Retromer disruption promotes amyloidogenic APP processing

Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated tha...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 43; no. 2; pp. 338 - 345
Main Authors Sullivan, Christopher P., Jay, Anthony G., Stack, Edward C., Pakaluk, Maria, Wadlinger, Erin, Fine, Richard E., Wells, John M., Morin, Peter J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0969-9961
1095-953X
1095-953X
DOI10.1016/j.nbd.2011.04.002

Cover

Abstract Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP 695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives. ► Vps35 was knocked down in human cell cultures to disrupt retromer trafficking. ► No changes in APP levels or cellular localization were observed. ► Secretion of amyloid beta was reduced. ► Exosomal secretion of APP CTF was enhanced.
AbstractList Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP 695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives. ► Vps35 was knocked down in human cell cultures to disrupt retromer trafficking. ► No changes in APP levels or cellular localization were observed. ► Secretion of amyloid beta was reduced. ► Exosomal secretion of APP CTF was enhanced.
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
Abstract Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695 , due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal A beta is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted A beta 42:A beta 40 in HEK-293 cells over-expressing APP sub(695, due primarily to a decrease in A beta 40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain A beta . We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives. Vps35 was knocked down in human cell cultures to disrupt retromer trafficking. No changes in APP levels or cellular localization were observed. Secretion of amyloid beta was reduced. Exosomal secretion of APP CTF was enhanced.)
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. We found that knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP 695 , due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. In exosomal vesicles secreted from HEK-293 cells, we detected holo-APP, Presenilin and APP C-terminal fragments. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
Author Pakaluk, Maria
Sullivan, Christopher P.
Jay, Anthony G.
Stack, Edward C.
Wadlinger, Erin
Wells, John M.
Morin, Peter J.
Fine, Richard E.
AuthorAffiliation 2 Departments of Neurology and Biochemistry; Boston University School of Medicine, Boston, MA
1 Geriatric Research, Education, and Clinical Center: Edith Nourse Rogers Memorial Veteran’s Administration Hospital, Bedford, MA
AuthorAffiliation_xml – name: 2 Departments of Neurology and Biochemistry; Boston University School of Medicine, Boston, MA
– name: 1 Geriatric Research, Education, and Clinical Center: Edith Nourse Rogers Memorial Veteran’s Administration Hospital, Bedford, MA
Author_xml – sequence: 1
  givenname: Christopher P.
  surname: Sullivan
  fullname: Sullivan, Christopher P.
  email: chris.sullivan@va.gov
– sequence: 2
  givenname: Anthony G.
  surname: Jay
  fullname: Jay, Anthony G.
– sequence: 3
  givenname: Edward C.
  surname: Stack
  fullname: Stack, Edward C.
– sequence: 4
  givenname: Maria
  surname: Pakaluk
  fullname: Pakaluk, Maria
– sequence: 5
  givenname: Erin
  surname: Wadlinger
  fullname: Wadlinger, Erin
– sequence: 6
  givenname: Richard E.
  surname: Fine
  fullname: Fine, Richard E.
– sequence: 7
  givenname: John M.
  surname: Wells
  fullname: Wells, John M.
– sequence: 8
  givenname: Peter J.
  surname: Morin
  fullname: Morin, Peter J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21515373$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7If-AG9k77zaNSfJZCYIhVL8KBQs2gvvQj7OrFlnkzWZLey_N-O2YgtWrwaS933mkPMck4OYIhLyEugCKMg3q0W0fsEowIKKBaXsCTkCqpq5avjXA3JElVRzpSQckuNSVrQGG9U-I4cMGmh4y4-I-oxjTmvMMx9K3m7GkOJsU0_SiGVm1rshBZ-WGIObnV1dTVcOSwlx-Zw87c1Q8MXt94Rcv393ff5xfvnpw8X52eXcSaDj3LaeM4PWy6Z1ILhkwBgob21D0fvOAZrOml4aKRrHmRWyBkRLeyssAj8hF3usT2alNzmsTd7pZIL-dZDyUps8Bjeg7jtjvTIdZ50UPVIFvEJ6z1jT0ranlXW6Z222do3eYRyzGe5B79_E8E0v043mAAIUq4DXt4CcfmyxjHodisNhMBHTtuiurbFONPI_kkxwAR2vyVd_DvV7mrsd1UC7D7icSsnYaxdGMy2qzhgGDVRPNuiVrjboyQZNha421CY8aN7BH-u83Xew7vQmYNbFBYwOfcjoxvrq4dH26YO2G0J1xwzfcYdllbY5Vlk06MI01V8mQydBASY5VVsB6u-Af_z8J08N9No
CitedBy_id crossref_primary_10_1111_tra_12937
crossref_primary_10_1016_j_jgg_2016_02_006
crossref_primary_10_1007_s00018_012_1201_4
crossref_primary_10_1126_scisignal_aat9900
crossref_primary_10_1016_j_neurobiolaging_2012_04_020
crossref_primary_10_1186_s40035_015_0041_1
crossref_primary_10_3233_JAD_200598
crossref_primary_10_3390_ijms18081601
crossref_primary_10_1002_mnfr_201800474
crossref_primary_10_1007_s12035_013_8544_1
crossref_primary_10_2200_S01171ED1V01Y202202BME062
crossref_primary_10_1007_s12035_014_9054_5
crossref_primary_10_1016_j_clinthera_2014_05_005
crossref_primary_10_1016_j_neuint_2016_04_011
crossref_primary_10_1111_j_1600_0854_2012_01332_x
crossref_primary_10_1016_j_ejcb_2015_07_002
crossref_primary_10_1016_j_pneurobio_2013_06_002
crossref_primary_10_1007_s00438_014_0939_9
crossref_primary_10_1080_10985549_2023_2222053
crossref_primary_10_4236_aad_2013_24017
crossref_primary_10_1007_s00018_017_2664_0
crossref_primary_10_1007_s10072_015_2399_3
crossref_primary_10_1038_cddis_2016_336
crossref_primary_10_1038_mp_2015_100
crossref_primary_10_1016_j_nbd_2013_12_017
crossref_primary_10_1038_s41467_022_32683_5
crossref_primary_10_1186_s13024_019_0350_4
crossref_primary_10_1523_JNEUROSCI_3359_12_2012
crossref_primary_10_1042_BST20150179
crossref_primary_10_1111_tra_12088
crossref_primary_10_1038_ncb2374
crossref_primary_10_1371_journal_pone_0098619
crossref_primary_10_3389_fnagi_2016_00042
crossref_primary_10_2174_0118715273321002240919102841
crossref_primary_10_1038_s41380_018_0221_3
crossref_primary_10_1007_s13760_016_0679_1
crossref_primary_10_1242_jcs_263538
crossref_primary_10_1042_BCJ20160147
crossref_primary_10_1091_mbc_E17_05_0270
crossref_primary_10_1177_1535370220953065
crossref_primary_10_1186_1750_1326_9_23
crossref_primary_10_3389_fneur_2019_01272
crossref_primary_10_1073_pnas_1208635109
crossref_primary_10_3233_JAD_231318
crossref_primary_10_1016_j_neurobiolaging_2017_08_024
crossref_primary_10_3389_fpls_2022_826007
crossref_primary_10_1007_s12035_015_9366_0
crossref_primary_10_7554_eLife_20991
crossref_primary_10_1016_j_tins_2017_08_003
crossref_primary_10_1016_j_mcn_2018_09_003
crossref_primary_10_1002_jcp_24082
crossref_primary_10_1007_s11434_013_5673_x
crossref_primary_10_1016_j_nbd_2022_105651
crossref_primary_10_1016_j_prp_2024_155451
crossref_primary_10_1038_s41418_020_00727_2
crossref_primary_10_1016_j_pneurobio_2011_11_003
crossref_primary_10_1016_j_semcdb_2014_04_024
crossref_primary_10_1016_j_nbd_2012_03_030
crossref_primary_10_3389_fonc_2020_614230
crossref_primary_10_1016_j_arr_2019_101006
crossref_primary_10_1038_s41467_023_38719_8
crossref_primary_10_1186_1750_1326_9_31
crossref_primary_10_1007_s11357_021_00430_1
crossref_primary_10_1083_jcb_201604061
crossref_primary_10_14336_AD_2021_0516
crossref_primary_10_1038_s41467_020_17524_7
crossref_primary_10_1016_j_nbd_2023_106213
crossref_primary_10_1083_jcb_202012034
crossref_primary_10_4161_cib_21433
crossref_primary_10_1093_hmg_ddx321
crossref_primary_10_1016_j_nbd_2012_03_006
crossref_primary_10_1002_jnr_24526
crossref_primary_10_1186_s13024_017_0170_3
crossref_primary_10_1016_j_neuron_2017_03_020
crossref_primary_10_1038_s41467_020_17596_5
crossref_primary_10_1242_dmm_048929
Cites_doi 10.1073/pnas.0908953107
10.1016/S0014-5793(01)03299-9
10.1073/pnas.0503689102
10.1074/jbc.M100857200
10.1073/pnas.0911281106
10.1160/TH07-11-0691
10.1096/fj.09-146357
10.1016/j.neuron.2006.09.001
10.1016/j.devcel.2007.12.003
10.1073/pnas.0802545105
10.1016/j.nbd.2006.08.017
10.1083/jcb.200312055
10.1002/ana.20667
10.1016/S0896-6273(00)80230-5
10.1016/j.bbrc.2007.12.015
10.1073/pnas.0603838103
10.1002/ana.22308
10.1074/jbc.M609475200
10.1096/fj.07-9357com
10.1007/978-1-60327-310-7_16
10.1523/JNEUROSCI.4946-05.2006
10.1038/sj.embor.7400896
10.1016/j.cell.2009.07.051
10.1074/jbc.M411296200
10.1038/nature06216
10.4049/jimmunol.166.12.7309
10.1002/ana.410430519
10.1016/j.ceb.2008.03.009
10.1128/MCB.00815-07
10.1016/S0002-9440(10)64463-X
10.1007/s00249-007-0246-z
10.1038/ng1943
10.1186/1750-1326-5-40
ContentType Journal Article
Copyright 2011
Published by Elsevier Inc.
Copyright_xml – notice: 2011
– notice: Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOA
DOI 10.1016/j.nbd.2011.04.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList

MEDLINE

Neurosciences Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 345
ExternalDocumentID oai_doaj_org_article_f8abd9a832864fe0913fb4fd225707f0
PMC3114192
21515373
10_1016_j_nbd_2011_04_002
S0969996111001197
1_s2_0_S0969996111001197
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA BU Alzheimer's Disease Center Pilot Project
– fundername: VISN1 VA Career Development Award
– fundername: VA Merit Award
– fundername: NIA NIH HHS
  grantid: P30 AG013846
– fundername: National Institute on Aging : NIA
  grantid: P30 AG013846-11 || AG
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
PKN
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
7TK
5PM
ID FETCH-LOGICAL-c610t-b7d32aebd657c1436212219dbb50edd8c1ea8baf6a645c32b46122470fb4be13
IEDL.DBID AIKHN
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:29:02 EDT 2025
Thu Aug 21 18:27:56 EDT 2025
Sat Sep 27 18:14:22 EDT 2025
Sun Sep 28 06:22:30 EDT 2025
Mon Jul 21 06:04:07 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Tue Jul 01 03:07:18 EDT 2025
Fri Feb 23 02:29:30 EST 2024
Sun Feb 23 10:19:07 EST 2025
Tue Aug 26 16:32:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords APP

Vps35
Exosome
Endosome
Retromer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-b7d32aebd657c1436212219dbb50edd8c1ea8baf6a645c32b46122470fb4be13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doaj.org/article/f8abd9a832864fe0913fb4fd225707f0
PMID 21515373
PQID 872434183
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f8abd9a832864fe0913fb4fd225707f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3114192
proquest_miscellaneous_874198456
proquest_miscellaneous_872434183
pubmed_primary_21515373
crossref_citationtrail_10_1016_j_nbd_2011_04_002
crossref_primary_10_1016_j_nbd_2011_04_002
elsevier_sciencedirect_doi_10_1016_j_nbd_2011_04_002
elsevier_clinicalkeyesjournals_1_s2_0_S0969996111001197
elsevier_clinicalkey_doi_10_1016_j_nbd_2011_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Borchelt (bb0030) 1996; 17
Vella (bb0160) 2008; 37
Wolfe (bb0180) 2007; 8
He (bb0045) 2005; 280
Jacobsen (bb0060) 2001; 276
Rogaeva (bb0115) 2007; 39
Thery (bb0150) 2001; 166
Hu (bb0055) 2009; 106
Garcia-Alloza (bb0040) 2006; 24
Nielsen (bb0090) 2007; 27
Sullivan (bb0140) 2009
Williams (bb0175) 2003; 9
Reitz (bb0110) 2011; 69
Andersen (bb0010) 2005; 102
Small, Gandy (bb0125) 2006; 52
Korkut (bb0075) 2009; 139
Okada (bb0100) 2010; 24
Small (bb0130) 2005; 58
Vingtdeux (bb0170) 2007; 282
Muhammad (bb0085) 2008; 105
Sharples (bb0120) 2008; 22
Troncoso (bb0155) 1998; 43
Stahl, Barbieri (bb0135) 2002
Bonifacino, Hurley (bb0025) 2008; 20
Jacobsen (bb0065) 2002; 511
Jiang (bb0070) 2009; 107
Rajendran (bb0105) 2006; 103
Hierro (bb0050) 2007; 449
Arighi (bb0015) 2004; 165
Offe (bb0095) 2006; 26
Vieira (bb0165) 2010; 5
Mathias (bb0080) 2009; 528
Takahashi (bb0145) 2002; 161
Aharon (bb0005) 2008; 100
Belenkaya (bb0020) 2008; 14
Canuel (bb0035) 2008; 366
Hierro (10.1016/j.nbd.2011.04.002_bb0050) 2007; 449
Okada (10.1016/j.nbd.2011.04.002_bb0100) 2010; 24
Borchelt (10.1016/j.nbd.2011.04.002_bb0030) 1996; 17
Vingtdeux (10.1016/j.nbd.2011.04.002_bb0170) 2007; 282
Andersen (10.1016/j.nbd.2011.04.002_bb0010) 2005; 102
Nielsen (10.1016/j.nbd.2011.04.002_bb0090) 2007; 27
Rajendran (10.1016/j.nbd.2011.04.002_bb0105) 2006; 103
Garcia-Alloza (10.1016/j.nbd.2011.04.002_bb0040) 2006; 24
Wolfe (10.1016/j.nbd.2011.04.002_bb0180) 2007; 8
Jacobsen (10.1016/j.nbd.2011.04.002_bb0060) 2001; 276
Vella (10.1016/j.nbd.2011.04.002_bb0160) 2008; 37
Hu (10.1016/j.nbd.2011.04.002_bb0055) 2009; 106
Jacobsen (10.1016/j.nbd.2011.04.002_bb0065) 2002; 511
Williams (10.1016/j.nbd.2011.04.002_bb0175) 2003; 9
Bonifacino (10.1016/j.nbd.2011.04.002_bb0025) 2008; 20
Mathias (10.1016/j.nbd.2011.04.002_bb0080) 2009; 528
Rogaeva (10.1016/j.nbd.2011.04.002_bb0115) 2007; 39
Troncoso (10.1016/j.nbd.2011.04.002_bb0155) 1998; 43
He (10.1016/j.nbd.2011.04.002_bb0045) 2005; 280
Jiang (10.1016/j.nbd.2011.04.002_bb0070) 2009; 107
Sullivan (10.1016/j.nbd.2011.04.002_bb0140) 2009
Stahl (10.1016/j.nbd.2011.04.002_bb0135) 2002
Vieira (10.1016/j.nbd.2011.04.002_bb0165) 2010; 5
Reitz (10.1016/j.nbd.2011.04.002_bb0110) 2011; 69
Small (10.1016/j.nbd.2011.04.002_bb0130) 2005; 58
Sharples (10.1016/j.nbd.2011.04.002_bb0120) 2008; 22
Arighi (10.1016/j.nbd.2011.04.002_bb0015) 2004; 165
Muhammad (10.1016/j.nbd.2011.04.002_bb0085) 2008; 105
Thery (10.1016/j.nbd.2011.04.002_bb0150) 2001; 166
Small (10.1016/j.nbd.2011.04.002_bb0125) 2006; 52
Takahashi (10.1016/j.nbd.2011.04.002_bb0145) 2002; 161
Offe (10.1016/j.nbd.2011.04.002_bb0095) 2006; 26
Korkut (10.1016/j.nbd.2011.04.002_bb0075) 2009; 139
Belenkaya (10.1016/j.nbd.2011.04.002_bb0020) 2008; 14
Canuel (10.1016/j.nbd.2011.04.002_bb0035) 2008; 366
Aharon (10.1016/j.nbd.2011.04.002_bb0005) 2008; 100
References_xml – volume: 280
  start-page: 11696
  year: 2005
  end-page: 11703
  ident: bb0045
  article-title: GGA proteins mediate the recycling pathway of memapsin 2 (BACE)
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 20324
  year: 2009
  end-page: 20329
  ident: bb0055
  article-title: Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 1005
  year: 1996
  end-page: 1013
  ident: bb0030
  article-title: Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo
  publication-title: Neuron
– volume: 366
  start-page: 724
  year: 2008
  end-page: 730
  ident: bb0035
  article-title: AP-1 and retromer play opposite roles in the trafficking of sortilin between the Golgi apparatus and the lysosomes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 39
  start-page: 168
  year: 2007
  end-page: 177
  ident: bb0115
  article-title: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease
  publication-title: Nat. Genet.
– volume: 58
  start-page: 909
  year: 2005
  end-page: 919
  ident: bb0130
  article-title: Model-guided microarray implicates the retromer complex in Alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 102
  start-page: 13461
  year: 2005
  end-page: 13466
  ident: bb0010
  article-title: Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 136
  year: 2007
  end-page: 140
  ident: bb0180
  article-title: When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease
  publication-title: EMBO Rep.
– volume: 166
  start-page: 7309
  year: 2001
  end-page: 7318
  ident: bb0150
  article-title: Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles
  publication-title: J. Immunol.
– volume: 9
  start-page: 931
  year: 2003
  end-page: 946
  ident: bb0175
  article-title: Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference
  publication-title: Clin. Cancer Res.
– volume: 24
  start-page: 516
  year: 2006
  end-page: 524
  ident: bb0040
  article-title: Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease
  publication-title: Neurobiol. Dis.
– volume: 139
  start-page: 393
  year: 2009
  end-page: 404
  ident: bb0075
  article-title: Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless
  publication-title: Cell
– volume: 27
  start-page: 6842
  year: 2007
  end-page: 6851
  ident: bb0090
  article-title: Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA
  publication-title: Mol. Cell. Biol.
– volume: 24
  start-page: 2783
  year: 2010
  end-page: 2794
  ident: bb0100
  article-title: Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing
  publication-title: FASEB J.
– volume: 103
  start-page: 11172
  year: 2006
  end-page: 11177
  ident: bb0105
  article-title: Alzheimer's disease beta-amyloid peptides are released in association with exosomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 282
  start-page: 18197
  year: 2007
  end-page: 18205
  ident: bb0170
  article-title: Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 120
  year: 2008
  end-page: 131
  ident: bb0020
  article-title: The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network
  publication-title: Dev. Cell
– volume: 22
  start-page: 1469
  year: 2008
  end-page: 1478
  ident: bb0120
  article-title: Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes
  publication-title: FASEB J.
– start-page: pe32
  year: 2002
  ident: bb0135
  article-title: Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic
  publication-title: Sci. STKE
– volume: 107
  start-page: 1630
  year: 2009
  end-page: 1635
  ident: bb0070
  article-title: Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 673
  year: 1998
  end-page: 676
  ident: bb0155
  article-title: Neuropathology of preclinical and clinical late-onset Alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 26
  start-page: 1596
  year: 2006
  end-page: 1603
  ident: bb0095
  article-title: The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments
  publication-title: J. Neurosci.
– volume: 52
  start-page: 15
  year: 2006
  end-page: 31
  ident: bb0125
  article-title: Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis
  publication-title: Neuron
– volume: 528
  start-page: 227
  year: 2009
  end-page: 242
  ident: bb0080
  article-title: Isolation of extracellular membranous vesicles for proteomic analysis
  publication-title: Methods Mol. Biol.
– volume: 105
  start-page: 7327
  year: 2008
  end-page: 7332
  ident: bb0085
  article-title: Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 1869
  year: 2002
  end-page: 1879
  ident: bb0145
  article-title: Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology
  publication-title: Am. J. Pathol.
– volume: 100
  start-page: 878
  year: 2008
  end-page: 885
  ident: bb0005
  article-title: Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells
  publication-title: Thromb. Haemost.
– volume: 20
  start-page: 427
  year: 2008
  end-page: 436
  ident: bb0025
  article-title: Retromer
  publication-title: Curr. Opin. Cell Biol.
– volume: 5
  start-page: 40
  year: 2010
  ident: bb0165
  article-title: Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated
  publication-title: Mol. Neurodegener.
– volume: 276
  start-page: 22788
  year: 2001
  end-page: 22796
  ident: bb0060
  article-title: Activation and functional characterization of the mosaic receptor SorLA/LR11
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 323
  year: 2008
  end-page: 332
  ident: bb0160
  article-title: The role of exosomes in the processing of proteins associated with neurodegenerative diseases
  publication-title: Eur. Biophys. J.
– volume: 511
  start-page: 155
  year: 2002
  end-page: 158
  ident: bb0065
  article-title: The sorLA cytoplasmic domain interacts with GGA1 and -
  publication-title: FEBS Lett.
– volume: 69
  start-page: 47
  year: 2011
  end-page: 64
  ident: bb0110
  article-title: SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk
  publication-title: Ann. Neurol.
– volume: 165
  start-page: 123
  year: 2004
  end-page: 133
  ident: bb0015
  article-title: Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor
  publication-title: J. Cell Biol.
– volume: 449
  start-page: 1063
  year: 2007
  end-page: 1067
  ident: bb0050
  article-title: Functional architecture of the retromer cargo-recognition complex
  publication-title: Nature
– year: 2009
  ident: bb0140
  article-title: Secretory phospholipase A2, group IIA is a novel serum amyloid a target gene; Activation of smooth muscle cell expression by an interleukin-1 receptor-independent mechanism
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 1630
  year: 2009
  ident: 10.1016/j.nbd.2011.04.002_bb0070
  article-title: Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908953107
– volume: 511
  start-page: 155
  year: 2002
  ident: 10.1016/j.nbd.2011.04.002_bb0065
  article-title: The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)03299-9
– start-page: pe32
  year: 2002
  ident: 10.1016/j.nbd.2011.04.002_bb0135
  article-title: Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic
  publication-title: Sci. STKE
– volume: 102
  start-page: 13461
  year: 2005
  ident: 10.1016/j.nbd.2011.04.002_bb0010
  article-title: Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503689102
– volume: 276
  start-page: 22788
  year: 2001
  ident: 10.1016/j.nbd.2011.04.002_bb0060
  article-title: Activation and functional characterization of the mosaic receptor SorLA/LR11
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100857200
– volume: 106
  start-page: 20324
  year: 2009
  ident: 10.1016/j.nbd.2011.04.002_bb0055
  article-title: Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911281106
– volume: 100
  start-page: 878
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0005
  article-title: Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH07-11-0691
– volume: 24
  start-page: 2783
  year: 2010
  ident: 10.1016/j.nbd.2011.04.002_bb0100
  article-title: Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing
  publication-title: FASEB J.
  doi: 10.1096/fj.09-146357
– volume: 52
  start-page: 15
  year: 2006
  ident: 10.1016/j.nbd.2011.04.002_bb0125
  article-title: Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.001
– volume: 14
  start-page: 120
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0020
  article-title: The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.12.003
– volume: 105
  start-page: 7327
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0085
  article-title: Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802545105
– year: 2009
  ident: 10.1016/j.nbd.2011.04.002_bb0140
  article-title: Secretory phospholipase A2, group IIA is a novel serum amyloid a target gene; Activation of smooth muscle cell expression by an interleukin-1 receptor-independent mechanism
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 516
  year: 2006
  ident: 10.1016/j.nbd.2011.04.002_bb0040
  article-title: Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.08.017
– volume: 165
  start-page: 123
  year: 2004
  ident: 10.1016/j.nbd.2011.04.002_bb0015
  article-title: Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200312055
– volume: 58
  start-page: 909
  year: 2005
  ident: 10.1016/j.nbd.2011.04.002_bb0130
  article-title: Model-guided microarray implicates the retromer complex in Alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20667
– volume: 17
  start-page: 1005
  year: 1996
  ident: 10.1016/j.nbd.2011.04.002_bb0030
  article-title: Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80230-5
– volume: 366
  start-page: 724
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0035
  article-title: AP-1 and retromer play opposite roles in the trafficking of sortilin between the Golgi apparatus and the lysosomes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.12.015
– volume: 103
  start-page: 11172
  year: 2006
  ident: 10.1016/j.nbd.2011.04.002_bb0105
  article-title: Alzheimer's disease beta-amyloid peptides are released in association with exosomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603838103
– volume: 69
  start-page: 47
  year: 2011
  ident: 10.1016/j.nbd.2011.04.002_bb0110
  article-title: SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22308
– volume: 282
  start-page: 18197
  year: 2007
  ident: 10.1016/j.nbd.2011.04.002_bb0170
  article-title: Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609475200
– volume: 22
  start-page: 1469
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0120
  article-title: Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes
  publication-title: FASEB J.
  doi: 10.1096/fj.07-9357com
– volume: 528
  start-page: 227
  year: 2009
  ident: 10.1016/j.nbd.2011.04.002_bb0080
  article-title: Isolation of extracellular membranous vesicles for proteomic analysis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-310-7_16
– volume: 26
  start-page: 1596
  year: 2006
  ident: 10.1016/j.nbd.2011.04.002_bb0095
  article-title: The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4946-05.2006
– volume: 8
  start-page: 136
  year: 2007
  ident: 10.1016/j.nbd.2011.04.002_bb0180
  article-title: When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400896
– volume: 139
  start-page: 393
  year: 2009
  ident: 10.1016/j.nbd.2011.04.002_bb0075
  article-title: Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.051
– volume: 280
  start-page: 11696
  year: 2005
  ident: 10.1016/j.nbd.2011.04.002_bb0045
  article-title: GGA proteins mediate the recycling pathway of memapsin 2 (BACE)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411296200
– volume: 449
  start-page: 1063
  year: 2007
  ident: 10.1016/j.nbd.2011.04.002_bb0050
  article-title: Functional architecture of the retromer cargo-recognition complex
  publication-title: Nature
  doi: 10.1038/nature06216
– volume: 166
  start-page: 7309
  year: 2001
  ident: 10.1016/j.nbd.2011.04.002_bb0150
  article-title: Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.166.12.7309
– volume: 43
  start-page: 673
  year: 1998
  ident: 10.1016/j.nbd.2011.04.002_bb0155
  article-title: Neuropathology of preclinical and clinical late-onset Alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410430519
– volume: 9
  start-page: 931
  year: 2003
  ident: 10.1016/j.nbd.2011.04.002_bb0175
  article-title: Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference
  publication-title: Clin. Cancer Res.
– volume: 20
  start-page: 427
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0025
  article-title: Retromer
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.009
– volume: 27
  start-page: 6842
  year: 2007
  ident: 10.1016/j.nbd.2011.04.002_bb0090
  article-title: Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00815-07
– volume: 161
  start-page: 1869
  year: 2002
  ident: 10.1016/j.nbd.2011.04.002_bb0145
  article-title: Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64463-X
– volume: 37
  start-page: 323
  year: 2008
  ident: 10.1016/j.nbd.2011.04.002_bb0160
  article-title: The role of exosomes in the processing of proteins associated with neurodegenerative diseases
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-007-0246-z
– volume: 39
  start-page: 168
  year: 2007
  ident: 10.1016/j.nbd.2011.04.002_bb0115
  article-title: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng1943
– volume: 5
  start-page: 40
  year: 2010
  ident: 10.1016/j.nbd.2011.04.002_bb0165
  article-title: Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-5-40
SSID ssj0011597
Score 2.3284853
Snippet Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer...
Abstract Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 338
SubjectTerms Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Amyloid beta-Peptides - biosynthesis
Amyloid beta-Peptides - metabolism
Amyloid beta-Protein Precursor - metabolism
Amyloidosis - genetics
Amyloidosis - metabolism
Amyloidosis - pathology
APP
Endosome
Exosome
Exosomes - genetics
Exosomes - metabolism
Gene Knockdown Techniques
HEK293 Cells
Humans
Mutation - genetics
Neurology
Neurons - metabolism
Neurons - pathology
Retromer
Up-Regulation - genetics
Up-Regulation - physiology
Vesicular Transport Proteins - deficiency
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
Vps35
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLoi2PUEA-VByQIhLHrxwXRFUhtaqgSL1ZfkUE0exqs3vg3zN27KgLaHvhmnjiaDz2fOMZf0bolAWYUNW-ZDocyZFOlpIYW7aaUeo4t1aG884Xl_z8G_18w27uXPUVasImeuBJce87qY1rNRie5LTzgcayM7RzJFy_JroYrVdtlYOplD8AJy1yDjNWcw3GJb5OOu-hZC8Uyfp3nNHfYPPPmsk7TujsCXqc0CNeTH99iB744QgdLwaInG9_4bc41nPGjfIj9PAipc2PUfvFbwItwRq7flxv4yqBV7EQz49Y30LQ3rslmFJv8eLqCq-m0wPg1Z6i67NP1x_Py3RnQmkBCG1KI1xDtDeOM2EBC3FwTbAoOWNY5Z2TtvZaGt1xzSmzDTGUh9yaqECpxtfNM3QwLAf_AmHhHWm07QyTlrYQlwkYBlcT74y2omsLVGUVKpv4xMO1Fj9VLhz7oUDrKmhdVVSB1gv0bhZZTWQa-xp_COMyNww82PEBWIdK1qHus44CkTyqKh81hcURPtTv61n8S8iPaXqPqlYjUZX6CvFfCBjrwLsX8rEForNkQjATMrmvQ5wNTsHsDikbPfjldlRSEAo4Qzb7mtC6lTDjCvR8MtFZZQHOsUaAsNgx3h2d7r4Z-u-RY7yBOBnA_8v_MQgn6FHeia_qV-hgs9761wDlNuZNnLW_AdIxR1U
  priority: 102
  providerName: Directory of Open Access Journals
Title Retromer disruption promotes amyloidogenic APP processing
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996111001197
https://www.clinicalkey.es/playcontent/1-s2.0-S0969996111001197
https://dx.doi.org/10.1016/j.nbd.2011.04.002
https://www.ncbi.nlm.nih.gov/pubmed/21515373
https://www.proquest.com/docview/872434183
https://www.proquest.com/docview/874198456
https://pubmed.ncbi.nlm.nih.gov/PMC3114192
https://doaj.org/article/f8abd9a832864fe0913fb4fd225707f0
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH5qUwlxQdCymCXyAXFAMvEy9oyPIaIKS6uoFKm30WwuRtSJ4uTAhd_Om_HYIhQFias9z_Y8v-WbecsAvMwtTIgTE-XCluQwzSKWShWVIidEF4VSzNY7n50X8y_kw1V-dQCzvhbGplV629_ZdGet_ZWJ5-ZkVdeTzwi-LVpPbNMzGww7hKMUvT0bwdH0_cf5-RBMQI_tqqZxfGQJ-uCmS_NqpPaNPMmwudK7J9fFf8dL3UahfyZT_uadTu_DPQ8rw2n35Q_gwDTHcDJtcEl98yN8FbpET7eDfgx3znw8_QTKC7Ox_QrWoa7b9daZj3DlMvRMG4obXM3XeokyVqtwuliEq66sAN3dQ7g8fXc5m0f-MIVIIULaRJLqLBVG6iKnCkFSgT4LrZWWMo-N1kwlRjApqkIUJFdZKklhg240riSRJskewahZNuYJhNToNBOqkjlTBPldUl0KnaRGS6FoVQYQ9yzkyjcat-ddfOd9Rtk3jlznlus8Jhy5HsDrgWTVddnYN_it_S_DQNsg211Yrq-5lxBeMSHxs9BesYJUxnY_xYlUOrWn9tEqDiDt_yrva1DRauKD6n1vpn8jMq3X-5YnvE15zG_JZgBkoNwR73-9MOwFjqPa21iOaMxy23JGU4IAhGX7hpCkZKiKATzuRHRgmcV5eUaRmO4I7w5Pd-809VfXfDzDBTSuCp7-34Sewd1-Uz5OnsNos96aF4jqNnIMh29-JmPU3dnFp8XY6_DY7ZH8AhM9TeA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVAIuCFoe4ekD4oBkxY-1d30MFVVKm6iCIPW22peLEXWiODnw75ldry1MUZC42ju2dzw7883OYwHeZhYmRLEJM2FLcphmIUukCguREaLzXClm653ni3z2lXy6yq4O4KSrhbFplV73tzrdaWt_ZeK5OVlX1eQLgm-L1mPb9MwGw-7AIbGHWo_gcHp2Plv0wQS02K5qGseHlqALbro0r1pq38iT9JsrnXlyXfwHVuo2Cv0zmfI363T6EB54WBlM2y9_BAemPoLjaY0u9c3P4F3gEj3dDvoR3J37ePoxFJ_N1vYr2AS6ajY7pz6CtcvQM00gbtCbr_QKZaxSwfTyMli3ZQVo7h7D8vTj8mQW-sMUQoUIaRtKqtNEGKnzjCoESTnaLNRWWsosMlozFRvBpChzkZNMpYkkuQ260aiURJo4fQKjelWbZxBQo5NUqFJmTJECHTaqC6HjxGgpFC2LMUQdC7nyjcbteRc_eJdR9p0j17nlOo8IR66P4X1Psm67bOwb_MH-l36gbZDtLqw219xLCC-ZkPhZqK9YTkpju5_iREqd2FP7aBmNIen-Ku9qUFFr4oOqfW-mfyMyjV_3DY95k_CI35LNMZCeciDe_3ph0Akcx2VvYzmiNqtdwxlNCAIQlu4bQuKC4VIcw9NWRHuWWZyXpRSJ6UB4Bzwd3qmrb675eIoONHoFz_9vQm_g3mw5v-AXZ4vzF3C_26CP4pcw2m525hUivK187VfwL6k6TTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retromer+disruption+promotes+amyloidogenic+APP+processing&rft.jtitle=Neurobiology+of+disease&rft.au=Sullivan%2C+Christopher+P.&rft.au=Jay%2C+Anthony+G.&rft.au=Stack%2C+Edward+C.&rft.au=Pakaluk%2C+Maria&rft.date=2011-08-01&rft.pub=Elsevier+Inc&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=43&rft.issue=2&rft.spage=338&rft.epage=345&rft_id=info:doi/10.1016%2Fj.nbd.2011.04.002&rft.externalDocID=S0969996111001197
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996111X00074%2Fcov150h.gif