Multiway canonical correlation analysis of brain data
Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is no...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 186; pp. 728 - 740 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2019
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2018.11.026 |
Cover
Abstract | Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution. Multiway canonical correlation analysis (MCCA) brings a solution to this problem by allowing data from multiple subjects to be fused in such a way as to extract components common to all. This paper reviews the method, offers application examples that illustrate its effectiveness, and outlines the caveats and risks entailed by the method.
•MCCA combines multiple data sets into a common representation.•MCCA can be used to summarize data across subjects.•MCCA can be used to denoise data, or reduce dimensionality, based on consistency across subjects. |
---|---|
AbstractList | Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution. Multiway canonical correlation analysis (MCCA) brings a solution to this problem by allowing data from multiple subjects to be fused in such a way as to extract components common to all. This paper reviews the method, offers application examples that illustrate its effectiveness, and outlines the caveats and risks entailed by the method. Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution. Multiway canonical correlation analysis (MCCA) brings a solution to this problem by allowing data from multiple subjects to be fused in such a way as to extract components common to all. This paper reviews the method, offers application examples that illustrate its effectiveness, and outlines the caveats and risks entailed by the method. •MCCA combines multiple data sets into a common representation.•MCCA can be used to summarize data across subjects.•MCCA can be used to denoise data, or reduce dimensionality, based on consistency across subjects. Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution. Multiway canonical correlation analysis (MCCA) brings a solution to this problem by allowing data from multiple subjects to be fused in such a way as to extract components common to all. This paper reviews the method, offers application examples that illustrate its effectiveness, and outlines the caveats and risks entailed by the method.Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution. Multiway canonical correlation analysis (MCCA) brings a solution to this problem by allowing data from multiple subjects to be fused in such a way as to extract components common to all. This paper reviews the method, offers application examples that illustrate its effectiveness, and outlines the caveats and risks entailed by the method. |
Author | Fuglsang, Søren Parra, Lucas C. Di Liberto, Giovanni M. de Cheveigné, Alain Arzounian, Dorothée Hjortkjær, Jens Wong, Daniel D.E. |
Author_xml | – sequence: 1 givenname: Alain surname: de Cheveigné fullname: de Cheveigné, Alain email: Alain.de.Cheveigne@ens.fr organization: Laboratoire des Systèmes Perceptifs, UMR 8248, CNRS, France – sequence: 2 givenname: Giovanni M. surname: Di Liberto fullname: Di Liberto, Giovanni M. organization: Laboratoire des Systèmes Perceptifs, UMR 8248, CNRS, France – sequence: 3 givenname: Dorothée surname: Arzounian fullname: Arzounian, Dorothée organization: Laboratoire des Systèmes Perceptifs, UMR 8248, CNRS, France – sequence: 4 givenname: Daniel D.E. surname: Wong fullname: Wong, Daniel D.E. organization: Laboratoire des Systèmes Perceptifs, UMR 8248, CNRS, France – sequence: 5 givenname: Jens surname: Hjortkjær fullname: Hjortkjær, Jens organization: Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Denmark – sequence: 6 givenname: Søren surname: Fuglsang fullname: Fuglsang, Søren organization: Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Denmark – sequence: 7 givenname: Lucas C. surname: Parra fullname: Parra, Lucas C. organization: City College New York, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30496819$$D View this record in MEDLINE/PubMed https://hal.science/hal-02049347$$DView record in HAL |
BookMark | eNqNkk9v1DAQxS1URP_AV0CRuMAhwRM7dnxBtBVQpEVc4GzNOjZ48cbFTor22-N0S5H2tCdb1m_ezLznc3IyxtESUgFtgIJ4u2lGO6fot_jDNi2FvgFoaCuekDOgqqtVJ9uT5d6xugdQp-Q85w2lVAHvn5FTRrkSPagz0n2Zw-T_4K4yWJp4g6EyMSUbcPJxrHDEsMs-V9FV64R-rAac8Dl56jBk--LhvCDfP374dn1Tr75--nx9uaqNoGqqB2eZFX3HjUPOBQfZ9o63au2YVG6wVjh0LaedoZIPTDCKXCnpUFKKbEB2Qd7sdX9i0Lep7Jt2OqLXN5crvbzRtmzCuLyDwr7es7cp_p5tnvTWZ2NDwNHGOesWePGDCmAFfXWAbuKcyqYLJSRwBlIW6uUDNa-3dnjs_8-8AvR7wKSYc7LuEQGql5z0Rv_PSS85aYAysyil7w5KjZ_uHZ-KyeEYgau9gC3233mbdDbejsYOPlkz6SH6Y0TeH4iY4O__wC-7O07iL11KyT0 |
CitedBy_id | crossref_primary_10_3390_s23198039 crossref_primary_10_1016_j_neuroimage_2023_120079 crossref_primary_10_1109_TNSRE_2021_3129790 crossref_primary_10_3390_data9080094 crossref_primary_10_1155_2022_4522351 crossref_primary_10_3389_fnins_2020_00714 crossref_primary_10_3934_mbe_2024117 crossref_primary_10_1007_s11042_021_11755_6 crossref_primary_10_1016_j_neuroimage_2020_117028 crossref_primary_10_1162_imag_a_00040 crossref_primary_10_1088_1741_2552_ad1784 crossref_primary_10_1523_JNEUROSCI_2271_19_2020 crossref_primary_10_3389_fnins_2021_652058 crossref_primary_10_1002_hbm_25900 crossref_primary_10_1250_ast_41_361 crossref_primary_10_1093_cercor_bhab128 crossref_primary_10_3389_fncom_2022_919215 crossref_primary_10_3389_fnins_2019_00153 crossref_primary_10_3390_s23146546 crossref_primary_10_1038_s41598_024_58886_y crossref_primary_10_1088_1741_2552_abf771 crossref_primary_10_1109_LSP_2020_3028006 crossref_primary_10_1016_j_patter_2022_100602 crossref_primary_10_1038_s41467_023_43490_x crossref_primary_10_1523_JNEUROSCI_1331_23_2024 crossref_primary_10_3389_fnins_2022_963629 crossref_primary_10_1109_JBHI_2024_3462991 crossref_primary_10_3389_fnins_2021_673401 crossref_primary_10_3389_fnhum_2019_00458 crossref_primary_10_1038_s41598_022_10942_1 crossref_primary_10_1088_1741_2552_ace73f crossref_primary_10_1016_j_heares_2022_108607 crossref_primary_10_1038_s41598_021_84597_9 crossref_primary_10_1109_TNNLS_2023_3349142 crossref_primary_10_7554_eLife_85108 crossref_primary_10_1088_1741_2552_acbe1d crossref_primary_10_1162_nol_a_00054 crossref_primary_10_3389_fnins_2021_705621 crossref_primary_10_1016_j_neuroimage_2019_116211 crossref_primary_10_1109_TBME_2024_3370638 crossref_primary_10_1080_03080188_2020_1808932 crossref_primary_10_1002_bimj_202300037 crossref_primary_10_1016_j_cmpb_2020_105730 crossref_primary_10_1088_1741_2552_ac975c crossref_primary_10_1109_ACCESS_2020_3002810 crossref_primary_10_3390_pr11071935 crossref_primary_10_7554_eLife_65566 crossref_primary_10_1007_s12561_024_09459_0 crossref_primary_10_1038_s41598_019_56962_2 crossref_primary_10_1162_imag_a_00155 crossref_primary_10_1098_rsta_2019_0579 |
Cites_doi | 10.1007/s11336-008-9065-0 10.1016/j.neuroimage.2018.01.035 10.1109/MSP.2010.936725 10.3389/fnsys.2017.00061 10.1016/j.neuroimage.2015.04.038 10.1109/RBME.2012.2211076 10.1016/j.jneumeth.2011.10.031 10.1016/j.neuron.2012.12.037 10.1016/0167-9473(94)90067-1 10.1002/hbm.23689 10.3389/fnins.2018.00531 10.3389/fnhum.2016.00604 10.1016/j.neuron.2015.11.035 10.1016/j.neuroimage.2012.01.137 10.1098/rstb.2016.0105 10.1016/j.neuroimage.2014.06.018 10.3389/fnhum.2012.00112 10.1016/j.neuroimage.2017.04.026 10.1016/j.neuroimage.2018.01.033 10.1109/JPROC.2015.2425807 10.1016/j.neuropsychologia.2010.07.007 10.1109/MSP.2016.2521870 10.1016/j.neuroimage.2013.10.062 10.1016/j.neuroimage.2005.05.032 10.1152/jn.00297.2011 10.3389/fnhum.2013.00115 10.1016/j.csda.2015.04.004 10.1093/cercor/bht355 10.1002/hbm.23425 10.1126/science.1089506 10.1007/s11336-011-9234-4 10.1007/s10548-017-0616-5 10.1016/j.neucom.2013.01.018 10.1523/JNEUROSCI.2383-16.2017 10.1093/biomet/58.3.433 10.1016/j.neuron.2011.08.026 10.1109/83.988962 10.1186/1471-2202-13-157 10.1038/nature11020 10.1038/nn.3776 10.1016/j.neuroimage.2010.01.062 10.1007/s11336-011-9206-8 10.1088/1741-2560/12/4/046007 10.1016/j.neuroimage.2017.02.076 10.1016/j.neuroimage.2014.05.068 10.1038/nn.2303 10.1155/2011/129365 10.2202/1544-6115.1470 10.1088/1741-2560/13/5/056017 10.1152/jn.90896.2008 10.1093/biomet/28.3-4.321 10.1016/j.neuroimage.2013.10.067 10.1007/s00180-011-0276-y 10.3389/fnins.2015.00254 10.1016/j.neuroimage.2012.06.026 10.1016/j.jneumeth.2008.03.015 10.1093/biostatistics/kxu047 10.1016/j.neuroimage.2018.02.045 10.1109/TSP.2017.2698365 10.1016/j.neuroimage.2014.02.004 10.1109/TSP.2009.2021636 10.1016/j.cub.2015.08.030 10.1016/j.neuroimage.2008.06.022 10.3389/fneng.2014.00014 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Copyright Elsevier Limited Feb 1, 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Feb 1, 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES |
DOI | 10.1016/j.neuroimage.2018.11.026 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 740 |
ExternalDocumentID | oai_HAL_hal_02049347v1 30496819 10_1016_j_neuroimage_2018_11_026 S1053811918321049 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 1XC VOOES |
ID | FETCH-LOGICAL-c609t-dfe3e6854cfa44641728f429bf379fdee6faf2405c074d3630a4997fa700a3da3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Sep 12 12:52:55 EDT 2025 Sun Sep 28 07:49:24 EDT 2025 Wed Aug 13 06:37:47 EDT 2025 Mon Jul 21 05:30:49 EDT 2025 Tue Jul 01 03:02:06 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Feb 23 02:36:56 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CCA Multiple CCA Multivariate CCA Multiway CCA EEG Generalized CCA |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-dfe3e6854cfa44641728f429bf379fdee6faf2405c074d3630a4997fa700a3da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7305-1891 |
OpenAccessLink | https://hal.science/hal-02049347 |
PMID | 30496819 |
PQID | 2167143177 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02049347v1 proquest_miscellaneous_2141050613 proquest_journals_2167143177 pubmed_primary_30496819 crossref_primary_10_1016_j_neuroimage_2018_11_026 crossref_citationtrail_10_1016_j_neuroimage_2018_11_026 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_026 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Parra, Haufe, Dmochowski (bib60) 2018 O'Sullivan, Power, Mesgarani, Rajaram, Foxe, Shinn-Cunningham, Slaney, Shamma, Lalor (bib58) 2014; 25 Correa, Eichele, Adalı, Li, Calhoun (bib10) 2010; 50 Dähne, Bießman, Samek, Haufe, Goltz, Gundlach, Villringer, Fazli, Müller (bib13) 2015; 103 Koskinen, Seppä (bib40) 2014; 100 Litvak, Friston (bib47) 2008; 42 Choi, Rajaram, Varghese, Shinn-Cunningham (bib8) 2013; 7 Fuglsang, Dau, Hjortkjær (bib24) 2017; 156 Huster, Plis, Calhoun (bib32) 2015; 9 Kiers, Cléroux, Ten Berge (bib39) 1994; 18 Southwell, Baumann, Gal, Barascud, Friston, Chait (bib62) 2017; 372 Melzer, Reiter, Bischof (bib52) 2001; 2130 Karch, Sander, von Oertzen, Brandmaier, Werkle-Bergner (bib35) 2015; 118 Di Liberto, O'Sullivan, Lalor (bib18) 2015; 25 Eichele, Rachakonda, Brakedal, Eikeland, Calhoun (bib22) 2011; 2011 van de Velden, Takane (bib70) 2012; 27 Norman-Haignere, Kanwisher, McDermott (bib57) 2015; 88 Hasson, Nir, Levy, Fuhrmann, Malach (bib27) 2004; 303 de Cheveigné, Wong, Liberto, Hjortkjaer, Slaney, Lalor (bib17) 2018; 172 Xu, Lorbert, Ramadge, Guntupalli, Haxby (bib77) 2012 Mahjoory, Nikulin, Botrel, Linkenkaer-Hansen, Fato, Haufe (bib50) 2017; 152 Dmochowski, Ki, DeGuzman, Sajda, Parra (bib20) 2017 Kriegeskorte, Simmons, Bellgowan, Baker (bib41) 2009; 12 Chen, Wang, McKeown (bib7) 2016; 33 Tenenhaus (bib67) 2011; 76 Kettenring (bib37) 1971; 58 Mesgarani, Chang (bib53) 2012; 485 Zhang, Borst, Kass, Anderson (bib78) 2017; 38 Lankinen, Saari, Hlushchuk, Tikka, Parkkonen, Hari, Koskinen (bib44) 2018; 173 Calhoun, Adali (bib5) 2012; 5 Nielsen (bib56) 2002; 11 Dmochowski, Sajda, Dias, Parra (bib21) 2012; 6 Benton, Khayrallah, Gujral, Reisinger, Zhang, Arora (bib4) 2017 Luck (bib48) 2005 Takane, Hwang, Abdi (bib66) 2008; 73 Molenaar (bib55) 2004; 2 Lio, Boulinguez (bib46) 2016; 31 Martin, Brunner, Holdgraf, Heinze, Crone, Rieger, Schalk, Knight, Pasley (bib51) 2014; 7 Afshin-Pour, Hossein-Zadeh, Strother, Soltanian-Zadeh (bib2) 2012; 60 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib29) 2011; 72 Cunningham, Yu (bib12) 2014; 17 Parra, Spence, Gerson, Sajda (bib61) 2005; 28 Sturm (bib63) 2016 de Cheveigné, Arzounian (bib14) 2018; 172 Lankinen, Saari, Hari, Koskinen (bib43) 2014; 92 de Cheveigné, Parra (bib15) 2014; 98 Sui, Adali, Yu, Chen, Calhoun (bib64) 2012; 204 Wronkiewicz, Larson, Lee (bib76) 2016; 13 Gates, Molenaar (bib25) 2012; 63 Mirkovic, Debener, Jaeger, Vos (bib54) 2015; 12 Madsen, Churchill, M£rup (bib49) 2016; 38 Ding, Simon (bib19) 2012; 107 Velden (bib71) 2011 Vía, Santamaría, Pérez (bib72) 2005 Afshin-Pour, Grady, Strother (bib1) 2014; 87 Zhang, Zhou, Zhao, Onishi, Jin, Wang, Cichocki (bib79) 2011; vol 7062 Lalor, Power, Reilly, Foxe (bib42) 2009; 102 Zion Golumbic, Ding, Bickel, Lakatos, Schevon, McKhann, Goodman, Emerson, Mehta, Simon, Poeppel, Schroeder (bib80) 2013; 77 Hwang, Jung, Takane, Woodward (bib34) 2012; 77 Asendorf (bib3) 2015 Tiitinen, Miettinen, Alku, May (bib69) 2012; 13 Holdgraf, Rieger, Micheli, Martin, Knight, Theunissen (bib30) 2017; 11 Tenenhaus, Philippe, Frouin (bib68) 2015; 90 de Cheveigné, Simon (bib16) 2008; 171 Karhunen, Hao, Ylipaavalniemi (bib36) 2013; 113 Hotelling (bib31) 1936; 28 Via, Santamaria, Pérez (bib73) 2005; 1 Wong, Fuglsang, Hjortkjær, Ceolini, Slaney, de Cheveigné (bib75) 2018; 12 Correa, Adali, Li, Calhoun (bib9) 2010 Khalighinejad, Cruzatto da Silva, Mesgarani (bib38) 2017; 37 Sun, Ji, Yu, Ye (bib65) 2009 Fu, Huang, Hong, Sidiropoulos, So (bib23) 2017; 65 Witten, Tibshirani (bib74) 2009; 8 Huster, Raud (bib33) 2018; 31 Gross, Tibshirani (bib26) 2015; 16 Chait, de Cheveigné, Poeppel, Simon (bib6) 2010; 48 Parra (bib59) 2018 Crosse, Di Liberto, Bednar, Lalor (bib11) 2016; 10 Li, Adali, Wang, Calhoun (bib45) 2009; 57 Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bib28) 2014; 87 Huster (10.1016/j.neuroimage.2018.11.026_bib32) 2015; 9 Zion Golumbic (10.1016/j.neuroimage.2018.11.026_bib80) 2013; 77 Benton (10.1016/j.neuroimage.2018.11.026_bib4) 2017 Dähne (10.1016/j.neuroimage.2018.11.026_bib13) 2015; 103 van de Velden (10.1016/j.neuroimage.2018.11.026_bib70) 2012; 27 Norman-Haignere (10.1016/j.neuroimage.2018.11.026_bib57) 2015; 88 Correa (10.1016/j.neuroimage.2018.11.026_bib9) 2010 Mahjoory (10.1016/j.neuroimage.2018.11.026_bib50) 2017; 152 Hwang (10.1016/j.neuroimage.2018.11.026_bib34) 2012; 77 Vía (10.1016/j.neuroimage.2018.11.026_bib72) 2005 Karhunen (10.1016/j.neuroimage.2018.11.026_bib36) 2013; 113 Kettenring (10.1016/j.neuroimage.2018.11.026_bib37) 1971; 58 Afshin-Pour (10.1016/j.neuroimage.2018.11.026_bib1) 2014; 87 Velden (10.1016/j.neuroimage.2018.11.026_bib71) 2011 Lankinen (10.1016/j.neuroimage.2018.11.026_bib43) 2014; 92 Tenenhaus (10.1016/j.neuroimage.2018.11.026_bib67) 2011; 76 Martin (10.1016/j.neuroimage.2018.11.026_bib51) 2014; 7 Haufe (10.1016/j.neuroimage.2018.11.026_bib28) 2014; 87 Correa (10.1016/j.neuroimage.2018.11.026_bib10) 2010; 50 Litvak (10.1016/j.neuroimage.2018.11.026_bib47) 2008; 42 Parra (10.1016/j.neuroimage.2018.11.026_bib60) 2018 Madsen (10.1016/j.neuroimage.2018.11.026_bib49) 2016; 38 Mirkovic (10.1016/j.neuroimage.2018.11.026_bib54) 2015; 12 de Cheveigné (10.1016/j.neuroimage.2018.11.026_bib15) 2014; 98 Dmochowski (10.1016/j.neuroimage.2018.11.026_bib21) 2012; 6 Holdgraf (10.1016/j.neuroimage.2018.11.026_bib30) 2017; 11 Southwell (10.1016/j.neuroimage.2018.11.026_bib62) 2017; 372 Gates (10.1016/j.neuroimage.2018.11.026_bib25) 2012; 63 Hasson (10.1016/j.neuroimage.2018.11.026_bib27) 2004; 303 Li (10.1016/j.neuroimage.2018.11.026_bib45) 2009; 57 Parra (10.1016/j.neuroimage.2018.11.026_bib59) 2018 Xu (10.1016/j.neuroimage.2018.11.026_bib77) 2012 Molenaar (10.1016/j.neuroimage.2018.11.026_bib55) 2004; 2 Wong (10.1016/j.neuroimage.2018.11.026_bib75) 2018; 12 Karch (10.1016/j.neuroimage.2018.11.026_bib35) 2015; 118 Sturm (10.1016/j.neuroimage.2018.11.026_bib63) 2016 Lalor (10.1016/j.neuroimage.2018.11.026_bib42) 2009; 102 de Cheveigné (10.1016/j.neuroimage.2018.11.026_bib14) 2018; 172 Di Liberto (10.1016/j.neuroimage.2018.11.026_bib18) 2015; 25 Calhoun (10.1016/j.neuroimage.2018.11.026_bib5) 2012; 5 Chen (10.1016/j.neuroimage.2018.11.026_bib7) 2016; 33 Fu (10.1016/j.neuroimage.2018.11.026_bib23) 2017; 65 Hotelling (10.1016/j.neuroimage.2018.11.026_bib31) 1936; 28 de Cheveigné (10.1016/j.neuroimage.2018.11.026_bib17) 2018; 172 Witten (10.1016/j.neuroimage.2018.11.026_bib74) 2009; 8 Khalighinejad (10.1016/j.neuroimage.2018.11.026_bib38) 2017; 37 Melzer (10.1016/j.neuroimage.2018.11.026_bib52) 2001; 2130 Gross (10.1016/j.neuroimage.2018.11.026_bib26) 2015; 16 Luck (10.1016/j.neuroimage.2018.11.026_bib48) 2005 Afshin-Pour (10.1016/j.neuroimage.2018.11.026_bib2) 2012; 60 Wronkiewicz (10.1016/j.neuroimage.2018.11.026_bib76) 2016; 13 de Cheveigné (10.1016/j.neuroimage.2018.11.026_bib16) 2008; 171 Koskinen (10.1016/j.neuroimage.2018.11.026_bib40) 2014; 100 Choi (10.1016/j.neuroimage.2018.11.026_bib8) 2013; 7 Crosse (10.1016/j.neuroimage.2018.11.026_bib11) 2016; 10 Sun (10.1016/j.neuroimage.2018.11.026_bib65) 2009 Lio (10.1016/j.neuroimage.2018.11.026_bib46) 2016; 31 Kiers (10.1016/j.neuroimage.2018.11.026_bib39) 1994; 18 Mesgarani (10.1016/j.neuroimage.2018.11.026_bib53) 2012; 485 Kriegeskorte (10.1016/j.neuroimage.2018.11.026_bib41) 2009; 12 Sui (10.1016/j.neuroimage.2018.11.026_bib64) 2012; 204 Dmochowski (10.1016/j.neuroimage.2018.11.026_bib20) 2017 Asendorf (10.1016/j.neuroimage.2018.11.026_bib3) 2015 Zhang (10.1016/j.neuroimage.2018.11.026_bib78) 2017; 38 Eichele (10.1016/j.neuroimage.2018.11.026_bib22) 2011; 2011 O'Sullivan (10.1016/j.neuroimage.2018.11.026_bib58) 2014; 25 Chait (10.1016/j.neuroimage.2018.11.026_bib6) 2010; 48 Zhang (10.1016/j.neuroimage.2018.11.026_bib79) 2011; vol 7062 Lankinen (10.1016/j.neuroimage.2018.11.026_bib44) 2018; 173 Via (10.1016/j.neuroimage.2018.11.026_bib73) 2005; 1 Huster (10.1016/j.neuroimage.2018.11.026_bib33) 2018; 31 Takane (10.1016/j.neuroimage.2018.11.026_bib66) 2008; 73 Tenenhaus (10.1016/j.neuroimage.2018.11.026_bib68) 2015; 90 Tiitinen (10.1016/j.neuroimage.2018.11.026_bib69) 2012; 13 Haxby (10.1016/j.neuroimage.2018.11.026_bib29) 2011; 72 Nielsen (10.1016/j.neuroimage.2018.11.026_bib56) 2002; 11 Ding (10.1016/j.neuroimage.2018.11.026_bib19) 2012; 107 Fuglsang (10.1016/j.neuroimage.2018.11.026_bib24) 2017; 156 Parra (10.1016/j.neuroimage.2018.11.026_bib61) 2005; 28 Cunningham (10.1016/j.neuroimage.2018.11.026_bib12) 2014; 17 |
References_xml | – volume: 1 start-page: 4 year: 2005 end-page: 7 ident: bib73 article-title: Canonical correlation analysis (CCA) algorithms for multiple data sets: application to blind SIMO equalization publication-title: Signal Process. Conf. – volume: 33 start-page: 86 year: 2016 end-page: 107 ident: bib7 article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods publication-title: IEEE Signal Process. Mag. – volume: 25 start-page: 1697 year: 2014 end-page: 1706 ident: bib58 article-title: Attentional selection in a cocktail party environment can Be decoded from single-trial EEG publication-title: Cerebr. Cortex – start-page: 229 year: 2012 end-page: 232 ident: bib77 article-title: Regularized Hyperalignment of Multi-set Fmri Data in – volume: 103 start-page: 1 year: 2015 end-page: 22 ident: bib13 article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data publication-title: Proc. IEEE – volume: 58 start-page: 433 year: 1971 end-page: 451 ident: bib37 article-title: Canonical analysis of several sets of variables publication-title: Biometrika – volume: 11 start-page: 293 year: 2002 end-page: 305 ident: bib56 