY01i-147dL31eCTOdnZGUvr0P1UvMMLk5Pvh5PktBfIakkpeuE1eivjFW1pyayuSqltCZ3Srm6SCslnDDSOcvRTXnJuM2dq1PO0cdLarNKZs9h0Cwb-xKIrK1xDKFHYRnPmTG5VNZxHOhcmFq4EaioRF0F8nHfA-OHjllm3_VG_dqrX6cMDzEC2kvedAQcW8gUcZx0LDDFkKhxlthC9rCXDSCkAxdbSh9Es9AhGKz0xnRHQPrH6MZ-b8bg2P1aaZUhcuSc3_cKYt0MAWE2ghednfUKYZ71iBUpqvmOBfYveBLxu0-aq28tmTjLhVSpenX_j-_Dwy5twi8_HcAArdS-RjS2Lsew-_aW4lkt1BiGR8fzL-f-evZ5MhsH9_sN9OI9Mg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDcLBXyAY0Ts-JEIVYhHq13aXaGqlfZmnMSGIpotyiLEn-O3MU7sLAVR7aVSLqvE0Wr8zfiLPfMNwDOMf9RSRxNaOpZwgT5npOXo8TKvEDE2q33t8HQmx8f8_VzMN-BXrIXxaZUxJnaBul5Ufo_8hVfCQ7agpHp19i3xXaP86WpsoWFCa4V6p5MYC4Ud-_bnD_yEa3cm73C-nzO2t3v0dpyELgNJJSldJqxG1DJW1V6gx-aqlNKa3Cnl6iKtlHDCSOcsR7DyknGbO1ennCPSS2qzSmb43iuwxTNe4Mff1pvd2YfDlewv5X0xnsiSnNIi5BL1GWadYuXJKcaNkGLG8BL_WyD_JcB_53H-sTDu3YQbgdGS1z0Eb8GGbW7D1Wk4s78Dc98TNKrUkoUjXQ5j4jtCLJok_ghlh8Qskc7bliCXJo31W_v47tL3sSDTwwlp7afTUC3V3IXjS7H0PdhsFo19AETW1jiGVKewjOfMmFwq6zgCKxemFm4EKhpRV0Hs3Pfc-KpjVtsXvTK_9ubXKcNLjIAOI896wY81xhRxnnQsaMUQrHFVWmPsy2FsID09mVlz9HaEhQ7Bp9UrVxkBGW5j2PBnQQbn7nurVYZMlXN-0SPIrTMkoNkI7vc4GwzCvMoSK1I08zkEDg940fLzd5qTz514OcuFVKl6ePEffwrXxkfTA30wme0_gut9yobf-tqGTUSsfYxMcFk-Ce5G4ONle_hvh9Z14A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcqvLetoAPcIwaO35FFUKIsupStkKISnszediliGaLsqjir_HrGCd2loKo9lIplyhxtBp_M_7W_mYG4DnGP2qpowktHUu4QJ8rpOXo8VJXiBib1T53eHosD0_4u5mYrcGvmAvjZZUxJnaBup5Xfo98z1fCQ7agpNpzQRbx4WD86uJ74jtI-ZPW2E6jh8iR_XmJf9_al5MDnOsXjI3ffnpzmIQOA0klKV0krEbEMlbVvjiP1aqU0hbaKeXqPK2UcKKQzlmOQOUl41Y7V6ecI8pLarNKZvjdW3BbZVnu5YRqppYFfynv0_BElmhK86Ai6rVlXa3Ks3OMGEFcxvAS_1sa_6W-fys4_1gSx1uwGbgsed2D7y6s2eYebEzDaf19mPluoLE-LZk70qkXE98LYt4k8SYkHJJigUTetgRZNGms39THb5e-gwWZfpyQ1p6ehzyp5gGc3IidH8J6M2_sYyCytoVjSHJyy7hmRaGlso4jpLQoauFGoKIRTRXKnPtuG99M1LN9NUvzG29-kzK8xAjoMPKiL_Wxwpg8zpOJqawYfA2uRyuM3R_GBrrT05gVR-9GWJgQdlqzdJIRkOExBgx_ClTg3P1oDYJV55zz615BVp0h9cxG8KjH2WAQ5usrsTxFM19B4PCCL1d-9Ulz9qUrW860kCpV29f_8GewgX5t3k-Oj3bgTq_V8Hteu7COgLVPkAIuyqedrxH4fNPO_RtiwXN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+multi-region-multi-reference+atlases+for+neonatal+brain+MRI+segmentation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shi%2C+Feng&rft.au=Yap%2C+Pew-Thian&rft.au=Fan%2C+Yong&rft.au=Gilmore%2C+John+H&rft.date=2010-06-01&rft.issn=1053-8119&rft.volume=51&rft.issue=2&rft.spage=684&rft.epage=693&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.02.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon