Consequences of reproductive barriers for genealogical discordance in the European corn borer
Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, g...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 41; pp. 14706 - 14711 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.10.2005
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.0502054102 |
Cover
Abstract | Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. |
---|---|
AbstractList | Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to “speciation genes,” genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth ( Ostrinia nubilalis ) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi , has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor ( Pdd ) affecting differences in postdiapause development time. The major factor ( Resp ) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to “speciation genes,” genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth ( Ostrinia nubilalis ) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi , has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor ( Pdd ) affecting differences in postdiapause development time. The major factor ( Resp ) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. genealogy genetic linkage map introgression selective sweep speciation Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. [PUBLICATION ABSTRACT] |
Author | Bogdanowicz, S.M Dopman, E.B Perez, L Harrison, R.G |
AuthorAffiliation | Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853 |
AuthorAffiliation_xml | – name: Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853 |
Author_xml | – sequence: 1 fullname: Dopman, E.B – sequence: 2 fullname: Perez, L – sequence: 3 fullname: Bogdanowicz, S.M – sequence: 4 fullname: Harrison, R.G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16204000$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCmg0CiwUSi7TXz7E3SCgqD6kSC-gSWR6PJ3U0sYM9U8G_x1FCA12QjS3rfOfa9_ieoZOYokfoOYELAg273ERbLkAABcEJ0EdoRkCTueQaTtAMgDZzxSk_RWelrABACwVP0CmRFHg9ztD3RYrF_5h8dL7g1OPsNzl1kxvDncetzTn4XHCfMl766O2QlsHZAXehuJQ7W204RDzeenw15bTxNuIqRNym7PNT9Li3Q_HP9vs5uvlw9W3xaX795ePnxfvruZOgx7ltmW6dJtpa5hwQ2QjJeq4sFVwR8J3uwDvGrXLCWdlxCr4HqbSirMKanaN3u7qbqV37zvk4ZjuYTQ5rm3-ZZIP5V4nh1izTnSFUMMFpLfBmXyCnGkYZzbo26IfBRp-mYqSSTVOXoyCXihHVNEdB0jAteMMq-PoBuEpTjjUuQ4FQTQjjFXr5d4P3nf35yApc7gCXUynZ9wcEzHZUzHZUzGFUqkM8cLgw2jGkbUJh-I_v7f4pW-FwCzWcGMIbkKafhmH0P8fK4iNsRV7skFUZU75nOOGMKVLlVzu5t8nYZQ7F3HytuTAgIBqhKfsNKSzuCA |
CitedBy_id | crossref_primary_10_1111_j_1471_8286_2007_01974_x crossref_primary_10_1186_s12862_020_1598_6 crossref_primary_10_1111_j_1558_5646_2012_01785_x crossref_primary_10_1111_mec_15234 crossref_primary_10_1242_jeb_126136 crossref_primary_10_1038_hdy_2008_55 crossref_primary_10_1111_j_1365_2311_2009_01141_x crossref_primary_10_1007_s10886_010_9856_5 crossref_primary_10_1111_j_1365_294X_2010_04624_x crossref_primary_10_1038_hdy_2010_94 crossref_primary_10_1038_hdy_2015_110 crossref_primary_10_1534_genetics_112_142299 crossref_primary_10_1111_j_1095_8312_2008_01091_x crossref_primary_10_1371_journal_pone_0029664 crossref_primary_10_1111_imb_12324 crossref_primary_10_1111_j_1558_5646_2007_00299_x crossref_primary_10_1016_j_ympev_2010_12_018 crossref_primary_10_1016_j_cub_2019_08_053 crossref_primary_10_1111_j_1365_294X_2011_05349_x crossref_primary_10_1007_s10709_010_9514_4 crossref_primary_10_1007_s10709_010_9518_0 crossref_primary_10_1038_hdy_2011_58 crossref_primary_10_1111_jeb_13677 crossref_primary_10_1016_j_jprot_2015_10_015 crossref_primary_10_1371_journal_pone_0197378 crossref_primary_10_1111_j_1365_294X_2008_03715_x crossref_primary_10_1111_jeb_12227 crossref_primary_10_1111_j_1420_9101_2007_01297_x crossref_primary_10_1111_jeb_13676 crossref_primary_10_1038_nature09058 crossref_primary_10_1111_j_1365_294X_2008_03946_x crossref_primary_10_7717_peerj_1678 crossref_primary_10_1038_hdy_2013_113 crossref_primary_10_1111_brv_12698 crossref_primary_10_1016_j_ympev_2011_03_006 crossref_primary_10_1111_jse_12033 crossref_primary_10_1017_S0007485316000195 crossref_primary_10_1111_j_1365_294X_2007_03412_x crossref_primary_10_1111_mec_14126 crossref_primary_10_1111_phen_12220 crossref_primary_10_1534_genetics_107_072108 crossref_primary_10_1073_pnas_0901397106 crossref_primary_10_1093_icb_icr073 crossref_primary_10_1007_s00442_009_1493_8 crossref_primary_10_1038_hdy_2015_72 crossref_primary_10_1554_05_337_1 crossref_primary_10_1139_G08_104 crossref_primary_10_1093_jeb_voae092 crossref_primary_10_1016_j_tree_2008_10_011 crossref_primary_10_1016_j_tree_2011_01_001 crossref_primary_10_1111_jeb_12562 crossref_primary_10_1038_hdy_2008_26 crossref_primary_10_1093_cz_zow017 crossref_primary_10_1371_journal_pone_0000555 crossref_primary_10_1371_journal_pntd_0002495 crossref_primary_10_1111_phen_12194 crossref_primary_10_1242_jeb_245244 crossref_primary_10_1038_s41467_021_23026_x crossref_primary_10_1111_j_1365_294X_2008_03792_x crossref_primary_10_1093_molbev_msp227 crossref_primary_10_1890_09_0067_1 crossref_primary_10_1093_nsr_nwz138 crossref_primary_10_1002_ece3_639 crossref_primary_10_3389_finsc_2023_1154651 crossref_primary_10_1111_j_1439_0418_2008_01374_x crossref_primary_10_1002_ece3_7829 crossref_primary_10_1016_j_jinsphys_2019_02_005 crossref_primary_10_1111_j_1744_7917_2010_01367_x crossref_primary_10_1371_journal_pgen_1000729 crossref_primary_10_1007_s00438_011_0624_1 crossref_primary_10_1016_j_cois_2018_01_005 crossref_primary_10_1111_mec_12154 crossref_primary_10_1111_imb_12249 crossref_primary_10_1111_j_1558_5646_2009_00943_x crossref_primary_10_1111_j_1558_5646_2009_00883_x crossref_primary_10_1111_j_1420_9101_2011_02244_x crossref_primary_10_1371_journal_pone_0001907 crossref_primary_10_1038_s41597_025_04609_5 crossref_primary_10_1098_rspb_2016_2182 crossref_primary_10_1111_j_0014_3820_2006_tb01107_x crossref_primary_10_1111_j_1365_294X_2008_03921_x crossref_primary_10_1073_pnas_1601074113 crossref_primary_10_1186_1471_2148_10_293 crossref_primary_10_1093_molbev_msad112 crossref_primary_10_1111_j_1558_5646_2011_01239_x crossref_primary_10_3390_insects5010199 crossref_primary_10_1016_j_cois_2019_08_003 crossref_primary_10_1038_hdy_2014_128 crossref_primary_10_1002_ece3_70643 crossref_primary_10_1186_1471_2148_14_154 crossref_primary_10_1111_j_1558_5646_2007_00076_x crossref_primary_10_1371_journal_pone_0018843 crossref_primary_10_3390_genes9040180 crossref_primary_10_3390_genes9060279 crossref_primary_10_1111_evo_14466 crossref_primary_10_1093_evolut_qpac053 crossref_primary_10_1603_AN12072 crossref_primary_10_1093_jhered_esu033 crossref_primary_10_1111_mec_12011 crossref_primary_10_1534_g3_115_021246 crossref_primary_10_1111_mec_15001 crossref_primary_10_1002_ece3_7972 crossref_primary_10_3390_insects5010001 crossref_primary_10_1111_mec_14036 crossref_primary_10_1101_cshperspect_a041432 crossref_primary_10_1007_s10577_011_9262_z crossref_primary_10_1016_j_ympev_2012_10_009 crossref_primary_10_1098_rspb_2008_0423 crossref_primary_10_1134_S0013873824020015 crossref_primary_10_1111_j_1744_7917_2010_01357_x crossref_primary_10_1038_s41437_020_0325_9 crossref_primary_10_1098_rstb_2008_0081 crossref_primary_10_1111_j_1558_5646_2009_00767_x |
Cites_doi | 10.1002/arch.940200203 10.1002/arch.940150202 10.1093/bioinformatics/14.9.817 10.1007/BF01014249 10.1093/aesa/70.5.717 10.1093/aesa/68.2.305 10.1093/oxfordjournals.molbev.a026201 10.1073/pnas.84.21.7585 10.1093/oxfordjournals.molbev.a004042 10.5962/bhl.title.108390 10.1007/BF01012071 10.1093/genetics/147.3.1091 10.1016/B978-0-12-398760-0.50026-2 10.1093/ee/20.5.1356 10.1534/genetics.167.1.301 10.1111/j.1570-7458.1992.tb01607.x 10.1073/pnas.090541597 10.1111/j.0014-3820.2002.tb01467.x 10.1038/hdy.1980.80 10.1046/j.1365-2583.1999.820213.x 10.1093/ee/8.3.423 10.1554/0014-3820(2001)055[0512:TGORIA]2.0.CO;2 10.1093/ee/12.2.393 10.1093/genetics/156.4.1913 10.1093/aesa/91.5.719 10.1046/j.1420-9101.2001.00335.x 10.1126/science.181.4100.661 10.1093/genetics/153.4.1743 10.1093/genetics/163.4.1389 10.1017/S0016672300014634 10.1093/genetics/105.2.437 10.1098/rspb.2003.2333 |