article-title: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data publication-title: IEEE Trans. Image Process. – start-page: 758 year: 2011 end-page: 765 ident: bib71 article-title: On generalized canonical correlation analysis publication-title: Proc. 58th World Statistical Conference – volume: 171 start-page: 331 year: 2008 end-page: 339 ident: bib16 article-title: Denoising based on spatial filtering publication-title: J. Neurosci. Methods – volume: 173 start-page: 361 year: 2018 end-page: 369 ident: bib44 article-title: Consistency and similarity of meg-and fmri-signal time courses during movie viewing publication-title: Neuroimage – volume: 118 start-page: 538 year: 2015 end-page: 552 ident: bib35 article-title: Using within-subject pattern classification to understand lifespan age differences in oscillatory mechanisms of working memory selection and maintenance publication-title: Neuroimage – volume: 18 start-page: 331 year: 1994 end-page: 340 ident: bib39 article-title: Generalized canonical analysis based on optimizing matrix correlations and a relation with IDIOSCAL publication-title: Comput. Stat. Data Anal. – volume: 7 year: 2013 ident: bib8 article-title: Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography publication-title: Front. Hum. Neurosci. – volume: 65 start-page: 4150 year: 2017 end-page: 4165 ident: bib23 article-title: Scalable and flexible multiview MAX-VAR canonical correlation analysis publication-title: IEEE Trans. Signal Process. – volume: 87 start-page: 96 year: 2014 end-page: 110 ident: bib28 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage – volume: 172 start-page: 206 year: 2018 end-page: 216 ident: bib17 article-title: Decoding the auditory brain with canonical correlation analysis publication-title: Neuroimage – year: 2015 ident: bib3 article-title: Informative Data Fusion : beyond Canonical Correlation Analysis Ph.D. Diss – volume: 107 start-page: 78 year: 2012 end-page: 89 ident: bib19 article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening publication-title: J. Neurophysiol. – volume: vol 7062 start-page: 287 year: 2011 end-page: 295 ident: bib79 article-title: Multiway canonical correlation analysis for frequency components recognition in ssvep-based bcis publication-title: International Conference on Neural Information Processing (ICONIP 2011) – volume: 77 start-page: 980 year: 2013 end-page: 991 ident: bib80 article-title: Mechanisms underlying selective neuronal tracking of attended speech at a ”cocktail party” publication-title: Neuron – volume: 63 start-page: 310 year: 2012 end-page: 319 ident: bib25 article-title: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples publication-title: Neuroimage – year: 2005 ident: bib48 article-title: the – volume: 28 start-page: 326 year: 2005 end-page: 341 ident: bib61 article-title: Recipes for the linear analysis of EEG publication-title: Neuroimage – volume: 11 year: 2017 ident: bib30 article-title: Encoding and decoding models in cognitive electrophysiology publication-title: Front. Syst. Neurosci. – volume: 73 start-page: 753 year: 2008 end-page: 775 ident: bib66 article-title: Regularized multiple-set canonical correlation analysis publication-title: Psychometrika – volume: 76 start-page: 257 year: 2011 end-page: 284 ident: bib67 article-title: Regularized generalized canonical correlation analysis and PLS path modeling publication-title: Psychometrika – volume: 372 start-page: 20160105 year: 2017 ident: bib62 article-title: Is predictability salient? A study of attentional capture by auditory patterns publication-title: Phil. Trans. Biol. Sci. – volume: 48 start-page: 3262 year: 2010 end-page: 3271 ident: bib6 article-title: Neural dynamics of attending and ignoring in human auditory cortex publication-title: Neuropsychologia – start-page: 39 year: 2010 end-page: 50 ident: bib9 article-title: Canonical correlation analysis for data fusion and group inferences publication-title: IEEE Signal Process. Mag. – volume: 12 year: 2015 ident: bib54 article-title: Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications publication-title: J. Neural. Eng. – volume: 13 start-page: 157 year: 2012 ident: bib69 article-title: Transient and sustained cortical activity elicited by connected speech of varying intelligibility publication-title: BMC Neurosci. – volume: 57 start-page: 3918 year: 2009 end-page: 3929 ident: bib45 article-title: Joint blind source separation by multiset canonical correlation analysis publication-title: IEEE Trans. Signal Process. – volume: 152 start-page: 590 year: 2017 end-page: 601 ident: bib50 article-title: Consistency of EEG source localization and connectivity estimates publication-title: Neuroimage – volume: 60 start-page: 1970 year: 2012 end-page: 1981 ident: bib2 article-title: Enhancing reproducibility of fMRI statistical maps using generalized canonical correlation analysis in NPAIRS framework publication-title: Neuroimage – volume: 303 start-page: 1634 year: 2004 end-page: 1640 ident: bib27 article-title: Natural vision publication-title: Science – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bib29 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 9 start-page: 1 year: 2015 end-page: 14 ident: bib32 article-title: Group-level component analyses of EEG: validation and evaluation publication-title: Front. Neurosci. – volume: 88 start-page: 1281 year: 2015 end-page: 1296 ident: bib57 article-title: Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition publication-title: Neuron – volume: 12 start-page: 1 year: 2018 end-page: 16 ident: bib75 article-title: A comparison of regularization methods in forward and backward models for auditory attention decoding publication-title: Front. Neurosci. – volume: 27 start-page: 551 year: 2012 end-page: 571 ident: bib70 article-title: Generalized canonical correlation analysis with missing values publication-title: Comput. Stat. – volume: 113 start-page: 153 year: 2013 end-page: 167 ident: bib36 article-title: Finding dependent and independent components from related data sets: a generalized canonical correlation analysis based method publication-title: Neurocomputing – volume: 31 start-page: 1 year: 2016 end-page: 14 ident: bib46 article-title: How does sensor-space group blind source separation face inter-individual neuroanatomical variability? Insights from a simulation study based on the PALS-B12 Atlas publication-title: Brain Topogr. – volume: 2 start-page: 201 year: 2004 end-page: 218 ident: bib55 article-title: A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever publication-title: Measurement: Interdiscipl. Res. Perspect. – volume: 38 start-page: 882 year: 2016 end-page: 899 ident: bib49 article-title: Quantifying functional connectivity in multi?subject fmri data using component models publication-title: Hum. Brain Mapp. – volume: 77 start-page: 48 year: 2012 end-page: 64 ident: bib34 article-title: Functional multiple-set canonical correlation analysis publication-title: Psychometrika – volume: 37 start-page: 2176 year: 2017 end-page: 2185 ident: bib38 article-title: Dynamic encoding of acoustic features in neural responses to continuous speech publication-title: J. Neurosci. – volume: 92 start-page: 217 year: 2014 end-page: 224 ident: bib43 article-title: Intersubject consistency of cortical MEG signals during movie viewing publication-title: Neuroimage – volume: 87 start-page: 363 year: 2014 end-page: 382 ident: bib1 article-title: Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets publication-title: Neuroimage – volume: 28 start-page: 321 year: 1936 end-page: 377 ident: bib31 article-title: Relations between two sets of variates publication-title: Biometrika – volume: 16 start-page: 326 year: 2015 end-page: 338 ident: bib26 article-title: Collaborative regression publication-title: Biostatistics – volume: 50 start-page: 1438 year: 2010 end-page: 1445 ident: bib10 article-title: Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI publication-title: Neuroimage – volume: 8 start-page: 29 year: 2009 ident: bib74 article-title: Extensions of sparse canonical correlation analysis with applications to genomic data publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 6 start-page: 112 year: 2012 ident: bib21 article-title: Correlated components of ongoing EEG point to emotionally Laden attention a possible marker of engagement? publication-title: Front. Hum. Neurosci. – year: 2017 ident: bib4 article-title: Deep Generalized Canonical Correlation Analysis – volume: 12 start-page: 535 year: 2009 end-page: 540 ident: bib41 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. – year: 2018 ident: bib60 article-title: Correlated Components Analysis - Extracting Reliable Dimensions in Multivariate Data – volume: 156 start-page: 435 year: 2017 end-page: 444 ident: bib24 article-title: Noise-robust cortical tracking of attended speech in real-world acoustic scenes publication-title: Neuroimage – year: 2018 ident: bib59 article-title: Multi-set Canonical Correlation Analysis Simply Explained – volume: 13 start-page: 1 year: 2016 end-page: 13 ident: bib76 article-title: Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention publication-title: J. Neural. Eng. – volume: 2130 start-page: 353 year: 2001 end-page: 360 ident: bib52 article-title: Nonlinear feature extraction using generalized canonical correlation analysis. ICANN 2001 publication-title: LNCS – volume: 25 start-page: 2457 year: 2015 end-page: 2465 ident: bib18 article-title: Low-frequency cortical entrainment to speech reflects phoneme-level processing publication-title: Curr. Biol. : CB – start-page: 1230 year: 2009 ident: bib65 article-title: On the equivalence between canonical correlation analysis and orthonormalized partial least squares publication-title: International Joint Conference on Artificial Intelligence – volume: 38 start-page: 4287 year: 2017 end-page: 4301 ident: bib78 article-title: Inter-subject alignment of MEG datasets in a common representational space publication-title: Hum. Brain Mapp. – volume: 42 start-page: 1490 year: 2008 end-page: 1498 ident: bib47 article-title: Electromagnetic source reconstruction for group studies publication-title: Neuroimage – volume: 100 start-page: 263 year: 2014 end-page: 270 ident: bib40 article-title: Uncovering cortical MEG responses to listened audiobook stories publication-title: Neuroimage – volume: 98 start-page: 487 year: 2014 end-page: 505 ident: bib15 article-title: Joint decorrelation, a versatile tool for multichannel data analysis publication-title: Neuroimage – volume: 485 start-page: 233 year: 2012 end-page: 236 ident: bib53 article-title: Selective cortical representation of attended speaker in multi-talker speech perception publication-title: Nature – volume: 172 start-page: 903 year: 2018 end-page: 912 ident: bib14 article-title: Robust detrending, rereferencing, outilier detection, and inpainting of multichannel data publication-title: Neuroimage – start-page: 1 year: 2017 end-page: 13 ident: bib20 article-title: Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity publication-title: Neuroimage – volume: 204 start-page: 68 year: 2012 end-page: 81 ident: bib64 article-title: A review of multivariate methods for multimodal fusion of brain imaging data publication-title: J. Neurosci. Methods – volume: 17 start-page: 1500Đ1509 year: 2014 ident: bib12 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. – volume: 102 start-page: 349 year: 2009 end-page: 359 ident: bib42 article-title: Resolving precise temporal processing properties of the auditory system using continuous stimuli publication-title: J. Neurophysiol. – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: bib5 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. – volume: 90 start-page: 114 year: 2015 end-page: 131 ident: bib68 article-title: Kernel generalized canonical correlation analysis publication-title: Comput. Stat. Data Anal. – volume: 2011 year: 2011 ident: bib22 article-title: EEGIFT: group independent component analysis for event-related EEG data publication-title: Comput. Intell. Neurosci. – year: 2016 ident: bib63 article-title: Analyzing the Perception of Natural Music with EEG and ECoG – volume: 7 start-page: 14 year: 2014 ident: bib51 article-title: Decoding spectrotemporal features of overt and covert speech from the human cortex publication-title: Front. Neuroeng. – volume: 10 start-page: 1 year: 2016 end-page: 14 ident: bib11 article-title: The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli publication-title: Front. Hum. Neurosci. – start-page: 1 year: 2005 end-page: 4 ident: bib72 article-title: Canonical Correlation Analysis (Cca) Algorithms for Multiple Data Sets: Application to Blind Simo Equalization in – volume: 31 start-page: 1 year: 2018 end-page: 14 ident: bib33 article-title: A tutorial review on multi-subject decomposition of EEG publication-title: Brain Topogr. – start-page: 229 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib77 – volume: 73 start-page: 753 year: 2008 ident: 10.1016/j.neuroimage.2018.11.026_bib66 article-title: Regularized multiple-set canonical correlation analysis publication-title: Psychometrika doi: 10.1007/s11336-008-9065-0 – volume: 172 start-page: 903 year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib14 article-title: Robust detrending, rereferencing, outilier detection, and inpainting of multichannel data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.035 – start-page: 39 year: 2010 ident: 10.1016/j.neuroimage.2018.11.026_bib9 article-title: Canonical correlation analysis for data fusion and group inferences publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936725 – volume: 11 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib30 article-title: Encoding and decoding models in cognitive electrophysiology publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2017.00061 – volume: 118 start-page: 538 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib35 article-title: Using within-subject pattern classification to understand lifespan age differences in oscillatory mechanisms of working memory selection and maintenance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.038 – volume: 5 start-page: 60 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib5 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2211076 – volume: 204 start-page: 68 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib64 article-title: A review of multivariate methods for multimodal fusion of brain imaging data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.10.031 – volume: 77 start-page: 980 year: 2013 ident: 10.1016/j.neuroimage.2018.11.026_bib80 article-title: Mechanisms underlying selective neuronal tracking of attended speech at a ”cocktail party” publication-title: Neuron doi: 10.1016/j.neuron.2012.12.037 – volume: 18 start-page: 331 year: 1994 ident: 10.1016/j.neuroimage.2018.11.026_bib39 article-title: Generalized canonical analysis based on optimizing matrix correlations and a relation with IDIOSCAL publication-title: Comput. Stat. Data Anal. doi: 10.1016/0167-9473(94)90067-1 – volume: 38 start-page: 4287 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib78 article-title: Inter-subject alignment of MEG datasets in a common representational space publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23689 – volume: 12 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib75 article-title: A comparison of regularization methods in forward and backward models for auditory attention decoding publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00531 – volume: 10 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib11 article-title: The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00604 – year: 2005 ident: 10.1016/j.neuroimage.2018.11.026_bib48 – volume: 88 start-page: 1281 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib57 article-title: Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition publication-title: Neuron doi: 10.1016/j.neuron.2015.11.035 – volume: 60 start-page: 1970 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib2 article-title: Enhancing reproducibility of fMRI statistical maps using generalized canonical correlation analysis in NPAIRS framework publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.137 – volume: 372 start-page: 20160105 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib62 article-title: Is predictability salient? A study of attentional capture by auditory patterns publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2016.0105 – volume: vol 7062 start-page: 287 year: 2011 ident: 10.1016/j.neuroimage.2018.11.026_bib79 article-title: Multiway canonical correlation analysis for frequency components recognition in ssvep-based bcis – volume: 100 start-page: 263 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib40 article-title: Uncovering cortical MEG responses to listened audiobook stories publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.018 – volume: 6 start-page: 112 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib21 article-title: Correlated components of ongoing EEG point to emotionally Laden attention a possible marker of engagement? publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00112 – volume: 156 start-page: 435 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib24 article-title: Noise-robust cortical tracking of attended speech in real-world acoustic scenes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.026 – volume: 2 start-page: 201 year: 2004 ident: 10.1016/j.neuroimage.2018.11.026_bib55 article-title: A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever publication-title: Measurement: Interdiscipl. Res. Perspect. – volume: 172 start-page: 206 year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib17 article-title: Decoding the auditory brain with canonical correlation analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.033 – year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib63 – volume: 103 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib13 article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2425807 – year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib60 – volume: 48 start-page: 3262 year: 2010 ident: 10.1016/j.neuroimage.2018.11.026_bib6 article-title: Neural dynamics of attending and ignoring in human auditory cortex publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.07.007 – volume: 33 start-page: 86 year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib7 article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2521870 – year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib3 – volume: 87 start-page: 363 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib1 article-title: Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.062 – volume: 28 start-page: 326 year: 2005 ident: 10.1016/j.neuroimage.2018.11.026_bib61 article-title: Recipes for the linear analysis of EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.032 – volume: 107 start-page: 78 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib19 article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening publication-title: J. Neurophysiol. doi: 10.1152/jn.00297.2011 – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2018.11.026_bib8 article-title: Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00115 – volume: 90 start-page: 114 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib68 article-title: Kernel generalized canonical correlation analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2015.04.004 – volume: 25 start-page: 1697 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib58 article-title: Attentional selection in a cocktail party environment can Be decoded from single-trial EEG publication-title: Cerebr. Cortex doi: 10.1093/cercor/bht355 – volume: 38 start-page: 882 year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib49 article-title: Quantifying functional connectivity in multi?subject fmri data using component models publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23425 – volume: 303 start-page: 1634 year: 2004 ident: 10.1016/j.neuroimage.2018.11.026_bib27 article-title: Natural vision publication-title: Science doi: 10.1126/science.1089506 – volume: 77 start-page: 48 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib34 article-title: Functional multiple-set canonical correlation analysis publication-title: Psychometrika doi: 10.1007/s11336-011-9234-4 – year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib59 – volume: 31 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib33 article-title: A tutorial review on multi-subject decomposition of EEG publication-title: Brain Topogr. doi: 10.1007/s10548-017-0616-5 – volume: 113 start-page: 153 year: 2013 ident: 10.1016/j.neuroimage.2018.11.026_bib36 article-title: Finding dependent and independent components from related data sets: a generalized canonical correlation analysis based method publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.018 – volume: 37 start-page: 2176 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib38 article-title: Dynamic encoding of acoustic features in neural responses to continuous speech publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2383-16.2017 – volume: 58 start-page: 433 year: 1971 ident: 10.1016/j.neuroimage.2018.11.026_bib37 article-title: Canonical analysis of several sets of variables publication-title: Biometrika doi: 10.1093/biomet/58.3.433 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib20 article-title: Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity publication-title: Neuroimage – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neuroimage.2018.11.026_bib29 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 11 start-page: 293 year: 2002 ident: 10.1016/j.neuroimage.2018.11.026_bib56 article-title: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data publication-title: IEEE Trans. Image Process. doi: 10.1109/83.988962 – volume: 13 start-page: 157 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib69 article-title: Transient and sustained cortical activity elicited by connected speech of varying intelligibility publication-title: BMC Neurosci. doi: 10.1186/1471-2202-13-157 – volume: 485 start-page: 233 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib53 article-title: Selective cortical representation of attended speaker in multi-talker speech perception publication-title: Nature doi: 10.1038/nature11020 – volume: 17 start-page: 1500Đ1509 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib12 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. doi: 10.1038/nn.3776 – volume: 50 start-page: 1438 year: 2010 ident: 10.1016/j.neuroimage.2018.11.026_bib10 article-title: Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.062 – volume: 76 start-page: 257 year: 2011 ident: 10.1016/j.neuroimage.2018.11.026_bib67 article-title: Regularized generalized canonical correlation analysis and PLS path modeling publication-title: Psychometrika doi: 10.1007/s11336-011-9206-8 – volume: 12 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib54 article-title: Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/12/4/046007 – volume: 152 start-page: 590 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib50 article-title: Consistency of EEG source localization and connectivity estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.076 – volume: 98 start-page: 487 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib15 article-title: Joint decorrelation, a versatile tool for multichannel data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.068 – volume: 12 start-page: 535 year: 2009 ident: 10.1016/j.neuroimage.2018.11.026_bib41 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. doi: 10.1038/nn.2303 – start-page: 1230 year: 2009 ident: 10.1016/j.neuroimage.2018.11.026_bib65 article-title: On the equivalence between canonical correlation analysis and orthonormalized partial least squares – volume: 2130 start-page: 353 year: 2001 ident: 10.1016/j.neuroimage.2018.11.026_bib52 article-title: Nonlinear feature extraction using generalized canonical correlation analysis. ICANN 2001 publication-title: LNCS – volume: 2011 year: 2011 ident: 10.1016/j.neuroimage.2018.11.026_bib22 article-title: EEGIFT: group independent component analysis for event-related EEG data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/129365 – start-page: 1 year: 2005 ident: 10.1016/j.neuroimage.2018.11.026_bib72 – volume: 8 start-page: 29 year: 2009 ident: 10.1016/j.neuroimage.2018.11.026_bib74 article-title: Extensions of sparse canonical correlation analysis with applications to genomic data publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1470 – volume: 13 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib76 article-title: Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/13/5/056017 – volume: 102 start-page: 349 year: 2009 ident: 10.1016/j.neuroimage.2018.11.026_bib42 article-title: Resolving precise temporal processing properties of the auditory system using continuous stimuli publication-title: J. Neurophysiol. doi: 10.1152/jn.90896.2008 – volume: 31 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.11.026_bib46 article-title: How does sensor-space group blind source separation face inter-individual neuroanatomical variability? Insights from a simulation study based on the PALS-B12 Atlas publication-title: Brain Topogr. – start-page: 758 year: 2011 ident: 10.1016/j.neuroimage.2018.11.026_bib71 article-title: On generalized canonical correlation analysis – volume: 28 start-page: 321 year: 1936 ident: 10.1016/j.neuroimage.2018.11.026_bib31 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib4 – volume: 87 start-page: 96 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib28 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 27 start-page: 551 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib70 article-title: Generalized canonical correlation analysis with missing values publication-title: Comput. Stat. doi: 10.1007/s00180-011-0276-y – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib32 article-title: Group-level component analyses of EEG: validation and evaluation publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00254 – volume: 63 start-page: 310 year: 2012 ident: 10.1016/j.neuroimage.2018.11.026_bib25 article-title: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.026 – volume: 171 start-page: 331 year: 2008 ident: 10.1016/j.neuroimage.2018.11.026_bib16 article-title: Denoising based on spatial filtering publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.03.015 – volume: 16 start-page: 326 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib26 article-title: Collaborative regression publication-title: Biostatistics doi: 10.1093/biostatistics/kxu047 – volume: 173 start-page: 361 year: 2018 ident: 10.1016/j.neuroimage.2018.11.026_bib44 article-title: Consistency and similarity of meg-and fmri-signal time courses during movie viewing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.045 – volume: 65 start-page: 4150 year: 2017 ident: 10.1016/j.neuroimage.2018.11.026_bib23 article-title: Scalable and flexible multiview MAX-VAR canonical correlation analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2698365 – volume: 92 start-page: 217 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib43 article-title: Intersubject consistency of cortical MEG signals during movie viewing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.004 – volume: 57 start-page: 3918 year: 2009 ident: 10.1016/j.neuroimage.2018.11.026_bib45 article-title: Joint blind source separation by multiset canonical correlation analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2021636 – volume: 25 start-page: 2457 year: 2015 ident: 10.1016/j.neuroimage.2018.11.026_bib18 article-title: Low-frequency cortical entrainment to speech reflects phoneme-level processing publication-title: Curr. Biol. : CB doi: 10.1016/j.cub.2015.08.030 – volume: 42 start-page: 1490 year: 2008 ident: 10.1016/j.neuroimage.2018.11.026_bib47 article-title: Electromagnetic source reconstruction for group studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.022 – volume: 7 start-page: 14 year: 2014 ident: 10.1016/j.neuroimage.2018.11.026_bib51 article-title: Decoding spectrotemporal features of overt and covert speech from the human cortex publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00014 – volume: 1 start-page: 4 year: 2005 ident: 10.1016/j.neuroimage.2018.11.026_bib73 article-title: Canonical correlation analysis (CCA) algorithms for multiple data sets: application to blind SIMO equalization publication-title: Signal Process. Conf. |
SSID | ssj0009148 |
Score | 2.5351262 |
Snippet | Brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 728 |
SubjectTerms | Brain CCA Correlation analysis Data analysis Data processing EEG Electroencephalography Generalized CCA Life Sciences Magnetoencephalography Multiple CCA Multivariate CCA Multiway CCA Neurons and Cognition Noise Sensors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gHgR39YXVbxGN5s0afEgIsoi6klhbyFtE1R018eq-O-dadPuRWWvbaYNk2TmS_LNDMCB79pUFU6xMsm7TCrJmdWaM81LwYX3Li8owPn6RvXu5GU_6YcDt_dAq2xsYmWoy2FBZ-RHXa6oVDfX-uTllVHVKLpdDSU0pmGWIxKh0g26r8dJd7msQ-ESwVJsEJg8Nb-ryhf58Iyrlghe6SHl8qQUC7-7p-l74kn-BUIrZ3SxCAsBRcan9bAvwZQbLMPcdbgnX4Gkiqv9st8xam5YhT7GBdXhqJlvsQ2pSOKhj3MqEhETU3QV7i7Ob896LBRIYIXqZCNWeiecShNZeCtJz7qbenQwuRc686VzyluPLjspECiUQomOxQ2O9lZ3OlaUVqzBDHbCbUCMA6mcs8LZTMoyw22M9V5nKs8994lUEehGL6YI2cOpiMWTaWhij2asUUMaxc2FQY1GwFvJlzqDxgQyWaN600SIok0zaOYnkD1uZQOKqNHBhNL7ONJtRyn5du_0ytAzCiPOhNSfPILtZiKYsOTfzXiCRrDXvsbFSjcwduCGH9SGWLUEoSJYrydQ-yu671SIzzb___gWzGN3s5o4vg0zo7cPt4O4aJTvVpP_B_MdC8Y priority: 102 providerName: ProQuest |
Title | Multiway canonical correlation analysis of brain data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321049 https://dx.doi.org/10.1016/j.neuroimage.2018.11.026 https://www.ncbi.nlm.nih.gov/pubmed/30496819 https://www.proquest.com/docview/2167143177 https://www.proquest.com/docview/2141050613 https://hal.science/hal-02049347 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-aFMpeyj7azVsXvLFXJ5ElSzZ7ykJCtrUhZC3kTci2RDO2pnTpxl72t-_Olh0GGwT2YmPZh8VJ94V-dwfwxsUmlYWVUZnkcSSkYJFRikWKlZxx52xeUILzxVzOrsSHVbI6gHGTC0OwSq_7a51eaWs_MvDcHNyu14NP6BmgucF4g5rtoKPbgcMYrX3ahcPR-4-z-a72LhN1RlzCIyLwgJ4a5lWVjVx_ReElnFfap5KeVGnh71aqc01wyX_5opVNmj6EY-9MhqN6vo_gwN48hqMLf1z-BJIqvfaH-RkiAzdVBmRYUDuOGgAXGl-RJNy4MKdeESEBRk_gajq5HM8i3ychKuQw20als9zKNBGFM4LYreLUoZ3JHVeZK62Vzji03EmB_kLJJR8ajHOUM2o4NLw0_BS6OAn7DEJcT2mt4dZkQpQZRjPGOZXJPHfMJUIGoBq-6MIXEadeFl90gxb7rHcc1cRRjDE0cjQA1lLe1oU09qDJGtbrJlEUVZtGbb8H7duW9o8NtSf1a1zpdqJUg3s2Otc0RtnEGRfqOwvgrNkI2kv-Nx0zSS3lmVIBvGpfo8zSQYy5sZt7-obAteRJBfC03kDtr-jYU6Kb9vy_5v8CHuBTVsPLz6C7vbu3L9F72uY96PR_MbyqleqhpIyX54uelxi8v5vMF8vf7gQdnw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RYJeEO8GChgER9N17NixEEIVUG3pbk-ttDfjJLYAQbfQLVX_FL-RmTjJXgDtpdckk1jjeTnzzQzAi5j7UtdB86aocq60EtwbI7gRjRQyxlDVVOA8PdTjY_VxVszW4HdfC0Owyt4mtoa6mdf0j3wnF5pGdQtj3p7-4DQ1irKr_QiNJBYH4fICj2xnb_bf4_6-zPO9D0fvxrybKsBrPbIL3sQggy4LVUevaHEmLyNa5SpKY2MTgo4-op8ravSujdRy5PFUYKI3o5GXjZf43nW4pijFiPpjZmbZ5FeoVHpXSF4KYTvkUMKTtf0pv3xHK0GAsvIV9Q6llg5_d4frnwmX-a-gt3V-e7fgZhe1st0kZrdhLZzcgevTLi9_F4q2jvfCXzLcqXlbaslqmvuRkHbMd61P2DyyioZSMEKm3oPjK2HdfdjARYQtYCg4OgQvg7dKNRaPTT5GY3VVRRELpTMwPV9c3XUrp6EZ31wPS_vqlhx1xFE8zDjkaAZioDxNHTtWoLE9611fkYo21KFbWYH29UDbRS0pGlmR-jnu9LBQavY93p04ukZly1Yq80tksN0LgutMzJlbKkQGz4bbaBwo4-NPwvycniEUL4VsGTxIAjR8ivKrGuPBh_9_-VO4MT6aTtxk__DgEWzi0m0CrW_DxuLneXiMMdmietIqAoNPV615fwBddkjv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IVVcEG9SChgEx8A6duxYqEKFdrWl7apCVOrNOIktWkG3j22r_kV-FTOJk70A2kuvSSaxxvY84m--AXgTMleoyqu0zssslUry1GnNU81rwUUIvqyowHlvrEYH8sthfrgAv7taGIJVdjaxMdT1pKJ_5O8zrqhVN5ElhQiL2N8cfjw9S6mDFJ20du00XGyzUK83dGOxyGPH31xjOnexvr2Jc_82y4Zb3z6P0thxIK3UwEzTOnjhVZHLKjhJA9dZEdBil0FoE2rvVXABfWBeoeethRIDhxmDDk4PBk7UTuB7F2FZo9fHRHD509Z4_-uMApjLtjAvF2nBuYm4ohZt1rBXHv1CG0Jws-IdMYsS4cPfneXiD0Jt_iskblzj8B7cjTEt22gX4X1Y8CcPYGUvnto_hLyp8r12NwzncdIUYrKKuoK0ODzmIjEKmwRWUssKRrjVR3BwK8p7DEs4CP8UGC4r5b0T3hkpa4NJlQtBG1WWgYdcqgR0pxdbRS5zaqnx03agtWM706gljWKqY1GjCfBe8rTl85hDxnSqt129KlpYi05nDtkPvWyMadpYZU7p1zjT_UCJCny0sWvpGhU1GyH1FU9grVsINhqgCzvbLgm86m-j6aDzIHfiJ5f0DGF8KaBL4Em7gPpP0emrwmhx9f8vfwkruAvt7vZ45xncwZGbFtG-BkvT80v_HAO2afki7gQG32978_0Bn7BTyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiway+canonical+correlation+analysis+of+brain+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=de+Cheveign%C3%A9%2C+Alain&rft.au=Di+Liberto%2C+Giovanni+M.&rft.au=Arzounian%2C+Doroth%C3%A9e&rft.au=Wong%2C+Daniel+D.E.&rft.date=2019-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=186&rft.spage=728&rft.epage=740&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.026&rft.externalDocID=S1053811918321049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |