Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3
Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, whic...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 46; pp. 16359 - 16364 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          National Academy of Sciences
    
        18.11.2014
     National Acad Sciences  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.1410806111 | 
Cover
| Abstract | Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA.
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. | 
    
|---|---|
| AbstractList | Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum , with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems. Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas. CRISPR loci in a host genome are a repository of DNA fragments obtained from previous encounters with an invader, which can be transcribed and activated into short RNA molecules (crRNA) with sequences complementary to invader DNA or RNA. In some CRISPR-Cas systems, crRNA is assembled into a targeting complex called “Cascade” that seeks invader DNA to form an R-loop that triggers recruitment of a nuclease-helicase, Cas3, to destroy invader DNA. In this study, we show atomic resolution structures of a full-length Cas3, revealing how Cas3 coordinates binding, ATP-dependent translocation, and nuclease digestion of invader DNA. Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.  | 
    
| Author | Shin, Minsang Jung, Che-Hun Sun, Jiali Gong, Bei Kim, Jeong-Sun Bolt, Edward L. van der Oost, John  | 
    
| Author_xml | – sequence: 1 givenname: Bei surname: Gong fullname: Gong, Bei – sequence: 2 givenname: Minsang surname: Shin fullname: Shin, Minsang – sequence: 3 givenname: Jiali surname: Sun fullname: Sun, Jiali – sequence: 4 givenname: Che-Hun surname: Jung fullname: Jung, Che-Hun – sequence: 5 givenname: Edward L. surname: Bolt fullname: Bolt, Edward L. – sequence: 6 givenname: John surname: van der Oost fullname: van der Oost, John – sequence: 7 givenname: Jeong-Sun surname: Kim fullname: Kim, Jeong-Sun  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25368186$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkstv1DAQxi1URNuFMycgEhcuacePODEHpGp5VSoP9XG2HK-z61XWXuyE1f73OM2yhR4olmWPNL9v7PnsY3TgvDMIPcdwgqGkp2un4glmGCrgGONH6AiDwDlnAg7QEQAp84oRdoiOY1wCgCgqeIIOSUF5hSt-hK6_-NbovlUhsy7a-aKLKeh89v7r2RCY0JhgnDZZvc2ml-dX3y9zFaPXVnVmlrlet0ZFky9Ma3UKsqmK9Cl63Kg2mme7fYJuPn64nn7OL759Op-eXeSag-hyA3VVQ1XSRuOSU8NSD2k2jEKFZw3UJaPcEE3qklaMllVDCDWNgUZoVVBBJ-jtWHej5sZZlxbpVNA2Sq-sbG0dVNjKTR-ka4dt3ddRslJQUSQxjOLerdV2o9pWroNdDQIMcnBXDu7KO3eT5N0oSXVWZqaN64K6kw1n_p1xdiHn_qdMT8AprVKBN7sCwf_oTezkykZt2lY54_t0VgUUBBOFeBjlHKgQycj_QEnJRckLltDX99Cl74NLj3RLlaSkaUzQyz_73Df4-9skoBgBHXyMwTRS20511g9t2_YfBp7e0z1seba7ypDY0xhLxtOV6a1TL0ZkGTsf9gyjWAAhg-mvxnyjvFTzkH7HzRUBzAFwcjAV-QUq6gKI | 
    
