An individualized predictor of health and disease using paired reference and target samples

Background Consider the problem of designing a panel of complex biomarkers to predict a patient’s health or disease state when one can pair his or her current test sample, called a target sample, with the patient’s previously acquired healthy sample, called a reference sample. As contrasted to a pop...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 17; no. 1; p. 47
Main Authors Liu, Tzu-Yu, Burke, Thomas, Park, Lawrence P., Woods, Christopher W., Zaas, Aimee K., Ginsburg, Geoffrey S., Hero, Alfred O.
Format Journal Article
LanguageEnglish
Published London BioMed Central 22.01.2016
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-016-0889-9

Cover

Abstract Background Consider the problem of designing a panel of complex biomarkers to predict a patient’s health or disease state when one can pair his or her current test sample, called a target sample, with the patient’s previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person’s healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. Results The objective is to predict each subject’s state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person’s baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject’s reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response. Conclusions If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.
AbstractList Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response. If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.
Background Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. Results The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response. Conclusions If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers. Keywords: Reference-aided prediction, Precision medicine, Automated diagnostics, Biomarker discovery, Sparse multi-block classifier algorithm
Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels.BACKGROUNDConsider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels.The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response.RESULTSThe objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response.If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.CONCLUSIONSIf one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.
Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response. If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.
Background Consider the problem of designing a panel of complex biomarkers to predict a patient’s health or disease state when one can pair his or her current test sample, called a target sample, with the patient’s previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person’s healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. Results The objective is to predict each subject’s state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person’s baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject’s reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response. Conclusions If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.
ArticleNumber 47
Audience Academic
Author Burke, Thomas
Park, Lawrence P.
Woods, Christopher W.
Hero, Alfred O.
Zaas, Aimee K.
Liu, Tzu-Yu
Ginsburg, Geoffrey S.
Author_xml – sequence: 1
  givenname: Tzu-Yu
  surname: Liu
  fullname: Liu, Tzu-Yu
  organization: Electrical Engineering and Computer Science Department, University of California
– sequence: 2
  givenname: Thomas
  surname: Burke
  fullname: Burke, Thomas
  organization: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University
– sequence: 3
  givenname: Lawrence P.
  surname: Park
  fullname: Park, Lawrence P.
  organization: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University
– sequence: 4
  givenname: Christopher W.
  surname: Woods
  fullname: Woods, Christopher W.
  organization: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University
– sequence: 5
