Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions
Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcoho...
Saved in:
| Published in | Addictive behaviors Vol. 83; pp. 42 - 47 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.08.2018
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-4603 1873-6327 1873-6327 |
| DOI | 10.1016/j.addbeh.2017.11.039 |
Cover
| Abstract | Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical.
To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions.
38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men).
Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed).
Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.
•Mobile phone sensor data is useful in building accurate models to detect periods of drinking.•Useful sensor features relate to activity/movement, phone use/calls, and keystrokes.•Interventions could use phone sensor features to trigger remote support when it is most needed. |
|---|---|
| AbstractList | Background Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. Objective To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. Methods 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28 days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (> 4/5 drinks per occasion for women/men). Results Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1 day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Conclusions Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. •Mobile phone sensor data is useful in building accurate models to detect periods of drinking.•Useful sensor features relate to activity/movement, phone use/calls, and keystrokes.•Interventions could use phone sensor features to trigger remote support when it is most needed. Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical.BACKGROUNDReal-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical.To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions.OBJECTIVETo evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions.38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men).METHODS38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men).Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed).RESULTSAmong 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed).Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness.CONCLUSIONSPreliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. |
| Author | Ferreira, Denzil Dey, Anind K. Chung, Tammy Bae, Sangwon Suffoletto, Brian |
| AuthorAffiliation | 4 Department of Emergency Medicine, University of Pittsburgh 2 Department of Psychiatry, University of Pittsburgh 1 Human Computer Interaction Institute, Carnegie Mellon University 3 Center for Ubiquitous Computing, University of Oulu |
| AuthorAffiliation_xml | – name: 1 Human Computer Interaction Institute, Carnegie Mellon University – name: 3 Center for Ubiquitous Computing, University of Oulu – name: 2 Department of Psychiatry, University of Pittsburgh – name: 4 Department of Emergency Medicine, University of Pittsburgh |
| Author_xml | – sequence: 1 givenname: Sangwon surname: Bae fullname: Bae, Sangwon organization: Human Computer Interaction Institute, Carnegie Mellon University, United States – sequence: 2 givenname: Tammy surname: Chung fullname: Chung, Tammy organization: Department of Psychiatry, University of Pittsburgh, United States – sequence: 3 givenname: Denzil orcidid: 0000-0002-2195-0449 surname: Ferreira fullname: Ferreira, Denzil organization: Center for Ubiquitous Computing, University of Oulu, Finland – sequence: 4 givenname: Anind K. surname: Dey fullname: Dey, Anind K. organization: Human Computer Interaction Institute, Carnegie Mellon University, United States – sequence: 5 givenname: Brian orcidid: 0000-0002-9628-5260 surname: Suffoletto fullname: Suffoletto, Brian email: suffbp@upmc.edu organization: Department of Emergency Medicine, University of Pittsburgh, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29217132$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURKeFf4CQJTZsEmznXSEkVPGoVMQG1pZj33Tu4NjBdgbNT-Hf4mHKazbtKnL8nePjc32WnVhnIcueMlowypqXm0JqPcC64JS1BWMFLfsH2Yp1bZk3JW9PshUtaZNXDS1Ps7MQNpQy3tbVo-yU95y1rOSr7MdHN6ABMq-TOwlgg_OBSKtJWGbwWwygySTVGtO2Aekt2hsSHUENNuK4I9Iot3aGLAEIbNPPQNCSnVsSJ_ViYrggV9NsUMmIzgYyOk82S4g52jziBImSc8QtJF1MR-59E_c4ezhKE-DJ7fc8-_Lu7efLD_n1p_dXl2-uc9UwGnM5QMerrinHaqAKesp535RDP3RK8Vq3bdtpqnRaDXVX8aHpK-iGkVMpO8Y1lOdZffBd7Cx336UxYvY4Sb8TjIp91WIjDlWLfdWCMZGqTrrXB928DBNolWJ7-VfrJIr_dyyuxY3bijrl69u9wYtbA---LRCimDAoMEZacEsQrG9rylLoKqHPj9CNW7xNtaRIXUdbTiueqGf_JvoT5fe0E1AdAOVdCB7G-9704kimMP4aZroXmnvWBGmGWwQvgkKwCjR6UFFoh3cZvDoyUAZtek3mK-zulv8ErAQBwg |
| CitedBy_id | crossref_primary_10_3389_fdgth_2021_694233 crossref_primary_10_3390_s22103893 crossref_primary_10_1007_s42486_021_00072_4 crossref_primary_10_1080_09540121_2021_1874277 crossref_primary_10_1080_10826084_2021_1972314 crossref_primary_10_1038_s41746_020_0234_6 crossref_primary_10_1177_1559827619843489 crossref_primary_10_1016_j_drugalcdep_2021_108972 crossref_primary_10_1007_s10902_022_00587_2 crossref_primary_10_2196_42045 crossref_primary_10_1007_s40429_024_00543_5 crossref_primary_10_1145_3478126 crossref_primary_10_1080_16066359_2023_2241358 crossref_primary_10_1097_HC9_0000000000000329 crossref_primary_10_2196_41833 crossref_primary_10_1016_j_neubiorev_2023_105259 crossref_primary_10_1080_10826084_2023_2205489 crossref_primary_10_1007_s41347_024_00406_w crossref_primary_10_2196_23369 crossref_primary_10_1016_j_addbeh_2018_04_004 crossref_primary_10_2196_43826 crossref_primary_10_1016_j_coisb_2020_07_004 crossref_primary_10_1111_dar_13644 crossref_primary_10_2196_resprot_9850 crossref_primary_10_1371_journal_pone_0248152 crossref_primary_10_1016_j_ijhcs_2019_102382 crossref_primary_10_1016_j_drugalcdep_2020_108201 crossref_primary_10_1111_acer_13975 crossref_primary_10_2196_50795 crossref_primary_10_1002_hep_32329 crossref_primary_10_3390_s17122897 crossref_primary_10_1080_16066359_2019_1584292 crossref_primary_10_1111_acer_13771 crossref_primary_10_1016_j_jbtep_2022_101772 crossref_primary_10_3233_THC_213648 crossref_primary_10_1016_j_drugalcdep_2024_111122 crossref_primary_10_1016_j_josat_2023_209219 crossref_primary_10_2196_64459 crossref_primary_10_1146_annurev_clinpsy_102419_125032 crossref_primary_10_2196_52270 crossref_primary_10_1186_s13643_020_01375_w crossref_primary_10_1002_dev_21831 crossref_primary_10_1016_j_cpr_2020_101885 crossref_primary_10_1017_S0033291719000151 crossref_primary_10_1089_tmj_2019_0241 crossref_primary_10_1111_acer_13846 crossref_primary_10_1016_j_jsat_2021_108417 crossref_primary_10_2196_17590 crossref_primary_10_1016_j_addbeh_2021_106964 crossref_primary_10_1016_j_brat_2020_103596 crossref_primary_10_1136_bmjopen_2022_061259 crossref_primary_10_3389_fdgth_2023_1163386 crossref_primary_10_1145_3422158 crossref_primary_10_1038_s41746_019_0166_1 crossref_primary_10_1016_j_copsyc_2019_01_009 crossref_primary_10_2196_39862 crossref_primary_10_3390_s21134254 crossref_primary_10_2196_58448 crossref_primary_10_1111_dar_13306 crossref_primary_10_1017_S0033291724000862 crossref_primary_10_1177_10944281231202740 crossref_primary_10_1111_apt_16969 crossref_primary_10_1007_s12652_021_03263_0 crossref_primary_10_1111_acer_14844 crossref_primary_10_1016_j_jcbs_2022_06_002 crossref_primary_10_1109_ACCESS_2022_3179702 crossref_primary_10_1111_acer_14487 crossref_primary_10_1038_s41746_021_00441_4 crossref_primary_10_1002_eat_22924 crossref_primary_10_1016_j_alcohol_2018_07_012 crossref_primary_10_1080_10447318_2022_2089085 crossref_primary_10_2196_27337 crossref_primary_10_1016_j_ijsolstr_2019_08_031 crossref_primary_10_2196_24424 |
| Cites_doi | 10.1016/j.addbeh.2016.06.008 10.1037/pha0000068 10.1080/08897077.2017.1356797 10.1002/hup.2245 10.1111/j.1360-0443.2007.02114.x 10.1111/j.1530-0277.2007.00403.x 10.1371/journal.pone.0142877 10.1037/a0017074 10.3389/fict.2015.00006 10.1111/add.12438 10.1111/j.1530-0277.2009.01049.x 10.1007/s13142-011-0021-7 10.1016/j.cpr.2012.08.001 10.1007/s40429-016-0099-6 10.1613/jair.953 10.1146/annurev-clinpsy-032816-044949 10.1111/acer.12092 10.35946/arcr.v36.1.04 10.1016/j.addbeh.2015.06.042 10.1080/09581596.2015.1058921 10.15288/jsad.2015.76.635 10.1037/0022-006X.72.2.155 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Pergamon Press Inc. Aug 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Pergamon Press Inc. Aug 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK K7. K9. 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.addbeh.2017.11.039 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts ProQuest Criminal Justice (Alumni) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Criminal Justice (Alumni) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Welfare & Social Work |
| EISSN | 1873-6327 |
| EndPage | 47 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5963979 PMC5963979 29217132 10_1016_j_addbeh_2017_11_039 S030646031730446X |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R21 DA043181 – fundername: NIAAA NIH HHS grantid: K23 AA023284 – fundername: NIAAA NIH HHS grantid: R01 AA023650 |
| GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYJJ AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABOYX ABUFD ABWVN ABXDB ACDAQ ACGFO ACGFS ACHQT ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HF~ HMK HMO HMW HVGLF HZ~ IHE J1W KOM M29 M39 M3V M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ RXW SAE SCC SDF SDG SDP SES SEW SPCBC SPS SSB SSH SSN SSY SSZ T5K TAE TN5 UAP UHB VH1 WH7 WUQ X6Y XPP XSW Z5R ZCA ZGI ZXP ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFMIJ AFYLN AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7QG 7TK K7. K9. 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c610t-abe824863f4b0ce9022963b9b8cc25d7778d0cd8ccb5842b694e8bf20aa812de3 |
| IEDL.DBID | UNPAY |
| ISSN | 0306-4603 1873-6327 |
| IngestDate | Sun Oct 26 04:01:12 EDT 2025 Tue Sep 30 16:38:17 EDT 2025 Sat Sep 27 18:42:52 EDT 2025 Tue Oct 07 05:27:05 EDT 2025 Mon Jul 21 05:53:23 EDT 2025 Thu Oct 09 00:19:11 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Fri Feb 23 02:29:33 EST 2024 Tue Oct 14 19:35:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Smartphone sensors Alcohol AWARE app Machine learning |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c610t-abe824863f4b0ce9022963b9b8cc25d7778d0cd8ccb5842b694e8bf20aa812de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2195-0449 0000-0002-9628-5260 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5963979 |
| PMID | 29217132 |
| PQID | 2088072042 |
| PQPubID | 45705 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1016_j_addbeh_2017_11_039 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963979 proquest_miscellaneous_1975015844 proquest_journals_2088072042 pubmed_primary_29217132 crossref_primary_10_1016_j_addbeh_2017_11_039 crossref_citationtrail_10_1016_j_addbeh_2017_11_039 elsevier_sciencedirect_doi_10_1016_j_addbeh_2017_11_039 elsevier_clinicalkey_doi_10_1016_j_addbeh_2017_11_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Addictive behaviors |
| PublicationTitleAlternate | Addict Behav |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Ferreira, Kostakos, Dey (bb0050) 2015; 2 Rubinsky, Dawson, Williams, Kivlahan, Bradley (bb0105) 2013; 37 Bae, Ferreira, Suffoletto, Puyana, Kurtz, Chung, Dey (bb0010) 2017 Bradley, DeBenedetti, Volk, Williams, Frank, Kivlahan (bb0020) 2007; 31 Gruenewald, Remer, LaScala (bb0065) 2014; 109 Del Boca, Darkes, Greenbaum, Goldman (bb0045) 2004; 72 Simons, Wills, Emery, Marks (bb0120) 2015; 50 Suffoletto, Kristan, Chung, Jeong, Fabio, Monti, Clark (bb0135) 2015; 10 Cavazos-Rehg, Krauss, Sowles, Bierut (bb0030) 2015; 76 Carey, Scott-Sheldon, Elliott, Garey, Carey (bb0025) 2012; 32 Nahum-Shani, Smith, Spring, Collins, Witkiewitz, Tewari, Murphy (bb0090) 2016 Humeniuk, Ali, Babor, Farrell, Formigoni, Jittiwutikarn, Simon (bb0070) 2008; 103 Moewaka Barnes, McCreanor, Goodwin, Lyons, Griffin, Hutton (bb0080) 2016; 26 Xu, Chen (bb0145) 2010 Scholey, Benson, Neale, Owen, Tiplady (bb0110) 2012; 27 Abowd, Dey, Brown, Davies, Smith, Steggles (bb0005) 1999 Suffoletto, Gharani, Chung, Karimi (bb0125) 2017 Suffoletto, Goyal, Puyana, Chung (bb0130) 2017; 38 Mohr, Zhang, Schueller (bb0085) 2017; 13 Riley, Rivera, Atienza, Nilsen, Allison, Mermelstein (bb0100) 2011; 1 Center for Behavioral Health Statistics and Quality (bb0035) 2016 Lau-Barraco, Braitman, Linden-Carmichael, Stamates (bb0075) 2016; 24 Powers (bb0095) 2011; 2 Berman, Gajecki, Sinadinovic, Andersson (bb0015) 2016; 3 Fowler, Holt, Joshi (bb0055) 2016; 62 Freisthler, Lipperman-Kreda, Bersamin, Gruenewald (bb0060) 2014; 36 Tiplady, Oshinowo, Thomson, Drummond (bb0140) 2009; 33 Chawla, Bowyer, Hal, Kegelmeyer (bb0040) 2002; 16 Shiffman (bb0115) 2009; 21 Mohr (10.1016/j.addbeh.2017.11.039_bb0085) 2017; 13 Simons (10.1016/j.addbeh.2017.11.039_bb0120) 2015; 50 Humeniuk (10.1016/j.addbeh.2017.11.039_bb0070) 2008; 103 Abowd (10.1016/j.addbeh.2017.11.039_bb0005) 1999 Center for Behavioral Health Statistics and Quality (10.1016/j.addbeh.2017.11.039_bb0035) 2016 Tiplady (10.1016/j.addbeh.2017.11.039_bb0140) 2009; 33 Gruenewald (10.1016/j.addbeh.2017.11.039_bb0065) 2014; 109 Moewaka Barnes (10.1016/j.addbeh.2017.11.039_bb0080) 2016; 26 Suffoletto (10.1016/j.addbeh.2017.11.039_bb0135) 2015; 10 Scholey (10.1016/j.addbeh.2017.11.039_bb0110) 2012; 27 Lau-Barraco (10.1016/j.addbeh.2017.11.039_bb0075) 2016; 24 Del Boca (10.1016/j.addbeh.2017.11.039_bb0045) 2004; 72 Ferreira (10.1016/j.addbeh.2017.11.039_bb0050) 2015; 2 Xu (10.1016/j.addbeh.2017.11.039_bb0145) 2010 Suffoletto (10.1016/j.addbeh.2017.11.039_bb0125) 2017 Berman (10.1016/j.addbeh.2017.11.039_bb0015) 2016; 3 Carey (10.1016/j.addbeh.2017.11.039_bb0025) 2012; 32 Freisthler (10.1016/j.addbeh.2017.11.039_bb0060) 2014; 36 Riley (10.1016/j.addbeh.2017.11.039_bb0100) 2011; 1 Fowler (10.1016/j.addbeh.2017.11.039_bb0055) 2016; 62 Powers (10.1016/j.addbeh.2017.11.039_bb0095) 2011; 2 Suffoletto (10.1016/j.addbeh.2017.11.039_bb0130) 2017; 38 Bae (10.1016/j.addbeh.2017.11.039_bb0010) 2017 Bradley (10.1016/j.addbeh.2017.11.039_bb0020) 2007; 31 Rubinsky (10.1016/j.addbeh.2017.11.039_bb0105) 2013; 37 Shiffman (10.1016/j.addbeh.2017.11.039_bb0115) 2009; 21 Cavazos-Rehg (10.1016/j.addbeh.2017.11.039_bb0030) 2015; 76 Nahum-Shani (10.1016/j.addbeh.2017.11.039_bb0090) 2016 Chawla (10.1016/j.addbeh.2017.11.039_bb0040) 2002; 16 |
| References_xml | – volume: 2 year: 2015 ident: bb0050 article-title: AWARE: Mobile context instrumentation framework publication-title: Frontiers in ICT – volume: 21 start-page: 486 year: 2009 end-page: 497 ident: bb0115 article-title: Ecological momentary assessment (EMA) in studies of substance use publication-title: Psychological Assessment – volume: 33 start-page: 2094 year: 2009 end-page: 2102 ident: bb0140 article-title: Alcohol and cognitive function: Assessment in everyday life and laboratory settings using mobile phones publication-title: Alcoholism: Clinical and Experimental Research – volume: 27 start-page: 514 year: 2012 end-page: 516 ident: bb0110 article-title: Neurocognitive and mood effects of alcohol in a naturalistic setting publication-title: Human Psychopharmacology – volume: 62 start-page: 25 year: 2016 end-page: 34 ident: bb0055 article-title: Mobile technology-based interventions for adult users of alcohol: A systematic review of the literature publication-title: Addictive Behaviors – year: 1999 ident: bb0005 article-title: Towards a better understanding of context and context-awareness publication-title: Handheld and ubiquitous computing – volume: 50 start-page: 205 year: 2015 end-page: 212 ident: bb0120 article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms publication-title: Addictive Behaviors – volume: 103 start-page: 1039 year: 2008 end-page: 1047 ident: bb0070 article-title: Validation of the alcohol, smoking and substance involvement screening test (ASSIST) publication-title: Addiction – year: 2017 ident: bb0125 article-title: Using phone sensors and an artificial neural network to detect gait changes during natural drinking episodes publication-title: Gait and Posture – year: 2016 ident: bb0090 article-title: Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support publication-title: Annals of Behavioral Medicine – volume: 38 start-page: 438 year: 2017 end-page: 449 ident: bb0130 article-title: Can an app help identify psychomotor function impairments during drinking occasions in the real world? A mixed-method pilot study publication-title: Substance Abuse – volume: 24 start-page: 100 year: 2016 end-page: 109 ident: bb0075 article-title: Differences in weekday versus weekend drinking among nonstudent emerging adults publication-title: Experimental and Clinical Psychopharmacology – volume: 37 start-page: 1380 year: 2013 end-page: 1390 ident: bb0105 article-title: AUDIT-C scores as a scaled marker of mean daily drinking, alcohol use disorder severity, and probability of alcohol dependence in a U.S. general population sample of drinkers publication-title: Alcoholism: Clinical and Experimental Research – start-page: 1 year: 2017 ident: bb0010 article-title: Detecting drinking episodes in young adults using smartphone-based sensors – volume: 76 start-page: 635 year: 2015 end-page: 643 ident: bb0030 article-title: “Hey everyone, I'm drunk” An evaluation of drinking-related twitter chatter publication-title: Journal of Studies on Alcohol and Drugs – volume: 13 start-page: 23 year: 2017 end-page: 47 ident: bb0085 article-title: Personal sensing: Understanding mental health using ubiquitous sensors and machine learning publication-title: Annual Review of Clinical Psychology – volume: 31 start-page: 1208 year: 2007 end-page: 1217 ident: bb0020 article-title: AUDIT-C as a brief screen for alcohol misuse in primary care publication-title: Alcoholism: Clinical and Experimental Research – volume: 1 start-page: 53 year: 2011 end-page: 71 ident: bb0100 article-title: Health behavior models in the age of mobile interventions: Are our theories up to the task? publication-title: Translational Behavioral Medicine – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bb0040 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research – volume: 3 start-page: 166 year: 2016 end-page: 174 ident: bb0015 article-title: Mobile interventions targeting risky drinking among university students: A review publication-title: Current Addiction Reports – volume: 36 start-page: 29 year: 2014 end-page: 38 ident: bb0060 article-title: Tracking the when, where, and with whom of alcohol use: Integrating ecological momentary assessment and geospatial data to examine risk for alcohol-related problems publication-title: Alcohol Research: Current Reviews – year: 2016 ident: bb0035 article-title: Key substance use and mental health indicators in the United States: Results from the 2015 National Survey on Drug Use and Health – volume: 10 year: 2015 ident: bb0135 article-title: An interactive text message intervention to reduce binge drinking in young adults: A randomized controlled trial with 9-month outcomes publication-title: PLoS One – start-page: 280 year: 2010 end-page: 283 ident: bb0145 article-title: Term-frequency based feature selection methods for text categorization publication-title: IEEE genetic and evolutionary computing (ICGEC), 2010 Fourth International Conference – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: bb0095 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: International Journal of Machine Learning Technology – volume: 72 start-page: 155 year: 2004 end-page: 164 ident: bb0045 article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year publication-title: Journal of Consulting and Clinical Psychology – volume: 109 start-page: 736 year: 2014 end-page: 745 ident: bb0065 article-title: Testing a social ecological model of alcohol use: The California 50-city study publication-title: Addiction – volume: 26 start-page: 62 year: 2016 end-page: 76 ident: bb0080 article-title: Alcohol and social media: Drinking and drunkenness while online publication-title: Critical Public Health – volume: 32 start-page: 690 year: 2012 end-page: 703 ident: bb0025 article-title: Face-to-face versus computer-delivered alcohol interventions for college drinkers: A meta-analytic review, 1998 to 2010 publication-title: Clinical Psychology Review – volume: 62 start-page: 25 year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0055 article-title: Mobile technology-based interventions for adult users of alcohol: A systematic review of the literature publication-title: Addictive Behaviors doi: 10.1016/j.addbeh.2016.06.008 – volume: 24 start-page: 100 year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0075 article-title: Differences in weekday versus weekend drinking among nonstudent emerging adults publication-title: Experimental and Clinical Psychopharmacology doi: 10.1037/pha0000068 – volume: 38 start-page: 438 issue: 4 year: 2017 ident: 10.1016/j.addbeh.2017.11.039_bb0130 article-title: Can an app help identify psychomotor function impairments during drinking occasions in the real world? A mixed-method pilot study publication-title: Substance Abuse doi: 10.1080/08897077.2017.1356797 – volume: 27 start-page: 514 year: 2012 ident: 10.1016/j.addbeh.2017.11.039_bb0110 article-title: Neurocognitive and mood effects of alcohol in a naturalistic setting publication-title: Human Psychopharmacology doi: 10.1002/hup.2245 – volume: 103 start-page: 1039 year: 2008 ident: 10.1016/j.addbeh.2017.11.039_bb0070 article-title: Validation of the alcohol, smoking and substance involvement screening test (ASSIST) publication-title: Addiction doi: 10.1111/j.1360-0443.2007.02114.x – volume: 31 start-page: 1208 year: 2007 ident: 10.1016/j.addbeh.2017.11.039_bb0020 article-title: AUDIT-C as a brief screen for alcohol misuse in primary care publication-title: Alcoholism: Clinical and Experimental Research doi: 10.1111/j.1530-0277.2007.00403.x – year: 2017 ident: 10.1016/j.addbeh.2017.11.039_bb0125 article-title: Using phone sensors and an artificial neural network to detect gait changes during natural drinking episodes publication-title: Gait and Posture – volume: 10 year: 2015 ident: 10.1016/j.addbeh.2017.11.039_bb0135 article-title: An interactive text message intervention to reduce binge drinking in young adults: A randomized controlled trial with 9-month outcomes publication-title: PLoS One doi: 10.1371/journal.pone.0142877 – volume: 21 start-page: 486 year: 2009 ident: 10.1016/j.addbeh.2017.11.039_bb0115 article-title: Ecological momentary assessment (EMA) in studies of substance use publication-title: Psychological Assessment doi: 10.1037/a0017074 – volume: 2 year: 2015 ident: 10.1016/j.addbeh.2017.11.039_bb0050 article-title: AWARE: Mobile context instrumentation framework publication-title: Frontiers in ICT doi: 10.3389/fict.2015.00006 – volume: 109 start-page: 736 year: 2014 ident: 10.1016/j.addbeh.2017.11.039_bb0065 article-title: Testing a social ecological model of alcohol use: The California 50-city study publication-title: Addiction doi: 10.1111/add.12438 – volume: 33 start-page: 2094 year: 2009 ident: 10.1016/j.addbeh.2017.11.039_bb0140 article-title: Alcohol and cognitive function: Assessment in everyday life and laboratory settings using mobile phones publication-title: Alcoholism: Clinical and Experimental Research doi: 10.1111/j.1530-0277.2009.01049.x – year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0035 – volume: 1 start-page: 53 year: 2011 ident: 10.1016/j.addbeh.2017.11.039_bb0100 article-title: Health behavior models in the age of mobile interventions: Are our theories up to the task? publication-title: Translational Behavioral Medicine doi: 10.1007/s13142-011-0021-7 – year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0090 article-title: Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support publication-title: Annals of Behavioral Medicine – volume: 32 start-page: 690 year: 2012 ident: 10.1016/j.addbeh.2017.11.039_bb0025 article-title: Face-to-face versus computer-delivered alcohol interventions for college drinkers: A meta-analytic review, 1998 to 2010 publication-title: Clinical Psychology Review doi: 10.1016/j.cpr.2012.08.001 – volume: 2 start-page: 37 year: 2011 ident: 10.1016/j.addbeh.2017.11.039_bb0095 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: International Journal of Machine Learning Technology – volume: 3 start-page: 166 year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0015 article-title: Mobile interventions targeting risky drinking among university students: A review publication-title: Current Addiction Reports doi: 10.1007/s40429-016-0099-6 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.addbeh.2017.11.039_bb0040 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 13 start-page: 23 year: 2017 ident: 10.1016/j.addbeh.2017.11.039_bb0085 article-title: Personal sensing: Understanding mental health using ubiquitous sensors and machine learning publication-title: Annual Review of Clinical Psychology doi: 10.1146/annurev-clinpsy-032816-044949 – volume: 37 start-page: 1380 year: 2013 ident: 10.1016/j.addbeh.2017.11.039_bb0105 article-title: AUDIT-C scores as a scaled marker of mean daily drinking, alcohol use disorder severity, and probability of alcohol dependence in a U.S. general population sample of drinkers publication-title: Alcoholism: Clinical and Experimental Research doi: 10.1111/acer.12092 – volume: 36 start-page: 29 year: 2014 ident: 10.1016/j.addbeh.2017.11.039_bb0060 article-title: Tracking the when, where, and with whom of alcohol use: Integrating ecological momentary assessment and geospatial data to examine risk for alcohol-related problems publication-title: Alcohol Research: Current Reviews doi: 10.35946/arcr.v36.1.04 – volume: 50 start-page: 205 year: 2015 ident: 10.1016/j.addbeh.2017.11.039_bb0120 article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms publication-title: Addictive Behaviors doi: 10.1016/j.addbeh.2015.06.042 – start-page: 1 year: 2017 ident: 10.1016/j.addbeh.2017.11.039_bb0010 – volume: 26 start-page: 62 year: 2016 ident: 10.1016/j.addbeh.2017.11.039_bb0080 article-title: Alcohol and social media: Drinking and drunkenness while online publication-title: Critical Public Health doi: 10.1080/09581596.2015.1058921 – year: 1999 ident: 10.1016/j.addbeh.2017.11.039_bb0005 article-title: Towards a better understanding of context and context-awareness – volume: 76 start-page: 635 year: 2015 ident: 10.1016/j.addbeh.2017.11.039_bb0030 article-title: “Hey everyone, I'm drunk” An evaluation of drinking-related twitter chatter publication-title: Journal of Studies on Alcohol and Drugs doi: 10.15288/jsad.2015.76.635 – volume: 72 start-page: 155 year: 2004 ident: 10.1016/j.addbeh.2017.11.039_bb0045 article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year publication-title: Journal of Consulting and Clinical Psychology doi: 10.1037/0022-006X.72.2.155 – start-page: 280 year: 2010 ident: 10.1016/j.addbeh.2017.11.039_bb0145 article-title: Term-frequency based feature selection methods for text categorization |
| SSID | ssj0012754 |
| Score | 2.5625296 |
| Snippet | Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing... Background Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 42 |
| SubjectTerms | Adult Adults Alcohol Alcohol use Alcoholic beverages Alcoholism - diagnosis Alcoholism - prevention & control Artificial intelligence AWARE app Biosensing Techniques - instrumentation Biosensing Techniques - methods Cell Phone Cellular telephones Drinking behavior Ecological Momentary Assessment Female Humans Just in time Learning algorithms Machine learning Male Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Prospective Studies Sensors Smartphone sensors Supervised Machine Learning Surveys and Questionnaires Typing Young Adult Young adults |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuCCeBNY0CAhbtlNss464YYqqoJULlCxt8iOHUi7JNE6EdoL_4N_y4zz0K6K1Ipj4hkpscefv5HnwdibUJjYKK38pMBNzlHGT_Bg9hNd8EKEusgDShQ-_7w6u-Cf1vH6iJ2MuTAUVjlgf4_pDq2HN4thNhdNWS6-ENvl1CQZjRSdmjVlsHNBXQzmv6cwD6pf3peQQs-ZpMf0ORfjhZtbGbqSCMWcanlSy_B_H0_X6ef1KMo7XdXI3S-52ewdUaf32b2BW8L7_vMfsCNTPWSzPgEXvplNIbcG3sL4ot5ePWJ_zmuFwAAUom7AolNbby3ISoPtGsIRazT8dBGXBoYWE9-hraF0Gb7FDmTfZBc6a8CVg7JQVrAjFAFX3cO-g497ceuANBkuO9v6ZeVTa3uUkg2hLpR7AZj2Mbs4_fD15Mwf2jX4OXKw1pfKJBFPVsuCqyA3KbID3N0qVUmeR7EWQiQ6oFIEuULWE6lVyk2iiiiQElmGNssn7LjCf33GgEstOFKhYOmuZiMZFas4lHGhZcpDLj22HFcpy4da5tRSY5ONQWuXWb-2Ga0tujkZrq3H_Emr6Wt53CAfjwaQjXmqiKwZHjY36IlJ78CWb6E5G-0sG7DE4jhiLPUSijz2ehpGFKCrHVmZurNZmCLzC3Faucee9mY5_WKUotsZLlFbHBjsJEAVxg9HqvKHqzQep-7e12PzybRvNXPP_3sGXrC7-JT0IZYzdtxuO_MSaV-rXrl9_ReDfVoR priority: 102 providerName: Elsevier |
| Title | Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S030646031730446X https://dx.doi.org/10.1016/j.addbeh.2017.11.039 https://www.ncbi.nlm.nih.gov/pubmed/29217132 https://www.proquest.com/docview/2088072042 https://www.proquest.com/docview/1975015844 https://pubmed.ncbi.nlm.nih.gov/PMC5963979 https://www.ncbi.nlm.nih.gov/pmc/articles/5963979 |
| UnpaywallVersion | submittedVersion |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6327 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012754 issn: 0306-4603 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-6327 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012754 issn: 0306-4603 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6327 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012754 issn: 0306-4603 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6327 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012754 issn: 0306-4603 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6327 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012754 issn: 0306-4603 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELba5AAX3o9AiAYJcfN2H94XtwhRpaBGCFFRTit711u2TTZRvCsUDvwP_i1j70MpRWp7S2LPwc54_FnzzTeEvHFC6UuRCRrleMgZzqERXsw0ynKWh06Wp7YuFD6eB7MT9vHUP90jTlcLY0j7qSiscrG0yuKH4Vaul-lBxxM78GOTi9onwwA_2gMyPJl_nn5vsgUBZYHphuxEoUcDzw27cjnD6cLDLKROQTihpbU7dYvw_19HV-HmVdbknbpc8-1PvljsXEmH98mXbjENE-XCqithpb_-0Xm81WofkHstQIVpM_SQ7MnyERk3VbzwTS5yvpHwFrofVpuLx-TP8UpgdAHNc5eg8GW82ijgZQaqXutgpGQGS0PblND2qTiDagWFKRPOt8CbTr1QKwlGU0pBUcJWhyIwEiHqHRztkN8BsTac16qiRUmrYilxFl_r0A3FDotTPSEnhx--vp_RtucDTRHIVZQLGbksCrycCTuVMUIM3AERiyhNXT8LwzDKbK1nkAqETq4IYiYjkbs25whVMuk9JYMS1_qcAONZyBBP2Z7J77rczQPf4X6e8Zg5jI-I1_31SdoKouu-HIukY76dJ43DJNph8K2UoMOMCO2t1o0gyDXz_c6rkq7YFcNzgjfWNXZhb9eCoQbk3MBy3Dlv0gYkheMYqHVDIndEXvfDGEp0foiXclWrxIkRPjq4rWxEnjW-3i_RjfHt6nhoHV46Bf0ELVN-eQT92ciVty48IlZ_Xm60cy9ua_CS3MVvUUPPHJNBtanlK4SMlZiQfeu3MyHD6dGn2XzShoy_fNRx4g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZRLxZuUBQYJccvuJnE2CTdUUW2h2wut2JtlJ05JWZJonQjthf_Bv2UmL-2qSK242jNSYo8_fyPPg7F3TqB9rRJlhykeco4ydogXsx0mKU8DJ0njKSUKL85n80v-eekv99hxnwtDYZUd9reY3qB1NzLpVnNSZtnkK7FdTk2S0UjRqVneY_e57wbkgY1_D3EeVMC8rSGFrjOJ9_lzTZAXnm6l6U3CCcZUzJN6hv_7frrJP2-GUR7UeSk3v-RqtXVHnTxkhx25hI_t9z9iezp_zEZtBi5806tUrjW8h36gWP94wv4sCoXIABSjrsGgV1usDcg8AVOXBCRGJ_CzCbnU0PWYuIKqgKxJ8U03INsuu1AbDU09KANZDhuCEWjKe5gPcLoVuA7Ik-G6NpWd5Tb1tkcpWRLsQrYVgWmessuTTxfHc7vr12DHSMIqWyodujyceSlX01hHSA_weKtIhXHs-kkQBGEypVoEsULa46pZxHWoUncqJdKMRHvP2H6O__qCAZdJwJELTb3mbdaVbjrzHemniYy4w6XFvH6XRNwVM6eeGivRR61di3ZvBe0t-jkC99Zi9qBVtsU8bpH3ewMQfaIqQqvA2-YWvWDQ2zHmO2iOejsTHZgYnEeQpWZCrsXeDtMIA_S2I3Nd1EY4EVI_B5eVW-x5a5bDL7oR-p2Oh9rBjsEOAlRifHcmz743pcb9qHn4tdh4MO07rdzRf6_AG3Ywv1icibPT8y8v2QOcCdt4yxHbr9a1foUcsFKvmzP-F-FaXTQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXypstCxokxM1pHk6ccKsQVUFqhRAryimyEwfS7iardSK0_BP-LWPnoS1FanvbXXsO9o7HnzXffEPIG4-rUMlc0rjAQ85wDo3xYqZxXrCCe3mRuaZQ-OQ0Op6zT2fh2Q7xhloYS9rPZOlUi6VTlT8tt3K1zA4GnthBmNhc1B2yG-FHd0J256efD7932YKIssh2Q_ZiHtAo8PlQLmc5XXiYpTIpCI87RrvTtAj__3V0FW5eZU3ebauV2PwSi8XWlXS0R74Mi-mYKBdO20gn-_2PzuOtVvuA3O8BKhx2Qw_JjqoekVlXxQvf1KIQawVvYfihXl88Jn9OaonRBQzPXYHGl3G91iCqHHS7MsFIqxyWlrapoO9T8QOaGkpbJlxsQHSdeqHVCqymlIaygo0JRWAlQvQ7-LhFfgfE2nDe6oaWFW3KpcJZYmVCN5RbLE79hMyPPnx9f0z7ng80QyDXUCFV7LM4Cgom3UwlCDFwB2Qi4yzzw5xzHueu0TPIJEInX0YJU7EsfFcIhCq5Cp6SSYVrfU6AiZwzxFNuYPO7vvCLKPREWOQiYR4TUxIMf32a9YLopi_HIh2Yb-dp5zCpcRh8K6XoMFNCR6tVJwhyzfxw8Kp0KHbF8JzijXWNHR_tejDUgZwbWM4G5037gKRxHAO1aUjkT8nrcRhDickPiUrVrU69BOGjh9vKpuRZ5-vjEv0E365egNb80ikYJxiZ8ssj6M9Wrrx34SlxxvNyo53bv63BC3IPv8UdPXNGJs26VS8RMjbyVR8k_gJZaW9W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile+phone+sensors+and+supervised+machine+learning+to+identify+alcohol+use+events+in+young+adults%3A+Implications+for+just-in-time+adaptive+interventions&rft.jtitle=Addictive+behaviors&rft.au=Bae%2C+Sangwon&rft.au=Chung%2C+Tammy&rft.au=Ferreira%2C+Denzil&rft.au=Dey%2C+Anind+K&rft.date=2018-08-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4603&rft.eissn=1873-6327&rft.volume=83&rft.spage=42&rft_id=info:doi/10.1016%2Fj.addbeh.2017.11.039&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4603&client=summon |