Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study

The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 235; p. 118002
Main Authors Richard, Nathalie, Desmurget, Michel, Teillac, Achille, Beuriat, Pierre-Aurélien, Bardi, Lara, Coudé, Gino, Szathmari, Alexandru, Mottolese, Carmine, Sirigu, Angela, Hiba, Bassem
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.07.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118002

Cover

Abstract The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. [Display omitted]
AbstractList The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPC ), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPC and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPC . Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right-(n = 50) and lefthanded (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPC hand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPC hand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPC hand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals. [Display omitted]
ArticleNumber 118002
Author Teillac, Achille
Coudé, Gino
Bardi, Lara
Desmurget, Michel
Szathmari, Alexandru
Sirigu, Angela
Beuriat, Pierre-Aurélien
Hiba, Bassem
Richard, Nathalie
Mottolese, Carmine
Author_xml – sequence: 1
  givenname: Nathalie
  orcidid: 0000-0002-2547-6721
  surname: Richard
  fullname: Richard, Nathalie
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 2
  givenname: Michel
  surname: Desmurget
  fullname: Desmurget, Michel
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 3
  givenname: Achille
  surname: Teillac
  fullname: Teillac, Achille
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 4
  givenname: Pierre-Aurélien
  surname: Beuriat
  fullname: Beuriat, Pierre-Aurélien
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 5
  givenname: Lara
  orcidid: 0000-0002-1678-647X
  surname: Bardi
  fullname: Bardi, Lara
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 6
  givenname: Gino
  surname: Coudé
  fullname: Coudé, Gino
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 7
  givenname: Alexandru
  surname: Szathmari
  fullname: Szathmari, Alexandru
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 8
  givenname: Carmine
  surname: Mottolese
  fullname: Mottolese, Carmine
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 9
  givenname: Angela
  surname: Sirigu
  fullname: Sirigu, Angela
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
– sequence: 10
  givenname: Bassem
  orcidid: 0000-0002-5436-3742
  surname: Hiba
  fullname: Hiba, Bassem
  email: bassem.hiba@isc.cnrs.fr
  organization: Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33789136$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03445583$$DView record in HAL
BookMark eNqNkl2LEzEUhgdZcT_0L0jAG72Yms-ZjBdiXdRdqAiilxJOk0ybOk1qklnovzdjdxV71auEw5PnhHPey-rMB2-rChE8I5g0rzczb8cY3BZWdkYxJTNCJMb0UXVBcCfqTrT0bLoLVktCuvPqMqUNxrgjXD6pzhlrZUdYc1H9mHvIYes0DGgJySYUetRDymgH0dlcyqsIaYd08DmGATmP1uMWfHqD5si4vh-TC77-_PUW5Qg6h4Lv1nuU8mj2T6vHPQzJPrs_r6rvHz98u76pF18-3V7PF7VucJdrTU35DQFNhOyFtl0rjGkMbpalTDusdYdZ-TppOAdG7JIK1pdBdHIJIHDPrqrbg9cE2KhdLIOJexXAqT-FEFcKYnZ6sIoLxsFwAxZL3pfGWEqCG95qyqkBU1yvDq41DP-pbuYLNdUw41wIye5IYV8e2F0Mv0abstq6pO0wgLdhTIoK3La0k5wX9MURuglj9GUqhWItbTilrFDP76lxubXmb_-HhRXg7QHQMaQUba-0y5DdtB1wgyJYTQlRG_UvIWpKiDokpAjkkeChxwlP3x-e2rLKO2ejStpZr61x0epcZu1Okbw7kujB-Sl_P-3-NMVvGJXulg
CitedBy_id crossref_primary_10_3389_fneur_2025_1515432
crossref_primary_10_1016_j_jns_2023_120588
crossref_primary_10_1162_imag_a_00039
crossref_primary_10_1016_j_neuroimage_2023_120117
crossref_primary_10_1007_s00429_022_02551_5
Cites_doi 10.1146/annurev-neuro-071714-034028
10.1093/cercor/7.1.18
10.1093/cercor/bhs351
10.1016/j.cub.2018.08.027
10.1073/pnas.1321909111
10.1523/JNEUROSCI.0598-07.2007
10.1016/j.cortex.2018.12.011
10.1113/jphysiol.1992.sp019142
10.1016/j.brainres.2007.08.009
10.1038/nrn755
10.1016/j.neuroimage.2010.06.010
10.1371/journal.pcbi.1004692
10.1038/nn1430
10.1002/hbm.20384
10.1002/cne.23838
10.1016/j.neuroimage.2014.07.061
10.1016/j.neuroimage.2008.01.037
10.1016/j.neuron.2014.02.025
10.1523/JNEUROSCI.0426-07.2007
10.1098/rstb.2014.0207
10.1523/JNEUROSCI.2457-12.2013
10.1016/j.neuroimage.2004.12.052
10.1016/S1364-6613(00)01537-0
10.1016/j.tics.2009.11.004
10.1126/science.7569931
10.1016/j.neuroimage.2012.06.005
10.1093/cercor/8.7.641
10.1016/j.conb.2011.05.021
10.1177/1073858412440596
10.1016/j.cortex.2016.12.007
10.1016/j.neuroimage.2013.05.057
10.1038/2245
10.1146/annurev.neuro.20.1.303
10.3389/fnana.2016.00045
10.1038/29528
10.1016/j.neuroimage.2017.06.001
10.1093/brain/114.6.2465
10.3389/fnhum.2014.00686
10.1007/s00221-010-2315-2
10.1523/JNEUROSCI.21-08-02919.2001
10.1016/j.neuroimage.2012.05.009
10.1212/WNL.50.5.1253
10.1016/j.neuroimage.2010.02.022
10.1016/j.brainres.2008.06.027
10.1016/j.neuroimage.2012.01.021
10.1152/jn.1991.66.1.64
10.3389/fnana.2018.00094
10.1037/cjep2007023
10.1152/jn.00249.2002
10.1016/j.cub.2018.09.001
10.1016/0166-2236(95)93921-J
10.1177/1073858410375468
10.1097/00004691-200302000-00002
10.1016/S1053-8119(03)00165-4
10.1007/BF00231858
10.3171/2009.11.FOCUS09245
10.1111/j.1460-9568.2008.06028.x
10.1016/j.neuroimage.2019.116137
10.1073/pnas.1207946109
10.1523/JNEUROSCI.5856-08.2009
10.1523/JNEUROSCI.1641-06.2006
10.1016/j.neuroimage.2020.116923
10.1523/JNEUROSCI.1874-05.2005
10.1093/brain/awv100
10.1016/j.neuroimage.2014.12.039
10.1093/brain/60.4.389
10.1152/jn.1997.77.1.452
10.1523/JNEUROSCI.1777-11.2011
10.3171/2008.9.JNS08414
10.1016/j.neuroimage.2013.04.127
10.1007/s00429-015-1028-5
10.1016/j.brs.2020.02.023
10.1016/j.neuroimage.2013.05.041
10.1002/ana.21173
10.1016/j.neuron.2018.01.044
10.1093/cercor/bhy040
10.1016/j.neuroimage.2016.08.031
10.3389/fnana.2019.00024
10.1038/nn1309
10.1016/j.neubiorev.2017.01.017
10.1093/brain/awl300
10.1016/j.cub.2009.11.063
10.1016/j.neuroimage.2010.09.025
10.1097/WNR.0000000000000655
10.1007/s12311-013-0503-x
10.1080/00222895.1993.9942048
10.1038/9219
10.1016/S0893-6080(03)00079-0
10.1016/S0013-4694(98)00022-4
10.1016/j.neuroimage.2011.02.059
10.1203/pdr.0b013e3180332c2e
10.1093/brain/120.1.141
10.1093/cercor/bhh186
10.1038/s41467-017-01285-x
10.1152/jn.00546.2015
10.1016/S0896-6273(02)00741-9
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Jul 15, 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jul 15, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOA
DOI 10.1016/j.neuroimage.2021.118002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest One Psychology

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_4534ad4dae084f2d908810647c242dad
oai_HAL_hal_03445583v1
33789136
10_1016_j_neuroimage_2021_118002
S1053811921002792
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
~HD
ALIPV
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
ID FETCH-LOGICAL-c609t-c2d9131ac158f5ce975dd6d06b913290cc9039141644a31eb253f10198baa50f3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:23:06 EDT 2025
Fri Sep 12 12:49:43 EDT 2025
Sun Sep 28 01:55:04 EDT 2025
Wed Aug 13 08:44:09 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Wed Oct 01 03:43:35 EDT 2025
Fri Feb 23 02:43:56 EST 2024
Tue Aug 26 20:02:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feedback
Tractography
Humans
Parietal cortex
Grasping
Volition
motor control
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-c2d9131ac158f5ce975dd6d06b913290cc9039141644a31eb253f10198baa50f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1678-647X
0000-0002-2547-6721
0000-0002-5436-3742
0000-0003-3450-0161
OpenAccessLink https://doaj.org/article/4534ad4dae084f2d908810647c242dad
PMID 33789136
PQID 2537264223
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_4534ad4dae084f2d908810647c242dad
hal_primary_oai_HAL_hal_03445583v1
proquest_miscellaneous_2507729844
proquest_journals_2537264223
pubmed_primary_33789136
crossref_citationtrail_10_1016_j_neuroimage_2021_118002
crossref_primary_10_1016_j_neuroimage_2021_118002
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118002
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Kaas, Stepniewska (bib0060) 2016; 524
Wolpert, Ghahramani, Jordan (bib0101) 1995; 269
Mandonnet, Sarubbo, Petit (bib0069) 2018; 12
Branco, Coelho, Branco, Schmidt, Calcagnotto, Portuguez (bib0011) 2003; 20
Chib, Krutky, Lynch, Mussa-Ivaldi (bib0018) 2009; 29
Tunik, Frey, Grafton (bib0093) 2005; 8
Takemura, Caiafa, Wandell, Pestilli (bib0088) 2016; 12
Wang, Pathak, Stefaneanu, Yeh, Li, Fernandez-Miranda (bib0098) 2016; 221
Filimon (bib0040) 2010; 16
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bib0086) 2013; 80
Koch, Fernandez Del Olmo, Cheeran, Ruge, Schippling, Caltagirone (bib0063) 2007; 27
Grafton (bib0045) 2010; 204
Edin, Westling, Johansson (bib0039) 1992; 450
Paulignan, Jeannerod, MacKenzie, Marteniuk (bib0072) 1991; 87
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (bib0092) 2019; 202
James, Kim, Fisher (bib0055) 2007; 61
Seghier (bib0083) 2013; 19
Jbabdi, Lehman, Haber, Behrens (bib0057) 2013; 33
Sastre-Janer, Regis, Belin, Mangin, Dormont, Masure (bib0079) 1998; 8
Freedman, Ibos (bib0042) 2018; 97
Kuhtz-Buschbeck, Gilster, Wolff, Ulmer, Siebner, Jansen (bib0064) 2008; 40
Davare, Andres, Clerget, Thonnard, Olivier (bib0022) 2007; 27
Mackenzie, Bailey, Mi, Tsang, Jones, Nelson (bib0066) 2016; 27
Allison, Wood, McCarthy, Spencer (bib0002) 1991; 66
Fischl (bib0041) 2012; 62
Smith, Tournier, Calamante, Connelly (bib0085) 2012; 62
Augurelle, Smith, Lejeune, Thonnard (bib0006) 2003; 89
Desmurget, Richard, Beuriat, Szathmari, Mottolese, Duhamel (bib0032) 2018; 28
Vigano, Fornia, Rossi, Howells, Leonetti, Puglisi (bib0097) 2019; 113
Makris, Kennedy, McInerney, Sorensen, Wang, Caviness (bib0068) 2005; 15
Rice, Tunik, Cross, Grafton (bib0076) 2007; 1175
Guzzetta, Staudt, Petacchi, Ehlers, Erb, Wilke (bib0049) 2007; 61
White, Andrews, Hulette, Richards, Groelle, Paydarfar (bib0100) 1997; 7
Harris, Wolpert (bib0050) 1998; 394
Sathian (bib0080) 2016; 116
David, Heemskerk, Corrivetti, Thiebaut de Schotten, Sarubbo, Corsini (bib0025) 2019; 13
Allison, McCarthy, Wood, Jones (bib0001) 1991; 114
Borra, Gerbella, Rozzi, Luppino (bib0009) 2017; 75
Dhollander, Raffelt, Connelly (bib0036) 2016
Huang, Chen, Tran, Holstein, Sereno (bib0054) 2012; 109
Jeannerod, Arbib, Rizzolatti, Sakata (bib0058) 1995; 18
Guye, Parker, Symms, Boulby, Wheeler-Kingshott, Salek-Haddadi (bib0048) 2003; 19
Ribas (bib0075) 2010; 28
Davare, Rothwell, Lemon (bib0024) 2010; 20
Kamada, Todo, Ota, Ino, Masutani, Aoki (bib0061) 2009; 111
Rizzolatti, Luppino, Matelli (bib0078) 1998; 106
Desmurget, Bonnetblanc, Duffau (bib0027) 2007; 130
Parlatini, Radua, Dell'Acqua, Leslie, Simmons, Murphy (bib0071) 2017; 146
Turella, Lingnau (bib0094) 2014; 8
Schulz, Koch, Zimerman, Wessel, Bonstrup, Thomalla (bib0082) 2015; 138
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0096) 2013; 80
Burton, Sinclair, McLaren (bib0013) 2008; 29
Budisavljevic, Dell'Acqua, Zanatto, Begliomini, Miotto, Motta (bib0012) 2017; 27
Catani, Thiebaut de Schotten (bib0016) 2012
Diedrichsen, Shadmehr, Ivry (bib0038) 2010; 14
Desmurget, Prablanc (bib0031) 1997; 77
Chung, Robbins, Dalton, Davidson, Alexander, Evans (bib0019) 2005; 25
Dell'Acqua, Bodi, Slater, Catani, Modo (bib0026) 2013; 12
Penfield, Rasmussen (bib0074) 1950
Thiebaut de Schotten, Tomaiuolo, Aiello, Merola, Silvetti, Lecce (bib0089) 2014; 24
Desmurget, Richard, Harquel, Baraduc, Szathmari, Mottolese (bib0033) 2014; 111
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bib0044) 2013; 80
Desmurget, Sirigu (bib0034) 2015; 370
Janssen, Scherberger (bib0056) 2015; 38
Szameitat, Shen, Conforto, Sterr (bib0087) 2012; 62
Destrieux, Fischl, Dale, Halgren (bib0035) 2010; 53
Calamante, Tournier, Heidemann, Anwander, Jackson, Connelly (bib0015) 2011; 56
Penfield, Boldrey (bib0073) 1937; 60
Andersen, Andersen, Hwang, Hauschild (bib0003) 2014; 81
Assal, Schwartz, Vuilleumier (bib0005) 2007; 62
Hoff, Arbib (bib0052) 1993; 25
Davare, Kraskov, Rothwell, Lemon (bib0023) 2011; 21
Avants, Tustison, Song, Cook, Klein, Gee (bib0007) 2011; 54
Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner (bib0103) 1997; 120
Guigon, Baraduc, Desmurget (bib0047) 2008; 27
Desmurget, Grafton (bib0029) 2000; 4
Calabrese (bib0014) 2016; 10
Lindner (bib0065) 2018; 28
Todorov (bib0090) 2004; 7
Tournier, Calamante, Connelly (bib0091) 2010
Gharbawie, Stepniewska, Qi, Kaas (bib0043) 2011; 31
Ulloa, Bullock (bib0095) 2003; 16
Maier-Hein, Neher, Houde, Cote, Garyfallidis, Zhong (bib0067) 2017; 8
Wolpert, Goodbody, Husain (bib0102) 1998; 1
Hecht, Gutman, Bradley, Preuss, Stout (bib0051) 2015; 108
Binkofski, Dohle, Posse, Stephan, Hefter, Seitz (bib0008) 1998; 50
Cattaneo, Giampiccolo, Meneghelli, Tramontano, Sala (bib0017) 2020; 13
Schmahmann, Pandya (bib0081) 2006
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (bib0099) 2020; 217
Borra, Luppino (bib0010) 2017; 97
Mollink, Kleinnijenhuis, Cappellen van Walsum, Sotiropoulos, Cottaar, Mirfin (bib0070) 2017; 157
Diedrichsen, Hashambhoy, Rane, Shadmehr (bib0037) 2005; 25
Andersen, Snyder, Bradley, Xing (bib0004) 1997; 20
Desmurget, Grea, Grethe, Prablanc, Alexander, Grafton (bib0030) 2001; 21
Desmurget, Epstein, Turner, Prablanc, Alexander, Grafton (bib0028) 1999; 2
Sirigu, Desmurget (bib0084) 2020
Dafotakis, Sparing, Eickhoff, Fink, Nowak (bib0021) 2008; 1228
Howells, Thiebaut de Schotten, Dell'Acqua, Beyh, Zappala, Leslie (bib0053) 2018; 28
Koch, Cercignani, Pecchioli, Versace, Oliveri, Caltagirone (bib0062) 2010; 51
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib0059) 2014; 103
Corbetta, Shulman (bib0020) 2002; 3
Grefkes, Weiss, Zilles, Fink (bib0046) 2002; 35
Rice, Tunik, Grafton (bib0077) 2006; 26
Ribas (10.1016/j.neuroimage.2021.118002_bib0075) 2010; 28
Schmahmann (10.1016/j.neuroimage.2021.118002_bib0081) 2006
Desmurget (10.1016/j.neuroimage.2021.118002_bib0033) 2014; 111
Thiebaut de Schotten (10.1016/j.neuroimage.2021.118002_bib0089) 2014; 24
Dafotakis (10.1016/j.neuroimage.2021.118002_bib0021) 2008; 1228
Tournier (10.1016/j.neuroimage.2021.118002_bib0092) 2019; 202
Diedrichsen (10.1016/j.neuroimage.2021.118002_bib0038) 2010; 14
Jeannerod (10.1016/j.neuroimage.2021.118002_bib0058) 1995; 18
Jeurissen (10.1016/j.neuroimage.2021.118002_bib0059) 2014; 103
Janssen (10.1016/j.neuroimage.2021.118002_bib0056) 2015; 38
Rizzolatti (10.1016/j.neuroimage.2021.118002_bib0078) 1998; 106
Vigano (10.1016/j.neuroimage.2021.118002_bib0097) 2019; 113
Harris (10.1016/j.neuroimage.2021.118002_bib0050) 1998; 394
Rice (10.1016/j.neuroimage.2021.118002_bib0077) 2006; 26
James (10.1016/j.neuroimage.2021.118002_bib0055) 2007; 61
Sirigu (10.1016/j.neuroimage.2021.118002_bib0084) 2020
Andersen (10.1016/j.neuroimage.2021.118002_bib0004) 1997; 20
Penfield (10.1016/j.neuroimage.2021.118002_bib0073) 1937; 60
Calamante (10.1016/j.neuroimage.2021.118002_bib0015) 2011; 56
Takemura (10.1016/j.neuroimage.2021.118002_bib0088) 2016; 12
Borra (10.1016/j.neuroimage.2021.118002_bib0009) 2017; 75
Corbetta (10.1016/j.neuroimage.2021.118002_bib0020) 2002; 3
Burton (10.1016/j.neuroimage.2021.118002_bib0013) 2008; 29
Turella (10.1016/j.neuroimage.2021.118002_bib0094) 2014; 8
Freedman (10.1016/j.neuroimage.2021.118002_bib0042) 2018; 97
Assal (10.1016/j.neuroimage.2021.118002_bib0005) 2007; 62
Desmurget (10.1016/j.neuroimage.2021.118002_bib0029) 2000; 4
Schulz (10.1016/j.neuroimage.2021.118002_bib0082) 2015; 138
David (10.1016/j.neuroimage.2021.118002_bib0025) 2019; 13
Augurelle (10.1016/j.neuroimage.2021.118002_bib0006) 2003; 89
Binkofski (10.1016/j.neuroimage.2021.118002_bib0008) 1998; 50
Glasser (10.1016/j.neuroimage.2021.118002_bib0044) 2013; 80
Chib (10.1016/j.neuroimage.2021.118002_bib0018) 2009; 29
Yousry (10.1016/j.neuroimage.2021.118002_bib0103) 1997; 120
Koch (10.1016/j.neuroimage.2021.118002_bib0063) 2007; 27
Makris (10.1016/j.neuroimage.2021.118002_bib0068) 2005; 15
Filimon (10.1016/j.neuroimage.2021.118002_bib0040) 2010; 16
Desmurget (10.1016/j.neuroimage.2021.118002_bib0032) 2018; 28
Avants (10.1016/j.neuroimage.2021.118002_bib0007) 2011; 54
Branco (10.1016/j.neuroimage.2021.118002_bib0011) 2003; 20
Guzzetta (10.1016/j.neuroimage.2021.118002_bib0049) 2007; 61
Huang (10.1016/j.neuroimage.2021.118002_bib0054) 2012; 109
Tournier (10.1016/j.neuroimage.2021.118002_bib0091) 2010
Desmurget (10.1016/j.neuroimage.2021.118002_bib0028) 1999; 2
Koch (10.1016/j.neuroimage.2021.118002_bib0062) 2010; 51
Edin (10.1016/j.neuroimage.2021.118002_bib0039) 1992; 450
Sathian (10.1016/j.neuroimage.2021.118002_bib0080) 2016; 116
Andersen (10.1016/j.neuroimage.2021.118002_bib0003) 2014; 81
Paulignan (10.1016/j.neuroimage.2021.118002_bib0072) 1991; 87
Hoff (10.1016/j.neuroimage.2021.118002_bib0052) 1993; 25
Seghier (10.1016/j.neuroimage.2021.118002_bib0083) 2013; 19
Destrieux (10.1016/j.neuroimage.2021.118002_bib0035) 2010; 53
Kaas (10.1016/j.neuroimage.2021.118002_bib0060) 2016; 524
Warrington (10.1016/j.neuroimage.2021.118002_bib0099) 2020; 217
Fischl (10.1016/j.neuroimage.2021.118002_bib0041) 2012; 62
Grafton (10.1016/j.neuroimage.2021.118002_bib0045) 2010; 204
Dhollander (10.1016/j.neuroimage.2021.118002_bib0036) 2016
Davare (10.1016/j.neuroimage.2021.118002_bib0023) 2011; 21
Todorov (10.1016/j.neuroimage.2021.118002_bib0090) 2004; 7
Mandonnet (10.1016/j.neuroimage.2021.118002_bib0069) 2018; 12
Desmurget (10.1016/j.neuroimage.2021.118002_bib0030) 2001; 21
Hecht (10.1016/j.neuroimage.2021.118002_bib0051) 2015; 108
Jbabdi (10.1016/j.neuroimage.2021.118002_bib0057) 2013; 33
Davare (10.1016/j.neuroimage.2021.118002_bib0022) 2007; 27
Sastre-Janer (10.1016/j.neuroimage.2021.118002_bib0079) 1998; 8
Allison (10.1016/j.neuroimage.2021.118002_bib0001) 1991; 114
Ulloa (10.1016/j.neuroimage.2021.118002_bib0095) 2003; 16
Szameitat (10.1016/j.neuroimage.2021.118002_bib0087) 2012; 62
Guigon (10.1016/j.neuroimage.2021.118002_bib0047) 2008; 27
Allison (10.1016/j.neuroimage.2021.118002_bib0002) 1991; 66
Dell'Acqua (10.1016/j.neuroimage.2021.118002_bib0026) 2013; 12
Guye (10.1016/j.neuroimage.2021.118002_bib0048) 2003; 19
Desmurget (10.1016/j.neuroimage.2021.118002_bib0027) 2007; 130
Wolpert (10.1016/j.neuroimage.2021.118002_bib0102) 1998; 1
Borra (10.1016/j.neuroimage.2021.118002_bib0010) 2017; 97
Catani (10.1016/j.neuroimage.2021.118002_bib0016) 2012
Budisavljevic (10.1016/j.neuroimage.2021.118002_bib0012) 2017; 27
Wang (10.1016/j.neuroimage.2021.118002_bib0098) 2016; 221
Tunik (10.1016/j.neuroimage.2021.118002_bib0093) 2005; 8
Howells (10.1016/j.neuroimage.2021.118002_bib0053) 2018; 28
Kamada (10.1016/j.neuroimage.2021.118002_bib0061) 2009; 111
Rice (10.1016/j.neuroimage.2021.118002_bib0076) 2007; 1175
Kuhtz-Buschbeck (10.1016/j.neuroimage.2021.118002_bib0064) 2008; 40
Smith (10.1016/j.neuroimage.2021.118002_bib0085) 2012; 62
Mollink (10.1016/j.neuroimage.2021.118002_bib0070) 2017; 157
Sotiropoulos (10.1016/j.neuroimage.2021.118002_bib0086) 2013; 80
Lindner (10.1016/j.neuroimage.2021.118002_bib0065) 2018; 28
White (10.1016/j.neuroimage.2021.118002_bib0100) 1997; 7
Penfield (10.1016/j.neuroimage.2021.118002_bib0074) 1950
Maier-Hein (10.1016/j.neuroimage.2021.118002_bib0067) 2017; 8
Van Essen (10.1016/j.neuroimage.2021.118002_bib0096) 2013; 80
Grefkes (10.1016/j.neuroimage.2021.118002_bib0046) 2002; 35
Diedrichsen (10.1016/j.neuroimage.2021.118002_bib0037) 2005; 25
Mackenzie (10.1016/j.neuroimage.2021.118002_bib0066) 2016; 27
Wolpert (10.1016/j.neuroimage.2021.118002_bib0101) 1995; 269
Chung (10.1016/j.neuroimage.2021.118002_bib0019) 2005; 25
Desmurget (10.1016/j.neuroimage.2021.118002_bib0031) 1997; 77
Gharbawie (10.1016/j.neuroimage.2021.118002_bib0043) 2011; 31
Calabrese (10.1016/j.neuroimage.2021.118002_bib0014) 2016; 10
Desmurget (10.1016/j.neuroimage.2021.118002_bib0034) 2015; 370
Cattaneo (10.1016/j.neuroimage.2021.118002_bib0017) 2020; 13
Davare (10.1016/j.neuroimage.2021.118002_bib0024) 2010; 20
Parlatini (10.1016/j.neuroimage.2021.118002_bib0071) 2017; 146
References_xml – volume: 24
  start-page: 691
  year: 2014
  end-page: 706
  ident: bib0089
  article-title: Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection
  publication-title: Cereb. Cortex
– volume: 38
  start-page: 69
  year: 2015
  end-page: 86
  ident: bib0056
  article-title: Visual guidance in control of grasping
  publication-title: Annu. Rev. Neurosci.
– volume: 370
  year: 2015
  ident: bib0034
  article-title: Revealing humans' sensorimotor functions with electrical cortical stimulation
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 109
  start-page: 18114
  year: 2012
  end-page: 18119
  ident: bib0054
  article-title: Mapping multisensory parietal face and body areas in humans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 65
  year: 2017
  end-page: 90
  ident: bib0009
  article-title: The macaque lateral grasping network: A neural substrate for generating purposeful hand actions
  publication-title: Neurosci. Biobehav. Rev.
– volume: 14
  start-page: 31
  year: 2010
  end-page: 39
  ident: bib0038
  article-title: The coordination of movement: optimal feedback control and beyond
  publication-title: Trends Cogn. Sci.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0044
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 217
  year: 2020
  ident: bib0099
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 87
  start-page: 407
  year: 1991
  end-page: 420
  ident: bib0072
  article-title: Selective perturbation of visual input during prehension movements. 2. The effects of changing object size
  publication-title: Exp. Brain Res.
– volume: 31
  start-page: 11660
  year: 2011
  end-page: 11677
  ident: bib0043
  article-title: Multiple parietal-frontal pathways mediate grasping in macaque monkeys
  publication-title: J. Neurosci.
– volume: 157
  start-page: 561
  year: 2017
  end-page: 574
  ident: bib0070
  article-title: Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging
  publication-title: Neuroimage
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bib0007
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
– volume: 15
  start-page: 854
  year: 2005
  end-page: 869
  ident: bib0068
  article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cereb. Cortex
– volume: 8
  start-page: 686
  year: 2014
  ident: bib0094
  article-title: Neural correlates of grasping
  publication-title: Front. Hum. Neurosci.
– volume: 10
  year: 2016
  ident: bib0014
  article-title: Diffusion tractography in deep brain stimulation surgery: a review
  publication-title: Front. Neuroanat.
– volume: 97
  start-page: 1219
  year: 2018
  end-page: 1234
  ident: bib0042
  article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex
  publication-title: Neuron
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: bib0085
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
– volume: 20
  start-page: 176
  year: 2010
  end-page: 181
  ident: bib0024
  article-title: Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp
  publication-title: Curr. Biol
– volume: 202
  year: 2019
  ident: bib0092
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 8
  start-page: 505
  year: 2005
  end-page: 511
  ident: bib0093
  article-title: Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp
  publication-title: Nat. Neurosci.
– volume: 29
  start-page: 3939
  year: 2009
  end-page: 3947
  ident: bib0018
  article-title: The separate neural control of hand movements and contact forces
  publication-title: J. Neurosci.
– volume: 2
  start-page: 563
  year: 1999
  end-page: 567
  ident: bib0028
  article-title: Role of the posterior parietal cortex in updating reaching movements to a visual target
  publication-title: Nat. Neurosci.
– volume: 81
  start-page: 967
  year: 2014
  end-page: 983
  ident: bib0003
  article-title: Optic ataxia: from Balint's syndrome to the parietal reach region
  publication-title: Neuron
– volume: 27
  start-page: 1003
  year: 2008
  end-page: 1016
  ident: bib0047
  article-title: Computational motor control: feedback and accuracy
  publication-title: Eur. J. Neurosci.
– volume: 21
  start-page: 565
  year: 2011
  end-page: 570
  ident: bib0023
  article-title: Interactions between areas of the cortical grasping network
  publication-title: Curr. Opin. Neurobiol.
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib0067
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 27
  start-page: 3974
  year: 2007
  end-page: 3980
  ident: bib0022
  article-title: Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area
  publication-title: J. Neurosci.
– volume: 12
  start-page: 923
  year: 2013
  end-page: 931
  ident: bib0026
  article-title: MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum
  publication-title: Cerebellum
– volume: 524
  start-page: 595
  year: 2016
  end-page: 608
  ident: bib0060
  article-title: Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates
  publication-title: J. Comp. Neurol.
– volume: 33
  start-page: 3190
  year: 2013
  end-page: 3201
  ident: bib0057
  article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography
  publication-title: J. Neurosci.
– volume: 1175
  start-page: 76
  year: 2007
  end-page: 84
  ident: bib0076
  article-title: On-line grasp control is mediated by the contralateral hemisphere
  publication-title: Brain Res.
– volume: 8
  start-page: 641
  year: 1998
  end-page: 647
  ident: bib0079
  article-title: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area
  publication-title: Cereb. Cortex
– volume: 89
  start-page: 665
  year: 2003
  end-page: 671
  ident: bib0006
  article-title: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects
  publication-title: J. Neurophysiol.
– volume: 21
  start-page: 2919
  year: 2001
  end-page: 2928
  ident: bib0030
  article-title: Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study
  publication-title: J. Neurosci.
– volume: 35
  start-page: 173
  year: 2002
  end-page: 184
  ident: bib0046
  article-title: Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys
  publication-title: Neuron
– volume: 16
  start-page: 1141
  year: 2003
  end-page: 1160
  ident: bib0095
  article-title: A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands
  publication-title: Neural Netw.
– volume: 60
  start-page: 389
  year: 1937
  end-page: 443
  ident: bib0073
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
– volume: 28
  start-page: 3303
  year: 2018
  end-page: 3309
  ident: bib0032
  article-title: Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans
  publication-title: Curr. Biol.
– volume: 269
  start-page: 1880
  year: 1995
  end-page: 1882
  ident: bib0101
  article-title: An internal model for sensorimotor integration
  publication-title: Science
– volume: 7
  start-page: 907
  year: 2004
  end-page: 915
  ident: bib0090
  article-title: Optimality principles in sensorimotor control
  publication-title: Nat. Neurosci.
– volume: 61
  start-page: 485
  year: 2007
  end-page: 490
  ident: bib0049
  article-title: Brain representation of active and passive hand movements in children
  publication-title: Pediatr. Res.
– volume: 18
  start-page: 314
  year: 1995
  end-page: 320
  ident: bib0058
  article-title: Grasping objects: the cortical mechanisms of visuo-motor transformations
  publication-title: Trends Neurosci.
– year: 2010
  ident: bib0091
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bib0086
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
– volume: 138
  start-page: 1949
  year: 2015
  end-page: 1960
  ident: bib0082
  article-title: Parietofrontal motor pathways and their association with motor function after stroke
  publication-title: Brain
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: bib0059
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
– volume: 4
  start-page: 423
  year: 2000
  end-page: 431
  ident: bib0029
  article-title: Forward modeling allows feedback control for fast reaching movements
  publication-title: Trends Cogn. Sci.
– year: 2020
  ident: bib0084
  article-title: The Functional Organization of Posterior Parietal Cortex in Humans
  publication-title: The Senses
– volume: 13
  start-page: 24
  year: 2019
  ident: bib0025
  article-title: The superoanterior fasciculus (SAF): a novel white matter pathway in the human brain?
  publication-title: Front. Neuroanat.
– volume: 7
  start-page: 18
  year: 1997
  end-page: 30
  ident: bib0100
  article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus
  publication-title: Cereb. Cortex
– volume: 394
  start-page: 780
  year: 1998
  end-page: 784
  ident: bib0050
  article-title: Signal-dependent noise determines motor planning
  publication-title: Nature
– volume: 27
  start-page: 1532
  year: 2017
  end-page: 1544
  ident: bib0012
  article-title: Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans
  publication-title: Cereb. Cortex
– year: 2012
  ident: bib0016
  article-title: Atlas of Human Brain Connections
– volume: 1
  start-page: 529
  year: 1998
  end-page: 533
  ident: bib0102
  article-title: Maintaining internal representations: the role of the human superior parietal lobe
  publication-title: Nat. Neurosci.
– volume: 66
  start-page: 64
  year: 1991
  end-page: 82
  ident: bib0002
  article-title: Cortical somatosensory evoked potentials. II. Effects of excision of somatosensory or motor cortex in humans and monkeys
  publication-title: J. Neurophysiol.
– volume: 19
  start-page: 43
  year: 2013
  end-page: 61
  ident: bib0083
  article-title: The angular gyrus: multiple functions and multiple subdivisions
  publication-title: Neuroscientist
– volume: 113
  start-page: 239
  year: 2019
  end-page: 254
  ident: bib0097
  article-title: Anatomo-functional characterisation of the human "hand-knob": a direct electrophysiological study
  publication-title: Cortex
– volume: 114
  start-page: 2465
  year: 1991
  end-page: 2503
  ident: bib0001
  article-title: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings
  publication-title: Brain
– volume: 62
  start-page: 266
  year: 2012
  end-page: 280
  ident: bib0087
  article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients
  publication-title: Neuroimage
– volume: 120
  start-page: 141
  year: 1997
  end-page: 157
  ident: bib0103
  article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark
  publication-title: Brain
– volume: 1228
  start-page: 73
  year: 2008
  end-page: 80
  ident: bib0021
  article-title: On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force
  publication-title: Brain Res.
– volume: 26
  start-page: 8176
  year: 2006
  end-page: 8182
  ident: bib0077
  article-title: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation
  publication-title: J. Neurosci.
– volume: 28
  start-page: 2482
  year: 2018
  end-page: 2494
  ident: bib0053
  article-title: Frontoparietal tracts linked to lateralized hand preference and manual specialization
  publication-title: Cereb. Cortex
– volume: 130
  start-page: 898
  year: 2007
  end-page: 914
  ident: bib0027
  article-title: Contrasting acute and slow-growing lesions: a new door to brain plasticity
  publication-title: Brain
– volume: 27
  start-page: 6815
  year: 2007
  end-page: 6822
  ident: bib0063
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: J. Neurosci.
– volume: 106
  start-page: 283
  year: 1998
  end-page: 296
  ident: bib0078
  article-title: The organization of the cortical motor system: new concepts
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 61
  start-page: 219
  year: 2007
  end-page: 229
  ident: bib0055
  article-title: The neural basis of haptic object processing
  publication-title: Can. J. Exp. Psychol.
– volume: 12
  year: 2016
  ident: bib0088
  article-title: Ensemble Tractography
  publication-title: PLoS Comput. Biol.
– volume: 116
  start-page: 1795
  year: 2016
  end-page: 1806
  ident: bib0080
  article-title: Analysis of haptic information in the cerebral cortex
  publication-title: J. Neurophysiol.
– volume: 56
  start-page: 1259
  year: 2011
  end-page: 1266
  ident: bib0015
  article-title: Track density imaging (TDI): Validation of super resolution property
  publication-title: Neuroimage
– volume: 16
  start-page: 388
  year: 2010
  end-page: 407
  ident: bib0040
  article-title: Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing
  publication-title: Neuroscientist
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0096
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 77
  start-page: 452
  year: 1997
  end-page: 464
  ident: bib0031
  article-title: Postural control of three-dimensional prehension movements
  publication-title: J. Neurophysiol.
– volume: 20
  start-page: 303
  year: 1997
  end-page: 330
  ident: bib0004
  article-title: Multimodal representation of space in the posterior parietal cortex and its use in planning movements
  publication-title: Annu. Rev. Neurosci.
– volume: 28
  start-page: R1200
  year: 2018
  end-page: R1202
  ident: bib0065
  article-title: Motor control: parietal stimulation prevents voluntary hand movement
  publication-title: Curr. Biol.
– volume: 19
  start-page: 1349
  year: 2003
  end-page: 1360
  ident: bib0048
  article-title: Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo
  publication-title: Neuroimage
– volume: 29
  start-page: 207
  year: 2008
  end-page: 221
  ident: bib0013
  article-title: Cortical network for vibrotactile attention: a fMRI study
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 9919
  year: 2005
  end-page: 9931
  ident: bib0037
  article-title: Neural correlates of reach errors
  publication-title: J. Neurosci.
– year: 2006
  ident: bib0081
  article-title: Fiber Pathways of the Brain
– volume: 25
  start-page: 175
  year: 1993
  end-page: 192
  ident: bib0052
  article-title: Models of trajectory formation and temporal interaction of reach and grasp
  publication-title: J. Mot. Behav.
– volume: 40
  start-page: 1469
  year: 2008
  end-page: 1481
  ident: bib0064
  article-title: Brain activity is similar during precision and power gripping with light force: an fMRI study
  publication-title: Neuroimage
– volume: 221
  start-page: 2075
  year: 2016
  end-page: 2092
  ident: bib0098
  article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain
  publication-title: Brain Struct. Funct.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  ident: bib0035
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
– volume: 28
  start-page: E2
  year: 2010
  ident: bib0075
  article-title: The cerebral sulci and gyri
  publication-title: Neurosurg. Focus
– volume: 13
  start-page: 819
  year: 2020
  end-page: 831
  ident: bib0017
  article-title: Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation
  publication-title: Brain Stimul.
– volume: 450
  start-page: 547
  year: 1992
  end-page: 564
  ident: bib0039
  article-title: Independent control of human finger-tip forces at individual digits during precision lifting
  publication-title: J. Physiol.
– volume: 108
  start-page: 124
  year: 2015
  end-page: 137
  ident: bib0051
  article-title: Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans
  publication-title: Neuroimage
– volume: 97
  start-page: 306
  year: 2017
  end-page: 326
  ident: bib0010
  article-title: Functional anatomy of the macaque temporo-parieto-frontal connectivity
  publication-title: Cortex
– year: 2016
  ident: bib0036
  article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image
  publication-title: ISMRM Workshop on Breaking the Barriers of Diffusion MRI
– volume: 146
  start-page: 367
  year: 2017
  end-page: 375
  ident: bib0071
  article-title: Functional segregation and integration within fronto-parietal networks
  publication-title: Neuroimage
– volume: 12
  start-page: 94
  year: 2018
  ident: bib0069
  article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification
  publication-title: Front. Neuroanat.
– volume: 204
  start-page: 475
  year: 2010
  end-page: 491
  ident: bib0045
  article-title: The cognitive neuroscience of prehension: recent developments
  publication-title: Exp. Brain Res.
– volume: 51
  start-page: 300
  year: 2010
  end-page: 312
  ident: bib0062
  article-title: In vivo definition of parieto-motor connections involved in planning of grasping movements
  publication-title: Neuroimage
– volume: 62
  start-page: 301
  year: 2007
  end-page: 306
  ident: bib0005
  article-title: Moving with or without will: functional neural correlates of alien hand syndrome
  publication-title: Ann. Neurol.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0041
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 25
  start-page: 1256
  year: 2005
  end-page: 1265
  ident: bib0019
  article-title: Cortical thickness analysis in autism with heat kernel smoothing
  publication-title: Neuroimage
– volume: 3
  start-page: 201
  year: 2002
  end-page: 215
  ident: bib0020
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 50
  start-page: 1253
  year: 1998
  end-page: 1259
  ident: bib0008
  article-title: Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study
  publication-title: Neurology
– volume: 111
  start-page: 785
  year: 2009
  end-page: 795
  ident: bib0061
  article-title: The motor-evoked potential threshold evaluated by tractography and electrical stimulation
  publication-title: J. Neurosurg.
– volume: 20
  start-page: 17
  year: 2003
  end-page: 25
  ident: bib0011
  article-title: Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery
  publication-title: J. Clin. Neurophysiol.
– volume: 111
  start-page: 5718
  year: 2014
  end-page: 5722
  ident: bib0033
  article-title: Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1056
  year: 2016
  end-page: 1060
  ident: bib0066
  article-title: Human area 5 modulates corticospinal output during movement preparation
  publication-title: Neuroreport
– year: 1950
  ident: bib0074
  article-title: The Cerebral Cortex of Man
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118002_bib0084
  article-title: The Functional Organization of Posterior Parietal Cortex in Humans
– volume: 38
  start-page: 69
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118002_bib0056
  article-title: Visual guidance in control of grasping
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071714-034028
– volume: 7
  start-page: 18
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118002_bib0100
  article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.1.18
– volume: 24
  start-page: 691
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118002_bib0089
  article-title: Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs351
– volume: 28
  start-page: 3303
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118002_bib0032
  article-title: Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.027
– volume: 111
  start-page: 5718
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118002_bib0033
  article-title: Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1321909111
– volume: 27
  start-page: 6815
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0063
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0598-07.2007
– volume: 113
  start-page: 239
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118002_bib0097
  article-title: Anatomo-functional characterisation of the human "hand-knob": a direct electrophysiological study
  publication-title: Cortex
  doi: 10.1016/j.cortex.2018.12.011
– volume: 450
  start-page: 547
  year: 1992
  ident: 10.1016/j.neuroimage.2021.118002_bib0039
  article-title: Independent control of human finger-tip forces at individual digits during precision lifting
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1992.sp019142
– volume: 1175
  start-page: 76
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0076
  article-title: On-line grasp control is mediated by the contralateral hemisphere
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.08.009
– volume: 3
  start-page: 201
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118002_bib0020
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn755
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0035
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 12
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0088
  article-title: Ensemble Tractography
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004692
– year: 1950
  ident: 10.1016/j.neuroimage.2021.118002_bib0074
– volume: 8
  start-page: 505
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118002_bib0093
  article-title: Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1430
– volume: 29
  start-page: 207
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118002_bib0013
  article-title: Cortical network for vibrotactile attention: a fMRI study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20384
– volume: 524
  start-page: 595
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0060
  article-title: Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23838
– volume: 103
  start-page: 411
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118002_bib0059
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 40
  start-page: 1469
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118002_bib0064
  article-title: Brain activity is similar during precision and power gripping with light force: an fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.037
– volume: 81
  start-page: 967
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118002_bib0003
  article-title: Optic ataxia: from Balint's syndrome to the parietal reach region
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.025
– volume: 27
  start-page: 3974
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0022
  article-title: Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0426-07.2007
– volume: 370
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118002_bib0034
  article-title: Revealing humans' sensorimotor functions with electrical cortical stimulation
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2014.0207
– year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0036
  article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image
– year: 2012
  ident: 10.1016/j.neuroimage.2021.118002_bib0016
– volume: 33
  start-page: 3190
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0057
  article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2457-12.2013
– volume: 25
  start-page: 1256
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118002_bib0019
  article-title: Cortical thickness analysis in autism with heat kernel smoothing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.052
– volume: 4
  start-page: 423
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118002_bib0029
  article-title: Forward modeling allows feedback control for fast reaching movements
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01537-0
– volume: 14
  start-page: 31
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0038
  article-title: The coordination of movement: optimal feedback control and beyond
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2009.11.004
– volume: 269
  start-page: 1880
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118002_bib0101
  article-title: An internal model for sensorimotor integration
  publication-title: Science
  doi: 10.1126/science.7569931
– volume: 62
  start-page: 1924
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118002_bib0085
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 8
  start-page: 641
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118002_bib0079
  article-title: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/8.7.641
– volume: 21
  start-page: 565
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118002_bib0023
  article-title: Interactions between areas of the cortical grasping network
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.05.021
– volume: 19
  start-page: 43
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0083
  article-title: The angular gyrus: multiple functions and multiple subdivisions
  publication-title: Neuroscientist
  doi: 10.1177/1073858412440596
– volume: 97
  start-page: 306
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0010
  article-title: Functional anatomy of the macaque temporo-parieto-frontal connectivity
  publication-title: Cortex
  doi: 10.1016/j.cortex.2016.12.007
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0086
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 1
  start-page: 529
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118002_bib0102
  article-title: Maintaining internal representations: the role of the human superior parietal lobe
  publication-title: Nat. Neurosci.
  doi: 10.1038/2245
– year: 2006
  ident: 10.1016/j.neuroimage.2021.118002_bib0081
– volume: 20
  start-page: 303
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118002_bib0004
  article-title: Multimodal representation of space in the posterior parietal cortex and its use in planning movements
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.20.1.303
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0014
  article-title: Diffusion tractography in deep brain stimulation surgery: a review
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2016.00045
– volume: 394
  start-page: 780
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118002_bib0050
  article-title: Signal-dependent noise determines motor planning
  publication-title: Nature
  doi: 10.1038/29528
– volume: 157
  start-page: 561
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0070
  article-title: Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.001
– volume: 114
  start-page: 2465
  issue: Pt 6
  year: 1991
  ident: 10.1016/j.neuroimage.2021.118002_bib0001
  article-title: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings
  publication-title: Brain
  doi: 10.1093/brain/114.6.2465
– volume: 27
  start-page: 1532
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0012
  article-title: Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans
  publication-title: Cereb. Cortex
– volume: 8
  start-page: 686
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118002_bib0094
  article-title: Neural correlates of grasping
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00686
– volume: 204
  start-page: 475
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0045
  article-title: The cognitive neuroscience of prehension: recent developments
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2315-2
– volume: 21
  start-page: 2919
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118002_bib0030
  article-title: Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-08-02919.2001
– volume: 62
  start-page: 266
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118002_bib0087
  article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.009
– volume: 50
  start-page: 1253
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118002_bib0008
  article-title: Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study
  publication-title: Neurology
  doi: 10.1212/WNL.50.5.1253
– volume: 51
  start-page: 300
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0062
  article-title: In vivo definition of parieto-motor connections involved in planning of grasping movements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.022
– volume: 1228
  start-page: 73
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118002_bib0021
  article-title: On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.06.027
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118002_bib0041
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 66
  start-page: 64
  year: 1991
  ident: 10.1016/j.neuroimage.2021.118002_bib0002
  article-title: Cortical somatosensory evoked potentials. II. Effects of excision of somatosensory or motor cortex in humans and monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1991.66.1.64
– volume: 12
  start-page: 94
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118002_bib0069
  article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2018.00094
– volume: 61
  start-page: 219
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0055
  article-title: The neural basis of haptic object processing
  publication-title: Can. J. Exp. Psychol.
  doi: 10.1037/cjep2007023
– volume: 89
  start-page: 665
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118002_bib0006
  article-title: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00249.2002
– volume: 28
  start-page: R1200
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118002_bib0065
  article-title: Motor control: parietal stimulation prevents voluntary hand movement
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.09.001
– volume: 18
  start-page: 314
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118002_bib0058
  article-title: Grasping objects: the cortical mechanisms of visuo-motor transformations
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(95)93921-J
– volume: 16
  start-page: 388
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0040
  article-title: Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing
  publication-title: Neuroscientist
  doi: 10.1177/1073858410375468
– volume: 20
  start-page: 17
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118002_bib0011
  article-title: Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200302000-00002
– volume: 19
  start-page: 1349
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118002_bib0048
  article-title: Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00165-4
– volume: 87
  start-page: 407
  year: 1991
  ident: 10.1016/j.neuroimage.2021.118002_bib0072
  article-title: Selective perturbation of visual input during prehension movements. 2. The effects of changing object size
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00231858
– volume: 28
  start-page: E2
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0075
  article-title: The cerebral sulci and gyri
  publication-title: Neurosurg. Focus
  doi: 10.3171/2009.11.FOCUS09245
– volume: 27
  start-page: 1003
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118002_bib0047
  article-title: Computational motor control: feedback and accuracy
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06028.x
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118002_bib0092
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 109
  start-page: 18114
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118002_bib0054
  article-title: Mapping multisensory parietal face and body areas in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1207946109
– volume: 29
  start-page: 3939
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118002_bib0018
  article-title: The separate neural control of hand movements and contact forces
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5856-08.2009
– volume: 26
  start-page: 8176
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118002_bib0077
  article-title: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1641-06.2006
– volume: 217
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118002_bib0099
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 25
  start-page: 9919
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118002_bib0037
  article-title: Neural correlates of reach errors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1874-05.2005
– volume: 138
  start-page: 1949
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118002_bib0082
  article-title: Parietofrontal motor pathways and their association with motor function after stroke
  publication-title: Brain
  doi: 10.1093/brain/awv100
– volume: 108
  start-page: 124
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118002_bib0051
  article-title: Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.039
– volume: 60
  start-page: 389
  year: 1937
  ident: 10.1016/j.neuroimage.2021.118002_bib0073
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
  doi: 10.1093/brain/60.4.389
– volume: 77
  start-page: 452
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118002_bib0031
  article-title: Postural control of three-dimensional prehension movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1997.77.1.452
– volume: 31
  start-page: 11660
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118002_bib0043
  article-title: Multiple parietal-frontal pathways mediate grasping in macaque monkeys
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1777-11.2011
– year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0091
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 111
  start-page: 785
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118002_bib0061
  article-title: The motor-evoked potential threshold evaluated by tractography and electrical stimulation
  publication-title: J. Neurosurg.
  doi: 10.3171/2008.9.JNS08414
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0044
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 221
  start-page: 2075
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0098
  article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1028-5
– volume: 13
  start-page: 819
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118002_bib0017
  article-title: Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.02.023
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0096
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 62
  start-page: 301
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0005
  article-title: Moving with or without will: functional neural correlates of alien hand syndrome
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21173
– volume: 97
  start-page: 1219
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118002_bib0042
  article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.044
– volume: 28
  start-page: 2482
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118002_bib0053
  article-title: Frontoparietal tracts linked to lateralized hand preference and manual specialization
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy040
– volume: 146
  start-page: 367
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0071
  article-title: Functional segregation and integration within fronto-parietal networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.031
– volume: 13
  start-page: 24
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118002_bib0025
  article-title: The superoanterior fasciculus (SAF): a novel white matter pathway in the human brain?
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2019.00024
– volume: 7
  start-page: 907
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118002_bib0090
  article-title: Optimality principles in sensorimotor control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1309
– volume: 75
  start-page: 65
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0009
  article-title: The macaque lateral grasping network: A neural substrate for generating purposeful hand actions
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.017
– volume: 130
  start-page: 898
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0027
  article-title: Contrasting acute and slow-growing lesions: a new door to brain plasticity
  publication-title: Brain
  doi: 10.1093/brain/awl300
– volume: 20
  start-page: 176
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118002_bib0024
  article-title: Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2009.11.063
– volume: 54
  start-page: 2033
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118002_bib0007
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 27
  start-page: 1056
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0066
  article-title: Human area 5 modulates corticospinal output during movement preparation
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000655
– volume: 12
  start-page: 923
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118002_bib0026
  article-title: MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum
  publication-title: Cerebellum
  doi: 10.1007/s12311-013-0503-x
– volume: 25
  start-page: 175
  year: 1993
  ident: 10.1016/j.neuroimage.2021.118002_bib0052
  article-title: Models of trajectory formation and temporal interaction of reach and grasp
  publication-title: J. Mot. Behav.
  doi: 10.1080/00222895.1993.9942048
– volume: 2
  start-page: 563
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118002_bib0028
  article-title: Role of the posterior parietal cortex in updating reaching movements to a visual target
  publication-title: Nat. Neurosci.
  doi: 10.1038/9219
– volume: 16
  start-page: 1141
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118002_bib0095
  article-title: A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00079-0
– volume: 106
  start-page: 283
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118002_bib0078
  article-title: The organization of the cortical motor system: new concepts
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00022-4
– volume: 56
  start-page: 1259
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118002_bib0015
  article-title: Track density imaging (TDI): Validation of super resolution property
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.059
– volume: 61
  start-page: 485
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118002_bib0049
  article-title: Brain representation of active and passive hand movements in children
  publication-title: Pediatr. Res.
  doi: 10.1203/pdr.0b013e3180332c2e
– volume: 120
  start-page: 141
  issue: Pt 1
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118002_bib0103
  article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark
  publication-title: Brain
  doi: 10.1093/brain/120.1.141
– volume: 15
  start-page: 854
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118002_bib0068
  article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh186
– volume: 8
  start-page: 1349
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118002_bib0067
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01285-x
– volume: 116
  start-page: 1795
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118002_bib0080
  article-title: Analysis of haptic information in the cerebral cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00546.2015
– volume: 35
  start-page: 173
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118002_bib0046
  article-title: Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00741-9
SSID ssj0009148
Score 2.4035664
Snippet The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that...
SourceID doaj
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118002
SubjectTerms Cortex (motor)
Cortex (parietal)
Engineering Sciences
Feedback
Grasping
Handedness
Humans
Latency
Magnetic resonance imaging
motor control
Muscles
Parietal cortex
Postcentral gyrus
Sensorimotor integration
Sensory neurons
Somatosensory cortex
Territory
Tractography
Transcranial magnetic stimulation
Volition
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKD4gLKu-Uggzimm5cPxLDaamoFsRyACr1gizHiUsQZFebLEd-OzOOk2oPSCtxjGPvWp7JzDf2-BtCXoFT1BJCrjQXskoFq3xa1kqmuipUxl3JVagNuPykFpfiw5W8OiDn410YTKuMtn-w6cFax5ZZXM3ZumlmXwAZgLtBPi-MrTTaYWT_Ap0-_XOT5qGZGK7DSZ5i75jNM-R4Bc7I5hd8uRApnrFT5EOLGyyjiwpM_jue6tZ3TJn8Fx4NfuniiNyNgJLOhznfIwd1e5_cXsYj8wfk27yFuDqQAlB0WR1deept11OsP1gD9qbXG9utaUxap01LQ-G-7jWdU6yfssUNtXT5-T3t8UpV5LimgZj2Ibm8ePf1fJHGmgqpU5nuU3dWacaZdUwWXrpa5xJrSmWq1FhyPnNOI2c8wDQhLGcQd0vuYbV0UVorM88fkcN21dZPCPVceVZrnTsAVazQBaDDXFjhlM-dEC4h-biMxkXCcax78dOMmWU_zI0ADArADAJICJtGrgfSjT3GvEVJTf2RNjs0rDbXJuqNEZILW4nK1lkhPCwF2FiG120dIJXKVgnRo5zNeDMVbCn8ULPHBN5MY3c0eM_RL0Gtdma_mH802IakjFIW_DdLyMmodSaams6AgHIQAMC8hLyYXoORwJMf29arLfbJMIoqhEjI40Fbp7_iPMejanX8X_N_Su7gE-56M3lCDvvNtn4GcK0vn4fv8S8Xeznm
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXYRUJcVnwTWJBBXA1xbccxHFBBrAqiHBAr9YIsx0mWIjYpTcrvZ8ZxUu0B1GtiJ5bHnnkzHr8h5AUYRaPA5WJaqpJJXtasqDLFTJlnqfCFyEJtwOWXbHEuP63UKgbcuphWOerEoKjL1mOM_NVMCQ3GG6zZ281vhlWj8HQ1ltA4Itc5QBVc1Xql96S7XA5X4ZRgOTSImTxDflfgi1xfwq4FL3HGXyIXWgyujOYpsPhfsVJHPzBd8l9YNNiks1vkJIJJOh-kf5tcq5o75MYyHpffJd_nDfjUgRCAornqaFvT2nU9xdqDFeBuerF13YbGhHW6bmgo2te9pnOKtVN2GExjy68faY_XqSK_NQ2ktPfI-dmHb-8XLNZTYD5LTc_8rDRccOe5ymvlK6MV1pNKs8JgufnUe4N88QDRpHSCg8-tRA2zZfLCOZXW4j45btqmekhoLbKaV8ZoDzLhuckBGWrppM9q7aX0CdHjNFofycax5sUvO2aV_bR7AVgUgB0EkBA-9dwMhBsH9HmHkpraI2V2eNBuL2zcgVYqIV0pS1eluaxhKkC_crxq6wGllK5MiBnlbMdbqaBH4UPrAwbwZuobkcuASA7s_RyW1ZXRL-afLT5DQkalcvGHJ-R0XHU2qpnO7jdFQp5Nr0FB4KmPa6p2h21S9KByKRPyYFit06-E0HhMnT36_8cfk5s4XAxpc3VKjvvtrnoCWKwvnoYN9xf3AS6x
  priority: 102
  providerName: ProQuest
Title Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921002792
https://dx.doi.org/10.1016/j.neuroimage.2021.118002
https://www.ncbi.nlm.nih.gov/pubmed/33789136
https://www.proquest.com/docview/2537264223
https://www.proquest.com/docview/2507729844
https://hal.science/hal-03445583
https://doaj.org/article/4534ad4dae084f2d908810647c242dad
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZokRCXivIMtCuDuKbE9SMxPaVVqy2wK1RRaS_IcpwYFpVs1WQ58tuZSZxAD4g9cEmkbJx1Ziaeb-zxN4S8BqeoJYRccSpkGQtW-riolIx1mamEu4KrrjbgbK6ml-LdQi7-KPWFOWE9PXAvuDdCcmFLUdoqyYQ_LDEvh-EOSQfOpbQljr7gxoZgaqDbBZQf8nb6bK6OHXL5Hb5RiAkP2QEyn4WplMEZdZz9t3zS1ldMjvwb8uw80NkDshOgI837Lu-SO1X9kNybhcXxR-RzXkME3W3_p-icGrry1NumpVhpsAKUTb_c2OaahvR0uqxpV6KveUtzipVS1jh1Fs8uzmmLm6cCmzXtKGgfk8uz008n0zhUT4idSnQbO5AV48w6JjMvXaVTidWjElVoLC6fOKeRHR4AmRCWM4iwJfcgLZ0V1srE8ydku17V1TNCPVeeVVqDzJVgmc4AB6bCCqd86oRwEUkHMRoXqMWxwsWVGXLIvpnfCjCoANMrICJsbHnd02ts0OYYNTXejwTZ3QUwGxPMxvzLbCKiBz2bYQ8qjJrwoOUGHTga2wac0uOPDVu_ArO61ftp_sHgNaRflDLjP1hE9garM2FQaQwoKAUFAKCLyMvxZxgOcI3H1tVqjfckGC9lQkTkaW-t419xnuKitHr-PwT4gtzHl8Jpbib3yHZ7s672AZ-1xYRsHfxkcEwX6YTczc_fT-dwPj6df7yYdJ_pL6F5Ohk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7tLhJwQbwJLGAQHANxbScxCKHyWLVsuwe0K_WCjOMkSxGkpWlB_Cl-IzOJ02oPoF72msSO5RnPwx5_H8ATdIpaYcoVJlLloeR5GWZFrEKdp3EkXCbihhtwfBQPTuSHiZrswJ_uLgyVVXY2sTHU-czRHvnznhIJOm_0Zq_nP0JijaLT1Y5Co1WLw-L3L0zZ6lfDdyjfp73ewfvjt4PQswqELo70MnS9XHPBreMqLZUrdKKIVSmKM02k65FzmlDTMVCR0gqOmacSJSquTjNrVVQK7HcXLkgRScLqTybJBuSXy_bqnRJhyrn2lUNtPVmDTzn9jlYCs9Ief0bYa34zp3OHDWvAGa-4-4XKM_8V-zY-8OAqXPHBK-u32nYNdorqOlwc--P5G_CpX2EO3wAQMHKPNZuVrLT1khHXYYFxPjtd2HrOfIE8m1asIQmsX7A-I66WFW3eheOPQ7ak61seT5s1ILg34eRcZvoW7FWzqrgDrBRxyQutE4c6wFOdYiSaSCtdXCZOShdA0k2jcR7cnDg2vpmuiu2r2QjAkABMK4AA-LrlvAX42KLNG5LU-nuC6G4ezBanxq94I5WQNpe5LaJUljgVaM85Xe11GBXlNg9Ad3I23S1YtNvY0XSLAbxct_WRUhsBbdn6MarVmdEP-iNDzwgAUqlU_OQB7HdaZ7xZq81mEQbwaP0aDRKdMtmqmK3om4gytlTKAG632rr-lRAJHYvHd__f-UO4NDgej8xoeHR4Dy7T0Gk7nat92FsuVsV9jAOX2YNm8TH4fN6r_S_JrmoP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IU28IO4EBhgEj2FxbccxCKHCqFq2TggxqS_IuE48Oo20NC2Iv8av45zEabUHUF_2msSO5XN8Lvbx9xHyDJyilpByxUrIPBYs9_G4SGWs8yxNuBvztOYGHB6n_RPxYSRHW-RPexcGyypbm1gb6nzqcI98vyO5AucN3mzfh7KIjwe9N7MfMTJI4UlrS6fRqMhh8fsXpG_V68EByPp5p9N7__ldPw4MA7FLE72IXSfXjDPrmMy8dIVWEhmWknSskYA9cU4jgjoELUJYziALldyDEutsbK1MPId-t8kVxQXHcjI1UmvAXyaaa3iSxxljOlQRNbVlNVbl5DtYDMhQO-wF4rCFjZ3WNdYMAhc85PY3LNX8Vxxc-8PedXItBLK022jeDbJVlDfJ7jAc1d8iX7ol5PM1GAFFV1nRqafeVguKvIcFxPz0dG6rGQ3F8nRS0powsHpJuxR5W5a4kRcPPw3oAq9yBWxtWgPi3iYnlzLTd8hOOS2Le4R6nnpWaK0c6APLdAZRqRJWuNQrJ4SLiGqn0bgAdI58G-emrWg7M2sBGBSAaQQQEbZqOWvAPjZo8xYltfoe4brrB9P5qQmr3wjJhc1FboskEx6mAmw7w2u-DiKk3OYR0a2cTXsjFmw4dDTZYACvVm1D1NREQxu2fgpqdWH0_e6RwWcIBillxn-yiOy1WmeCiavMekFG5MnqNRgnPHGyZTFd4jcJZm-ZEBG522jr6lecKzwiT-__v_PHZBfWuTkaHB8-IFdx5LizzuQe2VnMl8VDCAkX40f12qPk62Uv9r8PBm5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomical+bases+of+fast+parietal+grasp+control+in+humans%3A+A+diffusion-MRI+tractography+study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Richard%2C+Nathalie&rft.au=Desmurget%2C+Michel&rft.au=Teillac%2C+Achille&rft.au=Beuriat%2C+Pierre-Aur%C3%A9lien&rft.date=2021-07-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=235&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118002&rft.externalDocID=S1053811921002792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon