Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3

Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, whic...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 46; pp. 16359 - 16364
Main Authors Gong, Bei, Shin, Minsang, Sun, Jiali, Jung, Che-Hun, Bolt, Edward L., van der Oost, John, Kim, Jeong-Sun
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.11.2014
National Acad Sciences
Subjects
ATP
DNA
RNA
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1410806111

Cover

Abstract Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
AbstractList Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Author Shin, Minsang
Jung, Che-Hun
Sun, Jiali
Gong, Bei
Kim, Jeong-Sun
Bolt, Edward L.
van der Oost, John
Author_xml – sequence: 1
  givenname: Bei
  surname: Gong
  fullname: Gong, Bei
– sequence: 2
  givenname: Minsang
  surname: Shin
  fullname: Shin, Minsang
– sequence: 3
  givenname: Jiali
  surname: Sun
  fullname: Sun, Jiali
– sequence: 4
  givenname: Che-Hun
  surname: Jung
  fullname: Jung, Che-Hun
– sequence: 5
  givenname: Edward L.
  surname: Bolt
  fullname: Bolt, Edward L.
– sequence: 6
  givenname: John
  surname: van der Oost
  fullname: van der Oost, John
– sequence: 7
  givenname: Jeong-Sun
  surname: Kim
  fullname: Kim, Jeong-Sun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25368186$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQxi1URNuFMycgEhcuacePODEHpGp5VSoP9XG2HK-z61XWXuyE1f73OM2yhR4olmWPNL9v7PnsY3TgvDMIPcdwgqGkp2un4glmGCrgGONH6AiDwDlnAg7QEQAp84oRdoiOY1wCgCgqeIIOSUF5hSt-hK6_-NbovlUhsy7a-aKLKeh89v7r2RCY0JhgnDZZvc2ml-dX3y9zFaPXVnVmlrlet0ZFky9Ma3UKsqmK9Cl63Kg2mme7fYJuPn64nn7OL759Op-eXeSag-hyA3VVQ1XSRuOSU8NSD2k2jEKFZw3UJaPcEE3qklaMllVDCDWNgUZoVVBBJ-jtWHej5sZZlxbpVNA2Sq-sbG0dVNjKTR-ka4dt3ddRslJQUSQxjOLerdV2o9pWroNdDQIMcnBXDu7KO3eT5N0oSXVWZqaN64K6kw1n_p1xdiHn_qdMT8AprVKBN7sCwf_oTezkykZt2lY54_t0VgUUBBOFeBjlHKgQycj_QEnJRckLltDX99Cl74NLj3RLlaSkaUzQyz_73Df4-9skoBgBHXyMwTRS20511g9t2_YfBp7e0z1seba7ypDY0xhLxtOV6a1TL0ZkGTsf9gyjWAAhg-mvxnyjvFTzkH7HzRUBzAFwcjAV-QUq6gKI
CitedBy_id crossref_primary_10_1134_S0006297916070026
crossref_primary_10_1099_mic_0_000414
crossref_primary_10_3390_catal10101191
crossref_primary_10_1093_gbe_evx192
crossref_primary_10_1098_rstb_2018_0087
crossref_primary_10_3389_fbioe_2020_575393
crossref_primary_10_1093_nar_gkae723
crossref_primary_10_1016_j_ymben_2015_09_013
crossref_primary_10_1098_rsob_210241
crossref_primary_10_1016_j_jsb_2016_04_002
crossref_primary_10_1038_s42003_020_01366_6
crossref_primary_10_1038_s41421_019_0123_9
crossref_primary_10_1038_nmicrobiol_2017_92
crossref_primary_10_1146_annurev_micro_091014_104441
crossref_primary_10_1080_14737159_2021_1922080
crossref_primary_10_1021_acs_biochem_1c00779
crossref_primary_10_1016_j_microc_2024_110421
crossref_primary_10_1039_D4NP00010B
crossref_primary_10_1073_pnas_1616395114
crossref_primary_10_1016_j_bbapap_2023_140900
crossref_primary_10_1016_j_molcel_2018_03_031
crossref_primary_10_1016_j_molcel_2016_07_011
crossref_primary_10_1093_nar_gkz1218
crossref_primary_10_1038_nrmicro3569
crossref_primary_10_1128_ecosalplus_esp_0008_2018
crossref_primary_10_1002_rmv_2055
crossref_primary_10_1134_S0006297921100114
crossref_primary_10_1016_j_jbc_2024_107295
crossref_primary_10_1016_j_fbio_2019_01_003
crossref_primary_10_1038_s42003_024_06537_3
crossref_primary_10_1093_nar_gkab348
crossref_primary_10_1016_j_molcel_2019_02_001
crossref_primary_10_1016_j_meegid_2016_08_030
crossref_primary_10_1093_femsre_fuv019
crossref_primary_10_3390_ijms22062848
crossref_primary_10_1074_jbc_RA120_014030
crossref_primary_10_1089_crispr_2018_0033
crossref_primary_10_1038_nsmb_3269
crossref_primary_10_1093_femsml_uqad007
crossref_primary_10_3389_fbioe_2020_00062
crossref_primary_10_1089_hum_2015_091
crossref_primary_10_1016_j_pmpp_2018_05_006
crossref_primary_10_1099_mic_0_001373
crossref_primary_10_1007_s00253_017_8263_z
crossref_primary_10_1016_j_cell_2018_09_039
crossref_primary_10_1186_s12575_020_00135_3
crossref_primary_10_31857_S0320972521100134
crossref_primary_10_1186_s13059_015_0816_9
crossref_primary_10_1016_j_molcel_2022_01_026
crossref_primary_10_1038_nsmb_3287
crossref_primary_10_1073_pnas_2021291118
crossref_primary_10_1074_jbc_M116_724062
crossref_primary_10_1186_s12866_016_0643_5
crossref_primary_10_1038_cr_2016_103
crossref_primary_10_1016_j_ejphar_2022_175173
crossref_primary_10_3389_fmolb_2016_00045
crossref_primary_10_1016_j_cell_2015_12_035
crossref_primary_10_1038_s41598_017_12186_w
crossref_primary_10_1128_AEM_00731_20
crossref_primary_10_1038_s41396_018_0254_2
crossref_primary_10_1016_j_molcel_2023_05_036
crossref_primary_10_1016_j_sbi_2016_11_013
crossref_primary_10_3390_microorganisms9061123
crossref_primary_10_3389_fmicb_2019_02458
crossref_primary_10_1177_11779322241274961
crossref_primary_10_1038_s41467_023_38790_1
crossref_primary_10_1111_mmi_14237
crossref_primary_10_3390_genes11020208
crossref_primary_10_1093_nar_gkv1373
crossref_primary_10_1016_j_molcel_2022_06_007
crossref_primary_10_1038_s41467_020_19847_x
crossref_primary_10_1016_j_lfs_2020_118969
Cites_doi 10.1016/j.molcel.2011.12.013
10.1038/nrmicro2577
10.1016/j.molcel.2013.09.008
10.1016/j.mib.2011.03.005
10.1016/j.molcel.2013.09.013
10.1074/mcp.M112.020263
10.1093/nar/18.20.6069
10.1146/annurev-biochem-072911-172315
10.1126/science.1159689
10.1073/pnas.1208507109
10.1038/nature10886
10.1042/BJ20130316
10.1016/j.jmb.2010.07.049
10.1016/j.molcel.2012.03.018
10.1126/science.1247997
10.1016/j.str.2012.06.016
10.1038/nsmb1246
10.1016/j.sbi.2014.01.001
10.4161/rna.21410
10.1073/pnas.0913380107
10.1038/nrmicro3279
10.1016/j.molcel.2013.08.020
10.1016/S0076-6879(03)74002-6
10.1016/j.molcel.2014.03.011
10.1038/emboj.2011.41
10.1038/nsmb.2019
10.1128/JVI.01788-07
10.1074/jbc.M111.238485
10.1042/BJ20110901
10.1038/nature09886
10.1016/j.cell.2009.07.040
10.1038/nature09523
10.1074/jbc.M113.472233
10.1126/science.1225829
10.1038/nature10402
10.1107/S0907444999000839
10.1126/science.1138140
10.1038/emboj.2012.352
10.1099/jmm.0.016949-0
10.1016/j.molcel.2012.03.020
10.1038/nsmb.2875
10.1107/S0907444909052925
10.1016/j.cell.2014.02.001
10.1101/gad.1742908
10.1073/pnas.1405079111
10.1074/jbc.M111.270017
10.1016/S0076-6879(97)76066-X
10.1107/S0907444904019158
10.1016/j.molcel.2009.07.032
10.1038/nature13011
10.1038/emboj.2011.377
10.1146/annurev.biophys.37.032807.125908
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 18, 2014
Wageningen University & Research
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 18, 2014
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
UNPAY
QVL
DOI 10.1073/pnas.1410806111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Virology and AIDS Abstracts

CrossRef
Nucleic Acids Abstracts
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structure and catalytic mechanism of Cas3
EISSN 1091-6490
EndPage 16364
ExternalDocumentID oai_library_wur_nl_wurpubs_479395
10.1073/pnas.1410806111
PMC4246338
3506657571
25368186
10_1073_pnas_1410806111
111_46_16359
43190228
US201600139916
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
AFHIN
AFQQW
UNPAY
08R
ADBIT
AS
GJ
OHM
QVL
TAF
ID FETCH-LOGICAL-c609t-e0b8b0873fc1763e4061061f43081df0b7436e2c2b7384378f223efe0f9ca5393
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Tue Jan 05 18:10:05 EST 2021
Wed Oct 29 11:54:37 EDT 2025
Tue Sep 30 16:36:49 EDT 2025
Thu Oct 02 08:37:05 EDT 2025
Fri Sep 05 14:03:54 EDT 2025
Wed Oct 01 14:27:58 EDT 2025
Sat Aug 16 22:11:25 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Wed Oct 01 02:36:37 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Wed Nov 11 00:30:05 EST 2020
Thu May 29 08:40:55 EDT 2025
Wed Dec 27 19:13:52 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords CRISPR
Cas3
Cas proteins
bacterial immunity
Cascade
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-e0b8b0873fc1763e4061061f43081df0b7436e2c2b7384378f223efe0f9ca5393
Notes http://dx.doi.org/10.1073/pnas.1410806111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: B.G., M.S., J.S., and J.-S.K. designed research; B.G., M.S., J.S., and J.-S.K. performed research; B.G., M.S., J.S., C.-H.J., E.L.B., J.v.d.O., and J.-S.K. analyzed data; and B.G., M.S., E.L.B., J.v.d.O., and J.-S.K. wrote the paper.
1B.G. and M.S. contributed equally to this work.
Edited by Wei Yang, National Institutes of Health, Bethesda, MD, and approved September 26, 2014 (received for review June 10, 2014)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/111/46/16359.full.pdf
PMID 25368186
PQID 1627727333
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1627727333
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246338
pubmed_primary_25368186
fao_agris_US201600139916
pnas_primary_111_46_16359
wageningen_narcis_oai_library_wur_nl_wurpubs_479395
proquest_miscellaneous_1803094959
unpaywall_primary_10_1073_pnas_1410806111
proquest_miscellaneous_1660399609
crossref_primary_10_1073_pnas_1410806111
jstor_primary_43190228
proquest_miscellaneous_1627697654
crossref_citationtrail_10_1073_pnas_1410806111
ProviderPackageCode RNA
PNE
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2014-11-18
PublicationDateYYYYMMDD 2014-11-18
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Gasiunas G (e_1_3_4_12_2) 2012; 109
Rouillon C (e_1_3_4_25_2) 2013; 52
Terwilliger TC (e_1_3_4_49_2) 1999; 55
Wiedenheft B (e_1_3_4_3_2) 2012; 482
Hale CR (e_1_3_4_14_2) 2009; 139
Wiedenheft B (e_1_3_4_43_2) 2011; 477
van Duijn E (e_1_3_4_20_2) 2012; 11
Jore MM (e_1_3_4_13_2) 2011; 18
Sorek R (e_1_3_4_4_2) 2013; 82
Carte J (e_1_3_4_10_2) 2008; 22
Westra ER (e_1_3_4_28_2) 2012; 46
Karow AR (e_1_3_4_42_2) 2010; 402
Garneau JE (e_1_3_4_8_2) 2010; 468
Pyle AM (e_1_3_4_38_2) 2008; 37
Makarova KS (e_1_3_4_32_2) 2011; 9
Staals RH (e_1_3_4_17_2) 2013; 52
Emsley P (e_1_3_4_52_2) 2004; 60
Barrangou R (e_1_3_4_1_2) 2014; 54
Sternberg SH (e_1_3_4_24_2) 2014; 507
Van der Oost J (e_1_3_4_6_2) 2014; 12
Zhang J (e_1_3_4_26_2) 2012; 45
Büttner K (e_1_3_4_40_2) 2007; 14
Hochstrasser ML (e_1_3_4_30_2) 2014; 111
Zhang J (e_1_3_4_16_2) 2010; 59
Howard JA (e_1_3_4_45_2) 2011; 439
Luo D (e_1_3_4_41_2) 2008; 82
Adams PD (e_1_3_4_50_2) 2010; 66
Jinek M (e_1_3_4_22_2) 2014; 343
Del Campo M (e_1_3_4_37_2) 2009; 35
Sashital DG (e_1_3_4_44_2) 2012; 46
Sinkunas T (e_1_3_4_33_2) 2011; 30
Nam KH (e_1_3_4_15_2) 2012; 20
Mulepati S (e_1_3_4_35_2) 2011; 286
Gu M (e_1_3_4_39_2) 2010; 107
Lintner NG (e_1_3_4_19_2) 2011; 286
Jackson RN (e_1_3_4_31_2) 2014; 24
Beloglazova N (e_1_3_4_34_2) 2011; 30
Barrangou R (e_1_3_4_7_2) 2007; 315
Reeks J (e_1_3_4_5_2) 2013; 453
Spilman M (e_1_3_4_18_2) 2013; 52
Aslanidis C (e_1_3_4_47_2) 1990; 18
Deltcheva E (e_1_3_4_11_2) 2011; 471
Otwinowski Z (e_1_3_4_48_2) 1997; 276
Westra ER (e_1_3_4_36_2) 2012; 9
Huo Y (e_1_3_4_46_2) 2014; 21
Nishimasu H (e_1_3_4_23_2) 2014; 156
Mulepati S (e_1_3_4_29_2) 2013; 288
Terwilliger TC (e_1_3_4_51_2) 2003; 374
Brouns SJ (e_1_3_4_9_2) 2008; 321
Terns MP (e_1_3_4_2_2) 2011; 14
Sinkunas T (e_1_3_4_27_2) 2013; 32
Jinek M (e_1_3_4_21_2) 2012; 337
References_xml – volume: 45
  start-page: 303
  year: 2012
  ident: e_1_3_4_26_2
  article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.12.013
– volume: 9
  start-page: 467
  year: 2011
  ident: e_1_3_4_32_2
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2577
– volume: 52
  start-page: 146
  year: 2013
  ident: e_1_3_4_18_2
  article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.008
– volume: 14
  start-page: 321
  year: 2011
  ident: e_1_3_4_2_2
  article-title: CRISPR-based adaptive immune systems
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2011.03.005
– volume: 52
  start-page: 135
  year: 2013
  ident: e_1_3_4_17_2
  article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.013
– volume: 11
  start-page: 1430
  year: 2012
  ident: e_1_3_4_20_2
  article-title: Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M112.020263
– volume: 18
  start-page: 6069
  year: 1990
  ident: e_1_3_4_47_2
  article-title: Ligation-independent cloning of PCR products (LIC-PCR)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6069
– volume: 82
  start-page: 237
  year: 2013
  ident: e_1_3_4_4_2
  article-title: CRISPR-mediated adaptive immune systems in bacteria and archaea
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-072911-172315
– volume: 321
  start-page: 960
  year: 2008
  ident: e_1_3_4_9_2
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1159689
– volume: 109
  start-page: E2579
  year: 2012
  ident: e_1_3_4_12_2
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1208507109
– volume: 482
  start-page: 331
  year: 2012
  ident: e_1_3_4_3_2
  article-title: RNA-guided genetic silencing systems in bacteria and archaea
  publication-title: Nature
  doi: 10.1038/nature10886
– volume: 453
  start-page: 155
  year: 2013
  ident: e_1_3_4_5_2
  article-title: CRISPR interference: A structural perspective
  publication-title: Biochem J
  doi: 10.1042/BJ20130316
– volume: 402
  start-page: 629
  year: 2010
  ident: e_1_3_4_42_2
  article-title: A structural model for the DEAD box helicase YxiN in solution: Localization of the RNA binding domain
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2010.07.049
– volume: 46
  start-page: 595
  year: 2012
  ident: e_1_3_4_28_2
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.03.018
– volume: 343
  start-page: 1247997
  year: 2014
  ident: e_1_3_4_22_2
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
  doi: 10.1126/science.1247997
– volume: 20
  start-page: 1574
  year: 2012
  ident: e_1_3_4_15_2
  article-title: Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system
  publication-title: Structure
  doi: 10.1016/j.str.2012.06.016
– volume: 14
  start-page: 647
  year: 2007
  ident: e_1_3_4_40_2
  article-title: Structural basis for DNA duplex separation by a superfamily-2 helicase
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1246
– volume: 24
  start-page: 106
  year: 2014
  ident: e_1_3_4_31_2
  article-title: Fitting CRISPR-associated Cas3 into the Helicase Family Tree
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2014.01.001
– volume: 9
  start-page: 1134
  year: 2012
  ident: e_1_3_4_36_2
  article-title: Cascade-mediated binding and bending of negatively supercoiled DNA
  publication-title: RNA Biol
  doi: 10.4161/rna.21410
– volume: 107
  start-page: 521
  year: 2010
  ident: e_1_3_4_39_2
  article-title: Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913380107
– volume: 12
  start-page: 479
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3279
– volume: 52
  start-page: 124
  year: 2013
  ident: e_1_3_4_25_2
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.08.020
– volume: 374
  start-page: 22
  year: 2003
  ident: e_1_3_4_51_2
  article-title: SOLVE and RESOLVE: Automated structure solution and density modification
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(03)74002-6
– volume: 54
  start-page: 234
  year: 2014
  ident: e_1_3_4_1_2
  article-title: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.011
– volume: 30
  start-page: 1335
  year: 2011
  ident: e_1_3_4_33_2
  article-title: Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.41
– volume: 18
  start-page: 529
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2019
– volume: 82
  start-page: 173
  year: 2008
  ident: e_1_3_4_41_2
  article-title: Crystal structure of the NS3 protease-helicase from dengue virus
  publication-title: J Virol
  doi: 10.1128/JVI.01788-07
– volume: 286
  start-page: 21643
  year: 2011
  ident: e_1_3_4_19_2
  article-title: Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.238485
– volume: 439
  start-page: 85
  year: 2011
  ident: e_1_3_4_45_2
  article-title: Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein
  publication-title: Biochem J
  doi: 10.1042/BJ20110901
– volume: 471
  start-page: 602
  year: 2011
  ident: e_1_3_4_11_2
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
  doi: 10.1038/nature09886
– volume: 139
  start-page: 945
  year: 2009
  ident: e_1_3_4_14_2
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.040
– volume: 468
  start-page: 67
  year: 2010
  ident: e_1_3_4_8_2
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 288
  start-page: 22184
  year: 2013
  ident: e_1_3_4_29_2
  article-title: In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.472233
– volume: 337
  start-page: 816
  year: 2012
  ident: e_1_3_4_21_2
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 477
  start-page: 486
  year: 2011
  ident: e_1_3_4_43_2
  article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system
  publication-title: Nature
  doi: 10.1038/nature10402
– volume: 55
  start-page: 849
  year: 1999
  ident: e_1_3_4_49_2
  article-title: Automated MAD and MIR structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444999000839
– volume: 315
  start-page: 1709
  year: 2007
  ident: e_1_3_4_7_2
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 32
  start-page: 385
  year: 2013
  ident: e_1_3_4_27_2
  article-title: In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.352
– volume: 59
  start-page: 285
  year: 2010
  ident: e_1_3_4_16_2
  article-title: Mycobacterium tuberculosis complex CRISPR genotyping: Improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.016949-0
– volume: 46
  start-page: 606
  year: 2012
  ident: e_1_3_4_44_2
  article-title: Mechanism of foreign DNA selection in a bacterial adaptive immune system
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.03.020
– volume: 21
  start-page: 771
  year: 2014
  ident: e_1_3_4_46_2
  article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2875
– volume: 66
  start-page: 213
  year: 2010
  ident: e_1_3_4_50_2
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 156
  start-page: 935
  year: 2014
  ident: e_1_3_4_23_2
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 22
  start-page: 3489
  year: 2008
  ident: e_1_3_4_10_2
  article-title: Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
  publication-title: Genes Dev
  doi: 10.1101/gad.1742908
– volume: 111
  start-page: 6618
  year: 2014
  ident: e_1_3_4_30_2
  article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1405079111
– volume: 286
  start-page: 31896
  year: 2011
  ident: e_1_3_4_35_2
  article-title: Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.270017
– volume: 276
  start-page: 307
  year: 1997
  ident: e_1_3_4_48_2
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 60
  start-page: 2126
  year: 2004
  ident: e_1_3_4_52_2
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 35
  start-page: 598
  year: 2009
  ident: e_1_3_4_37_2
  article-title: Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.07.032
– volume: 507
  start-page: 62
  year: 2014
  ident: e_1_3_4_24_2
  article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
  publication-title: Nature
  doi: 10.1038/nature13011
– volume: 30
  start-page: 4616
  year: 2011
  ident: e_1_3_4_34_2
  article-title: Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.377
– volume: 37
  start-page: 317
  year: 2008
  ident: e_1_3_4_38_2
  article-title: Translocation and unwinding mechanisms of RNA and DNA helicases
  publication-title: Annual Rev Biophys
  doi: 10.1146/annurev.biophys.37.032807.125908
SSID ssj0009580
Score 2.4451063
Snippet Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic...
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and...
Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats...
SourceID wageningen
unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16359
SubjectTerms Active sites
adaptive immunity
Adenosine triphosphatase
Adenosine triphosphatases
Adenosine Triphosphate - metabolism
Amino Acid Motifs
Amino Acid Sequence
antiviral defense
ATP
bacteria
Bacteria - enzymology
Bacteria - genetics
Bacteria - immunology
bacterial immune-system
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding sites
Biochemistry
Biological Sciences
cascade
Clustered Regularly Interspaced Short Palindromic Repeats - physiology
complex
CRISPR-Associated Proteins - chemistry
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
CRISPR-Cas Systems - physiology
Crystal structure
Crystallography, X-Ray
Deoxyribonucleases - chemistry
Deoxyribonucleases - genetics
Deoxyribonucleases - metabolism
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA fragmentation
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA, Bacterial - metabolism
DNA, Single-Stranded - metabolism
escherichia-coli
genome
Host-Pathogen Interactions
in-vitro reconstitution
Interspersed Repetitive Sequences
loci
Magnesium - metabolism
Manganese - metabolism
Metal ions
Models, Molecular
Molecular Sequence Data
Molecular structure
Molecules
Mutagenesis, Site-Directed
Neutralization
Nucleic acids
Protein Binding
Protein Conformation
Protein Structure, Tertiary
Proteins
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
RNA
RNA, Bacterial - metabolism
Sequence Alignment
Sequence Homology, Amino Acid
structural basis
transcription (genetics)
Translocation
Tunnels
Title Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3
URI https://www.jstor.org/stable/43190228
http://www.pnas.org/content/111/46/16359.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25368186
https://www.proquest.com/docview/1627727333
https://www.proquest.com/docview/1627697654
https://www.proquest.com/docview/1660399609
https://www.proquest.com/docview/1803094959
https://pubmed.ncbi.nlm.nih.gov/PMC4246338
https://www.pnas.org/content/pnas/111/46/16359.full.pdf
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F479395
UnpaywallVersion publishedVersion
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdo98BegAFjgTEFiYftIVlSfyR5rApjIK2atlUqT5aT2myicqumVTX-eu4SJ6N8DIFUKVZytRP7fP75fP6ZkLc8UlmqOQ-MTmjAzEQEaVrkAWVC5dyYgk3Q33E2FKcj9mnMx851UbqwyrlVZbWIj9HaYHqP8cYxxt8wcQz4gWch-qbD-cR0yJbgAMK7ZGs0PO9_rgM6wO6y-jhbGA0DwbKoIfVJaJVZiNGNKQxlcbwxHnWMmjWBich2CqK_Q56_BlA-XNm5ul2rKaS312AJbLU16oeh6uQxGTcfWUeofA1Xyzwsvv3E__gftfCEPHLw1e_X-rZDHmj7lOw4A1H6h47F-ugZuTprDt71b2yJLoASEsuZ_27Yx4ReuJ2Gfn7rDy4-Xp5fBMrpip74FnmWYYQNrjW6FUvtD1RJn5PRyfurwWngjnAIChFly0BHeZpHaUJNEYMl0wgf4GcYBSgyMVEOAEboXtHLE5oymqQG4Io2OjJZoTjN6C7p2pnVe8SHmaxKcfqYp5ASVCU5jw3VAlAIkpl6JGwaUhaO3xyP2ZjKap09oRIrUN61vEcO2z_Ma2qPP4vugWZI9QUMrxxd9pCWD7EzYGuP7Fbq0mYBiCxDUiGPeFUubdYw02JCVi3nkf1GqaSzGVCc6CWIJin1yJv2MfR2XMJRVs9WtYwABMnZfTIioki6k90jk-LSGkyOQeZFrcvti_Y4Fchz6JFkQ8tbAWQk33xib64rZnLodYJS-PSjtj_8vWrpXX-RFg_QKqsSnBdTrlcLaad4gTJLiZ7gjL_8hxJekW1oMIYbSON0n3SXi5V-DUhymR-QzodxfOBsx3cXbmzU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY98BegAFjgYGCxMP2kCytP-I8VoVpIK2atlUqT5aT2myicqumVTX-eu4SJ6N8DIFUKVZytRP7fP75fP6ZkHc80Zk0nEfWpDRidiIiKYs8okzonFtbsAn6O86G4nTEPo352LsuSh9WOXe6rBbxMVobTO8x3jjG-BsmjgE_8CxG33Q8n9gtsi04gPAO2R4Nz_uf64AOsLusPs4WRsNIsCxpSH1SWmUWY3SjhKGs290Yj7asnjWBich2CqK_Q56_BlA-XLm5vl3rKaR31mAJXLU16oeh6uQxGTcfWUeofI1Xyzwuvv3E__gftfCEPPLwNezX-rZLHhj3lOx6A1GGh57F-ugZuTprDt4Nb1yJLoASEstZ-H7Yx4RZ-J2GYX4bDi4-Xp5fRNrripmEDnmWYYSNrg26FUsTDnRJn5PRyYerwWnkj3CICpFky8gkucwTmVJbdMGSGYQP8LOMAhSZ2CQHACNMr-jlKZWMptICXDHWJDYrNKcZ3SMdN3Nmn4Qwk9USp4-5hJSgOs1511IjAIUgmWlA4qYhVeH5zfGYjamq1tlTqrAC1V3LB-Sw_cO8pvb4s-g-aIbSX8DwqtFlD2n5EDsDtg7IXqUubRaAyDIkFQpIUOXSZg0zLSZU1XIBOWiUSnmbAcWJXopoktKAvG0fQ2_HJRztzGxVywhAkJzdJyMSiqQ72T0yEpfWYHIMMi9qXW5ftMepQJ7DgKQbWt4KICP55hN3c10xk0OvE5TCpx-1_eHvVUvv-otyeIBWWZXgvZhqvVooN8ULlFkq9ARn_OU_lPCK7ECDMdxA2pUHpLNcrMxrQJLL_I23Gt8BkBFr4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+insights+into+DNA+interference+by+CRISPR-associated+nuclease-helicase+Cas3&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gong%2C+B&rft.au=Shin%2C+M&rft.au=Sun%2C+J&rft.au=Jung%2C+C.H&rft.date=2014-11-18&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=46&rft_id=info:doi/10.1073%2Fpnas.1410806111&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_479395
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F46.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F46.cover.gif