Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly
Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a...
Saved in:
Published in | Biological psychiatry (1969) Vol. 67; no. 6; pp. 584 - 587 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
15.03.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2009.08.024 |
Cover
Abstract | Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.
Participants with Alzheimer's disease (AD) (
n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition.
Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.
Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI. |
---|---|
AbstractList | Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.
Participants with Alzheimer's disease (AD) (
n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition.
Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.
Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI. Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. Participants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition. Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI. Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.BACKGROUNDImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.Participants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition.METHODSParticipants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition.Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.RESULTSResting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI.CONCLUSIONSThus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI. BackgroundImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Aβ amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition. MethodsParticipants with Alzheimer's disease (AD) ( n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB−) and those with brain amyloid (PIB+) deposition. ResultsResting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB− group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group. ConclusionsThus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Aβ toxicity can be detected using resting state fMRI. |
Author | Sheline, Yvette I. Wang, Suzhi Snyder, Abraham Z. Morris, John C. Head, Denise Raichle, Marcus E. Mintun, Mark A. |
AuthorAffiliation | 1 Department of Psychiatry, Washington University School of Medicine St Louis, MO 2 Department of Radiology, Washington University School of Medicine St Louis, MO 3 Department of Neurology, Washington University School of Medicine St Louis, MO 4 Department of Psychology, Washington University School of Medicine St Louis, MO |
AuthorAffiliation_xml | – name: 3 Department of Neurology, Washington University School of Medicine St Louis, MO – name: 4 Department of Psychology, Washington University School of Medicine St Louis, MO – name: 1 Department of Psychiatry, Washington University School of Medicine St Louis, MO – name: 2 Department of Radiology, Washington University School of Medicine St Louis, MO |
Author_xml | – sequence: 1 givenname: Yvette I. surname: Sheline fullname: Sheline, Yvette I. email: yvette@npg.wustl.edu organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri – sequence: 2 givenname: Marcus E. surname: Raichle fullname: Raichle, Marcus E. organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri – sequence: 3 givenname: Abraham Z. surname: Snyder fullname: Snyder, Abraham Z. organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri – sequence: 4 givenname: John C. surname: Morris fullname: Morris, John C. organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri – sequence: 5 givenname: Denise surname: Head fullname: Head, Denise organization: Department of Psychology, Washington University School of Medicine, St. Louis, Missouri – sequence: 6 givenname: Suzhi surname: Wang fullname: Wang, Suzhi organization: Department of Radiology, Washington University School of Medicine, St. Louis, Missouri – sequence: 7 givenname: Mark A. surname: Mintun fullname: Mintun, Mark A. organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22504753$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19833321$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1URNPAX6j2gjgl-GOz65VQRZWWD6kUROFsOfZs6tSxU9sbtP8er5IW6CVcbI38zjueeeYEHTnvAKFTgqcEk-rtarowfhN7dTulGDdTzKeYls_QiPCaTWiJ6REaYYyrCaOUHaOTGFc5rCklL9AxaThjjJIRgvN1b73RxTcr7zuIxYWJoduk4jvEZNyyuEkyQXEBrexsKr54DcU1pF8-3BVz7xyoZLYm9YVxOV46k0OwfXHtw1ra4tJqCLZ_iZ630kZ4tb_H6OeHyx_zT5Orrx8_z8-vJqoiOE3aVkkgJYCqcFUCqUte6abVnEtNVcNxo2VVlRWnVOmFrmXTypZpwtoZZgQDG6Ozne-mW6xBK3ApSCs2waxl6IWXRvz74sytWPqtoJw2rG6ywZu9QfDDOJJYm6jAWunAd1HUjM0Y5fkYo9O_Sz3WeBhtFrzeC2RU0rZBOmXio47SGS7rGcu6aqdTwccYoP1jhcXAWqzEA2sxsBaYi8w6J757kqhMhmX80Jqxh9Pf79IhA9kaCCIqA06BNiFTFdqbwxZnTyyUNc7kbu-gh7jyXXAZtyAiUoHFzbCPwzriBhPMDhn8zw9-A8Xj9ow |
CODEN | BIPCBF |
CitedBy_id | crossref_primary_10_1016_j_cortex_2014_04_006 crossref_primary_10_1186_alzrt244 crossref_primary_10_1016_j_bbadis_2011_07_008 crossref_primary_10_1038_mp_2016_73 crossref_primary_10_1088_1741_2552_aaaa76 crossref_primary_10_1089_brain_2022_0032 crossref_primary_10_1016_j_tins_2011_05_005 crossref_primary_10_1016_j_cortex_2018_04_006 crossref_primary_10_1016_j_neurobiolaging_2011_09_009 crossref_primary_10_1017_S1355617713001173 crossref_primary_10_2174_1874467213666200422090135 crossref_primary_10_3233_JAD_200472 crossref_primary_10_3233_JAD_200473 crossref_primary_10_18632_oncotarget_11289 crossref_primary_10_3389_fnagi_2016_00092 crossref_primary_10_1038_srep14824 crossref_primary_10_18632_aging_202313 crossref_primary_10_1097_WNP_0b013e3182767d15 crossref_primary_10_1002_dad2_12319 crossref_primary_10_3389_fnagi_2022_956222 crossref_primary_10_1016_j_nicl_2018_05_028 crossref_primary_10_1016_j_tins_2023_06_003 crossref_primary_10_1016_j_nicl_2019_101972 crossref_primary_10_1186_s13195_022_01035_2 crossref_primary_10_1016_j_nicl_2017_03_016 crossref_primary_10_1097_MNM_0000000000001004 crossref_primary_10_1002_jnr_23778 crossref_primary_10_1016_j_jagp_2015_12_003 crossref_primary_10_1093_cercor_bhr339 crossref_primary_10_1242_dmm_031724 crossref_primary_10_1162_jocn_a_02028 crossref_primary_10_1002_hbm_23359 crossref_primary_10_1016_j_clinph_2023_08_015 crossref_primary_10_1016_j_neuroimage_2012_08_036 crossref_primary_10_1016_j_neubiorev_2013_01_017 crossref_primary_10_1186_alzrt100 crossref_primary_10_1002_ana_22020 crossref_primary_10_3233_JAD_190560 crossref_primary_10_3390_brainsci13071111 crossref_primary_10_3389_fnagi_2021_802501 crossref_primary_10_1038_s41380_024_02817_w crossref_primary_10_1073_pnas_1409730111 crossref_primary_10_1016_j_neuroimage_2011_07_098 crossref_primary_10_3390_ijms26031062 crossref_primary_10_1016_j_pnpbp_2017_04_016 crossref_primary_10_1016_j_enganabound_2022_10_037 crossref_primary_10_1111_jnp_12207 crossref_primary_10_1093_braincomms_fcaf018 crossref_primary_10_1016_j_neuroimage_2012_01_044 crossref_primary_10_3233_JAD_221063 crossref_primary_10_1089_brain_2013_0212 crossref_primary_10_1089_brain_2013_0213 crossref_primary_10_1016_j_clinph_2024_09_010 crossref_primary_10_12688_f1000research_17399_1 crossref_primary_10_1016_j_arr_2025_102688 crossref_primary_10_3389_fnagi_2016_00184 crossref_primary_10_1002_hbm_23018 crossref_primary_10_2217_nmt_12_75 crossref_primary_10_1016_j_neuroimage_2017_11_025 crossref_primary_10_1016_j_brainresbull_2023_110777 crossref_primary_10_1038_s41514_024_00151_7 crossref_primary_10_1016_j_neurobiolaging_2014_07_030 crossref_primary_10_1371_journal_pone_0178529 crossref_primary_10_1002_alz_13503 crossref_primary_10_1073_pnas_1000446107 crossref_primary_10_1093_cercor_bhr025 crossref_primary_10_1002_hbm_22234 crossref_primary_10_1016_j_bpsc_2017_11_012 crossref_primary_10_3389_fnagi_2017_00418 crossref_primary_10_3233_JAD_190254 crossref_primary_10_1002_ana_23643 crossref_primary_10_1007_s12311_020_01144_4 crossref_primary_10_31887_DCNS_2011_13_4_elenze crossref_primary_10_3389_fnagi_2022_1054523 crossref_primary_10_1016_j_nicl_2019_101776 crossref_primary_10_1590_S1980_57642011DN05030004 crossref_primary_10_1038_s41598_018_37300_4 crossref_primary_10_1186_s13195_018_0420_9 crossref_primary_10_3389_fncel_2015_00318 crossref_primary_10_1016_j_neurobiolaging_2011_01_003 crossref_primary_10_1016_j_neuroimage_2021_117832 crossref_primary_10_1093_cercor_bhs108 crossref_primary_10_9758_cpn_23_1113 crossref_primary_10_1093_brain_awu271 crossref_primary_10_3389_fneur_2023_1284227 crossref_primary_10_1159_000341577 crossref_primary_10_1155_2016_8457612 crossref_primary_10_1523_JNEUROSCI_3579_13_2014 crossref_primary_10_1007_s11682_014_9336_6 crossref_primary_10_1016_j_jalz_2014_04_521 crossref_primary_10_4306_pi_2016_13_1_1 crossref_primary_10_1177_0284185120940264 crossref_primary_10_1097_WNF_0000000000000324 crossref_primary_10_1038_tp_2013_77 crossref_primary_10_2174_1871527320666210512014505 crossref_primary_10_3349_ymj_2019_60_10_935 crossref_primary_10_1111_cns_12682 crossref_primary_10_3389_fnins_2019_00642 crossref_primary_10_1002_gps_2575 crossref_primary_10_1016_j_neuroimage_2012_03_083 crossref_primary_10_1093_cercor_bhr172 crossref_primary_10_1016_j_neuroimage_2019_01_076 crossref_primary_10_1002_hbm_22379 crossref_primary_10_1016_j_neuropsychologia_2013_06_001 crossref_primary_10_1002_ana_22333 crossref_primary_10_3389_fnagi_2023_1165908 crossref_primary_10_3389_fnhum_2021_755017 crossref_primary_10_1002_hbm_21166 crossref_primary_10_1016_j_neurobiolaging_2025_01_005 crossref_primary_10_1016_j_neuroimage_2012_03_077 crossref_primary_10_1016_j_jalz_2014_06_004 crossref_primary_10_1007_s00429_012_0484_4 crossref_primary_10_3389_fnins_2019_00777 crossref_primary_10_3233_JAD_160730 