| CitedBy_id | crossref_primary_10_1134_S0006297916070026 crossref_primary_10_1099_mic_0_000414 crossref_primary_10_3390_catal10101191 crossref_primary_10_1093_gbe_evx192 crossref_primary_10_1098_rstb_2018_0087 crossref_primary_10_3389_fbioe_2020_575393 crossref_primary_10_1093_nar_gkae723 crossref_primary_10_1016_j_ymben_2015_09_013 crossref_primary_10_1098_rsob_210241 crossref_primary_10_1016_j_jsb_2016_04_002 crossref_primary_10_1038_s42003_020_01366_6 crossref_primary_10_1038_s41421_019_0123_9 crossref_primary_10_1038_nmicrobiol_2017_92 crossref_primary_10_1146_annurev_micro_091014_104441 crossref_primary_10_1080_14737159_2021_1922080 crossref_primary_10_1021_acs_biochem_1c00779 crossref_primary_10_1016_j_microc_2024_110421 crossref_primary_10_1039_D4NP00010B crossref_primary_10_1073_pnas_1616395114 crossref_primary_10_1016_j_bbapap_2023_140900 crossref_primary_10_1016_j_molcel_2018_03_031 crossref_primary_10_1016_j_molcel_2016_07_011 crossref_primary_10_1093_nar_gkz1218 crossref_primary_10_1038_nrmicro3569 crossref_primary_10_1128_ecosalplus_esp_0008_2018 crossref_primary_10_1002_rmv_2055 crossref_primary_10_1134_S0006297921100114 crossref_primary_10_1016_j_jbc_2024_107295 crossref_primary_10_1016_j_fbio_2019_01_003 crossref_primary_10_1038_s42003_024_06537_3 crossref_primary_10_1093_nar_gkab348 crossref_primary_10_1016_j_molcel_2019_02_001 crossref_primary_10_1016_j_meegid_2016_08_030 crossref_primary_10_1093_femsre_fuv019 crossref_primary_10_3390_ijms22062848 crossref_primary_10_1074_jbc_RA120_014030 crossref_primary_10_1089_crispr_2018_0033 crossref_primary_10_1038_nsmb_3269 crossref_primary_10_1093_femsml_uqad007 crossref_primary_10_3389_fbioe_2020_00062 crossref_primary_10_1089_hum_2015_091 crossref_primary_10_1016_j_pmpp_2018_05_006 crossref_primary_10_1099_mic_0_001373 crossref_primary_10_1007_s00253_017_8263_z crossref_primary_10_1016_j_cell_2018_09_039 crossref_primary_10_1186_s12575_020_00135_3 crossref_primary_10_31857_S0320972521100134 crossref_primary_10_1186_s13059_015_0816_9 crossref_primary_10_1016_j_molcel_2022_01_026 crossref_primary_10_1038_nsmb_3287 crossref_primary_10_1073_pnas_2021291118 crossref_primary_10_1074_jbc_M116_724062 crossref_primary_10_1186_s12866_016_0643_5 crossref_primary_10_1038_cr_2016_103 crossref_primary_10_1016_j_ejphar_2022_175173 crossref_primary_10_3389_fmolb_2016_00045 crossref_primary_10_1016_j_cell_2015_12_035 crossref_primary_10_1038_s41598_017_12186_w crossref_primary_10_1128_AEM_00731_20 crossref_primary_10_1038_s41396_018_0254_2 crossref_primary_10_1016_j_molcel_2023_05_036 crossref_primary_10_1016_j_sbi_2016_11_013 crossref_primary_10_3390_microorganisms9061123 crossref_primary_10_3389_fmicb_2019_02458 crossref_primary_10_1177_11779322241274961 crossref_primary_10_1038_s41467_023_38790_1 crossref_primary_10_1111_mmi_14237 crossref_primary_10_3390_genes11020208 crossref_primary_10_1093_nar_gkv1373 crossref_primary_10_1016_j_molcel_2022_06_007 crossref_primary_10_1038_s41467_020_19847_x crossref_primary_10_1016_j_lfs_2020_118969  | 
    
| Cites_doi | 10.1016/j.molcel.2011.12.013 10.1038/nrmicro2577 10.1016/j.molcel.2013.09.008 10.1016/j.mib.2011.03.005 10.1016/j.molcel.2013.09.013 10.1074/mcp.M112.020263 10.1093/nar/18.20.6069 10.1146/annurev-biochem-072911-172315 10.1126/science.1159689 10.1073/pnas.1208507109 10.1038/nature10886 10.1042/BJ20130316 10.1016/j.jmb.2010.07.049 10.1016/j.molcel.2012.03.018 10.1126/science.1247997 10.1016/j.str.2012.06.016 10.1038/nsmb1246 10.1016/j.sbi.2014.01.001 10.4161/rna.21410 10.1073/pnas.0913380107 10.1038/nrmicro3279 10.1016/j.molcel.2013.08.020 10.1016/S0076-6879(03)74002-6 10.1016/j.molcel.2014.03.011 10.1038/emboj.2011.41 10.1038/nsmb.2019 10.1128/JVI.01788-07 10.1074/jbc.M111.238485 10.1042/BJ20110901 10.1038/nature09886 10.1016/j.cell.2009.07.040 10.1038/nature09523 10.1074/jbc.M113.472233 10.1126/science.1225829 10.1038/nature10402 10.1107/S0907444999000839 10.1126/science.1138140 10.1038/emboj.2012.352 10.1099/jmm.0.016949-0 10.1016/j.molcel.2012.03.020 10.1038/nsmb.2875 10.1107/S0907444909052925 10.1016/j.cell.2014.02.001 10.1101/gad.1742908 10.1073/pnas.1405079111 10.1074/jbc.M111.270017 10.1016/S0076-6879(97)76066-X 10.1107/S0907444904019158 10.1016/j.molcel.2009.07.032 10.1038/nature13011 10.1038/emboj.2011.377 10.1146/annurev.biophys.37.032807.125908  | 
    
| ContentType | Journal Article | 
    
| Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 18, 2014 Wageningen University & Research  | 
    
| Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 18, 2014 – notice: Wageningen University & Research  | 
    
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC UNPAY QVL  | 
    
| DOI | 10.1073/pnas.1410806111 | 
    
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall NARCIS:Publications  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts CrossRef Nucleic Acids Abstracts MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Structure and catalytic mechanism of Cas3 | 
    
| EISSN | 1091-6490 | 
    
| EndPage | 16364 | 
    
| ExternalDocumentID | oai_library_wur_nl_wurpubs_479395 10.1073/pnas.1410806111 PMC4246338 3506657571 25368186 10_1073_pnas_1410806111 111_46_16359 43190228 US201600139916  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature  | 
    
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC AFHIN AFQQW UNPAY 08R ADBIT AS GJ OHM QVL TAF  | 
    
| ID | FETCH-LOGICAL-c609t-e0b8b0873fc1763e4061061f43081df0b7436e2c2b7384378f223efe0f9ca5393 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Tue Jan 05 18:10:05 EST 2021 Wed Oct 29 11:54:37 EDT 2025 Tue Sep 30 16:36:49 EDT 2025 Thu Oct 02 08:37:05 EDT 2025 Fri Sep 05 14:03:54 EDT 2025 Wed Oct 01 14:27:58 EDT 2025 Sat Aug 16 22:11:25 EDT 2025 Mon Jul 21 06:06:24 EDT 2025 Wed Oct 01 02:36:37 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Nov 11 00:30:05 EST 2020 Thu May 29 08:40:55 EDT 2025 Wed Dec 27 19:13:52 EST 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 46 | 
    
| Keywords | CRISPR Cas3 Cas proteins bacterial immunity Cascade  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c609t-e0b8b0873fc1763e4061061f43081df0b7436e2c2b7384378f223efe0f9ca5393 | 
    
| Notes | http://dx.doi.org/10.1073/pnas.1410806111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: B.G., M.S., J.S., and J.-S.K. designed research; B.G., M.S., J.S., and J.-S.K. performed research; B.G., M.S., J.S., C.-H.J., E.L.B., J.v.d.O., and J.-S.K. analyzed data; and B.G., M.S., E.L.B., J.v.d.O., and J.-S.K. wrote the paper. 1B.G. and M.S. contributed equally to this work. Edited by Wei Yang, National Institutes of Health, Bethesda, MD, and approved September 26, 2014 (received for review June 10, 2014)  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/111/46/16359.full.pdf | 
    
| PMID | 25368186 | 
    
| PQID | 1627727333 | 
    
| PQPubID | 42026 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | proquest_journals_1627727333 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246338 pubmed_primary_25368186 fao_agris_US201600139916 pnas_primary_111_46_16359 wageningen_narcis_oai_library_wur_nl_wurpubs_479395 proquest_miscellaneous_1803094959 unpaywall_primary_10_1073_pnas_1410806111 proquest_miscellaneous_1660399609 crossref_primary_10_1073_pnas_1410806111 jstor_primary_43190228 proquest_miscellaneous_1627697654 crossref_citationtrail_10_1073_pnas_1410806111  | 
    
| ProviderPackageCode | RNA PNE CITATION AAYXX QVL  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-11-18 | 
    
| PublicationDateYYYYMMDD | 2014-11-18 | 
    
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-18 day: 18  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAlternate | Proc Natl Acad Sci U S A | 
    
| PublicationYear | 2014 | 
    
| Publisher | National Academy of Sciences National Acad Sciences  | 
    
| Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences  | 
    
| References | Gasiunas G (e_1_3_4_12_2) 2012; 109 Rouillon C (e_1_3_4_25_2) 2013; 52 Terwilliger TC (e_1_3_4_49_2) 1999; 55 Wiedenheft B (e_1_3_4_3_2) 2012; 482 Hale CR (e_1_3_4_14_2) 2009; 139 Wiedenheft B (e_1_3_4_43_2) 2011; 477 van Duijn E (e_1_3_4_20_2) 2012; 11 Jore MM (e_1_3_4_13_2) 2011; 18 Sorek R (e_1_3_4_4_2) 2013; 82 Carte J (e_1_3_4_10_2) 2008; 22 Westra ER (e_1_3_4_28_2) 2012; 46 Karow AR (e_1_3_4_42_2) 2010; 402 Garneau JE (e_1_3_4_8_2) 2010; 468 Pyle AM (e_1_3_4_38_2) 2008; 37 Makarova KS (e_1_3_4_32_2) 2011; 9 Staals RH (e_1_3_4_17_2) 2013; 52 Emsley P (e_1_3_4_52_2) 2004; 60 Barrangou R (e_1_3_4_1_2) 2014; 54 Sternberg SH (e_1_3_4_24_2) 2014; 507 Van der Oost J (e_1_3_4_6_2) 2014; 12 Zhang J (e_1_3_4_26_2) 2012; 45 Büttner K (e_1_3_4_40_2) 2007; 14 Hochstrasser ML (e_1_3_4_30_2) 2014; 111 Zhang J (e_1_3_4_16_2) 2010; 59 Howard JA (e_1_3_4_45_2) 2011; 439 Luo D (e_1_3_4_41_2) 2008; 82 Adams PD (e_1_3_4_50_2) 2010; 66 Jinek M (e_1_3_4_22_2) 2014; 343 Del Campo M (e_1_3_4_37_2) 2009; 35 Sashital DG (e_1_3_4_44_2) 2012; 46 Sinkunas T (e_1_3_4_33_2) 2011; 30 Nam KH (e_1_3_4_15_2) 2012; 20 Mulepati S (e_1_3_4_35_2) 2011; 286 Gu M (e_1_3_4_39_2) 2010; 107 Lintner NG (e_1_3_4_19_2) 2011; 286 Jackson RN (e_1_3_4_31_2) 2014; 24 Beloglazova N (e_1_3_4_34_2) 2011; 30 Barrangou R (e_1_3_4_7_2) 2007; 315 Reeks J (e_1_3_4_5_2) 2013; 453 Spilman M (e_1_3_4_18_2) 2013; 52 Aslanidis C (e_1_3_4_47_2) 1990; 18 Deltcheva E (e_1_3_4_11_2) 2011; 471 Otwinowski Z (e_1_3_4_48_2) 1997; 276 Westra ER (e_1_3_4_36_2) 2012; 9 Huo Y (e_1_3_4_46_2) 2014; 21 Nishimasu H (e_1_3_4_23_2) 2014; 156 Mulepati S (e_1_3_4_29_2) 2013; 288 Terwilliger TC (e_1_3_4_51_2) 2003; 374 Brouns SJ (e_1_3_4_9_2) 2008; 321 Terns MP (e_1_3_4_2_2) 2011; 14 Sinkunas T (e_1_3_4_27_2) 2013; 32 Jinek M (e_1_3_4_21_2) 2012; 337  | 
    
| References_xml | – volume: 45 start-page: 303 year: 2012 ident: e_1_3_4_26_2 article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity publication-title: Mol Cell doi: 10.1016/j.molcel.2011.12.013 – volume: 9 start-page: 467 year: 2011 ident: e_1_3_4_32_2 article-title: Evolution and classification of the CRISPR-Cas systems publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2577 – volume: 52 start-page: 146 year: 2013 ident: e_1_3_4_18_2 article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.008 – volume: 14 start-page: 321 year: 2011 ident: e_1_3_4_2_2 article-title: CRISPR-based adaptive immune systems publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2011.03.005 – volume: 52 start-page: 135 year: 2013 ident: e_1_3_4_17_2 article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.013 – volume: 11 start-page: 1430 year: 2012 ident: e_1_3_4_20_2 article-title: Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M112.020263 – volume: 18 start-page: 6069 year: 1990 ident: e_1_3_4_47_2 article-title: Ligation-independent cloning of PCR products (LIC-PCR) publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6069 – volume: 82 start-page: 237 year: 2013 ident: e_1_3_4_4_2 article-title: CRISPR-mediated adaptive immune systems in bacteria and archaea publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-072911-172315 – volume: 321 start-page: 960 year: 2008 ident: e_1_3_4_9_2 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science doi: 10.1126/science.1159689 – volume: 109 start-page: E2579 year: 2012 ident: e_1_3_4_12_2 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1208507109 – volume: 482 start-page: 331 year: 2012 ident: e_1_3_4_3_2 article-title: RNA-guided genetic silencing systems in bacteria and archaea publication-title: Nature doi: 10.1038/nature10886 – volume: 453 start-page: 155 year: 2013 ident: e_1_3_4_5_2 article-title: CRISPR interference: A structural perspective publication-title: Biochem J doi: 10.1042/BJ20130316 – volume: 402 start-page: 629 year: 2010 ident: e_1_3_4_42_2 article-title: A structural model for the DEAD box helicase YxiN in solution: Localization of the RNA binding domain publication-title: J Mol Biol doi: 10.1016/j.jmb.2010.07.049 – volume: 46 start-page: 595 year: 2012 ident: e_1_3_4_28_2 article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.03.018 – volume: 343 start-page: 1247997 year: 2014 ident: e_1_3_4_22_2 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science doi: 10.1126/science.1247997 – volume: 20 start-page: 1574 year: 2012 ident: e_1_3_4_15_2 article-title: Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system publication-title: Structure doi: 10.1016/j.str.2012.06.016 – volume: 14 start-page: 647 year: 2007 ident: e_1_3_4_40_2 article-title: Structural basis for DNA duplex separation by a superfamily-2 helicase publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1246 – volume: 24 start-page: 106 year: 2014 ident: e_1_3_4_31_2 article-title: Fitting CRISPR-associated Cas3 into the Helicase Family Tree publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2014.01.001 – volume: 9 start-page: 1134 year: 2012 ident: e_1_3_4_36_2 article-title: Cascade-mediated binding and bending of negatively supercoiled DNA publication-title: RNA Biol doi: 10.4161/rna.21410 – volume: 107 start-page: 521 year: 2010 ident: e_1_3_4_39_2 article-title: Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0913380107 – volume: 12 start-page: 479 year: 2014 ident: e_1_3_4_6_2 article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3279 – volume: 52 start-page: 124 year: 2013 ident: e_1_3_4_25_2 article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.020 – volume: 374 start-page: 22 year: 2003 ident: e_1_3_4_51_2 article-title: SOLVE and RESOLVE: Automated structure solution and density modification publication-title: Methods Enzymol doi: 10.1016/S0076-6879(03)74002-6 – volume: 54 start-page: 234 year: 2014 ident: e_1_3_4_1_2 article-title: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity publication-title: Mol Cell doi: 10.1016/j.molcel.2014.03.011 – volume: 30 start-page: 1335 year: 2011 ident: e_1_3_4_33_2 article-title: Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system publication-title: EMBO J doi: 10.1038/emboj.2011.41 – volume: 18 start-page: 529 year: 2011 ident: e_1_3_4_13_2 article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2019 – volume: 82 start-page: 173 year: 2008 ident: e_1_3_4_41_2 article-title: Crystal structure of the NS3 protease-helicase from dengue virus publication-title: J Virol doi: 10.1128/JVI.01788-07 – volume: 286 start-page: 21643 year: 2011 ident: e_1_3_4_19_2 article-title: Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE) publication-title: J Biol Chem doi: 10.1074/jbc.M111.238485 – volume: 439 start-page: 85 year: 2011 ident: e_1_3_4_45_2 article-title: Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein publication-title: Biochem J doi: 10.1042/BJ20110901 – volume: 471 start-page: 602 year: 2011 ident: e_1_3_4_11_2 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 – volume: 139 start-page: 945 year: 2009 ident: e_1_3_4_14_2 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell doi: 10.1016/j.cell.2009.07.040 – volume: 468 start-page: 67 year: 2010 ident: e_1_3_4_8_2 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature doi: 10.1038/nature09523 – volume: 288 start-page: 22184 year: 2013 ident: e_1_3_4_29_2 article-title: In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target publication-title: J Biol Chem doi: 10.1074/jbc.M113.472233 – volume: 337 start-page: 816 year: 2012 ident: e_1_3_4_21_2 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 477 start-page: 486 year: 2011 ident: e_1_3_4_43_2 article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system publication-title: Nature doi: 10.1038/nature10402 – volume: 55 start-page: 849 year: 1999 ident: e_1_3_4_49_2 article-title: Automated MAD and MIR structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444999000839 – volume: 315 start-page: 1709 year: 2007 ident: e_1_3_4_7_2 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 – volume: 32 start-page: 385 year: 2013 ident: e_1_3_4_27_2 article-title: In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus publication-title: EMBO J doi: 10.1038/emboj.2012.352 – volume: 59 start-page: 285 year: 2010 ident: e_1_3_4_16_2 article-title: Mycobacterium tuberculosis complex CRISPR genotyping: Improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay publication-title: J Med Microbiol doi: 10.1099/jmm.0.016949-0 – volume: 46 start-page: 606 year: 2012 ident: e_1_3_4_44_2 article-title: Mechanism of foreign DNA selection in a bacterial adaptive immune system publication-title: Mol Cell doi: 10.1016/j.molcel.2012.03.020 – volume: 21 start-page: 771 year: 2014 ident: e_1_3_4_46_2 article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2875 – volume: 66 start-page: 213 year: 2010 ident: e_1_3_4_50_2 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 156 start-page: 935 year: 2014 ident: e_1_3_4_23_2 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 22 start-page: 3489 year: 2008 ident: e_1_3_4_10_2 article-title: Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes publication-title: Genes Dev doi: 10.1101/gad.1742908 – volume: 111 start-page: 6618 year: 2014 ident: e_1_3_4_30_2 article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1405079111 – volume: 286 start-page: 31896 year: 2011 ident: e_1_3_4_35_2 article-title: Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3) publication-title: J Biol Chem doi: 10.1074/jbc.M111.270017 – volume: 276 start-page: 307 year: 1997 ident: e_1_3_4_48_2 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 60 start-page: 2126 year: 2004 ident: e_1_3_4_52_2 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 35 start-page: 598 year: 2009 ident: e_1_3_4_37_2 article-title: Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA publication-title: Mol Cell doi: 10.1016/j.molcel.2009.07.032 – volume: 507 start-page: 62 year: 2014 ident: e_1_3_4_24_2 article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 publication-title: Nature doi: 10.1038/nature13011 – volume: 30 start-page: 4616 year: 2011 ident: e_1_3_4_34_2 article-title: Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference publication-title: EMBO J doi: 10.1038/emboj.2011.377 – volume: 37 start-page: 317 year: 2008 ident: e_1_3_4_38_2 article-title: Translocation and unwinding mechanisms of RNA and DNA helicases publication-title: Annual Rev Biophys doi: 10.1146/annurev.biophys.37.032807.125908  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.4451063 | 
    
| Snippet | Significance Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic... Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and... Bacteria can repel invader DNA and RNA molecules by using an adaptive immunity mechanism called clustered regularly interspaced short palindromic repeats...  | 
    
| SourceID | wageningen unpaywall pubmedcentral proquest pubmed crossref pnas jstor fao  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 16359 | 
    
| SubjectTerms | Active sites adaptive immunity Adenosine triphosphatase Adenosine triphosphatases Adenosine Triphosphate - metabolism Amino Acid Motifs Amino Acid Sequence antiviral defense ATP bacteria Bacteria - enzymology Bacteria - genetics Bacteria - immunology bacterial immune-system Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding sites Biochemistry Biological Sciences cascade Clustered Regularly Interspaced Short Palindromic Repeats - physiology complex CRISPR-Associated Proteins - chemistry CRISPR-Associated Proteins - genetics CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems - physiology Crystal structure Crystallography, X-Ray Deoxyribonucleases - chemistry Deoxyribonucleases - genetics Deoxyribonucleases - metabolism Deoxyribonucleic acid DNA DNA - metabolism DNA fragmentation DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA, Bacterial - metabolism DNA, Single-Stranded - metabolism escherichia-coli genome Host-Pathogen Interactions in-vitro reconstitution Interspersed Repetitive Sequences loci Magnesium - metabolism Manganese - metabolism Metal ions Models, Molecular Molecular Sequence Data Molecular structure Molecules Mutagenesis, Site-Directed Neutralization Nucleic acids Protein Binding Protein Conformation Protein Structure, Tertiary Proteins Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism RNA RNA, Bacterial - metabolism Sequence Alignment Sequence Homology, Amino Acid structural basis transcription (genetics) Translocation Tunnels  | 
    
| Title | Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3 | 
    
| URI | https://www.jstor.org/stable/43190228 http://www.pnas.org/content/111/46/16359.abstract https://www.ncbi.nlm.nih.gov/pubmed/25368186 https://www.proquest.com/docview/1627727333 https://www.proquest.com/docview/1627697654 https://www.proquest.com/docview/1660399609 https://www.proquest.com/docview/1803094959 https://pubmed.ncbi.nlm.nih.gov/PMC4246338 https://www.pnas.org/content/pnas/111/46/16359.full.pdf http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F479395  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 111 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdo98BegAFjgTEFiYftIVlSfyR5rApjIK2atlUqT5aT2myicqumVTX-eu4SJ6N8DIFUKVZytRP7fP75fP6ZkLc8UlmqOQ-MTmjAzEQEaVrkAWVC5dyYgk3Q33E2FKcj9mnMx851UbqwyrlVZbWIj9HaYHqP8cYxxt8wcQz4gWch-qbD-cR0yJbgAMK7ZGs0PO9_rgM6wO6y-jhbGA0DwbKoIfVJaJVZiNGNKQxlcbwxHnWMmjWBich2CqK_Q56_BlA-XNm5ul2rKaS312AJbLU16oeh6uQxGTcfWUeofA1Xyzwsvv3E__gftfCEPHLw1e_X-rZDHmj7lOw4A1H6h47F-ugZuTprDt71b2yJLoASEsuZ_27Yx4ReuJ2Gfn7rDy4-Xp5fBMrpip74FnmWYYQNrjW6FUvtD1RJn5PRyfurwWngjnAIChFly0BHeZpHaUJNEYMl0wgf4GcYBSgyMVEOAEboXtHLE5oymqQG4Io2OjJZoTjN6C7p2pnVe8SHmaxKcfqYp5ASVCU5jw3VAlAIkpl6JGwaUhaO3xyP2ZjKap09oRIrUN61vEcO2z_Ma2qPP4vugWZI9QUMrxxd9pCWD7EzYGuP7Fbq0mYBiCxDUiGPeFUubdYw02JCVi3nkf1GqaSzGVCc6CWIJin1yJv2MfR2XMJRVs9WtYwABMnZfTIioki6k90jk-LSGkyOQeZFrcvti_Y4Fchz6JFkQ8tbAWQk33xib64rZnLodYJS-PSjtj_8vWrpXX-RFg_QKqsSnBdTrlcLaad4gTJLiZ7gjL_8hxJekW1oMIYbSON0n3SXi5V-DUhymR-QzodxfOBsx3cXbmzU | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY98BegAFjgYGCxMP2kCytP-I8VoVpIK2atlUqT5aT2myicqumVTX-eu4SJ6N8DIFUKVZytRP7fP75fP6ZkHc80Zk0nEfWpDRidiIiKYs8okzonFtbsAn6O86G4nTEPo352LsuSh9WOXe6rBbxMVobTO8x3jjG-BsmjgE_8CxG33Q8n9gtsi04gPAO2R4Nz_uf64AOsLusPs4WRsNIsCxpSH1SWmUWY3SjhKGs290Yj7asnjWBich2CqK_Q56_BlA-XLm5vl3rKaR31mAJXLU16oeh6uQxGTcfWUeofI1Xyzwuvv3E__gftfCEPPLwNezX-rZLHhj3lOx6A1GGh57F-ugZuTprDt4Nb1yJLoASEstZ-H7Yx4RZ-J2GYX4bDi4-Xp5fRNrripmEDnmWYYSNrg26FUsTDnRJn5PRyYerwWnkj3CICpFky8gkucwTmVJbdMGSGYQP8LOMAhSZ2CQHACNMr-jlKZWMptICXDHWJDYrNKcZ3SMdN3Nmn4Qwk9USp4-5hJSgOs1511IjAIUgmWlA4qYhVeH5zfGYjamq1tlTqrAC1V3LB-Sw_cO8pvb4s-g-aIbSX8DwqtFlD2n5EDsDtg7IXqUubRaAyDIkFQpIUOXSZg0zLSZU1XIBOWiUSnmbAcWJXopoktKAvG0fQ2_HJRztzGxVywhAkJzdJyMSiqQ72T0yEpfWYHIMMi9qXW5ftMepQJ7DgKQbWt4KICP55hN3c10xk0OvE5TCpx-1_eHvVUvv-otyeIBWWZXgvZhqvVooN8ULlFkq9ARn_OU_lPCK7ECDMdxA2pUHpLNcrMxrQJLL_I23Gt8BkBFr4w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+insights+into+DNA+interference+by+CRISPR-associated+nuclease-helicase+Cas3&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gong%2C+B&rft.au=Shin%2C+M&rft.au=Sun%2C+J&rft.au=Jung%2C+C.H&rft.date=2014-11-18&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=46&rft_id=info:doi/10.1073%2Fpnas.1410806111&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_479395 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F46.cover.gif | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F46.cover.gif |