  givenname: Aimee K.
  surname: Zaas
  fullname: Zaas, Aimee K.
  organization: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University
– sequence: 6
  givenname: Geoffrey S.
  surname: Ginsburg
  fullname: Ginsburg, Geoffrey S.
  email: geoffrey.ginsburg@duke.edu
  organization: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University
– sequence: 7
  givenname: Alfred O.
  surname: Hero
  fullname: Hero, Alfred O.
  email: hero@eecs.umich.edu
  organization: Electrical Engineering and Computer Science Department, University of Michigan, Center for Computational Biology and Bioinformatics, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26801061$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1r3DAQhkVJaZJtf0AvRdBLenAq2ZYtXQpL6EcgUOjHqQchS2Ovgi25khza_vpq6zRkSwk6jJCed0ajd07RkfMOEHpOyTmlvHkdacmZKAhtCsK5KMQjdELrlhYlJezo3v4YncZ4TQhtOWFP0HHZcEJJQ0_Qt63D1hl7Y82iRvsLDJ4DGKuTD9j3eAdqTDusnMHGRlAR8BKtG_CsbOZwgB4COA1_kKTCAAlHNc0jxKfoca_GCM9u4wZ9fff2y8WH4urj-8uL7VWhGyJS0TNWcWW4zkGzRjAGpqqqFnTXgGGMM1WJsq-7ShDeUQaq7agxvSA9K1lPqw16s-adl24Co8GloEY5Bzup8FN6ZeXhjbM7OfgbWbdl2eRSG3R2myD47wvEJCcbNYyjcuCXKGmbH0p4WzUZfbmigxpBWtf7nFHvcbmt65YJUdV1ps7_Q-VlYLI6m9jbfH4geHUgyEyCH2lQS4zy8vOnQ_bF_Xbv-vxragboCujgY8wO3SGUyP3gyHVwZB4cuR8cKbKm_UejbVLJ-v2P2fFBZbkqY67iBgjy2i_BZcMfEP0G58PWXg
CitedBy_id crossref_primary_10_3389_fmicb_2018_02957
crossref_primary_10_3389_fimmu_2022_920227
crossref_primary_10_1016_j_immuni_2021_03_002
crossref_primary_10_1016_j_celrep_2019_10_019
crossref_primary_10_1002_int_21984
crossref_primary_10_1016_j_clinthera_2019_06_007
crossref_primary_10_1016_j_trsl_2020_02_005
crossref_primary_10_1186_s13073_018_0554_1
crossref_primary_10_7717_peerj_15552
crossref_primary_10_1016_j_cmpb_2021_106495
crossref_primary_10_1002_ctm2_244
crossref_primary_10_1016_j_xcrm_2022_100842
crossref_primary_10_1016_j_immuni_2024_10_002
crossref_primary_10_1097_SHK_0000000000000731
crossref_primary_10_1038_s41598_023_30306_7
crossref_primary_10_1186_s12859_019_3271_x
crossref_primary_10_1016_j_cels_2022_11_007
crossref_primary_10_1186_s12859_024_05674_0
crossref_primary_10_1016_j_celrep_2024_113706
crossref_primary_10_1093_bib_bbae311
crossref_primary_10_1007_s00521_019_04444_x
crossref_primary_10_1016_j_schres_2019_07_057
crossref_primary_10_32604_biocell_2021_012938
crossref_primary_10_1088_1478_3975_acce8d
crossref_primary_10_1038_s41467_018_06735_8
crossref_primary_10_1016_j_ebiom_2017_02_015
crossref_primary_10_1016_j_ijid_2021_02_112
crossref_primary_10_3389_fmicb_2022_1003380
crossref_primary_10_3389_fimmu_2021_741837
crossref_primary_10_3389_fimmu_2024_1385362
crossref_primary_10_3389_fimmu_2022_1048774
crossref_primary_10_1007_s00521_023_08938_7
crossref_primary_10_1038_s41467_024_54764_3
crossref_primary_10_1038_s41598_022_26381_x
crossref_primary_10_1007_s10545_017_0080_0
crossref_primary_10_1016_j_cell_2024_07_026
crossref_primary_10_1016_j_xcrm_2022_100557
crossref_primary_10_1038_s41598_017_17143_1
crossref_primary_10_1186_s13073_021_00924_9
Cites_doi 10.1198/016214505000000781
10.1016/j.immuni.2006.08.007
10.1016/j.chom.2009.07.006
10.4049/jimmunol.176.4.2562
10.1038/ni1303
10.1038/nm1133
10.1038/nature09907
10.1111/j.2517-6161.1996.tb02080.x
10.1561/2200000015
10.1371/journal.pgen.1002234
10.1016/j.cell.2012.02.009
10.1086/324347
10.1074/jbc.M400726200
10.3389/fcimb.2014.00025
10.1023/A:1008663629662
10.1023/A:1023668705040
10.1007/978-3-642-20192-9
10.1001/archinte.1958.00260140099015
10.1186/gm283
10.1038/nature03464
10.1128/CMR.14.4.778-809.2001
10.1006/viro.2000.0782
10.1038/ni.2067
10.1371/journal.pone.0052198
10.1198/016214506000001383
10.1038/nature10921
10.1016/S0140-6736(10)60452-7
10.1198/016214506000000735
10.1007/978-0-387-21606-5
10.1038/mi.2009.109
10.1146/annurev.immunol.22.012703.104549
10.1038/ni.1688
10.1007/s100440200015
10.1109/72.991427
10.1109/TIP.2010.2047910
10.1126/scitranslmed.3006280
ContentType Journal Article
Copyright Liu et al. 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright_xml – notice: Liu et al. 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12859-016-0889-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC4722633
A447599344
26801061
10_1186_s12859_016_0889_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency (DARPA), under the Predicting Health and Disease (PHD) and Biochronicity programs
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c609t-f5538ad8c538c56955ed3337ecb6ed5585a392f4b3908b15ea7b1ddf90f525f13
IEDL.DBID C6C
ISSN 1471-2105
IngestDate Tue Sep 30 16:38:00 EDT 2025
Fri Sep 05 06:37:52 EDT 2025
Tue Jun 17 22:07:45 EDT 2025
Tue Jun 10 21:05:34 EDT 2025
Fri Jun 27 06:08:29 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Oct 01 04:15:27 EDT 2025
Sat Sep 06 07:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biomarker discovery
Precision medicine
Sparse multi-block classifier algorithm
Reference-aided prediction
Automated diagnostics
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-f5538ad8c538c56955ed3337ecb6ed5585a392f4b3908b15ea7b1ddf90f525f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1186/s12859-016-0889-9
PMID 26801061
PQID 1760908736
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4722633
proquest_miscellaneous_1760908736
gale_infotracmisc_A447599344
gale_infotracacademiconefile_A447599344
gale_incontextgauss_ISR_A447599344
pubmed_primary_26801061
crossref_primary_10_1186_s12859_016_0889_9
crossref_citationtrail_10_1186_s12859_016_0889_9
springer_journals_10_1186_s12859_016_0889_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160122
2016-01-22
2016-Jan-22
PublicationDateYYYYMMDD 2016-01-22
PublicationDate_xml – month: 1
  year: 2016
  text: 20160122
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References C Meldrum (889_CR1) 2011; 32
K Honda (889_CR39) 2005; 434
AL Miller (889_CR31) 2006; 176
K Crammer (889_CR19) 2002; 2
UHG Kreßel (889_CR14) 1999
CW Hsu (889_CR15) 2002; 13
889_CR23
GG Jackson (889_CR10) 1958; 101
RE Fan (889_CR28) 2008; 9
T Kawai (889_CR40) 2006; 7
H Zou (889_CR25) 2006; 101
F Bach (889_CR22) 2012; 4
P Bühlmann (889_CR26) 2011
Y Liu (889_CR20) 2006; 101
T Kawai (889_CR36) 2006; 7
PL Combettes (889_CR29) 2011
DB Stetson (889_CR41) 2006; 25
KJ Ritchie (889_CR34) 2004; 10
AP Manderson (889_CR43) 2004; 22
889_CR9
Y Guermeur (889_CR18) 2002; 5
Y Bochkov (889_CR35) 2010; 3
R Chen (889_CR46) 2012; 148
R Tibshirani (889_CR13) 1996; 58
SS Keerthi (889_CR27) 2008
889_CR3
BT Ronald (889_CR11) 2001; 33
889_CR16
Y Huang (889_CR5) 2011; 7
TY Liu (889_CR7) 2013
AR Everitt (889_CR30) 2012; 484
WC Au (889_CR37) 2001; 280
JW Schoggins (889_CR32) 2011; 472
L Wang (889_CR21) 2007; 102
BJ Barnes (889_CR38) 2004; 279
M Chawla-Sarkar (889_CR33) 2003; 8
HI Nakaya (889_CR45) 2011; 12
EA Ashley (889_CR6) 2010; 375
CW Woods (889_CR8) 2013; 8
MV Afonso (889_CR24) 2010; 19
E Bortz (889_CR2) 2011; 3
T Hastie (889_CR12) 2001
CE Samuel (889_CR42) 2001; 14
AK Zaas (889_CR4) 2009; 6
EJ Bredensteiner (889_CR17) 1999; 12
TD Querec (889_CR44) 2008; 10
11692298 - Clin Infect Dis. 2001 Dec 1;33(11):1865-70
16424890 - Nat Immunol. 2006 Feb;7(2):131-7
24048524 - Sci Transl Med. 2013 Sep 18;5(203):203ra126
20435227 - Lancet. 2010 May 1;375(9725):1525-35
12766484 - Apoptosis. 2003 Jun;8(3):237-49
18244442 - IEEE Trans Neural Netw. 2002;13(2):415-25
21478870 - Nature. 2011 Apr 28;472(7344):481-5
13497324 - AMA Arch Intern Med. 1958 Feb;101(2):267-78
24639952 - Front Cell Infect Microbiol. 2014;4:25
23326326 - PLoS One. 2013;8(1):e52198
19029902 - Nat Immunol. 2009 Jan;10(1):116-25
19710636 - Mucosal Immunol. 2010 Jan;3(1):69-80
22424236 - Cell. 2012 Mar 16;148(6):1293-307
21743478 - Nat Immunol. 2011 Aug;12(8):786-95
16979569 - Immunity. 2006 Sep;25(3):373-81
21901105 - PLoS Genet. 2011 Aug;7(8):e1002234
22446628 - Nature. 2012 Apr 26;484(7395):519-23
16456018 - J Immunol. 2006 Feb 15;176(4):2562-7
11162841 - Virology. 2001 Feb 15;280(2):273-82
22147957 - Clin Biochem Rev. 2011 Nov;32(4):177-95
15308637 - J Biol Chem. 2004 Oct 22;279(43):45194-207
15800576 - Nature. 2005 Apr 7;434(7034):772-7
15032584 - Annu Rev Immunol. 2004;22:431-56
19664979 - Cell Host Microbe. 2009 Sep 17;6(3):207-17
22023877 - Genome Med. 2011 Oct 24;3(10):67
11585785 - Clin Microbiol Rev. 2001 Oct;14(4):778-809, table of contents
15531891 - Nat Med. 2004 Dec;10(12):1374-8
20378469 - IEEE Trans Image Process. 2010 Sep;19(9):2345-56
References_xml – volume: 101
  start-page: 500
  issue: 474
  year: 2006
  ident: 889_CR20
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000781
– volume: 25
  start-page: 373
  issue: 3
  year: 2006
  ident: 889_CR41
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.007
– volume: 6
  start-page: 207
  issue: 3
  year: 2009
  ident: 889_CR4
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.07.006
– ident: 889_CR23
– volume: 176
  start-page: 2562
  issue: 4
  year: 2006
  ident: 889_CR31
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.4.2562
– volume: 7
  start-page: 131
  issue: 2
  year: 2006
  ident: 889_CR36
  publication-title: Nat Immunol
  doi: 10.1038/ni1303
– volume-title: Advances in Kernel Methods
  year: 1999
  ident: 889_CR14
– volume: 2
  start-page: 265
  year: 2002
  ident: 889_CR19
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 1374
  issue: 12
  year: 2004
  ident: 889_CR34
  publication-title: Nat Med
  doi: 10.1038/nm1133
– volume: 472
  start-page: 481
  issue: 7344
  year: 2011
  ident: 889_CR32
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 889_CR13
  publication-title: J R Stat Soc. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  ident: 889_CR22
  publication-title: Foundations Trends®; Mach Learn
  doi: 10.1561/2200000015
– volume: 7
  start-page: 1002234
  issue: 8
  year: 2011
  ident: 889_CR5
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002234
– volume: 148
  start-page: 1293
  issue: 6
  year: 2012
  ident: 889_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.009
– volume: 33
  start-page: 1865
  issue: 11
  year: 2001
  ident: 889_CR11
  publication-title: Clin Infect Dis
  doi: 10.1086/324347
– volume: 279
  start-page: 45194
  issue: 43
  year: 2004
  ident: 889_CR38
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M400726200
– ident: 889_CR3
  doi: 10.3389/fcimb.2014.00025
– volume: 12
  start-page: 53
  issue: 1
  year: 1999
  ident: 889_CR17
  publication-title: Comput Optim Appl
  doi: 10.1023/A:1008663629662
– volume: 8
  start-page: 237
  issue: 3
  year: 2003
  ident: 889_CR33
  publication-title: Apoptosis
  doi: 10.1023/A:1023668705040
– volume-title: Statistics for High-Dimensional Data: Methods, Theory and Applications
  year: 2011
  ident: 889_CR26
  doi: 10.1007/978-3-642-20192-9
– volume: 101
  start-page: 267
  issue: 2
  year: 1958
  ident: 889_CR10
  publication-title: AMA Arch Intern Med
  doi: 10.1001/archinte.1958.00260140099015
– volume: 3
  start-page: 67
  issue: 10
  year: 2011
  ident: 889_CR2
  publication-title: Genome Med
  doi: 10.1186/gm283
– volume-title: Fixed-point Algorithms for Inverse Problems in Science and Engineering
  year: 2011
  ident: 889_CR29
– volume: 434
  start-page: 772
  issue: 7034
  year: 2005
  ident: 889_CR39
  publication-title: Nature
  doi: 10.1038/nature03464
– volume: 14
  start-page: 778
  issue: 4
  year: 2001
  ident: 889_CR42
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.14.4.778-809.2001
– volume: 280
  start-page: 273
  issue: 2
  year: 2001
  ident: 889_CR37
  publication-title: Virology
  doi: 10.1006/viro.2000.0782
– volume-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2008
  ident: 889_CR27
– volume: 12
  start-page: 786
  issue: 8
  year: 2011
  ident: 889_CR45
  publication-title: Nat Immunol
  doi: 10.1038/ni.2067
– volume: 8
  start-page: 52198
  issue: 1
  year: 2013
  ident: 889_CR8
  publication-title: PloS One
  doi: 10.1371/journal.pone.0052198
– volume: 102
  start-page: 583
  issue: 478
  year: 2007
  ident: 889_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001383
– volume: 484
  start-page: 519
  issue: 7395
  year: 2012
  ident: 889_CR30
  publication-title: Nature
  doi: 10.1038/nature10921
– volume: 375
  start-page: 1525
  issue: 9725
  year: 2010
  ident: 889_CR6
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(10)60452-7
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  ident: 889_CR25
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 7
  start-page: 131
  issue: 2
  year: 2006
  ident: 889_CR40
  publication-title: Nat Immunol
  doi: 10.1038/ni1303
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2001
  ident: 889_CR12
  doi: 10.1007/978-0-387-21606-5
– volume: 32
  start-page: 177
  issue: 4
  year: 2011
  ident: 889_CR1
  publication-title: Clin Biochem Rev
– volume: 3
  start-page: 69
  issue: 1
  year: 2010
  ident: 889_CR35
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2009.109
– volume: 22
  start-page: 431
  year: 2004
  ident: 889_CR43
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.22.012703.104549
– volume: 10
  start-page: 116
  issue: 1
  year: 2008
  ident: 889_CR44
  publication-title: Nat Immunol
  doi: 10.1038/ni.1688
– ident: 889_CR16
– volume: 5
  start-page: 168
  issue: 2
  year: 2002
  ident: 889_CR18
  publication-title: Pattern Anal Appl
  doi: 10.1007/s100440200015
– volume: 9
  start-page: 1871
  year: 2008
  ident: 889_CR28
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 889_CR15
  publication-title: Neural Netw IEEE Trans
  doi: 10.1109/72.991427
– volume: 19
  start-page: 2345
  issue: 9
  year: 2010
  ident: 889_CR24
  publication-title: Image Process IEEE Trans
  doi: 10.1109/TIP.2010.2047910
– ident: 889_CR9
  doi: 10.1126/scitranslmed.3006280
– volume-title: IEEE Global Conference on Signal and Information Processing (GloabalSIP)
  year: 2013
  ident: 889_CR7
– reference: 15032584 - Annu Rev Immunol. 2004;22:431-56
– reference: 19710636 - Mucosal Immunol. 2010 Jan;3(1):69-80
– reference: 24048524 - Sci Transl Med. 2013 Sep 18;5(203):203ra126
– reference: 12766484 - Apoptosis. 2003 Jun;8(3):237-49
– reference: 21743478 - Nat Immunol. 2011 Aug;12(8):786-95
– reference: 22147957 - Clin Biochem Rev. 2011 Nov;32(4):177-95
– reference: 16979569 - Immunity. 2006 Sep;25(3):373-81
– reference: 11692298 - Clin Infect Dis. 2001 Dec 1;33(11):1865-70
– reference: 15800576 - Nature. 2005 Apr 7;434(7034):772-7
– reference: 18244442 - IEEE Trans Neural Netw. 2002;13(2):415-25
– reference: 15531891 - Nat Med. 2004 Dec;10(12):1374-8
– reference: 22023877 - Genome Med. 2011 Oct 24;3(10):67
– reference: 20435227 - Lancet. 2010 May 1;375(9725):1525-35
– reference: 16424890 - Nat Immunol. 2006 Feb;7(2):131-7
– reference: 21478870 - Nature. 2011 Apr 28;472(7344):481-5
– reference: 11585785 - Clin Microbiol Rev. 2001 Oct;14(4):778-809, table of contents
– reference: 20378469 - IEEE Trans Image Process. 2010 Sep;19(9):2345-56
– reference: 19664979 - Cell Host Microbe. 2009 Sep 17;6(3):207-17
– reference: 22424236 - Cell. 2012 Mar 16;148(6):1293-307
– reference: 22446628 - Nature. 2012 Apr 26;484(7395):519-23
– reference: 13497324 - AMA Arch Intern Med. 1958 Feb;101(2):267-78
– reference: 21901105 - PLoS Genet. 2011 Aug;7(8):e1002234
– reference: 19029902 - Nat Immunol. 2009 Jan;10(1):116-25
– reference: 15308637 - J Biol Chem. 2004 Oct 22;279(43):45194-207
– reference: 11162841 - Virology. 2001 Feb 15;280(2):273-82
– reference: 23326326 - PLoS One. 2013;8(1):e52198
– reference: 24639952 - Front Cell Infect Microbiol. 2014;4:25
– reference: 16456018 - J Immunol. 2006 Feb 15;176(4):2562-7
SSID ssj0017805
Score 2.3877082
Snippet Background Consider the problem of designing a panel of complex biomarkers to predict a patient’s health or disease state when one can pair his or her current...
Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test...
Background Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Algorithms
Bioinformatics
Biological markers
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Gene Expression
Genes, Essential
Genetic Markers
Health risk assessment
Humans
Influenza A Virus, H1N1 Subtype
Influenza A Virus, H3N2 Subtype
Life Sciences
Methodology
Methodology Article
Methods
Microarray Analysis
Microarrays
Models, Molecular
Physiological aspects
Respiratory Syncytial Viruses
Rhinovirus
Transcriptome analysis
Virus Diseases - diagnosis
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKVEEQam2TZM0DyKLeJzC-aAuHPgQ8tVz4eiu213w_OvNpB_a5RR86kMmtJ3MZGaYmd8APM2tEzYYptRWhqclz20qheWpqIwL9pIbEXG2jz_yo3n54YSd7MEw3qpnYHthaIfzpObrs5c_vp-_CQr_Oip8xV-1OaKwhaA4xMZYtCMvweVgmAoU8uPyd1IB4fv7xOaF2yamafeC_sNC7VZP7qRQo2U6vA7XepeSzDoZuAF7vrkJV7ohk-e34OusIYux7Wrx0zuyWmN6JkTbZFmTrhOS6MaRPltDsBj-lKx0uA4dGQeRRJKucpy0GlGF29swP3z35e1R2o9USC3P5CatWbjgtKtseFjGJWPeUUqFt4Z7x0LsoIPDVJeGyqwyOfNamNy5WmY1K1id0zuw3ywbfw-I8S64g6y2mvlS2lKX3Fgqay8q6o1hCWQDN5Xt8cZx7MWZinFHxVV3AAprzPAAlEzg-bhl1YFt_Iv4CR6RQhCLBqtkTvW2bdX7z5_ULKIYSlqWCTzriepleLnVfdNB-AXEvZpQHkwog5bZyfLjQRIULmFpWuOX21blInA2qwTlCdztJGP8-IJXMeZOQExkZiRAcO_pSrP4FkG-EcSTU5rAi0G61KAcf-fJ_f-ifgBXiyj9eVoUB7C_WW_9w-BibcyjqDi_AJP9IZA
  priority: 102
  providerName: Scholars Portal
Title An individualized predictor of health and disease using paired reference and target samples
URI https://link.springer.com/article/10.1186/s12859-016-0889-9
https://www.ncbi.nlm.nih.gov/pubmed/26801061
https://www.proquest.com/docview/1760908736
https://pubmed.ncbi.nlm.nih.gov/PMC4722633
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WlsFeyr7rrgvaGAw2zOzI-nr0QrMu0DLaFQJ7EPpyFxhOqJOH7a-fJDumDttgL9KDTtjWne50vtPvAN7kxjLjDVNquKZpQXOTCmZoyri23l5SzSLO9vkFPbsuZnMy78Ciw12Yu_H7nNMPTR4Q1rzD6_3ekJAj9uCAeL0bsvcmdNIHDAI0fxe0_OO0gdnZVb53rM9uZuROeDRanelDOOyOi6hs-fsI7rn6MdxvC0j-fALfyhot-itVi1_OotVtCL14TxotK9TeckSqtqiLxKCQ6H6DVsqrOov6IiORpM0KR40KiMHNU7ienn6dnKVduYTU0Eys04p45aUsN74zhApCnMUYM2c0dZZ4v0D5w1BVaCwyrnPiFNO5tZXIKjImVY6fwX69rN0RIO2sP-qRyijiCmEKVVBtsKgc49hpTRLItqspTYclHkpa_JDRp-BUtgyQIX8sMECKBN71U1YtkMa_iF8HFskAUFGHDJgbtWka-fnqUpYRoVDgokjgbUdULf3DjeouFPhPCJhWA8qTAaXfQWYw_GorCTIMhbSz2i03jcyZX9mMM0wTeN5KRv_yY8qjP50AG8hMTxCAu4cj9eJ7BPAOAJ0U4wTeb6VLdpqj-fuaHP8X9Qt4MI7Sn6fj8Qnsr2837qU_Pq31CPbYnPmWTz-N4KAsZ1cz3388vfhyOYqbahR_TPj2vOC_ATheGcE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9RAFH_oFtGL-G206iiCoIQmmczXMYhlu7Y92BYKHobMR-qCZJdm96B_vTOTSTCLCp5ymDckmffNe_N7AG9zbZh2jinVXNG0pLlOBdM0ZVwZ5y-pYgFn--SUzi_KxSW5jPe4u6HbfShJBksd1JrTgy73WGsu9XUZsG_NETdhjxNCyxnsVdXibDEWDzxMfyxg_nHjxAXtGuLfPNFul-ROqTR4oMN7cDeGjqjqeX0fbtj2Adzqh0n-eAhfqxYtx-tVy5_WoPW1L8O4rBqtGtTfeER1a1CsyiDf9H6F1rUzewaNA0cCSd8hjrraowd3j-Di8NP5x3kaRyekmmZikzbEGbLacO0emlBBiDUYY2a1otYQlyPULjBqSoVFxlVObM1UbkwjsoYUpMnxY5i1q9Y-BaSscWEfaXRNbCl0WZdUaSwayzi2SpEEsuE0pY644n68xXcZ8gtOZc8A6XvJPAOkSOD9uGXdg2r8i_iNZ5H0YBWt74a5qrddJ4_OvsgqoBUKXJYJvItEzcq9XNfxcoH7BY9vNaHcn1A6bdKT5deDJEi_5FvQWrvadjJn7mQzzjBN4EkvGePHF5SH3DoBNpGZkcCDeE9X2uW3AObtwTopxgl8GKRLRivS_f1Mnv0X9Su4PT8_OZbHR6efn8OdImhCnhbFPsw211v7woVVG_UyqtEvPtgbYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0RfGl-FlTq64iCEpoks3uZh-DerSnFrEWCj4s-1kPJHc0dw_617ubbII5VPApkJ2QZOdrh5n5DcCLXBumvWNKdaVoWtJcp5xpmrJKGe8vqWIdzvbHU3p8Xs4vyEWcc9oO1e5DSrLvaQgoTc36aGVcr-IVPWrzgLvmw2AfDYcyHX4ddv0N6qOv3bqen83HREKA7I_JzD8-OHFH20b5N6-0XTG5lTbtvNHsNuzFYySqe77fgWu2uQs3-sGSP-7B17pBi7HVavHTGrS6CikZH2GjpUN99yOSjUExQ4NCAfwlWklvAg0ah490JH21OGplQBJu78P57N2XN8dpHKOQaprxdeqIN2rSVNpfNKGcEGswxsxqRa0hPl6Q_pDkSoV5VqmcWMlUbozjmSMFcTl-ADvNsrEPASlr_BGQOC2JLbkuZUmVxtxZVmGrFEkgG3ZT6IgxHkZdfBddrFFR0TNAhLqywADBE3g1PrLqATb-Rfw8sEgE4IomVMZcyk3bipOzz6LukAs5LssEXkYit_Qv1zI2GvhfCFhXE8rDCaXXLD1ZfjZIgghLoRytsctNK3LmdzarGKYJ7PeSMX58Qasuzk6ATWRmJAiA3tOVZvGtA_YOwJ0U4wReD9IlokVp_74nB_9F_RRufno7Ex9OTt8_gltFpwh5WhSHsLO-2tjH_oS1Vk-iFv0CPVwfqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+individualized+predictor+of+health+and+disease+using+paired+reference+and+target+samples&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Tzu-Yu&rft.au=Burke%2C+Thomas&rft.au=Park%2C+Lawrence+P.&rft.au=Woods%2C+Christopher+W.&rft.date=2016-01-22&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-016-0889-9&rft.externalDocID=10_1186_s12859_016_0889_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon