Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 235; p. 118002 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.07.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2021.118002 |
Cover
Abstract | The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
[Display omitted] |
---|---|
AbstractList | The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPC
), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPC
and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPC
. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right-(n = 50) and lefthanded (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPC hand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPC hand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPC hand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. [Display omitted] |
ArticleNumber | 118002 |
Author | Teillac, Achille Coudé, Gino Bardi, Lara Desmurget, Michel Szathmari, Alexandru Sirigu, Angela Beuriat, Pierre-Aurélien Hiba, Bassem Richard, Nathalie Mottolese, Carmine |
Author_xml | – sequence: 1 givenname: Nathalie orcidid: 0000-0002-2547-6721 surname: Richard fullname: Richard, Nathalie organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 2 givenname: Michel surname: Desmurget fullname: Desmurget, Michel organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 3 givenname: Achille surname: Teillac fullname: Teillac, Achille organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 4 givenname: Pierre-Aurélien surname: Beuriat fullname: Beuriat, Pierre-Aurélien organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 5 givenname: Lara orcidid: 0000-0002-1678-647X surname: Bardi fullname: Bardi, Lara organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 6 givenname: Gino surname: Coudé fullname: Coudé, Gino organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 7 givenname: Alexandru surname: Szathmari fullname: Szathmari, Alexandru organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 8 givenname: Carmine surname: Mottolese fullname: Mottolese, Carmine organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 9 givenname: Angela surname: Sirigu fullname: Sirigu, Angela organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France – sequence: 10 givenname: Bassem orcidid: 0000-0002-5436-3742 surname: Hiba fullname: Hiba, Bassem email: bassem.hiba@isc.cnrs.fr organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33789136$$D View this record in MEDLINE/PubMed https://hal.science/hal-03445583$$DView record in HAL |
BookMark | eNqNkl2LEzEUhgdZcT_0L0jAG72Yms-ZjBdiXdRdqAiilxJOk0ybOk1qklnovzdjdxV71auEw5PnhHPey-rMB2-rChE8I5g0rzczb8cY3BZWdkYxJTNCJMb0UXVBcCfqTrT0bLoLVktCuvPqMqUNxrgjXD6pzhlrZUdYc1H9mHvIYes0DGgJySYUetRDymgH0dlcyqsIaYd08DmGATmP1uMWfHqD5si4vh-TC77-_PUW5Qg6h4Lv1nuU8mj2T6vHPQzJPrs_r6rvHz98u76pF18-3V7PF7VucJdrTU35DQFNhOyFtl0rjGkMbpalTDusdYdZ-TppOAdG7JIK1pdBdHIJIHDPrqrbg9cE2KhdLIOJexXAqT-FEFcKYnZ6sIoLxsFwAxZL3pfGWEqCG95qyqkBU1yvDq41DP-pbuYLNdUw41wIye5IYV8e2F0Mv0abstq6pO0wgLdhTIoK3La0k5wX9MURuglj9GUqhWItbTilrFDP76lxubXmb_-HhRXg7QHQMaQUba-0y5DdtB1wgyJYTQlRG_UvIWpKiDokpAjkkeChxwlP3x-e2rLKO2ejStpZr61x0epcZu1Okbw7kujB-Sl_P-3-NMVvGJXulg |
CitedBy_id | crossref_primary_10_3389_fneur_2025_1515432 crossref_primary_10_1016_j_jns_2023_120588 crossref_primary_10_1162_imag_a_00039 crossref_primary_10_1016_j_neuroimage_2023_120117 crossref_primary_10_1007_s00429_022_02551_5 |
Cites_doi | 10.1146/annurev-neuro-071714-034028 10.1093/cercor/7.1.18 10.1093/cercor/bhs351 10.1016/j.cub.2018.08.027 10.1073/pnas.1321909111 10.1523/JNEUROSCI.0598-07.2007 10.1016/j.cortex.2018.12.011 10.1113/jphysiol.1992.sp019142 10.1016/j.brainres.2007.08.009 10.1038/nrn755 10.1016/j.neuroimage.2010.06.010 10.1371/journal.pcbi.1004692 10.1038/nn1430 10.1002/hbm.20384 10.1002/cne.23838 10.1016/j.neuroimage.2014.07.061 10.1016/j.neuroimage.2008.01.037 10.1016/j.neuron.2014.02.025 10.1523/JNEUROSCI.0426-07.2007 10.1098/rstb.2014.0207 10.1523/JNEUROSCI.2457-12.2013 10.1016/j.neuroimage.2004.12.052 10.1016/S1364-6613(00)01537-0 10.1016/j.tics.2009.11.004 10.1126/science.7569931 10.1016/j.neuroimage.2012.06.005 10.1093/cercor/8.7.641 10.1016/j.conb.2011.05.021 10.1177/1073858412440596 10.1016/j.cortex.2016.12.007 10.1016/j.neuroimage.2013.05.057 10.1038/2245 10.1146/annurev.neuro.20.1.303 10.3389/fnana.2016.00045 10.1038/29528 10.1016/j.neuroimage.2017.06.001 10.1093/brain/114.6.2465 10.3389/fnhum.2014.00686 10.1007/s00221-010-2315-2 10.1523/JNEUROSCI.21-08-02919.2001 10.1016/j.neuroimage.2012.05.009 10.1212/WNL.50.5.1253 10.1016/j.neuroimage.2010.02.022 10.1016/j.brainres.2008.06.027 10.1016/j.neuroimage.2012.01.021 10.1152/jn.1991.66.1.64 10.3389/fnana.2018.00094 10.1037/cjep2007023 10.1152/jn.00249.2002 10.1016/j.cub.2018.09.001 10.1016/0166-2236(95)93921-J 10.1177/1073858410375468 10.1097/00004691-200302000-00002 10.1016/S1053-8119(03)00165-4 10.1007/BF00231858 10.3171/2009.11.FOCUS09245 10.1111/j.1460-9568.2008.06028.x 10.1016/j.neuroimage.2019.116137 10.1073/pnas.1207946109 10.1523/JNEUROSCI.5856-08.2009 10.1523/JNEUROSCI.1641-06.2006 10.1016/j.neuroimage.2020.116923 10.1523/JNEUROSCI.1874-05.2005 10.1093/brain/awv100 10.1016/j.neuroimage.2014.12.039 10.1093/brain/60.4.389 10.1152/jn.1997.77.1.452 10.1523/JNEUROSCI.1777-11.2011 10.3171/2008.9.JNS08414 10.1016/j.neuroimage.2013.04.127 10.1007/s00429-015-1028-5 10.1016/j.brs.2020.02.023 10.1016/j.neuroimage.2013.05.041 10.1002/ana.21173 10.1016/j.neuron.2018.01.044 10.1093/cercor/bhy040 10.1016/j.neuroimage.2016.08.031 10.3389/fnana.2019.00024 10.1038/nn1309 10.1016/j.neubiorev.2017.01.017 10.1093/brain/awl300 10.1016/j.cub.2009.11.063 10.1016/j.neuroimage.2010.09.025 10.1097/WNR.0000000000000655 10.1007/s12311-013-0503-x 10.1080/00222895.1993.9942048 10.1038/9219 10.1016/S0893-6080(03)00079-0 10.1016/S0013-4694(98)00022-4 10.1016/j.neuroimage.2011.02.059 10.1203/pdr.0b013e3180332c2e 10.1093/brain/120.1.141 10.1093/cercor/bhh186 10.1038/s41467-017-01285-x 10.1152/jn.00546.2015 10.1016/S0896-6273(02)00741-9 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Jul 15, 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jul 15, 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES DOA |
DOI | 10.1016/j.neuroimage.2021.118002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_4534ad4dae084f2d908810647c242dad oai_HAL_hal_03445583v1 33789136 10_1016_j_neuroimage_2021_118002 S1053811921002792 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACLOT ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT ~HD ALIPV NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c609t-c2d9131ac158f5ce975dd6d06b913290cc9039141644a31eb253f10198baa50f3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:23:06 EDT 2025 Fri Sep 12 12:49:43 EDT 2025 Sun Sep 28 01:55:04 EDT 2025 Wed Aug 13 08:44:09 EDT 2025 Thu Apr 03 07:07:20 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Wed Oct 01 03:43:35 EDT 2025 Fri Feb 23 02:43:56 EST 2024 Tue Aug 26 20:02:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feedback Tractography Humans Parietal cortex Grasping Volition motor control |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-c2d9131ac158f5ce975dd6d06b913290cc9039141644a31eb253f10198baa50f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1678-647X 0000-0002-2547-6721 0000-0002-5436-3742 0000-0003-3450-0161 |
OpenAccessLink | https://doaj.org/article/4534ad4dae084f2d908810647c242dad |
PMID | 33789136 |
PQID | 2537264223 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4534ad4dae084f2d908810647c242dad hal_primary_oai_HAL_hal_03445583v1 proquest_miscellaneous_2507729844 proquest_journals_2537264223 pubmed_primary_33789136 crossref_citationtrail_10_1016_j_neuroimage_2021_118002 crossref_primary_10_1016_j_neuroimage_2021_118002 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118002 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Kaas, Stepniewska (bib0060) 2016; 524 Wolpert, Ghahramani, Jordan (bib0101) 1995; 269 Mandonnet, Sarubbo, Petit (bib0069) 2018; 12 Branco, Coelho, Branco, Schmidt, Calcagnotto, Portuguez (bib0011) 2003; 20 Chib, Krutky, Lynch, Mussa-Ivaldi (bib0018) 2009; 29 Tunik, Frey, Grafton (bib0093) 2005; 8 Takemura, Caiafa, Wandell, Pestilli (bib0088) 2016; 12 Wang, Pathak, Stefaneanu, Yeh, Li, Fernandez-Miranda (bib0098) 2016; 221 Filimon (bib0040) 2010; 16 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bib0086) 2013; 80 Koch, Fernandez Del Olmo, Cheeran, Ruge, Schippling, Caltagirone (bib0063) 2007; 27 Grafton (bib0045) 2010; 204 Edin, Westling, Johansson (bib0039) 1992; 450 Paulignan, Jeannerod, MacKenzie, Marteniuk (bib0072) 1991; 87 Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (bib0092) 2019; 202 James, Kim, Fisher (bib0055) 2007; 61 Seghier (bib0083) 2013; 19 Jbabdi, Lehman, Haber, Behrens (bib0057) 2013; 33 Sastre-Janer, Regis, Belin, Mangin, Dormont, Masure (bib0079) 1998; 8 Freedman, Ibos (bib0042) 2018; 97 Kuhtz-Buschbeck, Gilster, Wolff, Ulmer, Siebner, Jansen (bib0064) 2008; 40 Davare, Andres, Clerget, Thonnard, Olivier (bib0022) 2007; 27 Mackenzie, Bailey, Mi, Tsang, Jones, Nelson (bib0066) 2016; 27 Allison, Wood, McCarthy, Spencer (bib0002) 1991; 66 Fischl (bib0041) 2012; 62 Smith, Tournier, Calamante, Connelly (bib0085) 2012; 62 Augurelle, Smith, Lejeune, Thonnard (bib0006) 2003; 89 Desmurget, Richard, Beuriat, Szathmari, Mottolese, Duhamel (bib0032) 2018; 28 Vigano, Fornia, Rossi, Howells, Leonetti, Puglisi (bib0097) 2019; 113 Makris, Kennedy, McInerney, Sorensen, Wang, Caviness (bib0068) 2005; 15 Rice, Tunik, Cross, Grafton (bib0076) 2007; 1175 Guzzetta, Staudt, Petacchi, Ehlers, Erb, Wilke (bib0049) 2007; 61 White, Andrews, Hulette, Richards, Groelle, Paydarfar (bib0100) 1997; 7 Harris, Wolpert (bib0050) 1998; 394 Sathian (bib0080) 2016; 116 David, Heemskerk, Corrivetti, Thiebaut de Schotten, Sarubbo, Corsini (bib0025) 2019; 13 Allison, McCarthy, Wood, Jones (bib0001) 1991; 114 Borra, Gerbella, Rozzi, Luppino (bib0009) 2017; 75 Dhollander, Raffelt, Connelly (bib0036) 2016 Huang, Chen, Tran, Holstein, Sereno (bib0054) 2012; 109 Jeannerod, Arbib, Rizzolatti, Sakata (bib0058) 1995; 18 Guye, Parker, Symms, Boulby, Wheeler-Kingshott, Salek-Haddadi (bib0048) 2003; 19 Ribas (bib0075) 2010; 28 Davare, Rothwell, Lemon (bib0024) 2010; 20 Kamada, Todo, Ota, Ino, Masutani, Aoki (bib0061) 2009; 111 Rizzolatti, Luppino, Matelli (bib0078) 1998; 106 Desmurget, Bonnetblanc, Duffau (bib0027) 2007; 130 Parlatini, Radua, Dell'Acqua, Leslie, Simmons, Murphy (bib0071) 2017; 146 Turella, Lingnau (bib0094) 2014; 8 Schulz, Koch, Zimerman, Wessel, Bonstrup, Thomalla (bib0082) 2015; 138 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0096) 2013; 80 Burton, Sinclair, McLaren (bib0013) 2008; 29 Budisavljevic, Dell'Acqua, Zanatto, Begliomini, Miotto, Motta (bib0012) 2017; 27 Catani, Thiebaut de Schotten (bib0016) 2012 Diedrichsen, Shadmehr, Ivry (bib0038) 2010; 14 Desmurget, Prablanc (bib0031) 1997; 77 Chung, Robbins, Dalton, Davidson, Alexander, Evans (bib0019) 2005; 25 Dell'Acqua, Bodi, Slater, Catani, Modo (bib0026) 2013; 12 Penfield, Rasmussen (bib0074) 1950 Thiebaut de Schotten, Tomaiuolo, Aiello, Merola, Silvetti, Lecce (bib0089) 2014; 24 Desmurget, Richard, Harquel, Baraduc, Szathmari, Mottolese (bib0033) 2014; 111 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bib0044) 2013; 80 Desmurget, Sirigu (bib0034) 2015; 370 Janssen, Scherberger (bib0056) 2015; 38 Szameitat, Shen, Conforto, Sterr (bib0087) 2012; 62 Destrieux, Fischl, Dale, Halgren (bib0035) 2010; 53 Calamante, Tournier, Heidemann, Anwander, Jackson, Connelly (bib0015) 2011; 56 Penfield, Boldrey (bib0073) 1937; 60 Andersen, Andersen, Hwang, Hauschild (bib0003) 2014; 81 Assal, Schwartz, Vuilleumier (bib0005) 2007; 62 Hoff, Arbib (bib0052) 1993; 25 Davare, Kraskov, Rothwell, Lemon (bib0023) 2011; 21 Avants, Tustison, Song, Cook, Klein, Gee (bib0007) 2011; 54 Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner (bib0103) 1997; 120 Guigon, Baraduc, Desmurget (bib0047) 2008; 27 Desmurget, Grafton (bib0029) 2000; 4 Calabrese (bib0014) 2016; 10 Lindner (bib0065) 2018; 28 Todorov (bib0090) 2004; 7 Tournier, Calamante, Connelly (bib0091) 2010 Gharbawie, Stepniewska, Qi, Kaas (bib0043) 2011; 31 Ulloa, Bullock (bib0095) 2003; 16 Maier-Hein, Neher, Houde, Cote, Garyfallidis, Zhong (bib0067) 2017; 8 Wolpert, Goodbody, Husain (bib0102) 1998; 1 Hecht, Gutman, Bradley, Preuss, Stout (bib0051) 2015; 108 Binkofski, Dohle, Posse, Stephan, Hefter, Seitz (bib0008) 1998; 50 Cattaneo, Giampiccolo, Meneghelli, Tramontano, Sala (bib0017) 2020; 13 Schmahmann, Pandya (bib0081) 2006 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (bib0099) 2020; 217 Borra, Luppino (bib0010) 2017; 97 Mollink, Kleinnijenhuis, Cappellen van Walsum, Sotiropoulos, Cottaar, Mirfin (bib0070) 2017; 157 Diedrichsen, Hashambhoy, Rane, Shadmehr (bib0037) 2005; 25 Andersen, Snyder, Bradley, Xing (bib0004) 1997; 20 Desmurget, Grea, Grethe, Prablanc, Alexander, Grafton (bib0030) 2001; 21 Desmurget, Epstein, Turner, Prablanc, Alexander, Grafton (bib0028) 1999; 2 Sirigu, Desmurget (bib0084) 2020 Dafotakis, Sparing, Eickhoff, Fink, Nowak (bib0021) 2008; 1228 Howells, Thiebaut de Schotten, Dell'Acqua, Beyh, Zappala, Leslie (bib0053) 2018; 28 Koch, Cercignani, Pecchioli, Versace, Oliveri, Caltagirone (bib0062) 2010; 51 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib0059) 2014; 103 Corbetta, Shulman (bib0020) 2002; 3 Grefkes, Weiss, Zilles, Fink (bib0046) 2002; 35 Rice, Tunik, Grafton (bib0077) 2006; 26 Ribas (10.1016/j.neuroimage.2021.118002_bib0075) 2010; 28 Schmahmann (10.1016/j.neuroimage.2021.118002_bib0081) 2006 Desmurget (10.1016/j.neuroimage.2021.118002_bib0033) 2014; 111 Thiebaut de Schotten (10.1016/j.neuroimage.2021.118002_bib0089) 2014; 24 Dafotakis (10.1016/j.neuroimage.2021.118002_bib0021) 2008; 1228 Tournier (10.1016/j.neuroimage.2021.118002_bib0092) 2019; 202 Diedrichsen (10.1016/j.neuroimage.2021.118002_bib0038) 2010; 14 Jeannerod (10.1016/j.neuroimage.2021.118002_bib0058) 1995; 18 Jeurissen (10.1016/j.neuroimage.2021.118002_bib0059) 2014; 103 Janssen (10.1016/j.neuroimage.2021.118002_bib0056) 2015; 38 Rizzolatti (10.1016/j.neuroimage.2021.118002_bib0078) 1998; 106 Vigano (10.1016/j.neuroimage.2021.118002_bib0097) 2019; 113 Harris (10.1016/j.neuroimage.2021.118002_bib0050) 1998; 394 Rice (10.1016/j.neuroimage.2021.118002_bib0077) 2006; 26 James (10.1016/j.neuroimage.2021.118002_bib0055) 2007; 61 Sirigu (10.1016/j.neuroimage.2021.118002_bib0084) 2020 Andersen (10.1016/j.neuroimage.2021.118002_bib0004) 1997; 20 Penfield (10.1016/j.neuroimage.2021.118002_bib0073) 1937; 60 Calamante (10.1016/j.neuroimage.2021.118002_bib0015) 2011; 56 Takemura (10.1016/j.neuroimage.2021.118002_bib0088) 2016; 12 Borra (10.1016/j.neuroimage.2021.118002_bib0009) 2017; 75 Corbetta (10.1016/j.neuroimage.2021.118002_bib0020) 2002; 3 Burton (10.1016/j.neuroimage.2021.118002_bib0013) 2008; 29 Turella (10.1016/j.neuroimage.2021.118002_bib0094) 2014; 8 Freedman (10.1016/j.neuroimage.2021.118002_bib0042) 2018; 97 Assal (10.1016/j.neuroimage.2021.118002_bib0005) 2007; 62 Desmurget (10.1016/j.neuroimage.2021.118002_bib0029) 2000; 4 Schulz (10.1016/j.neuroimage.2021.118002_bib0082) 2015; 138 David (10.1016/j.neuroimage.2021.118002_bib0025) 2019; 13 Augurelle (10.1016/j.neuroimage.2021.118002_bib0006) 2003; 89 Binkofski (10.1016/j.neuroimage.2021.118002_bib0008) 1998; 50 Glasser (10.1016/j.neuroimage.2021.118002_bib0044) 2013; 80 Chib (10.1016/j.neuroimage.2021.118002_bib0018) 2009; 29 Yousry (10.1016/j.neuroimage.2021.118002_bib0103) 1997; 120 Koch (10.1016/j.neuroimage.2021.118002_bib0063) 2007; 27 Makris (10.1016/j.neuroimage.2021.118002_bib0068) 2005; 15 Filimon (10.1016/j.neuroimage.2021.118002_bib0040) 2010; 16 Desmurget (10.1016/j.neuroimage.2021.118002_bib0032) 2018; 28 Avants (10.1016/j.neuroimage.2021.118002_bib0007) 2011; 54 Branco (10.1016/j.neuroimage.2021.118002_bib0011) 2003; 20 Guzzetta (10.1016/j.neuroimage.2021.118002_bib0049) 2007; 61 Huang (10.1016/j.neuroimage.2021.118002_bib0054) 2012; 109 Tournier (10.1016/j.neuroimage.2021.118002_bib0091) 2010 Desmurget (10.1016/j.neuroimage.2021.118002_bib0028) 1999; 2 Koch (10.1016/j.neuroimage.2021.118002_bib0062) 2010; 51 Edin (10.1016/j.neuroimage.2021.118002_bib0039) 1992; 450 Sathian (10.1016/j.neuroimage.2021.118002_bib0080) 2016; 116 Andersen (10.1016/j.neuroimage.2021.118002_bib0003) 2014; 81 Paulignan (10.1016/j.neuroimage.2021.118002_bib0072) 1991; 87 Hoff (10.1016/j.neuroimage.2021.118002_bib0052) 1993; 25 Seghier (10.1016/j.neuroimage.2021.118002_bib0083) 2013; 19 Destrieux (10.1016/j.neuroimage.2021.118002_bib0035) 2010; 53 Kaas (10.1016/j.neuroimage.2021.118002_bib0060) 2016; 524 Warrington (10.1016/j.neuroimage.2021.118002_bib0099) 2020; 217 Fischl (10.1016/j.neuroimage.2021.118002_bib0041) 2012; 62 Grafton (10.1016/j.neuroimage.2021.118002_bib0045) 2010; 204 Dhollander (10.1016/j.neuroimage.2021.118002_bib0036) 2016 Davare (10.1016/j.neuroimage.2021.118002_bib0023) 2011; 21 Todorov (10.1016/j.neuroimage.2021.118002_bib0090) 2004; 7 Mandonnet (10.1016/j.neuroimage.2021.118002_bib0069) 2018; 12 Desmurget (10.1016/j.neuroimage.2021.118002_bib0030) 2001; 21 Hecht (10.1016/j.neuroimage.2021.118002_bib0051) 2015; 108 Jbabdi (10.1016/j.neuroimage.2021.118002_bib0057) 2013; 33 Davare (10.1016/j.neuroimage.2021.118002_bib0022) 2007; 27 Sastre-Janer (10.1016/j.neuroimage.2021.118002_bib0079) 1998; 8 Allison (10.1016/j.neuroimage.2021.118002_bib0001) 1991; 114 Ulloa (10.1016/j.neuroimage.2021.118002_bib0095) 2003; 16 Szameitat (10.1016/j.neuroimage.2021.118002_bib0087) 2012; 62 Guigon (10.1016/j.neuroimage.2021.118002_bib0047) 2008; 27 Allison (10.1016/j.neuroimage.2021.118002_bib0002) 1991; 66 Dell'Acqua (10.1016/j.neuroimage.2021.118002_bib0026) 2013; 12 Guye (10.1016/j.neuroimage.2021.118002_bib0048) 2003; 19 Desmurget (10.1016/j.neuroimage.2021.118002_bib0027) 2007; 130 Wolpert (10.1016/j.neuroimage.2021.118002_bib0102) 1998; 1 Borra (10.1016/j.neuroimage.2021.118002_bib0010) 2017; 97 Catani (10.1016/j.neuroimage.2021.118002_bib0016) 2012 Budisavljevic (10.1016/j.neuroimage.2021.118002_bib0012) 2017; 27 Wang (10.1016/j.neuroimage.2021.118002_bib0098) 2016; 221 Tunik (10.1016/j.neuroimage.2021.118002_bib0093) 2005; 8 Howells (10.1016/j.neuroimage.2021.118002_bib0053) 2018; 28 Kamada (10.1016/j.neuroimage.2021.118002_bib0061) 2009; 111 Rice (10.1016/j.neuroimage.2021.118002_bib0076) 2007; 1175 Kuhtz-Buschbeck (10.1016/j.neuroimage.2021.118002_bib0064) 2008; 40 Smith (10.1016/j.neuroimage.2021.118002_bib0085) 2012; 62 Mollink (10.1016/j.neuroimage.2021.118002_bib0070) 2017; 157 Sotiropoulos (10.1016/j.neuroimage.2021.118002_bib0086) 2013; 80 Lindner (10.1016/j.neuroimage.2021.118002_bib0065) 2018; 28 White (10.1016/j.neuroimage.2021.118002_bib0100) 1997; 7 Penfield (10.1016/j.neuroimage.2021.118002_bib0074) 1950 Maier-Hein (10.1016/j.neuroimage.2021.118002_bib0067) 2017; 8 Van Essen (10.1016/j.neuroimage.2021.118002_bib0096) 2013; 80 Grefkes (10.1016/j.neuroimage.2021.118002_bib0046) 2002; 35 Diedrichsen (10.1016/j.neuroimage.2021.118002_bib0037) 2005; 25 Mackenzie (10.1016/j.neuroimage.2021.118002_bib0066) 2016; 27 Wolpert (10.1016/j.neuroimage.2021.118002_bib0101) 1995; 269 Chung (10.1016/j.neuroimage.2021.118002_bib0019) 2005; 25 Desmurget (10.1016/j.neuroimage.2021.118002_bib0031) 1997; 77 Gharbawie (10.1016/j.neuroimage.2021.118002_bib0043) 2011; 31 Calabrese (10.1016/j.neuroimage.2021.118002_bib0014) 2016; 10 Desmurget (10.1016/j.neuroimage.2021.118002_bib0034) 2015; 370 Cattaneo (10.1016/j.neuroimage.2021.118002_bib0017) 2020; 13 Davare (10.1016/j.neuroimage.2021.118002_bib0024) 2010; 20 Parlatini (10.1016/j.neuroimage.2021.118002_bib0071) 2017; 146 |
References_xml | – volume: 24 start-page: 691 year: 2014 end-page: 706 ident: bib0089 article-title: Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection publication-title: Cereb. Cortex – volume: 38 start-page: 69 year: 2015 end-page: 86 ident: bib0056 article-title: Visual guidance in control of grasping publication-title: Annu. Rev. Neurosci. – volume: 370 year: 2015 ident: bib0034 article-title: Revealing humans' sensorimotor functions with electrical cortical stimulation publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 109 start-page: 18114 year: 2012 end-page: 18119 ident: bib0054 article-title: Mapping multisensory parietal face and body areas in humans publication-title: Proc. Natl. Acad. Sci. USA – volume: 75 start-page: 65 year: 2017 end-page: 90 ident: bib0009 article-title: The macaque lateral grasping network: A neural substrate for generating purposeful hand actions publication-title: Neurosci. Biobehav. Rev. – volume: 14 start-page: 31 year: 2010 end-page: 39 ident: bib0038 article-title: The coordination of movement: optimal feedback control and beyond publication-title: Trends Cogn. Sci. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0044 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 217 year: 2020 ident: bib0099 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 87 start-page: 407 year: 1991 end-page: 420 ident: bib0072 article-title: Selective perturbation of visual input during prehension movements. 2. The effects of changing object size publication-title: Exp. Brain Res. – volume: 31 start-page: 11660 year: 2011 end-page: 11677 ident: bib0043 article-title: Multiple parietal-frontal pathways mediate grasping in macaque monkeys publication-title: J. Neurosci. – volume: 157 start-page: 561 year: 2017 end-page: 574 ident: bib0070 article-title: Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging publication-title: Neuroimage – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bib0007 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage – volume: 15 start-page: 854 year: 2005 end-page: 869 ident: bib0068 article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study publication-title: Cereb. Cortex – volume: 8 start-page: 686 year: 2014 ident: bib0094 article-title: Neural correlates of grasping publication-title: Front. Hum. Neurosci. – volume: 10 year: 2016 ident: bib0014 article-title: Diffusion tractography in deep brain stimulation surgery: a review publication-title: Front. Neuroanat. – volume: 97 start-page: 1219 year: 2018 end-page: 1234 ident: bib0042 article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex publication-title: Neuron – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bib0085 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage – volume: 20 start-page: 176 year: 2010 end-page: 181 ident: bib0024 article-title: Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp publication-title: Curr. Biol – volume: 202 year: 2019 ident: bib0092 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 8 start-page: 505 year: 2005 end-page: 511 ident: bib0093 article-title: Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp publication-title: Nat. Neurosci. – volume: 29 start-page: 3939 year: 2009 end-page: 3947 ident: bib0018 article-title: The separate neural control of hand movements and contact forces publication-title: J. Neurosci. – volume: 2 start-page: 563 year: 1999 end-page: 567 ident: bib0028 article-title: Role of the posterior parietal cortex in updating reaching movements to a visual target publication-title: Nat. Neurosci. – volume: 81 start-page: 967 year: 2014 end-page: 983 ident: bib0003 article-title: Optic ataxia: from Balint's syndrome to the parietal reach region publication-title: Neuron – volume: 27 start-page: 1003 year: 2008 end-page: 1016 ident: bib0047 article-title: Computational motor control: feedback and accuracy publication-title: Eur. J. Neurosci. – volume: 21 start-page: 565 year: 2011 end-page: 570 ident: bib0023 article-title: Interactions between areas of the cortical grasping network publication-title: Curr. Opin. Neurobiol. – volume: 8 start-page: 1349 year: 2017 ident: bib0067 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 27 start-page: 3974 year: 2007 end-page: 3980 ident: bib0022 article-title: Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area publication-title: J. Neurosci. – volume: 12 start-page: 923 year: 2013 end-page: 931 ident: bib0026 article-title: MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum publication-title: Cerebellum – volume: 524 start-page: 595 year: 2016 end-page: 608 ident: bib0060 article-title: Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates publication-title: J. Comp. Neurol. – volume: 33 start-page: 3190 year: 2013 end-page: 3201 ident: bib0057 article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography publication-title: J. Neurosci. – volume: 1175 start-page: 76 year: 2007 end-page: 84 ident: bib0076 article-title: On-line grasp control is mediated by the contralateral hemisphere publication-title: Brain Res. – volume: 8 start-page: 641 year: 1998 end-page: 647 ident: bib0079 article-title: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area publication-title: Cereb. Cortex – volume: 89 start-page: 665 year: 2003 end-page: 671 ident: bib0006 article-title: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects publication-title: J. Neurophysiol. – volume: 21 start-page: 2919 year: 2001 end-page: 2928 ident: bib0030 article-title: Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study publication-title: J. Neurosci. – volume: 35 start-page: 173 year: 2002 end-page: 184 ident: bib0046 article-title: Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys publication-title: Neuron – volume: 16 start-page: 1141 year: 2003 end-page: 1160 ident: bib0095 article-title: A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands publication-title: Neural Netw. – volume: 60 start-page: 389 year: 1937 end-page: 443 ident: bib0073 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain – volume: 28 start-page: 3303 year: 2018 end-page: 3309 ident: bib0032 article-title: Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans publication-title: Curr. Biol. – volume: 269 start-page: 1880 year: 1995 end-page: 1882 ident: bib0101 article-title: An internal model for sensorimotor integration publication-title: Science – volume: 7 start-page: 907 year: 2004 end-page: 915 ident: bib0090 article-title: Optimality principles in sensorimotor control publication-title: Nat. Neurosci. – volume: 61 start-page: 485 year: 2007 end-page: 490 ident: bib0049 article-title: Brain representation of active and passive hand movements in children publication-title: Pediatr. Res. – volume: 18 start-page: 314 year: 1995 end-page: 320 ident: bib0058 article-title: Grasping objects: the cortical mechanisms of visuo-motor transformations publication-title: Trends Neurosci. – year: 2010 ident: bib0091 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bib0086 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage – volume: 138 start-page: 1949 year: 2015 end-page: 1960 ident: bib0082 article-title: Parietofrontal motor pathways and their association with motor function after stroke publication-title: Brain – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: bib0059 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage – volume: 4 start-page: 423 year: 2000 end-page: 431 ident: bib0029 article-title: Forward modeling allows feedback control for fast reaching movements publication-title: Trends Cogn. Sci. – year: 2020 ident: bib0084 article-title: The Functional Organization of Posterior Parietal Cortex in Humans publication-title: The Senses – volume: 13 start-page: 24 year: 2019 ident: bib0025 article-title: The superoanterior fasciculus (SAF): a novel white matter pathway in the human brain? publication-title: Front. Neuroanat. – volume: 7 start-page: 18 year: 1997 end-page: 30 ident: bib0100 article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus publication-title: Cereb. Cortex – volume: 394 start-page: 780 year: 1998 end-page: 784 ident: bib0050 article-title: Signal-dependent noise determines motor planning publication-title: Nature – volume: 27 start-page: 1532 year: 2017 end-page: 1544 ident: bib0012 article-title: Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans publication-title: Cereb. Cortex – year: 2012 ident: bib0016 article-title: Atlas of Human Brain Connections – volume: 1 start-page: 529 year: 1998 end-page: 533 ident: bib0102 article-title: Maintaining internal representations: the role of the human superior parietal lobe publication-title: Nat. Neurosci. – volume: 66 start-page: 64 year: 1991 end-page: 82 ident: bib0002 article-title: Cortical somatosensory evoked potentials. II. Effects of excision of somatosensory or motor cortex in humans and monkeys publication-title: J. Neurophysiol. – volume: 19 start-page: 43 year: 2013 end-page: 61 ident: bib0083 article-title: The angular gyrus: multiple functions and multiple subdivisions publication-title: Neuroscientist – volume: 113 start-page: 239 year: 2019 end-page: 254 ident: bib0097 article-title: Anatomo-functional characterisation of the human "hand-knob": a direct electrophysiological study publication-title: Cortex – volume: 114 start-page: 2465 year: 1991 end-page: 2503 ident: bib0001 article-title: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings publication-title: Brain – volume: 62 start-page: 266 year: 2012 end-page: 280 ident: bib0087 article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients publication-title: Neuroimage – volume: 120 start-page: 141 year: 1997 end-page: 157 ident: bib0103 article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark publication-title: Brain – volume: 1228 start-page: 73 year: 2008 end-page: 80 ident: bib0021 article-title: On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force publication-title: Brain Res. – volume: 26 start-page: 8176 year: 2006 end-page: 8182 ident: bib0077 article-title: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation publication-title: J. Neurosci. – volume: 28 start-page: 2482 year: 2018 end-page: 2494 ident: bib0053 article-title: Frontoparietal tracts linked to lateralized hand preference and manual specialization publication-title: Cereb. Cortex – volume: 130 start-page: 898 year: 2007 end-page: 914 ident: bib0027 article-title: Contrasting acute and slow-growing lesions: a new door to brain plasticity publication-title: Brain – volume: 27 start-page: 6815 year: 2007 end-page: 6822 ident: bib0063 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: J. Neurosci. – volume: 106 start-page: 283 year: 1998 end-page: 296 ident: bib0078 article-title: The organization of the cortical motor system: new concepts publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 61 start-page: 219 year: 2007 end-page: 229 ident: bib0055 article-title: The neural basis of haptic object processing publication-title: Can. J. Exp. Psychol. – volume: 12 year: 2016 ident: bib0088 article-title: Ensemble Tractography publication-title: PLoS Comput. Biol. – volume: 116 start-page: 1795 year: 2016 end-page: 1806 ident: bib0080 article-title: Analysis of haptic information in the cerebral cortex publication-title: J. Neurophysiol. – volume: 56 start-page: 1259 year: 2011 end-page: 1266 ident: bib0015 article-title: Track density imaging (TDI): Validation of super resolution property publication-title: Neuroimage – volume: 16 start-page: 388 year: 2010 end-page: 407 ident: bib0040 article-title: Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing publication-title: Neuroscientist – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0096 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 77 start-page: 452 year: 1997 end-page: 464 ident: bib0031 article-title: Postural control of three-dimensional prehension movements publication-title: J. Neurophysiol. – volume: 20 start-page: 303 year: 1997 end-page: 330 ident: bib0004 article-title: Multimodal representation of space in the posterior parietal cortex and its use in planning movements publication-title: Annu. Rev. Neurosci. – volume: 28 start-page: R1200 year: 2018 end-page: R1202 ident: bib0065 article-title: Motor control: parietal stimulation prevents voluntary hand movement publication-title: Curr. Biol. – volume: 19 start-page: 1349 year: 2003 end-page: 1360 ident: bib0048 article-title: Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo publication-title: Neuroimage – volume: 29 start-page: 207 year: 2008 end-page: 221 ident: bib0013 article-title: Cortical network for vibrotactile attention: a fMRI study publication-title: Hum. Brain Mapp. – volume: 25 start-page: 9919 year: 2005 end-page: 9931 ident: bib0037 article-title: Neural correlates of reach errors publication-title: J. Neurosci. – year: 2006 ident: bib0081 article-title: Fiber Pathways of the Brain – volume: 25 start-page: 175 year: 1993 end-page: 192 ident: bib0052 article-title: Models of trajectory formation and temporal interaction of reach and grasp publication-title: J. Mot. Behav. – volume: 40 start-page: 1469 year: 2008 end-page: 1481 ident: bib0064 article-title: Brain activity is similar during precision and power gripping with light force: an fMRI study publication-title: Neuroimage – volume: 221 start-page: 2075 year: 2016 end-page: 2092 ident: bib0098 article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain publication-title: Brain Struct. Funct. – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: bib0035 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 28 start-page: E2 year: 2010 ident: bib0075 article-title: The cerebral sulci and gyri publication-title: Neurosurg. Focus – volume: 13 start-page: 819 year: 2020 end-page: 831 ident: bib0017 article-title: Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation publication-title: Brain Stimul. – volume: 450 start-page: 547 year: 1992 end-page: 564 ident: bib0039 article-title: Independent control of human finger-tip forces at individual digits during precision lifting publication-title: J. Physiol. – volume: 108 start-page: 124 year: 2015 end-page: 137 ident: bib0051 article-title: Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans publication-title: Neuroimage – volume: 97 start-page: 306 year: 2017 end-page: 326 ident: bib0010 article-title: Functional anatomy of the macaque temporo-parieto-frontal connectivity publication-title: Cortex – year: 2016 ident: bib0036 article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image publication-title: ISMRM Workshop on Breaking the Barriers of Diffusion MRI – volume: 146 start-page: 367 year: 2017 end-page: 375 ident: bib0071 article-title: Functional segregation and integration within fronto-parietal networks publication-title: Neuroimage – volume: 12 start-page: 94 year: 2018 ident: bib0069 article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. – volume: 204 start-page: 475 year: 2010 end-page: 491 ident: bib0045 article-title: The cognitive neuroscience of prehension: recent developments publication-title: Exp. Brain Res. – volume: 51 start-page: 300 year: 2010 end-page: 312 ident: bib0062 article-title: In vivo definition of parieto-motor connections involved in planning of grasping movements publication-title: Neuroimage – volume: 62 start-page: 301 year: 2007 end-page: 306 ident: bib0005 article-title: Moving with or without will: functional neural correlates of alien hand syndrome publication-title: Ann. Neurol. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0041 article-title: FreeSurfer publication-title: Neuroimage – volume: 25 start-page: 1256 year: 2005 end-page: 1265 ident: bib0019 article-title: Cortical thickness analysis in autism with heat kernel smoothing publication-title: Neuroimage – volume: 3 start-page: 201 year: 2002 end-page: 215 ident: bib0020 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat. Rev. Neurosci. – volume: 50 start-page: 1253 year: 1998 end-page: 1259 ident: bib0008 article-title: Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study publication-title: Neurology – volume: 111 start-page: 785 year: 2009 end-page: 795 ident: bib0061 article-title: The motor-evoked potential threshold evaluated by tractography and electrical stimulation publication-title: J. Neurosurg. – volume: 20 start-page: 17 year: 2003 end-page: 25 ident: bib0011 article-title: Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery publication-title: J. Clin. Neurophysiol. – volume: 111 start-page: 5718 year: 2014 end-page: 5722 ident: bib0033 article-title: Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 1056 year: 2016 end-page: 1060 ident: bib0066 article-title: Human area 5 modulates corticospinal output during movement preparation publication-title: Neuroreport – year: 1950 ident: bib0074 article-title: The Cerebral Cortex of Man – year: 2020 ident: 10.1016/j.neuroimage.2021.118002_bib0084 article-title: The Functional Organization of Posterior Parietal Cortex in Humans – volume: 38 start-page: 69 year: 2015 ident: 10.1016/j.neuroimage.2021.118002_bib0056 article-title: Visual guidance in control of grasping publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071714-034028 – volume: 7 start-page: 18 year: 1997 ident: 10.1016/j.neuroimage.2021.118002_bib0100 article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus publication-title: Cereb. Cortex doi: 10.1093/cercor/7.1.18 – volume: 24 start-page: 691 year: 2014 ident: 10.1016/j.neuroimage.2021.118002_bib0089 article-title: Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs351 – volume: 28 start-page: 3303 year: 2018 ident: 10.1016/j.neuroimage.2021.118002_bib0032 article-title: Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.08.027 – volume: 111 start-page: 5718 year: 2014 ident: 10.1016/j.neuroimage.2021.118002_bib0033 article-title: Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1321909111 – volume: 27 start-page: 6815 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0063 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0598-07.2007 – volume: 113 start-page: 239 year: 2019 ident: 10.1016/j.neuroimage.2021.118002_bib0097 article-title: Anatomo-functional characterisation of the human "hand-knob": a direct electrophysiological study publication-title: Cortex doi: 10.1016/j.cortex.2018.12.011 – volume: 450 start-page: 547 year: 1992 ident: 10.1016/j.neuroimage.2021.118002_bib0039 article-title: Independent control of human finger-tip forces at individual digits during precision lifting publication-title: J. Physiol. doi: 10.1113/jphysiol.1992.sp019142 – volume: 1175 start-page: 76 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0076 article-title: On-line grasp control is mediated by the contralateral hemisphere publication-title: Brain Res. doi: 10.1016/j.brainres.2007.08.009 – volume: 3 start-page: 201 year: 2002 ident: 10.1016/j.neuroimage.2021.118002_bib0020 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn755 – volume: 53 start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0035 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 12 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0088 article-title: Ensemble Tractography publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004692 – year: 1950 ident: 10.1016/j.neuroimage.2021.118002_bib0074 – volume: 8 start-page: 505 year: 2005 ident: 10.1016/j.neuroimage.2021.118002_bib0093 article-title: Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp publication-title: Nat. Neurosci. doi: 10.1038/nn1430 – volume: 29 start-page: 207 year: 2008 ident: 10.1016/j.neuroimage.2021.118002_bib0013 article-title: Cortical network for vibrotactile attention: a fMRI study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20384 – volume: 524 start-page: 595 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0060 article-title: Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates publication-title: J. Comp. Neurol. doi: 10.1002/cne.23838 – volume: 103 start-page: 411 year: 2014 ident: 10.1016/j.neuroimage.2021.118002_bib0059 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 40 start-page: 1469 year: 2008 ident: 10.1016/j.neuroimage.2021.118002_bib0064 article-title: Brain activity is similar during precision and power gripping with light force: an fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.037 – volume: 81 start-page: 967 year: 2014 ident: 10.1016/j.neuroimage.2021.118002_bib0003 article-title: Optic ataxia: from Balint's syndrome to the parietal reach region publication-title: Neuron doi: 10.1016/j.neuron.2014.02.025 – volume: 27 start-page: 3974 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0022 article-title: Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0426-07.2007 – volume: 370 year: 2015 ident: 10.1016/j.neuroimage.2021.118002_bib0034 article-title: Revealing humans' sensorimotor functions with electrical cortical stimulation publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2014.0207 – year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0036 article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image – year: 2012 ident: 10.1016/j.neuroimage.2021.118002_bib0016 – volume: 33 start-page: 3190 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0057 article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2457-12.2013 – volume: 25 start-page: 1256 year: 2005 ident: 10.1016/j.neuroimage.2021.118002_bib0019 article-title: Cortical thickness analysis in autism with heat kernel smoothing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.052 – volume: 4 start-page: 423 year: 2000 ident: 10.1016/j.neuroimage.2021.118002_bib0029 article-title: Forward modeling allows feedback control for fast reaching movements publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01537-0 – volume: 14 start-page: 31 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0038 article-title: The coordination of movement: optimal feedback control and beyond publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2009.11.004 – volume: 269 start-page: 1880 year: 1995 ident: 10.1016/j.neuroimage.2021.118002_bib0101 article-title: An internal model for sensorimotor integration publication-title: Science doi: 10.1126/science.7569931 – volume: 62 start-page: 1924 year: 2012 ident: 10.1016/j.neuroimage.2021.118002_bib0085 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 8 start-page: 641 year: 1998 ident: 10.1016/j.neuroimage.2021.118002_bib0079 article-title: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area publication-title: Cereb. Cortex doi: 10.1093/cercor/8.7.641 – volume: 21 start-page: 565 year: 2011 ident: 10.1016/j.neuroimage.2021.118002_bib0023 article-title: Interactions between areas of the cortical grasping network publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.05.021 – volume: 19 start-page: 43 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0083 article-title: The angular gyrus: multiple functions and multiple subdivisions publication-title: Neuroscientist doi: 10.1177/1073858412440596 – volume: 97 start-page: 306 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0010 article-title: Functional anatomy of the macaque temporo-parieto-frontal connectivity publication-title: Cortex doi: 10.1016/j.cortex.2016.12.007 – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0086 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 1 start-page: 529 year: 1998 ident: 10.1016/j.neuroimage.2021.118002_bib0102 article-title: Maintaining internal representations: the role of the human superior parietal lobe publication-title: Nat. Neurosci. doi: 10.1038/2245 – year: 2006 ident: 10.1016/j.neuroimage.2021.118002_bib0081 – volume: 20 start-page: 303 year: 1997 ident: 10.1016/j.neuroimage.2021.118002_bib0004 article-title: Multimodal representation of space in the posterior parietal cortex and its use in planning movements publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.20.1.303 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0014 article-title: Diffusion tractography in deep brain stimulation surgery: a review publication-title: Front. Neuroanat. doi: 10.3389/fnana.2016.00045 – volume: 394 start-page: 780 year: 1998 ident: 10.1016/j.neuroimage.2021.118002_bib0050 article-title: Signal-dependent noise determines motor planning publication-title: Nature doi: 10.1038/29528 – volume: 157 start-page: 561 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0070 article-title: Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.001 – volume: 114 start-page: 2465 issue: Pt 6 year: 1991 ident: 10.1016/j.neuroimage.2021.118002_bib0001 article-title: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings publication-title: Brain doi: 10.1093/brain/114.6.2465 – volume: 27 start-page: 1532 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0012 article-title: Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans publication-title: Cereb. Cortex – volume: 8 start-page: 686 year: 2014 ident: 10.1016/j.neuroimage.2021.118002_bib0094 article-title: Neural correlates of grasping publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00686 – volume: 204 start-page: 475 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0045 article-title: The cognitive neuroscience of prehension: recent developments publication-title: Exp. Brain Res. doi: 10.1007/s00221-010-2315-2 – volume: 21 start-page: 2919 year: 2001 ident: 10.1016/j.neuroimage.2021.118002_bib0030 article-title: Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02919.2001 – volume: 62 start-page: 266 year: 2012 ident: 10.1016/j.neuroimage.2021.118002_bib0087 article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.009 – volume: 50 start-page: 1253 year: 1998 ident: 10.1016/j.neuroimage.2021.118002_bib0008 article-title: Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study publication-title: Neurology doi: 10.1212/WNL.50.5.1253 – volume: 51 start-page: 300 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0062 article-title: In vivo definition of parieto-motor connections involved in planning of grasping movements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.022 – volume: 1228 start-page: 73 year: 2008 ident: 10.1016/j.neuroimage.2021.118002_bib0021 article-title: On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force publication-title: Brain Res. doi: 10.1016/j.brainres.2008.06.027 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2021.118002_bib0041 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 66 start-page: 64 year: 1991 ident: 10.1016/j.neuroimage.2021.118002_bib0002 article-title: Cortical somatosensory evoked potentials. II. Effects of excision of somatosensory or motor cortex in humans and monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.1991.66.1.64 – volume: 12 start-page: 94 year: 2018 ident: 10.1016/j.neuroimage.2021.118002_bib0069 article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. doi: 10.3389/fnana.2018.00094 – volume: 61 start-page: 219 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0055 article-title: The neural basis of haptic object processing publication-title: Can. J. Exp. Psychol. doi: 10.1037/cjep2007023 – volume: 89 start-page: 665 year: 2003 ident: 10.1016/j.neuroimage.2021.118002_bib0006 article-title: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects publication-title: J. Neurophysiol. doi: 10.1152/jn.00249.2002 – volume: 28 start-page: R1200 year: 2018 ident: 10.1016/j.neuroimage.2021.118002_bib0065 article-title: Motor control: parietal stimulation prevents voluntary hand movement publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.09.001 – volume: 18 start-page: 314 year: 1995 ident: 10.1016/j.neuroimage.2021.118002_bib0058 article-title: Grasping objects: the cortical mechanisms of visuo-motor transformations publication-title: Trends Neurosci. doi: 10.1016/0166-2236(95)93921-J – volume: 16 start-page: 388 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0040 article-title: Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing publication-title: Neuroscientist doi: 10.1177/1073858410375468 – volume: 20 start-page: 17 year: 2003 ident: 10.1016/j.neuroimage.2021.118002_bib0011 article-title: Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200302000-00002 – volume: 19 start-page: 1349 year: 2003 ident: 10.1016/j.neuroimage.2021.118002_bib0048 article-title: Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00165-4 – volume: 87 start-page: 407 year: 1991 ident: 10.1016/j.neuroimage.2021.118002_bib0072 article-title: Selective perturbation of visual input during prehension movements. 2. The effects of changing object size publication-title: Exp. Brain Res. doi: 10.1007/BF00231858 – volume: 28 start-page: E2 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0075 article-title: The cerebral sulci and gyri publication-title: Neurosurg. Focus doi: 10.3171/2009.11.FOCUS09245 – volume: 27 start-page: 1003 year: 2008 ident: 10.1016/j.neuroimage.2021.118002_bib0047 article-title: Computational motor control: feedback and accuracy publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06028.x – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118002_bib0092 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 109 start-page: 18114 year: 2012 ident: 10.1016/j.neuroimage.2021.118002_bib0054 article-title: Mapping multisensory parietal face and body areas in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1207946109 – volume: 29 start-page: 3939 year: 2009 ident: 10.1016/j.neuroimage.2021.118002_bib0018 article-title: The separate neural control of hand movements and contact forces publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5856-08.2009 – volume: 26 start-page: 8176 year: 2006 ident: 10.1016/j.neuroimage.2021.118002_bib0077 article-title: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1641-06.2006 – volume: 217 year: 2020 ident: 10.1016/j.neuroimage.2021.118002_bib0099 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 25 start-page: 9919 year: 2005 ident: 10.1016/j.neuroimage.2021.118002_bib0037 article-title: Neural correlates of reach errors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1874-05.2005 – volume: 138 start-page: 1949 year: 2015 ident: 10.1016/j.neuroimage.2021.118002_bib0082 article-title: Parietofrontal motor pathways and their association with motor function after stroke publication-title: Brain doi: 10.1093/brain/awv100 – volume: 108 start-page: 124 year: 2015 ident: 10.1016/j.neuroimage.2021.118002_bib0051 article-title: Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.039 – volume: 60 start-page: 389 year: 1937 ident: 10.1016/j.neuroimage.2021.118002_bib0073 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain doi: 10.1093/brain/60.4.389 – volume: 77 start-page: 452 year: 1997 ident: 10.1016/j.neuroimage.2021.118002_bib0031 article-title: Postural control of three-dimensional prehension movements publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.77.1.452 – volume: 31 start-page: 11660 year: 2011 ident: 10.1016/j.neuroimage.2021.118002_bib0043 article-title: Multiple parietal-frontal pathways mediate grasping in macaque monkeys publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1777-11.2011 – year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0091 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 111 start-page: 785 year: 2009 ident: 10.1016/j.neuroimage.2021.118002_bib0061 article-title: The motor-evoked potential threshold evaluated by tractography and electrical stimulation publication-title: J. Neurosurg. doi: 10.3171/2008.9.JNS08414 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0044 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 221 start-page: 2075 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0098 article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1028-5 – volume: 13 start-page: 819 year: 2020 ident: 10.1016/j.neuroimage.2021.118002_bib0017 article-title: Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.02.023 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0096 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 62 start-page: 301 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0005 article-title: Moving with or without will: functional neural correlates of alien hand syndrome publication-title: Ann. Neurol. doi: 10.1002/ana.21173 – volume: 97 start-page: 1219 year: 2018 ident: 10.1016/j.neuroimage.2021.118002_bib0042 article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex publication-title: Neuron doi: 10.1016/j.neuron.2018.01.044 – volume: 28 start-page: 2482 year: 2018 ident: 10.1016/j.neuroimage.2021.118002_bib0053 article-title: Frontoparietal tracts linked to lateralized hand preference and manual specialization publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy040 – volume: 146 start-page: 367 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0071 article-title: Functional segregation and integration within fronto-parietal networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.031 – volume: 13 start-page: 24 year: 2019 ident: 10.1016/j.neuroimage.2021.118002_bib0025 article-title: The superoanterior fasciculus (SAF): a novel white matter pathway in the human brain? publication-title: Front. Neuroanat. doi: 10.3389/fnana.2019.00024 – volume: 7 start-page: 907 year: 2004 ident: 10.1016/j.neuroimage.2021.118002_bib0090 article-title: Optimality principles in sensorimotor control publication-title: Nat. Neurosci. doi: 10.1038/nn1309 – volume: 75 start-page: 65 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0009 article-title: The macaque lateral grasping network: A neural substrate for generating purposeful hand actions publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.017 – volume: 130 start-page: 898 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0027 article-title: Contrasting acute and slow-growing lesions: a new door to brain plasticity publication-title: Brain doi: 10.1093/brain/awl300 – volume: 20 start-page: 176 year: 2010 ident: 10.1016/j.neuroimage.2021.118002_bib0024 article-title: Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp publication-title: Curr. Biol doi: 10.1016/j.cub.2009.11.063 – volume: 54 start-page: 2033 year: 2011 ident: 10.1016/j.neuroimage.2021.118002_bib0007 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 27 start-page: 1056 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0066 article-title: Human area 5 modulates corticospinal output during movement preparation publication-title: Neuroreport doi: 10.1097/WNR.0000000000000655 – volume: 12 start-page: 923 year: 2013 ident: 10.1016/j.neuroimage.2021.118002_bib0026 article-title: MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum publication-title: Cerebellum doi: 10.1007/s12311-013-0503-x – volume: 25 start-page: 175 year: 1993 ident: 10.1016/j.neuroimage.2021.118002_bib0052 article-title: Models of trajectory formation and temporal interaction of reach and grasp publication-title: J. Mot. Behav. doi: 10.1080/00222895.1993.9942048 – volume: 2 start-page: 563 year: 1999 ident: 10.1016/j.neuroimage.2021.118002_bib0028 article-title: Role of the posterior parietal cortex in updating reaching movements to a visual target publication-title: Nat. Neurosci. doi: 10.1038/9219 – volume: 16 start-page: 1141 year: 2003 ident: 10.1016/j.neuroimage.2021.118002_bib0095 article-title: A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00079-0 – volume: 106 start-page: 283 year: 1998 ident: 10.1016/j.neuroimage.2021.118002_bib0078 article-title: The organization of the cortical motor system: new concepts publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00022-4 – volume: 56 start-page: 1259 year: 2011 ident: 10.1016/j.neuroimage.2021.118002_bib0015 article-title: Track density imaging (TDI): Validation of super resolution property publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.059 – volume: 61 start-page: 485 year: 2007 ident: 10.1016/j.neuroimage.2021.118002_bib0049 article-title: Brain representation of active and passive hand movements in children publication-title: Pediatr. Res. doi: 10.1203/pdr.0b013e3180332c2e – volume: 120 start-page: 141 issue: Pt 1 year: 1997 ident: 10.1016/j.neuroimage.2021.118002_bib0103 article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark publication-title: Brain doi: 10.1093/brain/120.1.141 – volume: 15 start-page: 854 year: 2005 ident: 10.1016/j.neuroimage.2021.118002_bib0068 article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh186 – volume: 8 start-page: 1349 year: 2017 ident: 10.1016/j.neuroimage.2021.118002_bib0067 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – volume: 116 start-page: 1795 year: 2016 ident: 10.1016/j.neuroimage.2021.118002_bib0080 article-title: Analysis of haptic information in the cerebral cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00546.2015 – volume: 35 start-page: 173 year: 2002 ident: 10.1016/j.neuroimage.2021.118002_bib0046 article-title: Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys publication-title: Neuron doi: 10.1016/S0896-6273(02)00741-9 |
SSID | ssj0009148 |
Score | 2.4035664 |
Snippet | The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that... |
SourceID | doaj hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118002 |
SubjectTerms | Cortex (motor) Cortex (parietal) Engineering Sciences Feedback Grasping Handedness Humans Latency Magnetic resonance imaging motor control Muscles Parietal cortex Postcentral gyrus Sensorimotor integration Sensory neurons Somatosensory cortex Territory Tractography Transcranial magnetic stimulation Volition |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKD4gLKu-Uggzimm5cPxLDaamoFsRyACr1gizHiUsQZFebLEd-OzOOk2oPSCtxjGPvWp7JzDf2-BtCXoFT1BJCrjQXskoFq3xa1kqmuipUxl3JVagNuPykFpfiw5W8OiDn410YTKuMtn-w6cFax5ZZXM3ZumlmXwAZgLtBPi-MrTTaYWT_Ap0-_XOT5qGZGK7DSZ5i75jNM-R4Bc7I5hd8uRApnrFT5EOLGyyjiwpM_jue6tZ3TJn8Fx4NfuniiNyNgJLOhznfIwd1e5_cXsYj8wfk27yFuDqQAlB0WR1deept11OsP1gD9qbXG9utaUxap01LQ-G-7jWdU6yfssUNtXT5-T3t8UpV5LimgZj2Ibm8ePf1fJHGmgqpU5nuU3dWacaZdUwWXrpa5xJrSmWq1FhyPnNOI2c8wDQhLGcQd0vuYbV0UVorM88fkcN21dZPCPVceVZrnTsAVazQBaDDXFjhlM-dEC4h-biMxkXCcax78dOMmWU_zI0ADArADAJICJtGrgfSjT3GvEVJTf2RNjs0rDbXJuqNEZILW4nK1lkhPCwF2FiG120dIJXKVgnRo5zNeDMVbCn8ULPHBN5MY3c0eM_RL0Gtdma_mH802IakjFIW_DdLyMmodSaams6AgHIQAMC8hLyYXoORwJMf29arLfbJMIoqhEjI40Fbp7_iPMejanX8X_N_Su7gE-56M3lCDvvNtn4GcK0vn4fv8S8Xeznm priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXYRUJcVnwTWJBBXA1xbccxHFBBrAqiHBAr9YIsx0mWIjYpTcrvZ8ZxUu0B1GtiJ5bHnnkzHr8h5AUYRaPA5WJaqpJJXtasqDLFTJlnqfCFyEJtwOWXbHEuP63UKgbcuphWOerEoKjL1mOM_NVMCQ3GG6zZ281vhlWj8HQ1ltA4Itc5QBVc1Xql96S7XA5X4ZRgOTSImTxDflfgi1xfwq4FL3HGXyIXWgyujOYpsPhfsVJHPzBd8l9YNNiks1vkJIJJOh-kf5tcq5o75MYyHpffJd_nDfjUgRCAornqaFvT2nU9xdqDFeBuerF13YbGhHW6bmgo2te9pnOKtVN2GExjy68faY_XqSK_NQ2ktPfI-dmHb-8XLNZTYD5LTc_8rDRccOe5ymvlK6MV1pNKs8JgufnUe4N88QDRpHSCg8-tRA2zZfLCOZXW4j45btqmekhoLbKaV8ZoDzLhuckBGWrppM9q7aX0CdHjNFofycax5sUvO2aV_bR7AVgUgB0EkBA-9dwMhBsH9HmHkpraI2V2eNBuL2zcgVYqIV0pS1eluaxhKkC_crxq6wGllK5MiBnlbMdbqaBH4UPrAwbwZuobkcuASA7s_RyW1ZXRL-afLT5DQkalcvGHJ-R0XHU2qpnO7jdFQp5Nr0FB4KmPa6p2h21S9KByKRPyYFit06-E0HhMnT36_8cfk5s4XAxpc3VKjvvtrnoCWKwvnoYN9xf3AS6x priority: 102 providerName: ProQuest |
Title | Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921002792 https://dx.doi.org/10.1016/j.neuroimage.2021.118002 https://www.ncbi.nlm.nih.gov/pubmed/33789136 https://www.proquest.com/docview/2537264223 https://www.proquest.com/docview/2507729844 https://hal.science/hal-03445583 https://doaj.org/article/4534ad4dae084f2d908810647c242dad |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZokRCXivIMtCuDuKbE9SMxPaVVqy2wK1RRaS_IcpwYFpVs1WQ58tuZSZxAD4g9cEmkbJx1Ziaeb-zxN4S8BqeoJYRccSpkGQtW-riolIx1mamEu4KrrjbgbK6ml-LdQi7-KPWFOWE9PXAvuDdCcmFLUdoqyYQ_LDEvh-EOSQfOpbQljr7gxoZgaqDbBZQf8nb6bK6OHXL5Hb5RiAkP2QEyn4WplMEZdZz9t3zS1ldMjvwb8uw80NkDshOgI837Lu-SO1X9kNybhcXxR-RzXkME3W3_p-icGrry1NumpVhpsAKUTb_c2OaahvR0uqxpV6KveUtzipVS1jh1Fs8uzmmLm6cCmzXtKGgfk8uz008n0zhUT4idSnQbO5AV48w6JjMvXaVTidWjElVoLC6fOKeRHR4AmRCWM4iwJfcgLZ0V1srE8ydku17V1TNCPVeeVVqDzJVgmc4AB6bCCqd86oRwEUkHMRoXqMWxwsWVGXLIvpnfCjCoANMrICJsbHnd02ts0OYYNTXejwTZ3QUwGxPMxvzLbCKiBz2bYQ8qjJrwoOUGHTga2wac0uOPDVu_ArO61ftp_sHgNaRflDLjP1hE9garM2FQaQwoKAUFAKCLyMvxZxgOcI3H1tVqjfckGC9lQkTkaW-t419xnuKitHr-PwT4gtzHl8Jpbib3yHZ7s672AZ-1xYRsHfxkcEwX6YTczc_fT-dwPj6df7yYdJ_pL6F5Ohk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7tLhJwQbwJLGAQHANxbScxCKHyWLVsuwe0K_WCjOMkSxGkpWlB_Cl-IzOJ02oPoF72msSO5RnPwx5_H8ATdIpaYcoVJlLloeR5GWZFrEKdp3EkXCbihhtwfBQPTuSHiZrswJ_uLgyVVXY2sTHU-czRHvnznhIJOm_0Zq_nP0JijaLT1Y5Co1WLw-L3L0zZ6lfDdyjfp73ewfvjt4PQswqELo70MnS9XHPBreMqLZUrdKKIVSmKM02k65FzmlDTMVCR0gqOmacSJSquTjNrVVQK7HcXLkgRScLqTybJBuSXy_bqnRJhyrn2lUNtPVmDTzn9jlYCs9Ief0bYa34zp3OHDWvAGa-4-4XKM_8V-zY-8OAqXPHBK-u32nYNdorqOlwc--P5G_CpX2EO3wAQMHKPNZuVrLT1khHXYYFxPjtd2HrOfIE8m1asIQmsX7A-I66WFW3eheOPQ7ak61seT5s1ILg34eRcZvoW7FWzqrgDrBRxyQutE4c6wFOdYiSaSCtdXCZOShdA0k2jcR7cnDg2vpmuiu2r2QjAkABMK4AA-LrlvAX42KLNG5LU-nuC6G4ezBanxq94I5WQNpe5LaJUljgVaM85Xe11GBXlNg9Ad3I23S1YtNvY0XSLAbxct_WRUhsBbdn6MarVmdEP-iNDzwgAUqlU_OQB7HdaZ7xZq81mEQbwaP0aDRKdMtmqmK3om4gytlTKAG632rr-lRAJHYvHd__f-UO4NDgej8xoeHR4Dy7T0Gk7nat92FsuVsV9jAOX2YNm8TH4fN6r_S_JrmoP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IU28IO4EBhgEj2FxbccxCKHCqFq2TggxqS_IuE48Oo20NC2Iv8av45zEabUHUF_2msSO5XN8Lvbx9xHyDJyilpByxUrIPBYs9_G4SGWs8yxNuBvztOYGHB6n_RPxYSRHW-RPexcGyypbm1gb6nzqcI98vyO5AucN3mzfh7KIjwe9N7MfMTJI4UlrS6fRqMhh8fsXpG_V68EByPp5p9N7__ldPw4MA7FLE72IXSfXjDPrmMy8dIVWEhmWknSskYA9cU4jgjoELUJYziALldyDEutsbK1MPId-t8kVxQXHcjI1UmvAXyaaa3iSxxljOlQRNbVlNVbl5DtYDMhQO-wF4rCFjZ3WNdYMAhc85PY3LNX8Vxxc-8PedXItBLK022jeDbJVlDfJ7jAc1d8iX7ol5PM1GAFFV1nRqafeVguKvIcFxPz0dG6rGQ3F8nRS0powsHpJuxR5W5a4kRcPPw3oAq9yBWxtWgPi3iYnlzLTd8hOOS2Le4R6nnpWaK0c6APLdAZRqRJWuNQrJ4SLiGqn0bgAdI58G-emrWg7M2sBGBSAaQQQEbZqOWvAPjZo8xYltfoe4brrB9P5qQmr3wjJhc1FboskEx6mAmw7w2u-DiKk3OYR0a2cTXsjFmw4dDTZYACvVm1D1NREQxu2fgpqdWH0_e6RwWcIBillxn-yiOy1WmeCiavMekFG5MnqNRgnPHGyZTFd4jcJZm-ZEBG522jr6lecKzwiT-__v_PHZBfWuTkaHB8-IFdx5LizzuQe2VnMl8VDCAkX40f12qPk62Uv9r8PBm5K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomical+bases+of+fast+parietal+grasp+control+in+humans%3A+A+diffusion-MRI+tractography+study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Richard%2C+Nathalie&rft.au=Desmurget%2C+Michel&rft.au=Teillac%2C+Achille&rft.au=Beuriat%2C+Pierre-Aur%C3%A9lien&rft.date=2021-07-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=235&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118002&rft.externalDocID=S1053811921002792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |