Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions

Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcoho...

Full description

Saved in:
Bibliographic Details
Published inAddictive behaviors Vol. 83; pp. 42 - 47
Main Authors Bae, Sangwon, Chung, Tammy, Ferreira, Denzil, Dey, Anind K., Suffoletto, Brian
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0306-4603
1873-6327
1873-6327
DOI10.1016/j.addbeh.2017.11.039

Cover

Abstract Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. •Mobile phone sensor data is useful in building accurate models to detect periods of drinking.•Useful sensor features relate to activity/movement, phone use/calls, and keystrokes.•Interventions could use phone sensor features to trigger remote support when it is most needed.
AbstractList Background Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. Objective To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. Methods 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28 days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (> 4/5 drinks per occasion for women/men). Results Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1 day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Conclusions Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.
Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. •Mobile phone sensor data is useful in building accurate models to detect periods of drinking.•Useful sensor features relate to activity/movement, phone use/calls, and keystrokes.•Interventions could use phone sensor features to trigger remote support when it is most needed.
Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical.BACKGROUNDReal-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical.To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions.OBJECTIVETo evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions.38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men).METHODS38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men).Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed).RESULTSAmong 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed).Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.CONCLUSIONSPreliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.
Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.
Author Ferreira, Denzil
Dey, Anind K.
Chung, Tammy
Bae, Sangwon
Suffoletto, Brian
AuthorAffiliation 4 Department of Emergency Medicine, University of Pittsburgh
2 Department of Psychiatry, University of Pittsburgh
1 Human Computer Interaction Institute, Carnegie Mellon University
3 Center for Ubiquitous Computing, University of Oulu
AuthorAffiliation_xml – name: 1 Human Computer Interaction Institute, Carnegie Mellon University
– name: 3 Center for Ubiquitous Computing, University of Oulu
– name: 2 Department of Psychiatry, University of Pittsburgh
– name: 4 Department of Emergency Medicine, University of Pittsburgh
Author_xml – sequence: 1
  givenname: Sangwon
  surname: Bae
  fullname: Bae, Sangwon
  organization: Human Computer Interaction Institute, Carnegie Mellon University, United States
– sequence: 2
  givenname: Tammy
  surname: Chung
  fullname: Chung, Tammy
  organization: Department of Psychiatry, University of Pittsburgh, United States
– sequence: 3
  givenname: Denzil
  orcidid: 0000-0002-2195-0449
  surname: Ferreira
  fullname: Ferreira, Denzil
  organization: Center for Ubiquitous Computing, University of Oulu, Finland
– sequence: 4
  givenname: Anind K.
  surname: Dey
  fullname: Dey, Anind K.
  organization: Human Computer Interaction Institute, Carnegie Mellon University, United States
– sequence: 5
  givenname: Brian
  orcidid: 0000-0002-9628-5260
  surname: Suffoletto
  fullname: Suffoletto, Brian
  email: suffbp@upmc.edu
  organization: Department of Emergency Medicine, University of Pittsburgh, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29217132$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURKeFf4CQJTZsEmznXSEkVPGoVMQG1pZj33Tu4NjBdgbNT-Hf4mHKazbtKnL8nePjc32WnVhnIcueMlowypqXm0JqPcC64JS1BWMFLfsH2Yp1bZk3JW9PshUtaZNXDS1Ps7MQNpQy3tbVo-yU95y1rOSr7MdHN6ABMq-TOwlgg_OBSKtJWGbwWwygySTVGtO2Aekt2hsSHUENNuK4I9Iot3aGLAEIbNPPQNCSnVsSJ_ViYrggV9NsUMmIzgYyOk82S4g52jziBImSc8QtJF1MR-59E_c4ezhKE-DJ7fc8-_Lu7efLD_n1p_dXl2-uc9UwGnM5QMerrinHaqAKesp535RDP3RK8Vq3bdtpqnRaDXVX8aHpK-iGkVMpO8Y1lOdZffBd7Cx336UxYvY4Sb8TjIp91WIjDlWLfdWCMZGqTrrXB928DBNolWJ7-VfrJIr_dyyuxY3bijrl69u9wYtbA---LRCimDAoMEZacEsQrG9rylLoKqHPj9CNW7xNtaRIXUdbTiueqGf_JvoT5fe0E1AdAOVdCB7G-9704kimMP4aZroXmnvWBGmGWwQvgkKwCjR6UFFoh3cZvDoyUAZtek3mK-zulv8ErAQBwg
CitedBy_id crossref_primary_10_3389_fdgth_2021_694233
crossref_primary_10_3390_s22103893
crossref_primary_10_1007_s42486_021_00072_4
crossref_primary_10_1080_09540121_2021_1874277
crossref_primary_10_1080_10826084_2021_1972314
crossref_primary_10_1038_s41746_020_0234_6
crossref_primary_10_1177_1559827619843489
crossref_primary_10_1016_j_drugalcdep_2021_108972
crossref_primary_10_1007_s10902_022_00587_2
crossref_primary_10_2196_42045
crossref_primary_10_1007_s40429_024_00543_5
crossref_primary_10_1145_3478126
crossref_primary_10_1080_16066359_2023_2241358
crossref_primary_10_1097_HC9_0000000000000329
crossref_primary_10_2196_41833
crossref_primary_10_1016_j_neubiorev_2023_105259
crossref_primary_10_1080_10826084_2023_2205489
crossref_primary_10_1007_s41347_024_00406_w
crossref_primary_10_2196_23369
crossref_primary_10_1016_j_addbeh_2018_04_004
crossref_primary_10_2196_43826
crossref_primary_10_1016_j_coisb_2020_07_004
crossref_primary_10_1111_dar_13644
crossref_primary_10_2196_resprot_9850
crossref_primary_10_1371_journal_pone_0248152
crossref_primary_10_1016_j_ijhcs_2019_102382
crossref_primary_10_1016_j_drugalcdep_2020_108201
crossref_primary_10_1111_acer_13975
crossref_primary_10_2196_50795
crossref_primary_10_1002_hep_32329
crossref_primary_10_3390_s17122897
crossref_primary_10_1080_16066359_2019_1584292
crossref_primary_10_1111_acer_13771
crossref_primary_10_1016_j_jbtep_2022_101772
crossref_primary_10_3233_THC_213648
crossref_primary_10_1016_j_drugalcdep_2024_111122
crossref_primary_10_1016_j_josat_2023_209219
crossref_primary_10_2196_64459
crossref_primary_10_1146_annurev_clinpsy_102419_125032
crossref_primary_10_2196_52270
crossref_primary_10_1186_s13643_020_01375_w
crossref_primary_10_1002_dev_21831
crossref_primary_10_1016_j_cpr_2020_101885
crossref_primary_10_1017_S0033291719000151
crossref_primary_10_1089_tmj_2019_0241
crossref_primary_10_1111_acer_13846
crossref_primary_10_1016_j_jsat_2021_108417
crossref_primary_10_2196_17590
crossref_primary_10_1016_j_addbeh_2021_106964
crossref_primary_10_1016_j_brat_2020_103596
crossref_primary_10_1136_bmjopen_2022_061259
crossref_primary_10_3389_fdgth_2023_1163386
crossref_primary_10_1145_3422158
crossref_primary_10_1038_s41746_019_0166_1
crossref_primary_10_1016_j_copsyc_2019_01_009
crossref_primary_10_2196_39862
crossref_primary_10_3390_s21134254
crossref_primary_10_2196_58448
crossref_primary_10_1111_dar_13306
crossref_primary_10_1017_S0033291724000862
crossref_primary_10_1177_10944281231202740
crossref_primary_10_1111_apt_16969
crossref_primary_10_1007_s12652_021_03263_0
crossref_primary_10_1111_acer_14844
crossref_primary_10_1016_j_jcbs_2022_06_002
crossref_primary_10_1109_ACCESS_2022_3179702
crossref_primary_10_1111_acer_14487
crossref_primary_10_1038_s41746_021_00441_4
crossref_primary_10_1002_eat_22924
crossref_primary_10_1016_j_alcohol_2018_07_012
crossref_primary_10_1080_10447318_2022_2089085
crossref_primary_10_2196_27337
crossref_primary_10_1016_j_ijsolstr_2019_08_031
crossref_primary_10_2196_24424
Cites_doi 10.1016/j.addbeh.2016.06.008
10.1037/pha0000068
10.1080/08897077.2017.1356797
10.1002/hup.2245
10.1111/j.1360-0443.2007.02114.x
10.1111/j.1530-0277.2007.00403.x
10.1371/journal.pone.0142877
10.1037/a0017074
10.3389/fict.2015.00006
10.1111/add.12438
10.1111/j.1530-0277.2009.01049.x
10.1007/s13142-011-0021-7
10.1016/j.cpr.2012.08.001
10.1007/s40429-016-0099-6
10.1613/jair.953
10.1146/annurev-clinpsy-032816-044949
10.1111/acer.12092
10.35946/arcr.v36.1.04
10.1016/j.addbeh.2015.06.042
10.1080/09581596.2015.1058921
10.15288/jsad.2015.76.635
10.1037/0022-006X.72.2.155
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Pergamon Press Inc. Aug 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Pergamon Press Inc. Aug 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
K7.
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.addbeh.2017.11.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Neurosciences Abstracts
ProQuest Criminal Justice (Alumni)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
ProQuest Criminal Justice (Alumni)
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1873-6327
EndPage 47
ExternalDocumentID oai:pubmedcentral.nih.gov:5963979
PMC5963979
29217132
10_1016_j_addbeh_2017_11_039
S030646031730446X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R21 DA043181
– fundername: NIAAA NIH HHS
  grantid: K23 AA023284
– fundername: NIAAA NIH HHS
  grantid: R01 AA023650
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYJJ
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACHQT
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HF~
HMK
HMO
HMW
HVGLF
HZ~
IHE
J1W
KOM
M29
M39
M3V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
RXW
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPS
SSB
SSH
SSN
SSY
SSZ
T5K
TAE
TN5
UAP
UHB
VH1
WH7
WUQ
X6Y
XPP
XSW
Z5R
ZCA
ZGI
ZXP
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFMIJ
AFYLN
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
K7.
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c610t-abe824863f4b0ce9022963b9b8cc25d7778d0cd8ccb5842b694e8bf20aa812de3
IEDL.DBID UNPAY
ISSN 0306-4603
1873-6327
IngestDate Sun Oct 26 04:01:12 EDT 2025
Tue Sep 30 16:38:17 EDT 2025
Sat Sep 27 18:42:52 EDT 2025
Tue Oct 07 05:27:05 EDT 2025
Mon Jul 21 05:53:23 EDT 2025
Thu Oct 09 00:19:11 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Fri Feb 23 02:29:33 EST 2024
Tue Oct 14 19:35:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Smartphone sensors
Alcohol
AWARE app
Machine learning
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-abe824863f4b0ce9022963b9b8cc25d7778d0cd8ccb5842b694e8bf20aa812de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2195-0449
0000-0002-9628-5260
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5963979
PMID 29217132
PQID 2088072042
PQPubID 45705
PageCount 6
ParticipantIDs unpaywall_primary_10_1016_j_addbeh_2017_11_039
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963979
proquest_miscellaneous_1975015844
proquest_journals_2088072042
pubmed_primary_29217132
crossref_primary_10_1016_j_addbeh_2017_11_039
crossref_citationtrail_10_1016_j_addbeh_2017_11_039
elsevier_sciencedirect_doi_10_1016_j_addbeh_2017_11_039
elsevier_clinicalkey_doi_10_1016_j_addbeh_2017_11_039
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Addictive behaviors
PublicationTitleAlternate Addict Behav
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Ferreira, Kostakos, Dey (bb0050) 2015; 2
Rubinsky, Dawson, Williams, Kivlahan, Bradley (bb0105) 2013; 37
Bae, Ferreira, Suffoletto, Puyana, Kurtz, Chung, Dey (bb0010) 2017
Bradley, DeBenedetti, Volk, Williams, Frank, Kivlahan (bb0020) 2007; 31
Gruenewald, Remer, LaScala (bb0065) 2014; 109
Del Boca, Darkes, Greenbaum, Goldman (bb0045) 2004; 72
Simons, Wills, Emery, Marks (bb0120) 2015; 50
Suffoletto, Kristan, Chung, Jeong, Fabio, Monti, Clark (bb0135) 2015; 10
Cavazos-Rehg, Krauss, Sowles, Bierut (bb0030) 2015; 76
Carey, Scott-Sheldon, Elliott, Garey, Carey (bb0025) 2012; 32
Nahum-Shani, Smith, Spring, Collins, Witkiewitz, Tewari, Murphy (bb0090) 2016
Humeniuk, Ali, Babor, Farrell, Formigoni, Jittiwutikarn, Simon (bb0070) 2008; 103
Moewaka Barnes, McCreanor, Goodwin, Lyons, Griffin, Hutton (bb0080) 2016; 26
Xu, Chen (bb0145) 2010
Scholey, Benson, Neale, Owen, Tiplady (bb0110) 2012; 27
Abowd, Dey, Brown, Davies, Smith, Steggles (bb0005) 1999
Suffoletto, Gharani, Chung, Karimi (bb0125) 2017
Suffoletto, Goyal, Puyana, Chung (bb0130) 2017; 38
Mohr, Zhang, Schueller (bb0085) 2017; 13
Riley, Rivera, Atienza, Nilsen, Allison, Mermelstein (bb0100) 2011; 1
Center for Behavioral Health Statistics and Quality (bb0035) 2016
Lau-Barraco, Braitman, Linden-Carmichael, Stamates (bb0075) 2016; 24
Powers (bb0095) 2011; 2
Berman, Gajecki, Sinadinovic, Andersson (bb0015) 2016; 3
Fowler, Holt, Joshi (bb0055) 2016; 62
Freisthler, Lipperman-Kreda, Bersamin, Gruenewald (bb0060) 2014; 36
Tiplady, Oshinowo, Thomson, Drummond (bb0140) 2009; 33
Chawla, Bowyer, Hal, Kegelmeyer (bb0040) 2002; 16
Shiffman (bb0115) 2009; 21
Mohr (10.1016/j.addbeh.2017.11.039_bb0085) 2017; 13
Simons (10.1016/j.addbeh.2017.11.039_bb0120) 2015; 50
Humeniuk (10.1016/j.addbeh.2017.11.039_bb0070) 2008; 103
Abowd (10.1016/j.addbeh.2017.11.039_bb0005) 1999
Center for Behavioral Health Statistics and Quality (10.1016/j.addbeh.2017.11.039_bb0035) 2016
Tiplady (10.1016/j.addbeh.2017.11.039_bb0140) 2009; 33
Gruenewald (10.1016/j.addbeh.2017.11.039_bb0065) 2014; 109
Moewaka Barnes (10.1016/j.addbeh.2017.11.039_bb0080) 2016; 26
Suffoletto (10.1016/j.addbeh.2017.11.039_bb0135) 2015; 10
Scholey (10.1016/j.addbeh.2017.11.039_bb0110) 2012; 27
Lau-Barraco (10.1016/j.addbeh.2017.11.039_bb0075) 2016; 24
Del Boca (10.1016/j.addbeh.2017.11.039_bb0045) 2004; 72
Ferreira (10.1016/j.addbeh.2017.11.039_bb0050) 2015; 2
Xu (10.1016/j.addbeh.2017.11.039_bb0145) 2010
Suffoletto (10.1016/j.addbeh.2017.11.039_bb0125) 2017
Berman (10.1016/j.addbeh.2017.11.039_bb0015) 2016; 3
Carey (10.1016/j.addbeh.2017.11.039_bb0025) 2012; 32
Freisthler (10.1016/j.addbeh.2017.11.039_bb0060) 2014; 36
Riley (10.1016/j.addbeh.2017.11.039_bb0100) 2011; 1
Fowler (10.1016/j.addbeh.2017.11.039_bb0055) 2016; 62
Powers (10.1016/j.addbeh.2017.11.039_bb0095) 2011; 2
Suffoletto (10.1016/j.addbeh.2017.11.039_bb0130) 2017; 38
Bae (10.1016/j.addbeh.2017.11.039_bb0010) 2017
Bradley (10.1016/j.addbeh.2017.11.039_bb0020) 2007; 31
Rubinsky (10.1016/j.addbeh.2017.11.039_bb0105) 2013; 37
Shiffman (10.1016/j.addbeh.2017.11.039_bb0115) 2009; 21
Cavazos-Rehg (10.1016/j.addbeh.2017.11.039_bb0030) 2015; 76
Nahum-Shani (10.1016/j.addbeh.2017.11.039_bb0090) 2016
Chawla (10.1016/j.addbeh.2017.11.039_bb0040) 2002; 16
References_xml – volume: 2
  year: 2015
  ident: bb0050
  article-title: AWARE: Mobile context instrumentation framework
  publication-title: Frontiers in ICT
– volume: 21
  start-page: 486
  year: 2009
  end-page: 497
  ident: bb0115
  article-title: Ecological momentary assessment (EMA) in studies of substance use
  publication-title: Psychological Assessment
– volume: 33
  start-page: 2094
  year: 2009
  end-page: 2102
  ident: bb0140
  article-title: Alcohol and cognitive function: Assessment in everyday life and laboratory settings using mobile phones
  publication-title: Alcoholism: Clinical and Experimental Research
– volume: 27
  start-page: 514
  year: 2012
  end-page: 516
  ident: bb0110
  article-title: Neurocognitive and mood effects of alcohol in a naturalistic setting
  publication-title: Human Psychopharmacology
– volume: 62
  start-page: 25
  year: 2016
  end-page: 34
  ident: bb0055
  article-title: Mobile technology-based interventions for adult users of alcohol: A systematic review of the literature
  publication-title: Addictive Behaviors
– year: 1999
  ident: bb0005
  article-title: Towards a better understanding of context and context-awareness
  publication-title: Handheld and ubiquitous computing
– volume: 50
  start-page: 205
  year: 2015
  end-page: 212
  ident: bb0120
  article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms
  publication-title: Addictive Behaviors
– volume: 103
  start-page: 1039
  year: 2008
  end-page: 1047
  ident: bb0070
  article-title: Validation of the alcohol, smoking and substance involvement screening test (ASSIST)
  publication-title: Addiction
– year: 2017
  ident: bb0125
  article-title: Using phone sensors and an artificial neural network to detect gait changes during natural drinking episodes
  publication-title: Gait and Posture
– year: 2016
  ident: bb0090
  article-title: Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support
  publication-title: Annals of Behavioral Medicine
– volume: 38
  start-page: 438
  year: 2017
  end-page: 449
  ident: bb0130
  article-title: Can an app help identify psychomotor function impairments during drinking occasions in the real world? A mixed-method pilot study
  publication-title: Substance Abuse
– volume: 24
  start-page: 100
  year: 2016
  end-page: 109
  ident: bb0075
  article-title: Differences in weekday versus weekend drinking among nonstudent emerging adults
  publication-title: Experimental and Clinical Psychopharmacology
– volume: 37
  start-page: 1380
  year: 2013
  end-page: 1390
  ident: bb0105
  article-title: AUDIT-C scores as a scaled marker of mean daily drinking, alcohol use disorder severity, and probability of alcohol dependence in a U.S. general population sample of drinkers
  publication-title: Alcoholism: Clinical and Experimental Research
– start-page: 1
  year: 2017
  ident: bb0010
  article-title: Detecting drinking episodes in young adults using smartphone-based sensors
– volume: 76
  start-page: 635
  year: 2015
  end-page: 643
  ident: bb0030
  article-title: “Hey everyone, I'm drunk” An evaluation of drinking-related twitter chatter
  publication-title: Journal of Studies on Alcohol and Drugs
– volume: 13
  start-page: 23
  year: 2017
  end-page: 47
  ident: bb0085
  article-title: Personal sensing: Understanding mental health using ubiquitous sensors and machine learning
  publication-title: Annual Review of Clinical Psychology
– volume: 31
  start-page: 1208
  year: 2007
  end-page: 1217
  ident: bb0020
  article-title: AUDIT-C as a brief screen for alcohol misuse in primary care
  publication-title: Alcoholism: Clinical and Experimental Research
– volume: 1
  start-page: 53
  year: 2011
  end-page: 71
  ident: bb0100
  article-title: Health behavior models in the age of mobile interventions: Are our theories up to the task?
  publication-title: Translational Behavioral Medicine
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bb0040
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 3
  start-page: 166
  year: 2016
  end-page: 174
  ident: bb0015
  article-title: Mobile interventions targeting risky drinking among university students: A review
  publication-title: Current Addiction Reports
– volume: 36
  start-page: 29
  year: 2014
  end-page: 38
  ident: bb0060
  article-title: Tracking the when, where, and with whom of alcohol use: Integrating ecological momentary assessment and geospatial data to examine risk for alcohol-related problems
  publication-title: Alcohol Research: Current Reviews
– year: 2016
  ident: bb0035
  article-title: Key substance use and mental health indicators in the United States: Results from the 2015 National Survey on Drug Use and Health
– volume: 10
  year: 2015
  ident: bb0135
  article-title: An interactive text message intervention to reduce binge drinking in young adults: A randomized controlled trial with 9-month outcomes
  publication-title: PLoS One
– start-page: 280
  year: 2010
  end-page: 283
  ident: bb0145
  article-title: Term-frequency based feature selection methods for text categorization
  publication-title: IEEE genetic and evolutionary computing (ICGEC), 2010 Fourth International Conference
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: bb0095
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: International Journal of Machine Learning Technology
– volume: 72
  start-page: 155
  year: 2004
  end-page: 164
  ident: bb0045
  article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year
  publication-title: Journal of Consulting and Clinical Psychology
– volume: 109
  start-page: 736
  year: 2014
  end-page: 745
  ident: bb0065
  article-title: Testing a social ecological model of alcohol use: The California 50-city study
  publication-title: Addiction
– volume: 26
  start-page: 62
  year: 2016
  end-page: 76
  ident: bb0080
  article-title: Alcohol and social media: Drinking and drunkenness while online
  publication-title: Critical Public Health
– volume: 32
  start-page: 690
  year: 2012
  end-page: 703
  ident: bb0025
  article-title: Face-to-face versus computer-delivered alcohol interventions for college drinkers: A meta-analytic review, 1998 to 2010
  publication-title: Clinical Psychology Review
– volume: 62
  start-page: 25
  year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0055
  article-title: Mobile technology-based interventions for adult users of alcohol: A systematic review of the literature
  publication-title: Addictive Behaviors
  doi: 10.1016/j.addbeh.2016.06.008
– volume: 24
  start-page: 100
  year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0075
  article-title: Differences in weekday versus weekend drinking among nonstudent emerging adults
  publication-title: Experimental and Clinical Psychopharmacology
  doi: 10.1037/pha0000068
– volume: 38
  start-page: 438
  issue: 4
  year: 2017
  ident: 10.1016/j.addbeh.2017.11.039_bb0130
  article-title: Can an app help identify psychomotor function impairments during drinking occasions in the real world? A mixed-method pilot study
  publication-title: Substance Abuse
  doi: 10.1080/08897077.2017.1356797
– volume: 27
  start-page: 514
  year: 2012
  ident: 10.1016/j.addbeh.2017.11.039_bb0110
  article-title: Neurocognitive and mood effects of alcohol in a naturalistic setting
  publication-title: Human Psychopharmacology
  doi: 10.1002/hup.2245
– volume: 103
  start-page: 1039
  year: 2008
  ident: 10.1016/j.addbeh.2017.11.039_bb0070
  article-title: Validation of the alcohol, smoking and substance involvement screening test (ASSIST)
  publication-title: Addiction
  doi: 10.1111/j.1360-0443.2007.02114.x
– volume: 31
  start-page: 1208
  year: 2007
  ident: 10.1016/j.addbeh.2017.11.039_bb0020
  article-title: AUDIT-C as a brief screen for alcohol misuse in primary care
  publication-title: Alcoholism: Clinical and Experimental Research
  doi: 10.1111/j.1530-0277.2007.00403.x
– year: 2017
  ident: 10.1016/j.addbeh.2017.11.039_bb0125
  article-title: Using phone sensors and an artificial neural network to detect gait changes during natural drinking episodes
  publication-title: Gait and Posture
– volume: 10
  year: 2015
  ident: 10.1016/j.addbeh.2017.11.039_bb0135
  article-title: An interactive text message intervention to reduce binge drinking in young adults: A randomized controlled trial with 9-month outcomes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142877
– volume: 21
  start-page: 486
  year: 2009
  ident: 10.1016/j.addbeh.2017.11.039_bb0115
  article-title: Ecological momentary assessment (EMA) in studies of substance use
  publication-title: Psychological Assessment
  doi: 10.1037/a0017074
– volume: 2
  year: 2015
  ident: 10.1016/j.addbeh.2017.11.039_bb0050
  article-title: AWARE: Mobile context instrumentation framework
  publication-title: Frontiers in ICT
  doi: 10.3389/fict.2015.00006
– volume: 109
  start-page: 736
  year: 2014
  ident: 10.1016/j.addbeh.2017.11.039_bb0065
  article-title: Testing a social ecological model of alcohol use: The California 50-city study
  publication-title: Addiction
  doi: 10.1111/add.12438
– volume: 33
  start-page: 2094
  year: 2009
  ident: 10.1016/j.addbeh.2017.11.039_bb0140
  article-title: Alcohol and cognitive function: Assessment in everyday life and laboratory settings using mobile phones
  publication-title: Alcoholism: Clinical and Experimental Research
  doi: 10.1111/j.1530-0277.2009.01049.x
– year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0035
– volume: 1
  start-page: 53
  year: 2011
  ident: 10.1016/j.addbeh.2017.11.039_bb0100
  article-title: Health behavior models in the age of mobile interventions: Are our theories up to the task?
  publication-title: Translational Behavioral Medicine
  doi: 10.1007/s13142-011-0021-7
– year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0090
  article-title: Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support
  publication-title: Annals of Behavioral Medicine
– volume: 32
  start-page: 690
  year: 2012
  ident: 10.1016/j.addbeh.2017.11.039_bb0025
  article-title: Face-to-face versus computer-delivered alcohol interventions for college drinkers: A meta-analytic review, 1998 to 2010
  publication-title: Clinical Psychology Review
  doi: 10.1016/j.cpr.2012.08.001
– volume: 2
  start-page: 37
  year: 2011
  ident: 10.1016/j.addbeh.2017.11.039_bb0095
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: International Journal of Machine Learning Technology
– volume: 3
  start-page: 166
  year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0015
  article-title: Mobile interventions targeting risky drinking among university students: A review
  publication-title: Current Addiction Reports
  doi: 10.1007/s40429-016-0099-6
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.addbeh.2017.11.039_bb0040
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 13
  start-page: 23
  year: 2017
  ident: 10.1016/j.addbeh.2017.11.039_bb0085
  article-title: Personal sensing: Understanding mental health using ubiquitous sensors and machine learning
  publication-title: Annual Review of Clinical Psychology
  doi: 10.1146/annurev-clinpsy-032816-044949
– volume: 37
  start-page: 1380
  year: 2013
  ident: 10.1016/j.addbeh.2017.11.039_bb0105
  article-title: AUDIT-C scores as a scaled marker of mean daily drinking, alcohol use disorder severity, and probability of alcohol dependence in a U.S. general population sample of drinkers
  publication-title: Alcoholism: Clinical and Experimental Research
  doi: 10.1111/acer.12092
– volume: 36
  start-page: 29
  year: 2014
  ident: 10.1016/j.addbeh.2017.11.039_bb0060
  article-title: Tracking the when, where, and with whom of alcohol use: Integrating ecological momentary assessment and geospatial data to examine risk for alcohol-related problems
  publication-title: Alcohol Research: Current Reviews
  doi: 10.35946/arcr.v36.1.04
– volume: 50
  start-page: 205
  year: 2015
  ident: 10.1016/j.addbeh.2017.11.039_bb0120
  article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms
  publication-title: Addictive Behaviors
  doi: 10.1016/j.addbeh.2015.06.042
– start-page: 1
  year: 2017
  ident: 10.1016/j.addbeh.2017.11.039_bb0010
– volume: 26
  start-page: 62
  year: 2016
  ident: 10.1016/j.addbeh.2017.11.039_bb0080
  article-title: Alcohol and social media: Drinking and drunkenness while online
  publication-title: Critical Public Health
  doi: 10.1080/09581596.2015.1058921
– year: 1999
  ident: 10.1016/j.addbeh.2017.11.039_bb0005
  article-title: Towards a better understanding of context and context-awareness
– volume: 76
  start-page: 635
  year: 2015
  ident: 10.1016/j.addbeh.2017.11.039_bb0030
  article-title: “Hey everyone, I'm drunk” An evaluation of drinking-related twitter chatter
  publication-title: Journal of Studies on Alcohol and Drugs
  doi: 10.15288/jsad.2015.76.635
– volume: 72
  start-page: 155
  year: 2004
  ident: 10.1016/j.addbeh.2017.11.039_bb0045
  article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year
  publication-title: Journal of Consulting and Clinical Psychology
  doi: 10.1037/0022-006X.72.2.155
– start-page: 280
  year: 2010
  ident: 10.1016/j.addbeh.2017.11.039_bb0145
  article-title: Term-frequency based feature selection methods for text categorization
SSID ssj0012754
Score 2.5625296
Snippet Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing...
Background Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Adult
Adults
Alcohol
Alcohol use
Alcoholic beverages
Alcoholism - diagnosis
Alcoholism - prevention & control
Artificial intelligence
AWARE app
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Cell Phone
Cellular telephones
Drinking behavior
Ecological Momentary Assessment
Female
Humans
Just in time
Learning algorithms
Machine learning
Male
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Prospective Studies
Sensors
Smartphone sensors
Supervised Machine Learning
Surveys and Questionnaires
Typing
Young Adult
Young adults
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuCCeBNY0CAhbtlNss464YYqqoJULlCxt8iOHUi7JNE6EdoL_4N_y4zz0K6K1Ipj4hkpscefv5HnwdibUJjYKK38pMBNzlHGT_Bg9hNd8EKEusgDShQ-_7w6u-Cf1vH6iJ2MuTAUVjlgf4_pDq2HN4thNhdNWS6-ENvl1CQZjRSdmjVlsHNBXQzmv6cwD6pf3peQQs-ZpMf0ORfjhZtbGbqSCMWcanlSy_B_H0_X6ef1KMo7XdXI3S-52ewdUaf32b2BW8L7_vMfsCNTPWSzPgEXvplNIbcG3sL4ot5ePWJ_zmuFwAAUom7AolNbby3ISoPtGsIRazT8dBGXBoYWE9-hraF0Gb7FDmTfZBc6a8CVg7JQVrAjFAFX3cO-g497ceuANBkuO9v6ZeVTa3uUkg2hLpR7AZj2Mbs4_fD15Mwf2jX4OXKw1pfKJBFPVsuCqyA3KbID3N0qVUmeR7EWQiQ6oFIEuULWE6lVyk2iiiiQElmGNssn7LjCf33GgEstOFKhYOmuZiMZFas4lHGhZcpDLj22HFcpy4da5tRSY5ONQWuXWb-2Ga0tujkZrq3H_Emr6Wt53CAfjwaQjXmqiKwZHjY36IlJ78CWb6E5G-0sG7DE4jhiLPUSijz2ehpGFKCrHVmZurNZmCLzC3Faucee9mY5_WKUotsZLlFbHBjsJEAVxg9HqvKHqzQep-7e12PzybRvNXPP_3sGXrC7-JT0IZYzdtxuO_MSaV-rXrl9_ReDfVoR
  priority: 102
  providerName: Elsevier
Title Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S030646031730446X
https://dx.doi.org/10.1016/j.addbeh.2017.11.039
https://www.ncbi.nlm.nih.gov/pubmed/29217132
https://www.proquest.com/docview/2088072042
https://www.proquest.com/docview/1975015844
https://pubmed.ncbi.nlm.nih.gov/PMC5963979
https://www.ncbi.nlm.nih.gov/pmc/articles/5963979
UnpaywallVersion submittedVersion
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6327
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012754
  issn: 0306-4603
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-6327
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012754
  issn: 0306-4603
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6327
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012754
  issn: 0306-4603
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6327
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012754
  issn: 0306-4603
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6327
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012754
  issn: 0306-4603
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELba5AAX3o9AiAYJcfN2H94XtwhRpaBGCFFRTit711u2TTZRvCsUDvwP_i1j70MpRWp7S2LPwc54_FnzzTeEvHFC6UuRCRrleMgZzqERXsw0ynKWh06Wp7YuFD6eB7MT9vHUP90jTlcLY0j7qSiscrG0yuKH4Vaul-lBxxM78GOTi9onwwA_2gMyPJl_nn5vsgUBZYHphuxEoUcDzw27cjnD6cLDLKROQTihpbU7dYvw_19HV-HmVdbknbpc8-1PvljsXEmH98mXbjENE-XCqithpb_-0Xm81WofkHstQIVpM_SQ7MnyERk3VbzwTS5yvpHwFrofVpuLx-TP8UpgdAHNc5eg8GW82ijgZQaqXutgpGQGS0PblND2qTiDagWFKRPOt8CbTr1QKwlGU0pBUcJWhyIwEiHqHRztkN8BsTac16qiRUmrYilxFl_r0A3FDotTPSEnhx--vp_RtucDTRHIVZQLGbksCrycCTuVMUIM3AERiyhNXT8LwzDKbK1nkAqETq4IYiYjkbs25whVMuk9JYMS1_qcAONZyBBP2Z7J77rczQPf4X6e8Zg5jI-I1_31SdoKouu-HIukY76dJ43DJNph8K2UoMOMCO2t1o0gyDXz_c6rkq7YFcNzgjfWNXZhb9eCoQbk3MBy3Dlv0gYkheMYqHVDIndEXvfDGEp0foiXclWrxIkRPjq4rWxEnjW-3i_RjfHt6nhoHV46Bf0ELVN-eQT92ciVty48IlZ_Xm60cy9ua_CS3MVvUUPPHJNBtanlK4SMlZiQfeu3MyHD6dGn2XzShoy_fNRx4g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZRLxZuUBQYJccvuJnE2CTdUUW2h2wut2JtlJ05JWZJonQjthf_Bv2UmL-2qSK242jNSYo8_fyPPg7F3TqB9rRJlhykeco4ydogXsx0mKU8DJ0njKSUKL85n80v-eekv99hxnwtDYZUd9reY3qB1NzLpVnNSZtnkK7FdTk2S0UjRqVneY_e57wbkgY1_D3EeVMC8rSGFrjOJ9_lzTZAXnm6l6U3CCcZUzJN6hv_7frrJP2-GUR7UeSk3v-RqtXVHnTxkhx25hI_t9z9iezp_zEZtBi5806tUrjW8h36gWP94wv4sCoXIABSjrsGgV1usDcg8AVOXBCRGJ_CzCbnU0PWYuIKqgKxJ8U03INsuu1AbDU09KANZDhuCEWjKe5gPcLoVuA7Ik-G6NpWd5Tb1tkcpWRLsQrYVgWmessuTTxfHc7vr12DHSMIqWyodujyceSlX01hHSA_weKtIhXHs-kkQBGEypVoEsULa46pZxHWoUncqJdKMRHvP2H6O__qCAZdJwJELTb3mbdaVbjrzHemniYy4w6XFvH6XRNwVM6eeGivRR61di3ZvBe0t-jkC99Zi9qBVtsU8bpH3ewMQfaIqQqvA2-YWvWDQ2zHmO2iOejsTHZgYnEeQpWZCrsXeDtMIA_S2I3Nd1EY4EVI_B5eVW-x5a5bDL7oR-p2Oh9rBjsEOAlRifHcmz743pcb9qHn4tdh4MO07rdzRf6_AG3Ywv1icibPT8y8v2QOcCdt4yxHbr9a1foUcsFKvmzP-F-FaXTQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXypstCxokxM1pHk6ccKsQVUFqhRAryimyEwfS7iardSK0_BP-LWPnoS1FanvbXXsO9o7HnzXffEPIG4-rUMlc0rjAQ85wDo3xYqZxXrCCe3mRuaZQ-OQ0Op6zT2fh2Q7xhloYS9rPZOlUi6VTlT8tt3K1zA4GnthBmNhc1B2yG-FHd0J256efD7932YKIssh2Q_ZiHtAo8PlQLmc5XXiYpTIpCI87RrvTtAj__3V0FW5eZU3ebauV2PwSi8XWlXS0R74Mi-mYKBdO20gn-_2PzuOtVvuA3O8BKhx2Qw_JjqoekVlXxQvf1KIQawVvYfihXl88Jn9OaonRBQzPXYHGl3G91iCqHHS7MsFIqxyWlrapoO9T8QOaGkpbJlxsQHSdeqHVCqymlIaygo0JRWAlQvQ7-LhFfgfE2nDe6oaWFW3KpcJZYmVCN5RbLE79hMyPPnx9f0z7ng80QyDXUCFV7LM4Cgom3UwlCDFwB2Qi4yzzw5xzHueu0TPIJEInX0YJU7EsfFcIhCq5Cp6SSYVrfU6AiZwzxFNuYPO7vvCLKPREWOQiYR4TUxIMf32a9YLopi_HIh2Yb-dp5zCpcRh8K6XoMFNCR6tVJwhyzfxw8Kp0KHbF8JzijXWNHR_tejDUgZwbWM4G5037gKRxHAO1aUjkT8nrcRhDickPiUrVrU69BOGjh9vKpuRZ5-vjEv0E365egNb80ikYJxiZ8ssj6M9Wrrx34SlxxvNyo53bv63BC3IPv8UdPXNGJs26VS8RMjbyVR8k_gJZaW9W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile+phone+sensors+and+supervised+machine+learning+to+identify+alcohol+use+events+in+young+adults%3A+Implications+for+just-in-time+adaptive+interventions&rft.jtitle=Addictive+behaviors&rft.au=Bae%2C+Sangwon&rft.au=Chung%2C+Tammy&rft.au=Ferreira%2C+Denzil&rft.au=Dey%2C+Anind+K&rft.date=2018-08-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4603&rft.eissn=1873-6327&rft.volume=83&rft.spage=42&rft_id=info:doi/10.1016%2Fj.addbeh.2017.11.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4603&client=summon