crossref_primary_10_1097_MD_0000000000000763 crossref_primary_10_1038_s41386_021_01072_9 crossref_primary_10_1016_j_brainres_2012_05_050 crossref_primary_10_3389_frdem_2023_1126016 crossref_primary_10_1093_braincomms_fcac282 crossref_primary_10_1016_j_bpsc_2024_07_012 crossref_primary_10_1007_s12194_014_0295_9 crossref_primary_10_1016_j_bcp_2010_12_029 crossref_primary_10_3389_fnagi_2018_00304 crossref_primary_10_1016_j_cccb_2023_100184 crossref_primary_10_4061_2011_759780 crossref_primary_10_1016_j_biopsych_2012_11_028 crossref_primary_10_1038_s41598_024_54802_6 crossref_primary_10_3233_JAD_160882 crossref_primary_10_1016_j_neubiorev_2016_05_028 crossref_primary_10_1016_j_neuropharm_2010_04_006 crossref_primary_10_1089_brain_2014_0236 crossref_primary_10_1212_01_wnl_0000435556_21319_e4 crossref_primary_10_1111_ejn_12659 crossref_primary_10_1016_j_neurobiolaging_2019_12_017 crossref_primary_10_3389_fnins_2016_00433 crossref_primary_10_2174_1567205019666220304091241 crossref_primary_10_1016_j_neurobiolaging_2019_12_014 crossref_primary_10_1523_JNEUROSCI_4762_13_2014 crossref_primary_10_1016_j_neurobiolaging_2017_12_010 crossref_primary_10_1016_j_neurobiolaging_2018_10_002 crossref_primary_10_1016_j_neuroimage_2019_01_041 crossref_primary_10_1142_S0192415X16500270 crossref_primary_10_1186_s13195_024_01486_9 crossref_primary_10_1038_sdata_2015_43 crossref_primary_10_1002_hbm_22788 crossref_primary_10_1016_j_jneumeth_2011_04_010 crossref_primary_10_1016_j_biopsych_2013_12_016 crossref_primary_10_1016_j_nicl_2017_08_006 crossref_primary_10_1038_srep01339 crossref_primary_10_1016_j_neurobiolaging_2019_12_005 crossref_primary_10_1016_j_neurobiolaging_2012_05_004 crossref_primary_10_1016_j_bionps_2023_100068 crossref_primary_10_1016_j_neuro_2017_06_001 crossref_primary_10_1371_journal_pone_0142756 crossref_primary_10_1016_j_neuropsychologia_2025_109082 crossref_primary_10_3389_fnins_2018_00996 crossref_primary_10_1002_hbm_22213 crossref_primary_10_1016_j_neurobiolaging_2012_06_014 crossref_primary_10_1007_s40120_019_00148_5 crossref_primary_10_2217_nmt_11_11 crossref_primary_10_1007_s00018_019_03314_y crossref_primary_10_3233_JAD_150855 crossref_primary_10_1016_j_jalz_2012_10_006 crossref_primary_10_1016_j_neulet_2024_137943 crossref_primary_10_1111_cns_12410 crossref_primary_10_1002_hipo_23129 crossref_primary_10_1038_s41380_024_02779_z crossref_primary_10_1212_WNL_0b013e3182a1aafe crossref_primary_10_1212_WNL_0b013e31827f0889 crossref_primary_10_2217_bmm_14_42 crossref_primary_10_7554_eLife_50830 crossref_primary_10_1089_brain_2016_0450 crossref_primary_10_1016_j_neurobiolaging_2018_11_020 crossref_primary_10_1038_s43856_023_00324_7 crossref_primary_10_3389_fnagi_2015_00194 crossref_primary_10_3233_JAD_170252 crossref_primary_10_1523_JNEUROSCI_2261_13_2013 crossref_primary_10_1111_jnp_12380 crossref_primary_10_1007_s11682_017_9697_8 crossref_primary_10_1016_j_cortex_2016_11_009 crossref_primary_10_1089_brain_2018_0623 crossref_primary_10_3389_fnagi_2018_00107 crossref_primary_10_1523_JNEUROSCI_2775_13_2013 crossref_primary_10_3390_cells9010054 crossref_primary_10_3233_JAD_160201 crossref_primary_10_1016_j_neurobiolaging_2017_11_014 crossref_primary_10_3389_fnagi_2015_00242 crossref_primary_10_1016_j_tics_2020_01_005 crossref_primary_10_3233_JAD_191065 crossref_primary_10_1212_WNL_0000000000002672 crossref_primary_10_1002_jmri_24550 crossref_primary_10_1212_WNL_0b013e3182231419 crossref_primary_10_1007_s12035_017_0540_4 crossref_primary_10_1002_hbm_24928 crossref_primary_10_1089_brain_2022_0008 crossref_primary_10_1007_s00259_014_2970_9 crossref_primary_10_1093_brain_awab218 crossref_primary_10_1212_WNL_0000000000003889 crossref_primary_10_1212_WNL_0b013e31821ccc83 crossref_primary_10_3233_JAD_210659 crossref_primary_10_1177_13872877251327762 crossref_primary_10_1146_annurev_neuro_080317_061725 crossref_primary_10_1016_j_neuroimage_2015_05_050 crossref_primary_10_1016_j_neuroimage_2022_118927 crossref_primary_10_1016_j_jalz_2011_03_003 crossref_primary_10_1039_D3NR03842D crossref_primary_10_1093_cercor_bhs410 crossref_primary_10_1109_ACCESS_2021_3063054 crossref_primary_10_1016_j_neurobiolaging_2018_06_013 crossref_primary_10_1212_WNL_0000000000001575 crossref_primary_10_3389_fnagi_2020_00046 crossref_primary_10_1016_j_biopsych_2011_03_006 crossref_primary_10_3233_JAD_210661 crossref_primary_10_1016_j_biopsych_2011_04_023 crossref_primary_10_3389_fnagi_2014_00052 crossref_primary_10_1016_j_jad_2017_04_040 crossref_primary_10_1038_srep35514 crossref_primary_10_1177_0271678X19897442 crossref_primary_10_1371_journal_pone_0107401 crossref_primary_10_3233_JAD_160461 crossref_primary_10_3389_fnagi_2017_00370 crossref_primary_10_3389_fnagi_2016_00137 crossref_primary_10_1148_radiol_12111280 crossref_primary_10_3233_JAD_220204 crossref_primary_10_1093_cercor_bhab474 crossref_primary_10_3233_JAD_170250 crossref_primary_10_1515_revneuro_2024_0046 crossref_primary_10_1007_s11892_014_0560_7 crossref_primary_10_1016_j_jad_2015_04_052 crossref_primary_10_1038_s41598_017_06876_8 crossref_primary_10_1186_s13195_018_0438_z crossref_primary_10_1016_j_jalz_2018_06_2855 crossref_primary_10_1097_WNR_0000000000001745 crossref_primary_10_1016_j_nic_2017_06_007 crossref_primary_10_1186_s13195_017_0249_7 crossref_primary_10_1016_j_neurobiolaging_2025_03_007 crossref_primary_10_1523_JNEUROSCI_5511_11_2012 crossref_primary_10_3389_fnana_2016_00041 crossref_primary_10_3389_fncir_2021_691314 crossref_primary_10_1016_j_nic_2017_06_005 crossref_primary_10_1038_srep26148 crossref_primary_10_2217_iim_13_51 crossref_primary_10_3390_ijms241411250 crossref_primary_10_1016_j_neuroimage_2022_119511 crossref_primary_10_4236_aad_2013_24019 crossref_primary_10_1109_JBHI_2020_3023610 crossref_primary_10_1162_netn_a_00271 crossref_primary_10_3389_fneur_2019_00900 crossref_primary_10_1523_ENEURO_0420_17_2018 crossref_primary_10_3233_JAD_160353 crossref_primary_10_1093_braincomms_fcab125 crossref_primary_10_1186_1477_7525_12_13 crossref_primary_10_3109_00207454_2014_971787 crossref_primary_10_3389_fnagi_2014_00240 crossref_primary_10_1016_j_neurobiolaging_2016_08_022 crossref_primary_10_3389_fnagi_2020_00239 crossref_primary_10_1007_s00259_025_07172_8 crossref_primary_10_1002_alz_14334 crossref_primary_10_1002_mds_26799 crossref_primary_10_1016_j_pnpbp_2018_01_006 crossref_primary_10_3389_fnagi_2020_593648 crossref_primary_10_3390_ijms20163992 crossref_primary_10_1007_s11910_014_0498_9 crossref_primary_10_1016_j_neuroimage_2011_11_075 crossref_primary_10_3389_fphys_2018_00518 crossref_primary_10_1038_nrneurol_2014_178 crossref_primary_10_1007_s11682_018_00034_y crossref_primary_10_3389_fnagi_2019_00030 crossref_primary_10_1007_s11357_024_01361_3 crossref_primary_10_3233_JAD_210607 crossref_primary_10_1038_s41598_023_38214_6 crossref_primary_10_1016_j_concog_2017_01_006 crossref_primary_10_3389_fncom_2023_1251301 crossref_primary_10_1002_dad2_12094 crossref_primary_10_1117_1_NPh_9_4_045010 crossref_primary_10_3233_JAD_181296 crossref_primary_10_1016_j_bbadis_2011_11_005 crossref_primary_10_1007_s10072_023_07232_7 crossref_primary_10_1017_S1355617718000577 crossref_primary_10_1093_cercor_bhac491 crossref_primary_10_1126_scitranslmed_3004291 crossref_primary_10_1016_j_pnpbp_2017_08_004 crossref_primary_10_3389_fneur_2020_529930 crossref_primary_10_1093_brain_awy093 crossref_primary_10_1016_j_neurobiolaging_2014_05_027 crossref_primary_10_3390_ani14071082 crossref_primary_10_3389_fphar_2021_721216 crossref_primary_10_1016_j_bpsc_2020_12_007 crossref_primary_10_3389_fnagi_2019_00039 crossref_primary_10_1089_brain_2011_0019 crossref_primary_10_4103_jgmh_jgmh_21_21 crossref_primary_10_1016_j_dadm_2017_03_007 crossref_primary_10_1177_0271678X221082016 crossref_primary_10_1007_s40336_014_0094_7 crossref_primary_10_1371_journal_pone_0051833 crossref_primary_10_2337_db11_1669 crossref_primary_10_1016_j_jagp_2019_07_008 crossref_primary_10_1007_s11571_010_9126_9 crossref_primary_10_1038_s41467_017_02416_0 crossref_primary_10_1523_JNEUROSCI_2535_11_2011 crossref_primary_10_1016_j_nicl_2014_09_004 crossref_primary_10_1212_WNL_0b013e31820e7b74 crossref_primary_10_1371_journal_pone_0039731 crossref_primary_10_1002_cne_24929 crossref_primary_10_1016_j_bbr_2018_08_006 crossref_primary_10_1523_JNEUROSCI_6008_09_2010 crossref_primary_10_1093_brain_aws327 crossref_primary_10_1007_s13311_021_01026_5 crossref_primary_10_1088_1741_2552_ac542d crossref_primary_10_1371_journal_pone_0049787 crossref_primary_10_3389_fnagi_2021_597455 crossref_primary_10_1016_j_neuroimage_2011_08_105 crossref_primary_10_1016_j_bbr_2019_112048 crossref_primary_10_1007_s11682_016_9598_2 crossref_primary_10_1371_journal_pone_0063727 crossref_primary_10_1017_neu_2019_49 crossref_primary_10_1093_brain_awac498 crossref_primary_10_3389_fnagi_2021_631172 crossref_primary_10_3233_JAD_150254 crossref_primary_10_18632_oncotarget_11775 crossref_primary_10_1002_alz_14266 crossref_primary_10_1007_s40336_013_0027_x crossref_primary_10_3389_fpsyt_2021_626332 crossref_primary_10_1093_brain_awaa068 crossref_primary_10_1093_cercor_bhaf045 crossref_primary_10_3233_JAD_151137 crossref_primary_10_1093_cercor_bhs160 crossref_primary_10_3233_JAD_161062 crossref_primary_10_1007_s11682_012_9171_6 crossref_primary_10_31857_S0044467724050026 crossref_primary_10_1038_s41380_023_02215_8 crossref_primary_10_1016_j_neuron_2014_10_038 crossref_primary_10_1016_j_neuroimage_2018_10_015 crossref_primary_10_1073_pnas_1214551110 crossref_primary_10_1523_JNEUROSCI_5845_11_2012 crossref_primary_10_1007_s11682_017_9789_5 crossref_primary_10_1093_cercor_bhae088 crossref_primary_10_1016_j_dadm_2018_06_002 crossref_primary_10_1016_j_neuropsychologia_2011_06_006 crossref_primary_10_1007_s11682_019_00247_9 crossref_primary_10_3233_JAD_160086 crossref_primary_10_1007_s11065_014_9267_4 crossref_primary_10_1007_s11357_023_01036_5 crossref_primary_10_1007_s00115_011_3307_6 crossref_primary_10_1089_brain_2020_0899 crossref_primary_10_1016_j_pscychresns_2012_01_002 crossref_primary_10_1093_brain_awv326 crossref_primary_10_1111_nan_12672 crossref_primary_10_3233_JAD_179928 crossref_primary_10_3389_fneur_2021_645171 crossref_primary_10_1016_j_neuroimage_2016_03_042 crossref_primary_10_1093_braincomms_fcaf098 crossref_primary_10_1371_journal_pone_0055902 crossref_primary_10_1126_scitranslmed_3002804 crossref_primary_10_1007_s00429_024_02888_z crossref_primary_10_1523_JNEUROSCI_1230_11_2011 crossref_primary_10_1016_j_neuropsychologia_2015_02_024 crossref_primary_10_1038_s41598_021_93610_0 crossref_primary_10_1186_s13195_019_0573_1 crossref_primary_10_1148_radiol_13122503 crossref_primary_10_1007_s11682_017_9767_y crossref_primary_10_1007_s11682_016_9556_z crossref_primary_10_1212_WNL_0000000000008315 crossref_primary_10_1089_brain_2021_0013 crossref_primary_10_1016_j_neurobiolaging_2014_03_036 crossref_primary_10_1016_j_neurobiolaging_2017_01_022 crossref_primary_10_1016_j_neuropsychologia_2016_04_023 crossref_primary_10_1038_s41380_021_01421_6 crossref_primary_10_1098_rstb_2015_0429 crossref_primary_10_1007_s12021_013_9187_0 crossref_primary_10_1148_radiol_12110433 crossref_primary_10_1016_j_neuroscience_2015_01_035 crossref_primary_10_1038_s41598_017_15001_8 crossref_primary_10_3389_fnsys_2021_777706 crossref_primary_10_1523_JNEUROSCI_3987_10_2010 crossref_primary_10_1016_j_nbd_2020_105031 crossref_primary_10_1002_gps_2398 crossref_primary_10_1038_s44220_024_00259_5 crossref_primary_10_1111_cns_12260 crossref_primary_10_1089_brain_2013_0144 crossref_primary_10_1093_cercor_bhu259 crossref_primary_10_1523_JNEUROSCI_3067_17_2018 crossref_primary_10_1177_13872877241303849 crossref_primary_10_1017_S1355617715000995 crossref_primary_10_1523_JNEUROSCI_3263_16_2017 crossref_primary_10_1002_ima_22320 crossref_primary_10_1007_s00401_015_1527_8 crossref_primary_10_18632_aging_103676 crossref_primary_10_3389_fnagi_2023_1291881 crossref_primary_10_1212_WNL_0000000000000939 crossref_primary_10_1515_revneuro_2023_0098 crossref_primary_10_1212_WNL_0000000000004059 crossref_primary_10_1093_brain_awr044 crossref_primary_10_1097_WCO_0b013e32835a26b3 crossref_primary_10_1093_braincomms_fcab201 crossref_primary_10_1176_appi_ajp_2011_11081153 crossref_primary_10_1016_j_neurobiolaging_2017_09_027 crossref_primary_10_3389_fnhum_2016_00311 crossref_primary_10_1016_j_neurobiolaging_2010_05_003 crossref_primary_10_1097_WAD_0000000000000027 crossref_primary_10_31083_j_jin2106170 crossref_primary_10_1016_j_neurobiolaging_2015_05_004 crossref_primary_10_1007_s11682_018_9869_1 crossref_primary_10_1016_j_neurobiolaging_2013_10_081 crossref_primary_10_1016_j_neubiorev_2015_08_013 crossref_primary_10_1016_j_tics_2012_02_001 crossref_primary_10_1016_j_acra_2020_06_006 crossref_primary_10_1093_brain_awu103 crossref_primary_10_1212_WNL_0b013e3182918ca6 crossref_primary_10_1016_j_jalz_2019_03_006 crossref_primary_10_1016_j_neurobiolaging_2012_09_015 crossref_primary_10_1073_pnas_1525309113 crossref_primary_10_1016_j_neurobiolaging_2011_07_003 crossref_primary_10_3389_fphy_2019_00107 crossref_primary_10_1093_cercor_bhw332 crossref_primary_10_1093_cercor_bhu151 crossref_primary_10_3389_fpsyg_2015_00776 crossref_primary_10_1212_WNL_0b013e31820af94e crossref_primary_10_1007_s11571_020_09630_5 crossref_primary_10_3233_JAD_180966 crossref_primary_10_1088_1741_2560_13_4_046008 crossref_primary_10_1016_j_neuroimage_2013_06_042 |
Cites_doi | 10.1002/cne.10883 10.1196/annals.1440.011 10.1152/jn.00048.2006 10.1073/pnas.0604187103 10.1212/01.wnl.0000228230.26044.a4 10.1001/archneur.65.11.1467 10.1371/journal.pcbi.1000100 10.1212/WNL.59.7.1034 10.1126/science.1072994 10.1016/j.bbr.2008.08.012 10.1016/j.neuroimage.2005.06.058 10.1016/j.neuron.2009.07.003 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X 10.1073/pnas.98.2.676 10.1016/S0072-9752(07)01223-7 10.1073/pnas.0308627101 |
ContentType | Journal Article |
Copyright | 2010 Society of Biological Psychiatry Society of Biological Psychiatry 2015 INIST-CNRS Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2010 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: 2015 INIST-CNRS – notice: Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. – notice: Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.biopsych.2009.08.024 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 587 |
ExternalDocumentID | PMC2829379 19833321 22504753 10_1016_j_biopsych_2009_08_024 S0006322309010324 1_s2_0_S0006322309010324 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K24 MH079510 – fundername: NIMH NIH HHS grantid: K24MH079510 – fundername: NIA NIH HHS grantid: P01AG026275 – fundername: NINDS NIH HHS grantid: P50 NS006833 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NIA NIH HHS grantid: P01AG03991 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: P50AG05681 – fundername: NINDS NIH HHS grantid: P30 NS048056 – fundername: NINDS NIH HHS grantid: P30NS06833 |
GroupedDBID | --- --K --M -DZ .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABDPE ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HVGLF HZ~ H~9 IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SNS SPCBC SSH SSN SSZ T5K UAP UNMZH UPT UV1 WH7 WUQ XJT XOL Z5R ZCA ZGI ZKB ZXP ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG AADPK AAIAV ABLVK ABYKQ AJBFU EFLBG G8K LCYCR ZA5 AAYXX CITATION ~HD IQODW AGRNS CGR CUY CVF ECM EIF NPM 7X8 ACLOT 5PM |
ID | FETCH-LOGICAL-c610t-ffcae14eec6064e17486d9fd88ad2c9809da6646822cdbd7a9faf3d13f50310e3 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 1873-2402 |
IngestDate | Thu Aug 21 18:09:01 EDT 2025 Sun Sep 28 02:23:26 EDT 2025 Mon Jul 21 05:59:09 EDT 2025 Wed Apr 02 07:25:55 EDT 2025 Thu Sep 18 00:34:18 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 23 02:26:57 EST 2024 Sun Feb 23 10:19:27 EST 2025 Tue Aug 26 16:32:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fMRI resting state amyloid hippocampus precuneus PIB Alzheimer's disease Human Nervous system diseases Alzheimer disease Central nervous system Nuclear magnetic resonance imaging Encephalon Cerebral disorder Rest Central nervous system disease Medical imagery Degenerative disease Amyloid Elderly Hippocampus Functional imaging |
Language | English |
License | CC BY 4.0 Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c610t-ffcae14eec6064e17486d9fd88ad2c9809da6646822cdbd7a9faf3d13f50310e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2829379 |
PMID | 19833321 |
PQID | 733532835 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829379 proquest_miscellaneous_733532835 pubmed_primary_19833321 pascalfrancis_primary_22504753 crossref_primary_10_1016_j_biopsych_2009_08_024 crossref_citationtrail_10_1016_j_biopsych_2009_08_024 elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_08_024 elsevier_clinicalkeyesjournals_1_s2_0_S0006322309010324 elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_08_024 |
PublicationCentury | 2000 |
PublicationDate | 2010-03-15 |
PublicationDateYYYYMMDD | 2010-03-15 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Price, Morris (bib17) 1999; 45 Hardy, Selkoe (bib16) 2002; 297 Price, Morris (bib6) 1999; 45 Mintun, Larossa, Sheline, Dence, Lee, Mach (bib2) 2006; 67 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib1) 2001; 98 Van Essen (bib12) 2005; 28 Roe, Mintun, D'Angelo, Xiong, Grant, Morris (bib9) 2008; 65 Greicius, Srivastava, Reiss, Menon (bib3) 2004; 101 Sperling, LaViolette, O'Keefe, O'Brien, Rentz, Pihlajamaki (bib13) 2009; 63 Storandt, Grant, Miller, Morris (bib8) 2002; 59 . Fox, Corbetta, Snyder, Vincent, Raichle (bib11) 2006; 103 Morris J, Roe C, Xiong C, Fagan A, Goate A, Holtzman D, Mintun M. (in press): APOE predicts Aβ but not tau Alzheimer's pathology in cognitively normal aging. Supekar, Menon, Rubin, Musen, Greicius (bib4) 2008; 4 Vincent, Snyder, Fox, Shannon, Andrews, Raichle, Buckner (bib10) 2006; 96 Zhang, Wang, Xing, Liu, Ma, Yang (bib5) 2009; 197 Selkoe (bib7) 2008; 89 Buckner, Andrews-Hanna, Schacter (bib15) 2008; 1124 Kobayashi, Amaral (bib14) 2003; 466 10.1016/j.biopsych.2009.08.024_bib18 Fox (10.1016/j.biopsych.2009.08.024_bib11) 2006; 103 Buckner (10.1016/j.biopsych.2009.08.024_bib15) 2008; 1124 Vincent (10.1016/j.biopsych.2009.08.024_bib10) 2006; 96 Price (10.1016/j.biopsych.2009.08.024_bib17) 1999; 45 Greicius (10.1016/j.biopsych.2009.08.024_bib3) 2004; 101 Storandt (10.1016/j.biopsych.2009.08.024_bib8) 2002; 59 Price (10.1016/j.biopsych.2009.08.024_bib6) 1999; 45 Roe (10.1016/j.biopsych.2009.08.024_bib9) 2008; 65 Van Essen (10.1016/j.biopsych.2009.08.024_bib12) 2005; 28 Raichle (10.1016/j.biopsych.2009.08.024_bib1) 2001; 98 Supekar (10.1016/j.biopsych.2009.08.024_bib4) 2008; 4 Hardy (10.1016/j.biopsych.2009.08.024_bib16) 2002; 297 Kobayashi (10.1016/j.biopsych.2009.08.024_bib14) 2003; 466 Zhang (10.1016/j.biopsych.2009.08.024_bib5) 2009; 197 Mintun (10.1016/j.biopsych.2009.08.024_bib2) 2006; 67 Selkoe (10.1016/j.biopsych.2009.08.024_bib7) 2008; 89 Sperling (10.1016/j.biopsych.2009.08.024_bib13) 2009; 63 |
