A pan-cancer landscape of telomeric content shows that RAD21 and HGF alterations are associated with longer telomeres

Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX . Methods We analyzed the telomeric cont...

Full description

Saved in:
Bibliographic Details
Published inGenome medicine Vol. 14; no. 1; pp. 25 - 15
Main Authors Sharaf, Radwa, Montesion, Meagan, Hopkins, Julia F., Song, Jiarong, Frampton, Garrett M., Albacker, Lee A.
Format Journal Article
LanguageEnglish
Published London BioMed Central 26.02.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1756-994X
1756-994X
DOI10.1186/s13073-022-01029-7

Cover

Abstract Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX . Methods We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Results Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC , ATRX, and DAXX . We further identified that amplifications in two genes, RAD21 and HGF , were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1–8q24.12), which excludes MYC , and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. Conclusions This study highlights the importance of the role played by RAD21 (8q23.1–8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
AbstractList Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. This study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. Methods We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Results Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. Conclusions This study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis. Keywords: Telomere, Tumor, RAD21, HGF, Breast, TERC, TERT, ATRX, DAXX, ALT
Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX . Methods We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Results Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC , ATRX, and DAXX . We further identified that amplifications in two genes, RAD21 and HGF , were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1–8q24.12), which excludes MYC , and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. Conclusions This study highlights the importance of the role played by RAD21 (8q23.1–8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX.BACKGROUNDCancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX.We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available.METHODSWe analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available.Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining.RESULTSTelomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining.This study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.CONCLUSIONSThis study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. This study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
Abstract Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. Methods We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Results Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1–8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. Conclusions This study highlights the importance of the role played by RAD21 (8q23.1–8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.
ArticleNumber 25
Audience Academic
Author Albacker, Lee A.
Frampton, Garrett M.
Hopkins, Julia F.
Song, Jiarong
Sharaf, Radwa
Montesion, Meagan
Author_xml – sequence: 1
  givenname: Radwa
  surname: Sharaf
  fullname: Sharaf, Radwa
  organization: Foundation Medicine Inc
– sequence: 2
  givenname: Meagan
  surname: Montesion
  fullname: Montesion, Meagan
  organization: Foundation Medicine Inc
– sequence: 3
  givenname: Julia F.
  surname: Hopkins
  fullname: Hopkins, Julia F.
  organization: Foundation Medicine Inc
– sequence: 4
  givenname: Jiarong
  surname: Song
  fullname: Song, Jiarong
  organization: Foundation Medicine Inc
– sequence: 5
  givenname: Garrett M.
  surname: Frampton
  fullname: Frampton, Garrett M.
  organization: Foundation Medicine Inc
– sequence: 6
  givenname: Lee A.
  orcidid: 0000-0002-5070-1783
  surname: Albacker
  fullname: Albacker, Lee A.
  email: lalbacker@foundationmedicine.com
  organization: Foundation Medicine Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35227290$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuLFDEUhQsZcR76B1xIQBA3NVZSqVSyEZrRecCAIAruwq3kVnea6kqbpBz896YfDt0iQxYJyXfOTXLPeXEy-hGL4jWtLimV4kOkddXWZcVYWdGKqbJ9VpzRthGlUvzHycH6tDiPcVlVgjPevihO64axlqnqrJhmZA1jaWA0GMgAo40G1kh8TxIOfoXBGWL8mHBMJC78QyRpAYl8nX1ilGSc3N5cExgSBkjOj5FAQAIxeuMgoSUPLi3I4Md5tt87YnxZPO9hiPhqP18U368_f7u6Le-_3Nxdze5LI2iVSsqUsAyBU8PBdtxKJaFjhlO0RholLWBngStslagppVUjpWLYmb7pKtHUF8Xdztd6WOp1cCsIv7UHp7cbPsw1hOTMgFr0HWcAjDY9cAQLhtdNowQ2VkLT2Oz1cee1nrpVrp8_JMBwZHp8MrqFnvtfWkpZC6mywfu9QfA_J4xJr1w0OORPRz9FzUTNJVeCsYy-3aFzyFdzY--zo9ngeiZyQ7OjrDN1-R8qD4srl3uGvcv7R4J3B4IF5rYtoh-mbeOOwTeHb3185N_cZIDtABN8jAH7R4RWehNOvQunzuHU23DqNovkPyLj0jY1-d5ueFpa76Qx19lkSS_9FMacnadUfwBA2Pi-
CitedBy_id crossref_primary_10_1038_s41598_023_38923_y
crossref_primary_10_1371_journal_pone_0272707
crossref_primary_10_1038_s41525_023_00369_6
crossref_primary_10_1089_dna_2023_0331
Cites_doi 10.18632/oncotarget.16961
10.1038/nm1197-1271
10.1093/nar/gkq929
10.1038/nature02118
10.1016/j.febslet.2010.06.009
10.1038/s41388-019-0872-9
10.1038/415530a
10.1038/sj.bjc.6603110
10.1126/science.1200609
10.1186/s13073-017-0424-2
10.1038/s41598-019-56847-4
10.1038/ng.3781
10.1016/0092-8674(89)90035-4
10.1186/s12859-019-2851-0
10.1210/jc.2008-0372
10.1016/S0959-8049(97)00062-2
10.1111/1475-6773.13669
10.1038/emboj.2012.266
10.1093/carcin/bgh296
10.1177/0300891620910805
10.1101/gr.125567.111
10.1096/fj.08-108985
10.1186/bcr3176
10.1038/onc.2013.103
10.1038/sj.onc.1205058
10.1002/gcc.10289
10.1006/excr.2001.5446
10.20892/j.issn.2095-3941.2016.0066
10.1139/g89-104
10.1074/jbc.M002843200
10.1186/gb-2012-13-12-r113
10.1158/1078-0432.CCR-08-0099
10.1038/nsmb.2245
10.1016/j.ymthe.2017.12.015
10.1093/hmg/10.18.1945
10.1016/j.ajpath.2012.10.001
10.1371/journal.pgen.1002772
10.1038/nbt.2696
10.1038/s41586-020-1969-6
10.1016/j.ajpath.2011.06.018
10.1128/MCB.21.12.3862-3875.2001
10.1158/1535-7163.MCT-04-0241
10.1016/j.cell.2011.02.013
10.1038/s41467-019-13824-9
10.1016/j.exger.2008.01.005
10.1001/jama.2019.3241
10.1038/bjc.2014.31
10.3390/genes11121442
10.1126/science.1207313
10.1186/bcr2814
10.1016/j.ajhg.2015.12.021
10.5152/ejbh.2019.4778
10.1126/science.7605428
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s13073-022-01029-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-994X
EndPage 15
ExternalDocumentID oai_doaj_org_article_6fb42aa215fa4eadac435596e5d8a55d
PMC8883689
A699488383
35227290
10_1186_s13073_022_01029_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACJQM
ACUHS
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIAM
BBNVY
BENPR
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
LK8
M1P
M7P
MK0
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c610t-1296d2ea41c4adb4d898ab2c41edc8c98daebda49e7963111058892ebcf5b0653
IEDL.DBID DOA
ISSN 1756-994X
IngestDate Wed Aug 27 01:00:44 EDT 2025
Thu Aug 21 18:24:41 EDT 2025
Fri Sep 05 05:07:17 EDT 2025
Tue Jun 17 21:35:03 EDT 2025
Tue Jun 10 20:08:40 EDT 2025
Thu May 22 21:21:37 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Tue Jul 01 04:01:11 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Sat Sep 06 07:28:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DAXX
TERT
TERC
RAD21
HGF
ATRX
Breast
Tumor
ALT
Telomere
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-1296d2ea41c4adb4d898ab2c41edc8c98daebda49e7963111058892ebcf5b0653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5070-1783
OpenAccessLink https://doaj.org/article/6fb42aa215fa4eadac435596e5d8a55d
PMID 35227290
PQID 2634849622
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_6fb42aa215fa4eadac435596e5d8a55d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883689
proquest_miscellaneous_2634849622
gale_infotracmisc_A699488383
gale_infotracacademiconefile_A699488383
gale_healthsolutions_A699488383
pubmed_primary_35227290
crossref_primary_10_1186_s13073_022_01029_7
crossref_citationtrail_10_1186_s13073_022_01029_7
springer_journals_10_1186_s13073_022_01029_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-26
PublicationDateYYYYMMDD 2022-02-26
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome medicine
PublicationTitleAbbrev Genome Med
PublicationTitleAlternate Genome Med
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References Y Jiao (1029_CR39) 2011; 331
Z Yu (1029_CR51) 2019; 18
H Xu (1029_CR48) 2011; 13
M Parker (1029_CR25) 2012; 13
LJ Van’t Veer (1029_CR50) 2002; 415
PJ Campbell (1029_CR20) 2020; 578
FP Barthel (1029_CR27) 2017; 49
TM Bryan (1029_CR10) 1997; 3
1029_CR23
GM Frampton (1029_CR15) 2013; 31
1029_CR22
M Capezzone (1029_CR45) 2008; 93
CM Heaphy (1029_CR13) 2011; 179
JD Henson (1029_CR14) 2010; 584
C-Q Zhu (1029_CR46) 2006; 94
TO Nielsen (1029_CR57) 2020; 00
T Inui (1029_CR35) 2001; 14
N Kim (1029_CR6) 1994; 266
JD Henson (1029_CR11) 2002; 21
AI Idilli (1029_CR31) 2020; 11
T Zhu (1029_CR53) 2020; 106
G Kanyılmaz (1029_CR54) 2019; 15
L Feuerbach (1029_CR18) 2019; 20
K Perrem (1029_CR42) 2001; 21
ARS Gocha (1029_CR44) 2013; 182
D Hanahan (1029_CR1) 2011; 144
F D’Adda Di Fagagna (1029_CR5) 2003; 426
R Rahman (1029_CR3) 2008; 43
X Hua (1029_CR24) 2016; 98
S Deb (1029_CR52) 2014; 110
CM Heaphy (1029_CR12) 2011; 333
ZR Chalmers (1029_CR16) 2017; 9
MA Cerone (1029_CR41) 2001; 10
G Singal (1029_CR21) 2019; 321
KP Porkka (1029_CR33) 2004; 39
G Ciriello (1029_CR37) 2012; 22
R Villa (1029_CR43) 2008; 14
JW Shay (1029_CR4) 2005; 26
JW Shay (1029_CR7) 1997; 33
JM Atienza (1029_CR32) 2005; 4
NA Soliman (1029_CR55) 2016; 13
EH Blackburn (1029_CR9) 1989; 31
Z Deng (1029_CR29) 2012; 31
R Lu (1029_CR40) 2014; 33
T Inui (1029_CR34) 2002; 273
CA Lovejoy (1029_CR28) 2012; 8
RC Ramaker (1029_CR26) 2017; 8
SA Forbes (1029_CR17) 2011; 39
EJ Lee (1029_CR36) 2018; 26
L Sieverling (1029_CR19) 2020; 11
M Yan (1029_CR49) 2012; 14
X Zhu (1029_CR56) 2020; 10
GB Morin (1029_CR8) 1989; 59
C-H Yeang (1029_CR38) 2008; 22
X Yuan (1029_CR47) 2019; 38
MT Hayashi (1029_CR30) 2012; 19
KE Huffman (1029_CR2) 2000; 275
References_xml – volume: 8
  start-page: 38668
  year: 2017
  ident: 1029_CR26
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.16961
– volume: 3
  start-page: 1271
  year: 1997
  ident: 1029_CR10
  publication-title: Nat Med
  doi: 10.1038/nm1197-1271
– volume: 39
  start-page: 945
  year: 2011
  ident: 1029_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq929
– volume: 14
  start-page: 275
  year: 2001
  ident: 1029_CR35
  publication-title: Hum Cell
– volume: 426
  start-page: 194
  year: 2003
  ident: 1029_CR5
  publication-title: Nature.
  doi: 10.1038/nature02118
– volume: 584
  start-page: 3800
  year: 2010
  ident: 1029_CR14
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2010.06.009
– volume: 38
  start-page: 6172
  year: 2019
  ident: 1029_CR47
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0872-9
– volume: 415
  start-page: 530
  year: 2002
  ident: 1029_CR50
  publication-title: Nature.
  doi: 10.1038/415530a
– volume: 94
  start-page: 1452
  year: 2006
  ident: 1029_CR46
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6603110
– volume: 331
  start-page: 1199
  year: 2011
  ident: 1029_CR39
  publication-title: Science (80- )
  doi: 10.1126/science.1200609
– volume: 9
  start-page: 34
  year: 2017
  ident: 1029_CR16
  publication-title: Genome Med
  doi: 10.1186/s13073-017-0424-2
– volume: 10
  start-page: 1
  year: 2020
  ident: 1029_CR56
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 49
  start-page: 349
  year: 2017
  ident: 1029_CR27
  publication-title: Nat Genet
  doi: 10.1038/ng.3781
– volume: 59
  start-page: 521
  year: 1989
  ident: 1029_CR8
  publication-title: Cell.
  doi: 10.1016/0092-8674(89)90035-4
– volume: 20
  start-page: 1
  year: 2019
  ident: 1029_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2851-0
– volume: 93
  start-page: 3950
  year: 2008
  ident: 1029_CR45
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2008-0372
– volume: 33
  start-page: 787
  year: 1997
  ident: 1029_CR7
  publication-title: Eur J Cancer
  doi: 10.1016/S0959-8049(97)00062-2
– ident: 1029_CR22
  doi: 10.1111/1475-6773.13669
– volume: 31
  start-page: 4165
  year: 2012
  ident: 1029_CR29
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.266
– volume: 26
  start-page: 867
  year: 2005
  ident: 1029_CR4
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgh296
– volume: 106
  start-page: 223
  year: 2020
  ident: 1029_CR53
  publication-title: Tumori.
  doi: 10.1177/0300891620910805
– volume: 22
  start-page: 398
  year: 2012
  ident: 1029_CR37
  publication-title: Genome Res
  doi: 10.1101/gr.125567.111
– volume: 22
  start-page: 2605
  year: 2008
  ident: 1029_CR38
  publication-title: FASEB J
  doi: 10.1096/fj.08-108985
– volume: 14
  start-page: R69
  year: 2012
  ident: 1029_CR49
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3176
– volume: 33
  start-page: 1495
  year: 2014
  ident: 1029_CR40
  publication-title: Oncogene.
  doi: 10.1038/onc.2013.103
– volume: 21
  start-page: 598
  year: 2002
  ident: 1029_CR11
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1205058
– volume: 39
  start-page: 1
  year: 2004
  ident: 1029_CR33
  publication-title: Genes Chromosom Cancer
  doi: 10.1002/gcc.10289
– volume: 273
  start-page: 147
  year: 2002
  ident: 1029_CR34
  publication-title: Exp Cell Res
  doi: 10.1006/excr.2001.5446
– volume: 13
  start-page: 496
  year: 2016
  ident: 1029_CR55
  publication-title: Cancer Biol Med
  doi: 10.20892/j.issn.2095-3941.2016.0066
– volume: 31
  start-page: 553
  year: 1989
  ident: 1029_CR9
  publication-title: Genome.
  doi: 10.1139/g89-104
– volume: 275
  start-page: 19719
  year: 2000
  ident: 1029_CR2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M002843200
– volume: 13
  start-page: R113
  year: 2012
  ident: 1029_CR25
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r113
– volume: 14
  start-page: 4134
  year: 2008
  ident: 1029_CR43
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0099
– volume: 19
  start-page: 387
  year: 2012
  ident: 1029_CR30
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2245
– volume: 26
  start-page: 845
  year: 2018
  ident: 1029_CR36
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2017.12.015
– volume: 10
  start-page: 1945
  year: 2001
  ident: 1029_CR41
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/10.18.1945
– volume: 182
  start-page: 41
  year: 2013
  ident: 1029_CR44
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2012.10.001
– volume: 8
  start-page: 12
  year: 2012
  ident: 1029_CR28
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002772
– volume: 31
  start-page: 1023
  year: 2013
  ident: 1029_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2696
– volume: 578
  start-page: 82
  year: 2020
  ident: 1029_CR20
  publication-title: Nature.
  doi: 10.1038/s41586-020-1969-6
– volume: 179
  start-page: 1608
  year: 2011
  ident: 1029_CR13
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.06.018
– volume: 21
  start-page: 3862
  year: 2001
  ident: 1029_CR42
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.12.3862-3875.2001
– volume: 4
  start-page: 361
  year: 2005
  ident: 1029_CR32
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-04-0241
– volume: 00
  start-page: 1
  year: 2020
  ident: 1029_CR57
  publication-title: JNCI J Natl Cancer Inst
– volume: 18
  start-page: 518
  year: 2019
  ident: 1029_CR51
  publication-title: Oncol Lett
– volume: 144
  start-page: 646
  year: 2011
  ident: 1029_CR1
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.02.013
– volume: 11
  start-page: 1
  year: 2020
  ident: 1029_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13824-9
– volume: 43
  start-page: 258
  year: 2008
  ident: 1029_CR3
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2008.01.005
– volume: 321
  start-page: 1391
  year: 2019
  ident: 1029_CR21
  publication-title: JAMA.
  doi: 10.1001/jama.2019.3241
– volume: 110
  start-page: 1606
  year: 2014
  ident: 1029_CR52
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2014.31
– volume: 11
  start-page: 1
  year: 2020
  ident: 1029_CR31
  publication-title: Genes (Basel)
  doi: 10.3390/genes11121442
– volume: 333
  start-page: 425
  year: 2011
  ident: 1029_CR12
  publication-title: Science.
  doi: 10.1126/science.1207313
– volume: 13
  start-page: R9
  year: 2011
  ident: 1029_CR48
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2814
– volume: 98
  start-page: 442
  year: 2016
  ident: 1029_CR24
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.12.021
– volume: 15
  start-page: 256
  year: 2019
  ident: 1029_CR54
  publication-title: Eur J Breast Heal
  doi: 10.5152/ejbh.2019.4778
– ident: 1029_CR23
– volume: 266
  start-page: 2011
  year: 1994
  ident: 1029_CR6
  publication-title: Science (80- )
  doi: 10.1126/science.7605428
SSID ssj0064247
Score 2.312926
Snippet Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation,...
Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT...
Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation,...
Abstract Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Analysis
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Breast
Cancer
Cancer Research
Cell Cycle Proteins - genetics
DNA-Binding Proteins - genetics
Genes
Hepatocyte Growth Factor - genetics
Hepatocyte Growth Factor - metabolism
HGF
Human Genetics
Humans
Medicine/Public Health
Metabolomics
Neoplasms - genetics
RAD21
Systems Biology
Telomerase
Telomerase - genetics
Telomere
Telomere - genetics
Telomere Homeostasis
Telomeres
TERC
Tumor
X-linked Nuclear Protein - genetics
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA66Ivgi3q2uGkHwQYNNJkmTx3F0HAR9EBf2LaRpyghDK9MO4r_3nLQdtqss-NqcXpJzyZfmnC-EvIrcR1_mhoXaKybtQjNfCs1iHpDACgB6xHrnL1_15kx-PlfnI00O1sJc3L_nRr_rOBohw5xzZD-zrLhObii4iNa80qsp6gKMlsVUFPPP-2YTT-Ln_zsKX5iGLqdIXtonTdPP-g65PeJGuhwUfZdci809cnM4SfL3fXJYUnBrFlCHe5rqdzGzibY17eOuTdsyFNPS4UW027a_OtpvfU-_LT8ITkGcbj6tado6H37hUb-P1I-6ixXF_7V01-KnTU-M3QNytv74fbVh44kKLABM6hlM7roS0UsepK9KWRlrQDVBcuipCdZUPpaVlzYW4JgQBnNljBWxDLUqkcX2ITlp2iY-JlTlwfJQ1FJ7AAWVNl4aXtcqXxQLVZc8I3wabhdGunE89WLn0rLDaDeoyIGKXFKRKzLy5njPz4Fs40rp96jFoyQSZacLYD9u9Dun61IK7wHY1F6C1_gA-FBZHVVlvFJVRl6gDbih6vTo7m6prYXYBuv3jLxOEujw0IHgx7oFGAakzppJns4kwVHDrPnlZGcOmzC7rYntoXNCL6SRVguRkUeD3R17hQAZFkB5RoqZRc66PW9pfmwTT7iB12pjM_J2sl03BqjuimF98n_iT8ktkbxMMKFPyUm_P8RngNP68nly0D-SoTRu
  priority: 102
  providerName: Springer Nature
Title A pan-cancer landscape of telomeric content shows that RAD21 and HGF alterations are associated with longer telomeres
URI https://link.springer.com/article/10.1186/s13073-022-01029-7
https://www.ncbi.nlm.nih.gov/pubmed/35227290
https://www.proquest.com/docview/2634849622
https://pubmed.ncbi.nlm.nih.gov/PMC8883689
https://doaj.org/article/6fb42aa215fa4eadac435596e5d8a55d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls91wiCDxquzSZp8ri33t4ieMjhwb6FNE1ZYdnKtov43zuTtsv1hPPFl4VuZredzGeamV8IeR8yF1yRauYrJ5kwU8VcwRULqUcAK0jQA_Y7f71QyyvxZSVX1476wpqwDh64m7gTVRWCOweRqXIC2HYeArw0KshSOylL9L6pSYfFVOeDIakW-dAio9VJk6EqM6xcRww1w_JRGIpo_X_75GtB6WbB5I1d0xiMFo_Iwz6LpLPu6R-TO2H7hNzvzpX8_ZTsZxSMnHmU6I7Gbl6sc6J1RduwqeMmDcUidbgRbdb1r4a2a9fSy9lnnlEgp8vzBY0b6d0LPep2gbpekqGk-PaWbmp8tOEfQ_OMXC3Ovs-XrD9fgXlImloGoV6VPDiReeHKQpTaaBCUFxlwqr3RpQtF6YQJOZgpOMVUam14KHwlC8S0fU6OtvU2vCRUpt5kPq-EcpAilEo7obOqkuk0n8qqyBKSDdNtfQ8-jmdgbGxchGhlOxFZEJGNIrJ5Qj4efvOzg964lfoUpXigRNjs-AUok-2Vyf5LmRLyFnXAdj2oB-O3M2UMeDpYzSfkQ6RA8wcGvOu7GGAaEEhrRHk8ogSz9aPhd4OeWRzCWrdtqPeN5WoqtDCK84S86PTuwBWmy7AcShOSjzRyxPZ4ZPtjHVHDNdxWaZOQT4Pu2t5dNbdM66v_Ma2vyQMebY8zro7JUbvbhzeQy7XFhNzNV_mE3Ds9u_h2CVdzNZ9EU4bP81X2B2uBSaI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCMEL4pvAYEZC4gGsJa7t2I-lUApse0CbtDfLcRwVqWqmJtXEf8-dk1TLQJN4jc9J7Pvw2Xf3MyHvQuaCK1LNfOUkE2aimCu4YiH1CGAFDnrAeufjE7U4E9_P5XkPk4O1MFfj95lWh02GQsgw5xzRzwzLb5M7GLlEnPyZmg1WF9xokQ9FMf_sN1p4Ij7_31b4yjJ0PUXyWpw0Lj_zh-RB7zfSacfoR-RWWD8md7ubJH8_IdspBbVmHnm4obF-FzObaF3RNqzqGJahmJYOH6LNsr5saLt0Lf05_cwzCuR08XVOY-i8O8KjbhOo63kXSorntXRV468NbwzNU3I2_3I6W7D-RgXmwU1qGSzuquTBicwLVxai1EYDa7zIYKTaG126UJROmJCDYoIZTKXWhofCV7JAFNtnZG9dr8MLQmXqTebzSigHTkGptBM6qyqZTvKJrIosIdkw3db3cON468XKxm2HVrZjkQUW2cgimyfkw67PRQe2cSP1J-TijhKBsuMDkB_b651VVSG4c-DYVE6A1jgP_qE0KshSOynLhBygDNiu6nSn7naqjAHbBvv3hLyPFKjwMADv-roFmAaEzhpR7o8oQVH9qPntIGcWmzC7bR3qbWO5mggtjOI8Ic87uduNCh1k2AClCclHEjka9rhl_WsZccI1fFZpk5CPg-za3kA1N0zry_8jPyD3FqfHR_bo28mPV-Q-jxrHGVf7ZK_dbMNr8Nna4k1U1j881jdd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCMQL4nMEBjMSEg9gLXFtx34sHaV8TQgxaW-W4zgUqWqmJhXiv-fOSaploEm81pe25_vwz_Hdz4S8DJkLrkg185WTTJiJYq7gioXUI4EVAPSA_c5fTtTiVHw8k2cXuvhjtftwJNn1NCBL07o9Oi-rLsS1OmoydE2GlejIiWZYfp3cQK4uLOqbqdmQiwFci3xolfnnc6PlKLL2_52bLyxOlwsnL52exkVpfpfc6dEknXbmv0euhfV9crO7X_L3A7KdUgh25tGyGxq7erHeidYVbcOqjoc1tNecNsv6V0PbpWvpt-kxzyiI08X7OY0H6t2LPeo2gbreoqGk-BaXrmr8a8M3huYhOZ2_-z5bsP6eBeYBPLUMlnxV8uBE5oUrC1Fqo8FgXmSgqfZGly4UpRMm5BCukBxTqbXhofCVLJDb9hHZW9fr8JhQmXqT-bwSygFUKJV2QmdVJdNJPpFVkSUkG6bb-p6EHO_CWNm4GdHKdiayYCIbTWTzhLzePXPeUXBcKf0WrbiTRPrs-EG9-WH7aLSqKgR3DuBO5QTEkvOAGqVRQZbaSVkm5BB9wHa9qLskYKfKGMh4sKtPyKsogWkAFPCu72aAaUBCrZHkwUgSwtePhl8MfmZxCGve1qHeNparidDCKM4Tst_53U4rhM2wLUoTko88cqT2eGT9cxnZwzX8rNImIW8G37V92mqumNYn_yd-SG59PZ7bzx9OPj0lt3kMOM64OiB77WYbngGQa4vnMVb_ADlgP60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pan-cancer+landscape+of+telomeric+content+shows+that+RAD21+and+HGF+alterations+are+associated+with+longer+telomeres&rft.jtitle=Genome+medicine&rft.au=Sharaf%2C+Radwa&rft.au=Montesion%2C+Meagan&rft.au=Hopkins%2C+Julia+F.&rft.au=Song%2C+Jiarong&rft.date=2022-02-26&rft.issn=1756-994X&rft.eissn=1756-994X&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13073-022-01029-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13073_022_01029_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon