Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly

Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 67; no. 6; pp. 584 - 587
Main Authors Sheline, Yvette I., Raichle, Marcus E., Snyder, Abraham Z., Morris, John C., Head, Denise, Wang, Suzhi, Mintun, Mark A.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.03.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0006-3223
1873-2402
1873-2402
DOI10.1016/j.biopsych.2009.08.024

Cover

Abstract Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. Participants with Alzheimer's disease (AD) ( n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition. Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI.
AbstractList Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. Participants with Alzheimer's disease (AD) ( n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition. Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI.
Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. Participants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition. Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI.
Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.BACKGROUNDImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.Participants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition.METHODSParticipants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition.Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.RESULTSResting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI.CONCLUSIONSThus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI.
BackgroundImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. MethodsParticipants with Alzheimer's disease (AD) ( n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition. ResultsResting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. ConclusionsThus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI.
Author Sheline, Yvette I.
Wang, Suzhi
Snyder, Abraham Z.
Morris, John C.
Head, Denise
Raichle, Marcus E.
Mintun, Mark A.
AuthorAffiliation 1 Department of Psychiatry, Washington University School of Medicine St Louis, MO
2 Department of Radiology, Washington University School of Medicine St Louis, MO
3 Department of Neurology, Washington University School of Medicine St Louis, MO
4 Department of Psychology, Washington University School of Medicine St Louis, MO
AuthorAffiliation_xml – name: 3 Department of Neurology, Washington University School of Medicine St Louis, MO
– name: 4 Department of Psychology, Washington University School of Medicine St Louis, MO
– name: 1 Department of Psychiatry, Washington University School of Medicine St Louis, MO
– name: 2 Department of Radiology, Washington University School of Medicine St Louis, MO
Author_xml – sequence: 1
  givenname: Yvette I.
  surname: Sheline
  fullname: Sheline, Yvette I.
  email: yvette@npg.wustl.edu
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
– sequence: 2
  givenname: Marcus E.
  surname: Raichle
  fullname: Raichle, Marcus E.
  organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 3
  givenname: Abraham Z.
  surname: Snyder
  fullname: Snyder, Abraham Z.
  organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 4
  givenname: John C.
  surname: Morris
  fullname: Morris, John C.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 5
  givenname: Denise
  surname: Head
  fullname: Head, Denise
  organization: Department of Psychology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 6
  givenname: Suzhi
  surname: Wang
  fullname: Wang, Suzhi
  organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 7
  givenname: Mark A.
  surname: Mintun
  fullname: Mintun, Mark A.
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22504753$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19833321$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URNPAX6j2gjgl-GOz65VQRZWWD6kUROFsOfZs6tSxU9sbtP8er5IW6CVcbI38zjueeeYEHTnvAKFTgqcEk-rtarowfhN7dTulGDdTzKeYls_QiPCaTWiJ6REaYYyrCaOUHaOTGFc5rCklL9AxaThjjJIRgvN1b73RxTcr7zuIxYWJoduk4jvEZNyyuEkyQXEBrexsKr54DcU1pF8-3BVz7xyoZLYm9YVxOV46k0OwfXHtw1ra4tJqCLZ_iZ630kZ4tb_H6OeHyx_zT5Orrx8_z8-vJqoiOE3aVkkgJYCqcFUCqUte6abVnEtNVcNxo2VVlRWnVOmFrmXTypZpwtoZZgQDG6Ozne-mW6xBK3ApSCs2waxl6IWXRvz74sytWPqtoJw2rG6ywZu9QfDDOJJYm6jAWunAd1HUjM0Y5fkYo9O_Sz3WeBhtFrzeC2RU0rZBOmXio47SGS7rGcu6aqdTwccYoP1jhcXAWqzEA2sxsBaYi8w6J757kqhMhmX80Jqxh9Pf79IhA9kaCCIqA06BNiFTFdqbwxZnTyyUNc7kbu-gh7jyXXAZtyAiUoHFzbCPwzriBhPMDhn8zw9-A8Xj9ow
CODEN BIPCBF
CitedBy_id crossref_primary_10_1016_j_cortex_2014_04_006