References_xml | – volume: 28 start-page: 635 year: 2005 end-page: 662 ident: bib12 article-title: A Population-Average, Landmark- and Surface-based (PALS) atlas of the human cerebral cortex publication-title: Neuroimage – volume: 59 start-page: 1034 year: 2002 end-page: 1041 ident: bib8 article-title: Rates of progression in mild cognitive impairment and early Alzheimer's disease publication-title: Neurology – volume: 45 start-page: 358 year: 1999 end-page: 368 ident: bib17 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann Neurol – volume: 63 start-page: 1 year: 2009 end-page: 11 ident: bib13 article-title: Amyloid deposition is associated with impaired default network function in older persons without dementia publication-title: Neuron – volume: 4 year: 2008 ident: bib4 article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease publication-title: PLoS Comput Biol – volume: 466 start-page: 48 year: 2003 end-page: 79 ident: bib14 article-title: Macaque monkey retrosplenial cortex publication-title: J Comp Neurol – volume: 197 start-page: 103 year: 2009 end-page: 108 ident: bib5 article-title: Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease publication-title: Behav Brain Res – volume: 96 start-page: 3517 year: 2006 end-page: 3531 ident: bib10 article-title: Coherent spontaneous activity identifies a hippocampal-parietal memory network publication-title: J Neurophysiol – volume: 103 start-page: 10046 year: 2006 end-page: 10051 ident: bib11 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci U S A – volume: 45 start-page: 358 year: 1999 end-page: 368 ident: bib6 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann Neurol – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib1 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci U S A – reference: Morris J, Roe C, Xiong C, Fagan A, Goate A, Holtzman D, Mintun M. (in press): APOE predicts Aβ but not tau Alzheimer's pathology in cognitively normal aging. – volume: 1124 start-page: 1 year: 2008 end-page: 38 ident: bib15 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: bib3 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc Natl Acad Sci U S A – volume: 89 start-page: 245 year: 2008 end-page: 260 ident: bib7 article-title: Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer's disease publication-title: Handb Clin Neurol – volume: 65 start-page: 1467 year: 2008 end-page: 1471 ident: bib9 article-title: Alzheimer disease and cognitive reserve: Variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake publication-title: Arch Neurol – volume: 67 start-page: 446 year: 2006 end-page: 452 ident: bib2 article-title: [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease publication-title: Neurology – reference: . – volume: 297 start-page: 353 year: 2002 end-page: 356 ident: bib16 article-title: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics publication-title: Science – volume: 466 start-page: 48 year: 2003 ident: 10.1016/j.biopsych.2009.08.024_bib14 article-title: Macaque monkey retrosplenial cortex publication-title: J Comp Neurol doi: 10.1002/cne.10883 – volume: 1124 start-page: 1 year: 2008 ident: 10.1016/j.biopsych.2009.08.024_bib15 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.011 – volume: 96 start-page: 3517 year: 2006 ident: 10.1016/j.biopsych.2009.08.024_bib10 article-title: Coherent spontaneous activity identifies a hippocampal-parietal memory network publication-title: J Neurophysiol doi: 10.1152/jn.00048.2006 – volume: 103 start-page: 10046 year: 2006 ident: 10.1016/j.biopsych.2009.08.024_bib11 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0604187103 – volume: 67 start-page: 446 year: 2006 ident: 10.1016/j.biopsych.2009.08.024_bib2 article-title: [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000228230.26044.a4 – volume: 65 start-page: 1467 year: 2008 ident: 10.1016/j.biopsych.2009.08.024_bib9 article-title: Alzheimer disease and cognitive reserve: Variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake publication-title: Arch Neurol doi: 10.1001/archneur.65.11.1467 – volume: 4 year: 2008 ident: 10.1016/j.biopsych.2009.08.024_bib4 article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000100 – volume: 59 start-page: 1034 year: 2002 ident: 10.1016/j.biopsych.2009.08.024_bib8 article-title: Rates of progression in mild cognitive impairment and early Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.59.7.1034 – volume: 297 start-page: 353 year: 2002 ident: 10.1016/j.biopsych.2009.08.024_bib16 article-title: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics publication-title: Science doi: 10.1126/science.1072994 – volume: 197 start-page: 103 year: 2009 ident: 10.1016/j.biopsych.2009.08.024_bib5 article-title: Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.08.012 – volume: 28 start-page: 635 year: 2005 ident: 10.1016/j.biopsych.2009.08.024_bib12 article-title: A Population-Average, Landmark- and Surface-based (PALS) atlas of the human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 63 start-page: 1 year: 2009 ident: 10.1016/j.biopsych.2009.08.024_bib13 article-title: Amyloid deposition is associated with impaired default network function in older persons without dementia publication-title: Neuron doi: 10.1016/j.neuron.2009.07.003 – volume: 45 start-page: 358 year: 1999 ident: 10.1016/j.biopsych.2009.08.024_bib17 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann Neurol doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X – volume: 98 start-page: 676 year: 2001 ident: 10.1016/j.biopsych.2009.08.024_bib1 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.98.2.676 – ident: 10.1016/j.biopsych.2009.08.024_bib18 – volume: 89 start-page: 245 year: 2008 ident: 10.1016/j.biopsych.2009.08.024_bib7 article-title: Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer's disease publication-title: Handb Clin Neurol doi: 10.1016/S0072-9752(07)01223-7 – volume: 101 start-page: 4637 year: 2004 ident: 10.1016/j.biopsych.2009.08.024_bib3 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308627101 – volume: 45 start-page: 358 year: 1999 ident: 10.1016/j.biopsych.2009.08.024_bib6 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann Neurol doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X |
SSID | ssj0007221 |
Score | 2.5357523 |
Snippet | Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ)... BackgroundImportant functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Aβ)... Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta)... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 584 |
SubjectTerms | Adult and adolescent clinical studies Aged Aged, 80 and over Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease amyloid Amyloid beta-Peptides - metabolism Aniline Compounds Biological and medical sciences Brain - blood supply Brain - diagnostic imaging Brain - pathology Brain Mapping - methods Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female fMRI Geriatric Assessment hippocampus Humans Image Processing, Computer-Assisted - methods Longitudinal Studies Magnetic Resonance Imaging - methods Male Medical sciences Nerve Net - blood supply Nerve Net - diagnostic imaging Nerve Net - pathology Neurology Organic mental disorders. Neuropsychology Oxygen - blood PIB Positron-Emission Tomography - methods precuneus Psychiatric Status Rating Scales Psychiatric/Mental Health Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Rest - physiology resting state Statistics as Topic Thiazoles |
Title | Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309010324 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309010324 https://dx.doi.org/10.1016/j.biopsych.2009.08.024 https://www.ncbi.nlm.nih.gov/pubmed/19833321 https://www.proquest.com/docview/733532835 https://pubmed.ncbi.nlm.nih.gov/PMC2829379 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aOnGREIICI1wqP_CatrHjxH6suk0FtAohJu3Ncn2BTCGtlvahL_vt2I0TVi4CwWOaHkV2Ts5F_s73AbxRY7lIjU1ig7mJU8ZtLDNL44wucswM1Zz5aeTzeTa7SN9d0ssDmLazMB5WGWJ_E9N30Tr8Mgq7OVoVhZ_xdenVZbexRxi4uuAQjrDL9qwHR5O372fzLiDnGAfhvCz2BrcGha-Gi2K5wxUH6ko2HOP0dznqwUrWbudsI3nxq5r0R2jlrVx19ggehiITTZp1PIYDU_XhTiM7ue3DvWmr8taHu-fhcP0JmMlX170XGn0opX8eOinq681qjT56Jo7qM9oVpujEWLkp18irqKF5gyJHO7yMapQoUFG564BKKrdo7sviEp16PfBy-xQuzk4_TWdxUGGIlSut1rG1SpokNUa5Xic1roNhmeZWMyY1VpyNuZZZlmau0lB6oXPJrbREJ8RSTztqyDPoVcvKPAcklVUmIYxKI1OqlZRUM6ly1yhbhiWPgLb7LlSgKPdKGaVosWhXon1fXj-TCy-hidMIRp3dqiHp-KNF3r5W0Y6guqApXB75N0tTh2-_FomosRiLn_wzAt5Z7rn4Xz11sOd73TKxp6BzLWcEqHVG4TzIn_rIyiw3tcgJocSz6kVw3Pjm9z3ijBCCE7emPa_t_uC5x_fvVMWXHQe5P4AnOX_xH2t6CfcbKAaJE_oKeuvrjXntKrz1YgCHw5tkEL7jb71YVOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4anWBICEGBrVyGH3jNmthxYj9W3aaOrRVCm7Q3y_VlZApptbQP_ffYjVNWLgLBY5oeRXZOzkX-zvcBfFCxnKbGJpHB3EQp4zaSmaVRRqc5ZoZqzvw08niSja7Sj9f0egeG7SyMh1WG2N_E9HW0Dr_0w27250XhZ3xdenXZLfYIA1cXPIDd1Itad2B3cHY-mmwCco5xEM7LIm9wb1D49mhazNa44kBdyY5inP4uRz2Zy9rtnG0kL35Vk_4IrbyXq06fwdNQZKJBs47nsGOqLjxsZCdXXdgbtipvXXg0DofrL8AMvrruvdDoUyn989BxUd8t5wv02TNxVDdoXZiiY2Plslwgr6KGJg2KHK3xMqpRokBF5a4DKqlcoYkvi0t04vXAy9VLuDo9uRyOoqDCEClXWi0ia5U0SWqMcr1OalwHwzLNrWZMaqw4i7mWWZZmrtJQeqpzya20RCfEUk87asgr6FSzyhwAksoqkxBGpZEp1UpKqplUuWuULcOS94C2-y5UoCj3ShmlaLFot6J9X14_kwsvoYnTHvQ3dvOGpOOPFnn7WkU7guqCpnB55N8sTR2-_VokosYiFj_5Zw_4xnLLxf_qqYdbvrdZJvYUdK7l7AFqnVE4D_KnPrIys2UtckIo8ax6PdhvfPP7HnFGCMGJW9OW127-4LnHt-9UxZc1B7k_gCc5f_0fa3oPe6PL8YW4OJucv4HHDSyDRAl9C53F3dK8c9XeYnoYvuZvvOJWzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyloid+plaques+disrupt+resting+state+default+mode+network+connectivity+in+cognitively+normal+elderly&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Sheline%2C+Yvette+I&rft.au=Raichle%2C+Marcus+E&rft.au=Snyder%2C+Abraham+Z&rft.au=Morris%2C+John+C&rft.date=2010-03-15&rft.eissn=1873-2402&rft.volume=67&rft.issue=6&rft.spage=584&rft_id=info:doi/10.1016%2Fj.biopsych.2009.08.024&rft_id=info%3Apmid%2F19833321&rft.externalDocID=19833321 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322310X00038%2Fcov150h.gif |