crossref_primary_10_1186_alzrt244
crossref_primary_10_1016_j_bbadis_2011_07_008
crossref_primary_10_1038_mp_2016_73
crossref_primary_10_1088_1741_2552_aaaa76
crossref_primary_10_1089_brain_2022_0032
crossref_primary_10_1016_j_tins_2011_05_005
crossref_primary_10_1016_j_cortex_2018_04_006
crossref_primary_10_1016_j_neurobiolaging_2011_09_009
crossref_primary_10_1017_S1355617713001173
crossref_primary_10_2174_1874467213666200422090135
crossref_primary_10_3233_JAD_200472
crossref_primary_10_3233_JAD_200473
crossref_primary_10_18632_oncotarget_11289
crossref_primary_10_3389_fnagi_2016_00092
crossref_primary_10_1038_srep14824
crossref_primary_10_18632_aging_202313
crossref_primary_10_1097_WNP_0b013e3182767d15
crossref_primary_10_1002_dad2_12319
crossref_primary_10_3389_fnagi_2022_956222
crossref_primary_10_1016_j_nicl_2018_05_028
crossref_primary_10_1016_j_tins_2023_06_003
crossref_primary_10_1016_j_nicl_2019_101972
crossref_primary_10_1186_s13195_022_01035_2
crossref_primary_10_1016_j_nicl_2017_03_016
crossref_primary_10_1097_MNM_0000000000001004
crossref_primary_10_1002_jnr_23778
crossref_primary_10_1016_j_jagp_2015_12_003
crossref_primary_10_1093_cercor_bhr339
crossref_primary_10_1242_dmm_031724
crossref_primary_10_1162_jocn_a_02028
crossref_primary_10_1002_hbm_23359
crossref_primary_10_1016_j_clinph_2023_08_015
crossref_primary_10_1016_j_neuroimage_2012_08_036
crossref_primary_10_1016_j_neubiorev_2013_01_017
crossref_primary_10_1186_alzrt100
crossref_primary_10_1002_ana_22020
crossref_primary_10_3233_JAD_190560
crossref_primary_10_3390_brainsci13071111
crossref_primary_10_3389_fnagi_2021_802501
crossref_primary_10_1038_s41380_024_02817_w
crossref_primary_10_1073_pnas_1409730111
crossref_primary_10_1016_j_neuroimage_2011_07_098
crossref_primary_10_3390_ijms26031062
crossref_primary_10_1016_j_pnpbp_2017_04_016
crossref_primary_10_1016_j_enganabound_2022_10_037
crossref_primary_10_1111_jnp_12207
crossref_primary_10_1093_braincomms_fcaf018
crossref_primary_10_1016_j_neuroimage_2012_01_044
crossref_primary_10_3233_JAD_221063
crossref_primary_10_1089_brain_2013_0212
crossref_primary_10_1089_brain_2013_0213
crossref_primary_10_1016_j_clinph_2024_09_010
crossref_primary_10_12688_f1000research_17399_1
crossref_primary_10_1016_j_arr_2025_102688
crossref_primary_10_3389_fnagi_2016_00184
crossref_primary_10_1002_hbm_23018
crossref_primary_10_2217_nmt_12_75
crossref_primary_10_1016_j_neuroimage_2017_11_025
crossref_primary_10_1016_j_brainresbull_2023_110777
crossref_primary_10_1038_s41514_024_00151_7
crossref_primary_10_1016_j_neurobiolaging_2014_07_030
crossref_primary_10_1371_journal_pone_0178529
crossref_primary_10_1002_alz_13503
crossref_primary_10_1073_pnas_1000446107
crossref_primary_10_1093_cercor_bhr025
crossref_primary_10_1002_hbm_22234
crossref_primary_10_1016_j_bpsc_2017_11_012
crossref_primary_10_3389_fnagi_2017_00418
crossref_primary_10_3233_JAD_190254
crossref_primary_10_1002_ana_23643
crossref_primary_10_1007_s12311_020_01144_4
crossref_primary_10_31887_DCNS_2011_13_4_elenze
crossref_primary_10_3389_fnagi_2022_1054523
crossref_primary_10_1016_j_nicl_2019_101776
crossref_primary_10_1590_S1980_57642011DN05030004
crossref_primary_10_1038_s41598_018_37300_4
crossref_primary_10_1186_s13195_018_0420_9
crossref_primary_10_3389_fncel_2015_00318
crossref_primary_10_1016_j_neurobiolaging_2011_01_003
crossref_primary_10_1016_j_neuroimage_2021_117832
crossref_primary_10_1093_cercor_bhs108
crossref_primary_10_9758_cpn_23_1113
crossref_primary_10_1093_brain_awu271
crossref_primary_10_3389_fneur_2023_1284227
crossref_primary_10_1159_000341577
crossref_primary_10_1155_2016_8457612
crossref_primary_10_1523_JNEUROSCI_3579_13_2014
crossref_primary_10_1007_s11682_014_9336_6
crossref_primary_10_1016_j_jalz_2014_04_521
crossref_primary_10_4306_pi_2016_13_1_1
crossref_primary_10_1177_0284185120940264
crossref_primary_10_1097_WNF_0000000000000324
crossref_primary_10_1038_tp_2013_77
crossref_primary_10_2174_1871527320666210512014505
crossref_primary_10_3349_ymj_2019_60_10_935
crossref_primary_10_1111_cns_12682
crossref_primary_10_3389_fnins_2019_00642
crossref_primary_10_1002_gps_2575
crossref_primary_10_1016_j_neuroimage_2012_03_083
crossref_primary_10_1093_cercor_bhr172
crossref_primary_10_1016_j_neuroimage_2019_01_076
crossref_primary_10_1002_hbm_22379
crossref_primary_10_1016_j_neuropsychologia_2013_06_001
crossref_primary_10_1002_ana_22333
crossref_primary_10_3389_fnagi_2023_1165908
crossref_primary_10_3389_fnhum_2021_755017
crossref_primary_10_1002_hbm_21166
crossref_primary_10_1016_j_neurobiolaging_2025_01_005
crossref_primary_10_1016_j_neuroimage_2012_03_077
crossref_primary_10_1016_j_jalz_2014_06_004
crossref_primary_10_1007_s00429_012_0484_4
crossref_primary_10_3389_fnins_2019_00777
crossref_primary_10_3233_JAD_160730
crossref_primary_10_1097_MD_0000000000000763
crossref_primary_10_1038_s41386_021_01072_9
crossref_primary_10_1016_j_brainres_2012_05_050
crossref_primary_10_3389_frdem_2023_1126016
crossref_primary_10_1093_braincomms_fcac282
crossref_primary_10_1016_j_bpsc_2024_07_012
crossref_primary_10_1007_s12194_014_0295_9
crossref_primary_10_1016_j_bcp_2010_12_029
crossref_primary_10_3389_fnagi_2018_00304
crossref_primary_10_1016_j_cccb_2023_100184
crossref_primary_10_4061_2011_759780
crossref_primary_10_1016_j_biopsych_2012_11_028
crossref_primary_10_1038_s41598_024_54802_6
crossref_primary_10_3233_JAD_160882
crossref_primary_10_1016_j_neubiorev_2016_05_028
crossref_primary_10_1016_j_neuropharm_2010_04_006
crossref_primary_10_1089_brain_2014_0236
crossref_primary_10_1212_01_wnl_0000435556_21319_e4
crossref_primary_10_1111_ejn_12659
crossref_primary_10_1016_j_neurobiolaging_2019_12_017
crossref_primary_10_3389_fnins_2016_00433
crossref_primary_10_2174_1567205019666220304091241
crossref_primary_10_1016_j_neurobiolaging_2019_12_014
crossref_primary_10_1523_JNEUROSCI_4762_13_2014
crossref_primary_10_1016_j_neurobiolaging_2017_12_010
crossref_primary_10_1016_j_neurobiolaging_2018_10_002
crossref_primary_10_1016_j_neuroimage_2019_01_041
crossref_primary_10_1142_S0192415X16500270
crossref_primary_10_1186_s13195_024_01486_9
crossref_primary_10_1038_sdata_2015_43
crossref_primary_10_1002_hbm_22788
crossref_primary_10_1016_j_jneumeth_2011_04_010
crossref_primary_10_1016_j_biopsych_2013_12_016
crossref_primary_10_1016_j_nicl_2017_08_006
crossref_primary_10_1038_srep01339
crossref_primary_10_1016_j_neurobiolaging_2019_12_005
crossref_primary_10_1016_j_neurobiolaging_2012_05_004
crossref_primary_10_1016_j_bionps_2023_100068
crossref_primary_10_1016_j_neuro_2017_06_001
crossref_primary_10_1371_journal_pone_0142756
crossref_primary_10_1016_j_neuropsychologia_2025_109082
crossref_primary_10_3389_fnins_2018_00996
crossref_primary_10_1002_hbm_22213
crossref_primary_10_1016_j_neurobiolaging_2012_06_014
crossref_primary_10_1007_s40120_019_00148_5
crossref_primary_10_2217_nmt_11_11
crossref_primary_10_1007_s00018_019_03314_y
crossref_primary_10_3233_JAD_150855
crossref_primary_10_1016_j_jalz_2012_10_006
crossref_primary_10_1016_j_neulet_2024_137943
crossref_primary_10_1111_cns_12410
crossref_primary_10_1002_hipo_23129
crossref_primary_10_1038_s41380_024_02779_z
crossref_primary_10_1212_WNL_0b013e3182a1aafe
crossref_primary_10_1212_WNL_0b013e31827f0889
crossref_primary_10_2217_bmm_14_42
crossref_primary_10_7554_eLife_50830
crossref_primary_10_1089_brain_2016_0450
crossref_primary_10_1016_j_neurobiolaging_2018_11_020
crossref_primary_10_1038_s43856_023_00324_7
crossref_primary_10_3389_fnagi_2015_00194
crossref_primary_10_3233_JAD_170252
crossref_primary_10_1523_JNEUROSCI_2261_13_2013
crossref_primary_10_1111_jnp_12380
crossref_primary_10_1007_s11682_017_9697_8
crossref_primary_10_1016_j_cortex_2016_11_009
crossref_primary_10_1089_brain_2018_0623
crossref_primary_10_3389_fnagi_2018_00107
crossref_primary_10_1523_JNEUROSCI_2775_13_2013
crossref_primary_10_3390_cells9010054
crossref_primary_10_3233_JAD_160201
crossref_primary_10_1016_j_neurobiolaging_2017_11_014
crossref_primary_10_3389_fnagi_2015_00242
crossref_primary_10_1016_j_tics_2020_01_005
crossref_primary_10_3233_JAD_191065
crossref_primary_10_1212_WNL_0000000000002672
crossref_primary_10_1002_jmri_24550
crossref_primary_10_1212_WNL_0b013e3182231419
crossref_primary_10_1007_s12035_017_0540_4
crossref_primary_10_1002_hbm_24928
crossref_primary_10_1089_brain_2022_0008
crossref_primary_10_1007_s00259_014_2970_9
crossref_primary_10_1093_brain_awab218
crossref_primary_10_1212_WNL_0000000000003889
crossref_primary_10_1212_WNL_0b013e31821ccc83
crossref_primary_10_3233_JAD_210659
crossref_primary_10_1177_13872877251327762
crossref_primary_10_1146_annurev_neuro_080317_061725
crossref_primary_10_1016_j_neuroimage_2015_05_050
crossref_primary_10_1016_j_neuroimage_2022_118927
crossref_primary_10_1016_j_jalz_2011_03_003
crossref_primary_10_1039_D3NR03842D
crossref_primary_10_1093_cercor_bhs410
crossref_primary_10_1109_ACCESS_2021_3063054
crossref_primary_10_1016_j_neurobiolaging_2018_06_013
crossref_primary_10_1212_WNL_0000000000001575
crossref_primary_10_3389_fnagi_2020_00046
crossref_primary_10_1016_j_biopsych_2011_03_006
crossref_primary_10_3233_JAD_210661
crossref_primary_10_1016_j_biopsych_2011_04_023
crossref_primary_10_3389_fnagi_2014_00052
crossref_primary_10_1016_j_jad_2017_04_040
crossref_primary_10_1038_srep35514
crossref_primary_10_1177_0271678X19897442
crossref_primary_10_1371_journal_pone_0107401
crossref_primary_10_3233_JAD_160461
crossref_primary_10_3389_fnagi_2017_00370
crossref_primary_10_3389_fnagi_2016_00137
crossref_primary_10_1148_radiol_12111280
crossref_primary_10_3233_JAD_220204
crossref_primary_10_1093_cercor_bhab474
crossref_primary_10_3233_JAD_170250
crossref_primary_10_1515_revneuro_2024_0046
crossref_primary_10_1007_s11892_014_0560_7
crossref_primary_10_1016_j_jad_2015_04_052
crossref_primary_10_1038_s41598_017_06876_8
crossref_primary_10_1186_s13195_018_0438_z
crossref_primary_10_1016_j_jalz_2018_06_2855
crossref_primary_10_1097_WNR_0000000000001745
crossref_primary_10_1016_j_nic_2017_06_007
crossref_primary_10_1186_s13195_017_0249_7
crossref_primary_10_1016_j_neurobiolaging_2025_03_007
crossref_primary_10_1523_JNEUROSCI_5511_11_2012
crossref_primary_10_3389_fnana_2016_00041
crossref_primary_10_3389_fncir_2021_691314
crossref_primary_10_1016_j_nic_2017_06_005
crossref_primary_10_1038_srep26148
crossref_primary_10_2217_iim_13_51
crossref_primary_10_3390_ijms241411250
crossref_primary_10_1016_j_neuroimage_2022_119511
crossref_primary_10_4236_aad_2013_24019
crossref_primary_10_1109_JBHI_2020_3023610
crossref_primary_10_1162_netn_a_00271
crossref_primary_10_3389_fneur_2019_00900
crossref_primary_10_1523_ENEURO_0420_17_2018
crossref_primary_10_3233_JAD_160353
crossref_primary_10_1093_braincomms_fcab125
crossref_primary_10_1186_1477_7525_12_13
crossref_primary_10_3109_00207454_2014_971787
crossref_primary_10_3389_fnagi_2014_00240
crossref_primary_10_1016_j_neurobiolaging_2016_08_022
crossref_primary_10_3389_fnagi_2020_00239
crossref_primary_10_1007_s00259_025_07172_8
crossref_primary_10_1002_alz_14334
crossref_primary_10_1002_mds_26799
crossref_primary_10_1016_j_pnpbp_2018_01_006
crossref_primary_10_3389_fnagi_2020_593648
crossref_primary_10_3390_ijms20163992
crossref_primary_10_1007_s11910_014_0498_9
crossref_primary_10_1016_j_neuroimage_2011_11_075
crossref_primary_10_3389_fphys_2018_00518
crossref_primary_10_1038_nrneurol_2014_178
crossref_primary_10_1007_s11682_018_00034_y
crossref_primary_10_3389_fnagi_2019_00030
crossref_primary_10_1007_s11357_024_01361_3
crossref_primary_10_3233_JAD_210607
crossref_primary_10_1038_s41598_023_38214_6
crossref_primary_10_1016_j_concog_2017_01_006
crossref_primary_10_3389_fncom_2023_1251301
crossref_primary_10_1002_dad2_12094
crossref_primary_10_1117_1_NPh_9_4_045010
crossref_primary_10_3233_JAD_181296
crossref_primary_10_1016_j_bbadis_2011_11_005
crossref_primary_10_1007_s10072_023_07232_7
crossref_primary_10_1017_S1355617718000577
crossref_primary_10_1093_cercor_bhac491
crossref_primary_10_1126_scitranslmed_3004291
crossref_primary_10_1016_j_pnpbp_2017_08_004
crossref_primary_10_3389_fneur_2020_529930
crossref_primary_10_1093_brain_awy093
crossref_primary_10_1016_j_neurobiolaging_2014_05_027
crossref_primary_10_3390_ani14071082
crossref_primary_10_3389_fphar_2021_721216
crossref_primary_10_1016_j_bpsc_2020_12_007
crossref_primary_10_3389_fnagi_2019_00039
crossref_primary_10_1089_brain_2011_0019
crossref_primary_10_4103_jgmh_jgmh_21_21
crossref_primary_10_1016_j_dadm_2017_03_007
crossref_primary_10_1177_0271678X221082016
crossref_primary_10_1007_s40336_014_0094_7
crossref_primary_10_1371_journal_pone_0051833
crossref_primary_10_2337_db11_1669
crossref_primary_10_1016_j_jagp_2019_07_008
crossref_primary_10_1007_s11571_010_9126_9
crossref_primary_10_1038_s41467_017_02416_0
crossref_primary_10_1523_JNEUROSCI_2535_11_2011
crossref_primary_10_1016_j_nicl_2014_09_004
crossref_primary_10_1212_WNL_0b013e31820e7b74
crossref_primary_10_1371_journal_pone_0039731
crossref_primary_10_1002_cne_24929
crossref_primary_10_1016_j_bbr_2018_08_006
crossref_primary_10_1523_JNEUROSCI_6008_09_2010
crossref_primary_10_1093_brain_aws327
crossref_primary_10_1007_s13311_021_01026_5
crossref_primary_10_1088_1741_2552_ac542d
crossref_primary_10_1371_journal_pone_0049787
crossref_primary_10_3389_fnagi_2021_597455
crossref_primary_10_1016_j_neuroimage_2011_08_105
crossref_primary_10_1016_j_bbr_2019_112048
crossref_primary_10_1007_s11682_016_9598_2
crossref_primary_10_1371_journal_pone_0063727
crossref_primary_10_1017_neu_2019_49
crossref_primary_10_1093_brain_awac498
crossref_primary_10_3389_fnagi_2021_631172
crossref_primary_10_3233_JAD_150254
crossref_primary_10_18632_oncotarget_11775
crossref_primary_10_1002_alz_14266
crossref_primary_10_1007_s40336_013_0027_x
crossref_primary_10_3389_fpsyt_2021_626332
crossref_primary_10_1093_brain_awaa068
crossref_primary_10_1093_cercor_bhaf045
crossref_primary_10_3233_JAD_151137
crossref_primary_10_1093_cercor_bhs160
crossref_primary_10_3233_JAD_161062
crossref_primary_10_1007_s11682_012_9171_6
crossref_primary_10_31857_S0044467724050026
crossref_primary_10_1038_s41380_023_02215_8
crossref_primary_10_1016_j_neuron_2014_10_038
crossref_primary_10_1016_j_neuroimage_2018_10_015
crossref_primary_10_1073_pnas_1214551110
crossref_primary_10_1523_JNEUROSCI_5845_11_2012
crossref_primary_10_1007_s11682_017_9789_5
crossref_primary_10_1093_cercor_bhae088
crossref_primary_10_1016_j_dadm_2018_06_002
crossref_primary_10_1016_j_neuropsychologia_2011_06_006
crossref_primary_10_1007_s11682_019_00247_9
crossref_primary_10_3233_JAD_160086
crossref_primary_10_1007_s11065_014_9267_4
crossref_primary_10_1007_s11357_023_01036_5
crossref_primary_10_1007_s00115_011_3307_6
crossref_primary_10_1089_brain_2020_0899
crossref_primary_10_1016_j_pscychresns_2012_01_002
crossref_primary_10_1093_brain_awv326
crossref_primary_10_1111_nan_12672
crossref_primary_10_3233_JAD_179928
crossref_primary_10_3389_fneur_2021_645171
crossref_primary_10_1016_j_neuroimage_2016_03_042
crossref_primary_10_1093_braincomms_fcaf098
crossref_primary_10_1371_journal_pone_0055902
crossref_primary_10_1126_scitranslmed_3002804
crossref_primary_10_1007_s00429_024_02888_z
crossref_primary_10_1523_JNEUROSCI_1230_11_2011
crossref_primary_10_1016_j_neuropsychologia_2015_02_024
crossref_primary_10_1038_s41598_021_93610_0
crossref_primary_10_1186_s13195_019_0573_1
crossref_primary_10_1148_radiol_13122503
crossref_primary_10_1007_s11682_017_9767_y
crossref_primary_10_1007_s11682_016_9556_z
crossref_primary_10_1212_WNL_0000000000008315
crossref_primary_10_1089_brain_2021_0013
crossref_primary_10_1016_j_neurobiolaging_2014_03_036
crossref_primary_10_1016_j_neurobiolaging_2017_01_022
crossref_primary_10_1016_j_neuropsychologia_2016_04_023
crossref_primary_10_1038_s41380_021_01421_6
crossref_primary_10_1098_rstb_2015_0429
crossref_primary_10_1007_s12021_013_9187_0
crossref_primary_10_1148_radiol_12110433
crossref_primary_10_1016_j_neuroscience_2015_01_035
crossref_primary_10_1038_s41598_017_15001_8
crossref_primary_10_3389_fnsys_2021_777706
crossref_primary_10_1523_JNEUROSCI_3987_10_2010
crossref_primary_10_1016_j_nbd_2020_105031
crossref_primary_10_1002_gps_2398
crossref_primary_10_1038_s44220_024_00259_5
crossref_primary_10_1111_cns_12260
crossref_primary_10_1089_brain_2013_0144
crossref_primary_10_1093_cercor_bhu259
crossref_primary_10_1523_JNEUROSCI_3067_17_2018
crossref_primary_10_1177_13872877241303849
crossref_primary_10_1017_S1355617715000995
crossref_primary_10_1523_JNEUROSCI_3263_16_2017
crossref_primary_10_1002_ima_22320
crossref_primary_10_1007_s00401_015_1527_8
crossref_primary_10_18632_aging_103676
crossref_primary_10_3389_fnagi_2023_1291881
crossref_primary_10_1212_WNL_0000000000000939
crossref_primary_10_1515_revneuro_2023_0098
crossref_primary_10_1212_WNL_0000000000004059
crossref_primary_10_1093_brain_awr044
crossref_primary_10_1097_WCO_0b013e32835a26b3
crossref_primary_10_1093_braincomms_fcab201
crossref_primary_10_1176_appi_ajp_2011_11081153
crossref_primary_10_1016_j_neurobiolaging_2017_09_027
crossref_primary_10_3389_fnhum_2016_00311
crossref_primary_10_1016_j_neurobiolaging_2010_05_003
crossref_primary_10_1097_WAD_0000000000000027
crossref_primary_10_31083_j_jin2106170
crossref_primary_10_1016_j_neurobiolaging_2015_05_004
crossref_primary_10_1007_s11682_018_9869_1
crossref_primary_10_1016_j_neurobiolaging_2013_10_081
crossref_primary_10_1016_j_neubiorev_2015_08_013
crossref_primary_10_1016_j_tics_2012_02_001
crossref_primary_10_1016_j_acra_2020_06_006
crossref_primary_10_1093_brain_awu103
crossref_primary_10_1212_WNL_0b013e3182918ca6
crossref_primary_10_1016_j_jalz_2019_03_006
crossref_primary_10_1016_j_neurobiolaging_2012_09_015
crossref_primary_10_1073_pnas_1525309113
crossref_primary_10_1016_j_neurobiolaging_2011_07_003
crossref_primary_10_3389_fphy_2019_00107
crossref_primary_10_1093_cercor_bhw332
crossref_primary_10_1093_cercor_bhu151
crossref_primary_10_3389_fpsyg_2015_00776
crossref_primary_10_1212_WNL_0b013e31820af94e
crossref_primary_10_1007_s11571_020_09630_5
crossref_primary_10_3233_JAD_180966
crossref_primary_10_1088_1741_2560_13_4_046008
crossref_primary_10_1016_j_neuroimage_2013_06_042
Cites_doi 10.1002/cne.10883
10.1196/annals.1440.011
10.1152/jn.00048.2006
10.1073/pnas.0604187103
10.1212/01.wnl.0000228230.26044.a4
10.1001/archneur.65.11.1467
10.1371/journal.pcbi.1000100
10.1212/WNL.59.7.1034
10.1126/science.1072994
10.1016/j.bbr.2008.08.012
10.1016/j.neuroimage.2005.06.058
10.1016/j.neuron.2009.07.003
10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
10.1073/pnas.98.2.676
10.1016/S0072-9752(07)01223-7
10.1073/pnas.0308627101
ContentType Journal Article
Copyright 2010 Society of Biological Psychiatry
Society of Biological Psychiatry
2015 INIST-CNRS
Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Society of Biological Psychiatry
– notice: Society of Biological Psychiatry
– notice: 2015 INIST-CNRS
– notice: Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
– notice: Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.biopsych.2009.08.024
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 587
ExternalDocumentID PMC2829379
19833321
22504753
10_1016_j_biopsych_2009_08_024
S0006322309010324
1_s2_0_S0006322309010324
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K24 MH079510
– fundername: NIMH NIH HHS
  grantid: K24MH079510
– fundername: NIA NIH HHS
  grantid: P01AG026275
– fundername: NINDS NIH HHS
  grantid: P50 NS006833
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIA NIH HHS
  grantid: P01AG03991
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: P50AG05681
– fundername: NINDS NIH HHS
  grantid: P30 NS048056
– fundername: NINDS NIH HHS
  grantid: P30NS06833
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABDPE
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMQ
HVGLF
HZ~
H~9
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SNS
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UPT
UV1
WH7
WUQ
XJT
XOL
Z5R
ZCA
ZGI
ZKB
ZXP
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
G8K
LCYCR
ZA5
AAYXX
CITATION
~HD
IQODW
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
5PM
ID FETCH-LOGICAL-c610t-ffcae14eec6064e17486d9fd88ad2c9809da6646822cdbd7a9faf3d13f50310e3
IEDL.DBID AIKHN
ISSN 0006-3223
1873-2402
IngestDate Thu Aug 21 18:09:01 EDT 2025
Sun Sep 28 02:23:26 EDT 2025
Mon Jul 21 05:59:09 EDT 2025
Wed Apr 02 07:25:55 EDT 2025
Thu Sep 18 00:34:18 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Fri Feb 23 02:26:57 EST 2024
Sun Feb 23 10:19:27 EST 2025
Tue Aug 26 16:32:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fMRI
resting state
amyloid
hippocampus
precuneus
PIB
Alzheimer's disease
Human
Nervous system diseases
Alzheimer disease
Central nervous system
Nuclear magnetic resonance imaging
Encephalon
Cerebral disorder
Rest
Central nervous system disease
Medical imagery
Degenerative disease
Amyloid
Elderly
Hippocampus
Functional imaging
Language English
License CC BY 4.0
Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-ffcae14eec6064e17486d9fd88ad2c9809da6646822cdbd7a9faf3d13f50310e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2829379
PMID 19833321
PQID 733532835
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829379
proquest_miscellaneous_733532835
pubmed_primary_19833321
pascalfrancis_primary_22504753
crossref_primary_10_1016_j_biopsych_2009_08_024
crossref_citationtrail_10_1016_j_biopsych_2009_08_024
elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_08_024
elsevier_clinicalkeyesjournals_1_s2_0_S0006322309010324
elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_08_024
PublicationCentury 2000
PublicationDate 2010-03-15
PublicationDateYYYYMMDD 2010-03-15
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Price, Morris (bib17) 1999; 45
Hardy, Selkoe (bib16) 2002; 297
Price, Morris (bib6) 1999; 45
Mintun, Larossa, Sheline, Dence, Lee, Mach (bib2) 2006; 67
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib1) 2001; 98
Van Essen (bib12) 2005; 28
Roe, Mintun, D'Angelo, Xiong, Grant, Morris (bib9) 2008; 65
Greicius, Srivastava, Reiss, Menon (bib3) 2004; 101
Sperling, LaViolette, O'Keefe, O'Brien, Rentz, Pihlajamaki (bib13) 2009; 63
Storandt, Grant, Miller, Morris (bib8) 2002; 59
.
Fox, Corbetta, Snyder, Vincent, Raichle (bib11) 2006; 103
Morris J, Roe C, Xiong C, Fagan A, Goate A, Holtzman D, Mintun M. (in press): APOE predicts Aβ but not tau Alzheimer's pathology in cognitively normal aging.
Supekar, Menon, Rubin, Musen, Greicius (bib4) 2008; 4
Vincent, Snyder, Fox, Shannon, Andrews, Raichle, Buckner (bib10) 2006; 96
Zhang, Wang, Xing, Liu, Ma, Yang (bib5) 2009; 197
Selkoe (bib7) 2008; 89
Buckner, Andrews-Hanna, Schacter (bib15) 2008; 1124
Kobayashi, Amaral (bib14) 2003; 466
10.1016/j.biopsych.2009.08.024_bib18
Fox (10.1016/j.biopsych.2009.08.024_bib11) 2006; 103
Buckner (10.1016/j.biopsych.2009.08.024_bib15) 2008; 1124
Vincent (10.1016/j.biopsych.2009.08.024_bib10) 2006; 96
Price (10.1016/j.biopsych.2009.08.024_bib17) 1999; 45
Greicius (10.1016/j.biopsych.2009.08.024_bib3) 2004; 101
Storandt (10.1016/j.biopsych.2009.08.024_bib8) 2002; 59
Price (10.1016/j.biopsych.2009.08.024_bib6) 1999; 45
Roe (10.1016/j.biopsych.2009.08.024_bib9) 2008; 65
Van Essen (10.1016/j.biopsych.2009.08.024_bib12) 2005; 28
Raichle (10.1016/j.biopsych.2009.08.024_bib1) 2001; 98
Supekar (10.1016/j.biopsych.2009.08.024_bib4) 2008; 4
Hardy (10.1016/j.biopsych.2009.08.024_bib16) 2002; 297
Kobayashi (10.1016/j.biopsych.2009.08.024_bib14) 2003; 466
Zhang (10.1016/j.biopsych.2009.08.024_bib5) 2009; 197
Mintun (10.1016/j.biopsych.2009.08.024_bib2) 2006; 67
Selkoe (10.1016/j.biopsych.2009.08.024_bib7) 2008; 89
Sperling (10.1016/j.biopsych.2009.08.024_bib13) 2009; 63
References_xml – volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  ident: bib12
  article-title: A Population-Average, Landmark- and Surface-based (PALS) atlas of the human cerebral cortex
  publication-title: Neuroimage
– volume: 59
  start-page: 1034
  year: 2002
  end-page: 1041
  ident: bib8
  article-title: Rates of progression in mild cognitive impairment and early Alzheimer's disease
  publication-title: Neurology
– volume: 45
  start-page: 358
  year: 1999
  end-page: 368
  ident: bib17
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Ann Neurol
– volume: 63
  start-page: 1
  year: 2009
  end-page: 11
  ident: bib13
  article-title: Amyloid deposition is associated with impaired default network function in older persons without dementia
  publication-title: Neuron
– volume: 4
  year: 2008
  ident: bib4
  article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
  publication-title: PLoS Comput Biol
– volume: 466
  start-page: 48
  year: 2003
  end-page: 79
  ident: bib14
  article-title: Macaque monkey retrosplenial cortex
  publication-title: J Comp Neurol
– volume: 197
  start-page: 103
  year: 2009
  end-page: 108
  ident: bib5
  article-title: Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease
  publication-title: Behav Brain Res
– volume: 96
  start-page: 3517
  year: 2006
  end-page: 3531
  ident: bib10
  article-title: Coherent spontaneous activity identifies a hippocampal-parietal memory network
  publication-title: J Neurophysiol
– volume: 103
  start-page: 10046
  year: 2006
  end-page: 10051
  ident: bib11
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc Natl Acad Sci U S A
– volume: 45
  start-page: 358
  year: 1999
  end-page: 368
  ident: bib6
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Ann Neurol
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib1
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
– reference: Morris J, Roe C, Xiong C, Fagan A, Goate A, Holtzman D, Mintun M. (in press): APOE predicts Aβ but not tau Alzheimer's pathology in cognitively normal aging.
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  ident: bib15
  article-title: The brain's default network: Anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  ident: bib3
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc Natl Acad Sci U S A
– volume: 89
  start-page: 245
  year: 2008
  end-page: 260
  ident: bib7
  article-title: Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer's disease
  publication-title: Handb Clin Neurol
– volume: 65
  start-page: 1467
  year: 2008
  end-page: 1471
  ident: bib9
  article-title: Alzheimer disease and cognitive reserve: Variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake
  publication-title: Arch Neurol
– volume: 67
  start-page: 446
  year: 2006
  end-page: 452
  ident: bib2
  article-title: [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease
  publication-title: Neurology
– reference: .
– volume: 297
  start-page: 353
  year: 2002
  end-page: 356
  ident: bib16
  article-title: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics
  publication-title: Science
– volume: 466
  start-page: 48
  year: 2003
  ident: 10.1016/j.biopsych.2009.08.024_bib14
  article-title: Macaque monkey retrosplenial cortex
  publication-title: J Comp Neurol
  doi: 10.1002/cne.10883
– volume: 1124
  start-page: 1
  year: 2008
  ident: 10.1016/j.biopsych.2009.08.024_bib15
  article-title: The brain's default network: Anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 96
  start-page: 3517
  year: 2006
  ident: 10.1016/j.biopsych.2009.08.024_bib10
  article-title: Coherent spontaneous activity identifies a hippocampal-parietal memory network
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00048.2006
– volume: 103
  start-page: 10046
  year: 2006
  ident: 10.1016/j.biopsych.2009.08.024_bib11
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0604187103
– volume: 67
  start-page: 446
  year: 2006
  ident: 10.1016/j.biopsych.2009.08.024_bib2
  article-title: [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000228230.26044.a4
– volume: 65
  start-page: 1467
  year: 2008
  ident: 10.1016/j.biopsych.2009.08.024_bib9
  article-title: Alzheimer disease and cognitive reserve: Variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake
  publication-title: Arch Neurol
  doi: 10.1001/archneur.65.11.1467
– volume: 4
  year: 2008
  ident: 10.1016/j.biopsych.2009.08.024_bib4
  article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000100
– volume: 59
  start-page: 1034
  year: 2002
  ident: 10.1016/j.biopsych.2009.08.024_bib8
  article-title: Rates of progression in mild cognitive impairment and early Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.59.7.1034
– volume: 297
  start-page: 353
  year: 2002
  ident: 10.1016/j.biopsych.2009.08.024_bib16
  article-title: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics
  publication-title: Science
  doi: 10.1126/science.1072994
– volume: 197
  start-page: 103
  year: 2009
  ident: 10.1016/j.biopsych.2009.08.024_bib5
  article-title: Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.08.012
– volume: 28
  start-page: 635
  year: 2005
  ident: 10.1016/j.biopsych.2009.08.024_bib12
  article-title: A Population-Average, Landmark- and Surface-based (PALS) atlas of the human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 63
  start-page: 1
  year: 2009
  ident: 10.1016/j.biopsych.2009.08.024_bib13
  article-title: Amyloid deposition is associated with impaired default network function in older persons without dementia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.003
– volume: 45
  start-page: 358
  year: 1999
  ident: 10.1016/j.biopsych.2009.08.024_bib17
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.biopsych.2009.08.024_bib1
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.2.676
– ident: 10.1016/j.biopsych.2009.08.024_bib18
– volume: 89
  start-page: 245
  year: 2008
  ident: 10.1016/j.biopsych.2009.08.024_bib7
  article-title: Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer's disease
  publication-title: Handb Clin Neurol
  doi: 10.1016/S0072-9752(07)01223-7
– volume: 101
  start-page: 4637
  year: 2004
  ident: 10.1016/j.biopsych.2009.08.024_bib3
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308627101
– volume: 45
  start-page: 358
  year: 1999
  ident: 10.1016/j.biopsych.2009.08.024_bib6
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
SSID ssj0007221
Score 2.5357523
Snippet Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ)...
BackgroundImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ)...
Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta)...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 584
SubjectTerms Adult and adolescent clinical studies
Aged
Aged, 80 and over
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
amyloid
Amyloid beta-Peptides - metabolism
Aniline Compounds
Biological and medical sciences
Brain - blood supply
Brain - diagnostic imaging
Brain - pathology
Brain Mapping - methods
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
fMRI
Geriatric Assessment
hippocampus
Humans
Image Processing, Computer-Assisted - methods
Longitudinal Studies
Magnetic Resonance Imaging - methods
Male
Medical sciences
Nerve Net - blood supply
Nerve Net - diagnostic imaging
Nerve Net - pathology
Neurology
Organic mental disorders. Neuropsychology
Oxygen - blood
PIB
Positron-Emission Tomography - methods
precuneus
Psychiatric Status Rating Scales
Psychiatric/Mental Health
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Rest - physiology
resting state
Statistics as Topic
Thiazoles
Title Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309010324
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309010324
https://dx.doi.org/10.1016/j.biopsych.2009.08.024
https://www.ncbi.nlm.nih.gov/pubmed/19833321
https://www.proquest.com/docview/733532835
https://pubmed.ncbi.nlm.nih.gov/PMC2829379
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aOnGREIICI1wqP_CatrHjxH6suk0FtAohJu3Ncn2BTCGtlvahL_vt2I0TVi4CwWOaHkV2Ts5F_s73AbxRY7lIjU1ig7mJU8ZtLDNL44wucswM1Zz5aeTzeTa7SN9d0ssDmLazMB5WGWJ_E9N30Tr8Mgq7OVoVhZ_xdenVZbexRxi4uuAQjrDL9qwHR5O372fzLiDnGAfhvCz2BrcGha-Gi2K5wxUH6ko2HOP0dznqwUrWbudsI3nxq5r0R2jlrVx19ggehiITTZp1PIYDU_XhTiM7ue3DvWmr8taHu-fhcP0JmMlX170XGn0opX8eOinq681qjT56Jo7qM9oVpujEWLkp18irqKF5gyJHO7yMapQoUFG564BKKrdo7sviEp16PfBy-xQuzk4_TWdxUGGIlSut1rG1SpokNUa5Xic1roNhmeZWMyY1VpyNuZZZlmau0lB6oXPJrbREJ8RSTztqyDPoVcvKPAcklVUmIYxKI1OqlZRUM6ly1yhbhiWPgLb7LlSgKPdKGaVosWhXon1fXj-TCy-hidMIRp3dqiHp-KNF3r5W0Y6guqApXB75N0tTh2-_FomosRiLn_wzAt5Z7rn4Xz11sOd73TKxp6BzLWcEqHVG4TzIn_rIyiw3tcgJocSz6kVw3Pjm9z3ijBCCE7emPa_t_uC5x_fvVMWXHQe5P4AnOX_xH2t6CfcbKAaJE_oKeuvrjXntKrz1YgCHw5tkEL7jb71YVOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4anWBICEGBrVyGH3jNmthxYj9W3aaOrRVCm7Q3y_VlZApptbQP_ffYjVNWLgLBY5oeRXZOzkX-zvcBfFCxnKbGJpHB3EQp4zaSmaVRRqc5ZoZqzvw08niSja7Sj9f0egeG7SyMh1WG2N_E9HW0Dr_0w27250XhZ3xdenXZLfYIA1cXPIDd1Itad2B3cHY-mmwCco5xEM7LIm9wb1D49mhazNa44kBdyY5inP4uRz2Zy9rtnG0kL35Vk_4IrbyXq06fwdNQZKJBs47nsGOqLjxsZCdXXdgbtipvXXg0DofrL8AMvrruvdDoUyn989BxUd8t5wv02TNxVDdoXZiiY2Plslwgr6KGJg2KHK3xMqpRokBF5a4DKqlcoYkvi0t04vXAy9VLuDo9uRyOoqDCEClXWi0ia5U0SWqMcr1OalwHwzLNrWZMaqw4i7mWWZZmrtJQeqpzya20RCfEUk87asgr6FSzyhwAksoqkxBGpZEp1UpKqplUuWuULcOS94C2-y5UoCj3ShmlaLFot6J9X14_kwsvoYnTHvQ3dvOGpOOPFnn7WkU7guqCpnB55N8sTR2-_VokosYiFj_5Zw_4xnLLxf_qqYdbvrdZJvYUdK7l7AFqnVE4D_KnPrIys2UtckIo8ax6PdhvfPP7HnFGCMGJW9OW127-4LnHt-9UxZc1B7k_gCc5f_0fa3oPe6PL8YW4OJucv4HHDSyDRAl9C53F3dK8c9XeYnoYvuZvvOJWzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyloid+plaques+disrupt+resting+state+default+mode+network+connectivity+in+cognitively+normal+elderly&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Sheline%2C+Yvette+I&rft.au=Raichle%2C+Marcus+E&rft.au=Snyder%2C+Abraham+Z&rft.au=Morris%2C+John+C&rft.date=2010-03-15&rft.eissn=1873-2402&rft.volume=67&rft.issue=6&rft.spage=584&rft_id=info:doi/10.1016%2Fj.biopsych.2009.08.024&rft_id=info%3Apmid%2F19833321&rft.externalDocID=19833321
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322310X00038%2Fcov150h.gif