ContentType | Journal Article |
Copyright | Copyright 2005 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 11, 2005 Copyright © 2005, The National Academy of Sciences 2005 |
Copyright_xml | – notice: Copyright 2005 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 11, 2005 – notice: Copyright © 2005, The National Academy of Sciences 2005 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0502054102 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14711 |
ExternalDocumentID | PMC1253542 915683911 16204000 10_1073_pnas_0502054102 102_41_14706 4143381 US201301057592 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | New York Europe |
GeographicLocations_xml | – name: New York – name: Europe |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c609t-ab39bc919aa3cc0167563f48a254810ed9d0ec34a8c5ca6d420ef068982316793 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:05:41 EDT 2025 Fri Sep 05 13:00:34 EDT 2025 Fri Sep 05 07:43:03 EDT 2025 Fri Sep 05 14:50:34 EDT 2025 Mon Jun 30 08:45:47 EDT 2025 Wed Feb 19 01:41:56 EST 2025 Tue Jul 01 04:00:16 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Thu May 30 15:50:00 EDT 2019 Wed Nov 11 00:29:44 EST 2020 Thu May 29 08:42:44 EDT 2025 Wed Dec 27 19:17:47 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c609t-ab39bc919aa3cc0167563f48a254810ed9d0ec34a8c5ca6d420ef068982316793 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 To whom correspondence should be sent at the present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138. E-mail: edopman@oeb.harvard.edu. Abbreviations: ECB, European corn borer moth; ACB, Asian corn borer moth; AFLP, amplified fragment length polymorphism; PDD, postdiapause development; TPI, triose-phosphate isomerase; Pbp, pheromone binding protein; ML, maximum likelihood; MP, maximum parsimony; indels, insertions/deletions. This paper was submitted directly (Track II) to the PNAS office. Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. DQ204878-DQ205062). Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved August 18, 2005 |
PMID | 16204000 |
PQID | 201291134 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_4143381 crossref_primary_10_1073_pnas_0502054102 pnas_primary_102_41_14706_fulltext pubmed_primary_16204000 crossref_citationtrail_10_1073_pnas_0502054102 proquest_miscellaneous_46831877 proquest_miscellaneous_17395473 proquest_miscellaneous_68677686 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1253542 proquest_journals_201291134 fao_agris_US201301057592 pnas_primary_102_41_14706 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-10-11 |
PublicationDateYYYYMMDD | 2005-10-11 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2005 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 (e_1_3_2_12_2) 1990; 7 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 10581281 - Genetics. 1999 Dec;153(4):1743-51 24310269 - J Chem Ecol. 1985 Jul;11(7):829-36 11102384 - Genetics. 2000 Dec;156(4):1913-31 12816659 - Proc Biol Sci. 2003 Jun 7;270(1520):1193-202 24277143 - J Chem Ecol. 1988 Nov;14(11):2047-61 9918953 - Bioinformatics. 1998;14(9):817-8 10779562 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313-6 6628982 - Genetics. 1983 Oct;105(2):437-60 17736980 - Science. 1973 Aug 17;181(4100):661-3 12446809 - Mol Biol Evol. 2002 Dec;19(12):2176-90 15166156 - Genetics. 2004 May;167(1):301-9 16593886 - Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585-9 10380105 - Insect Mol Biol. 1999 May;8(2):213-21 12353748 - Evolution. 2002 Aug;56(8):1557-65 12702683 - Genetics. 2003 Apr;163(4):1389-401 9383055 - Genetics. 1997 Nov;147(3):1091-106 11327159 - Evolution. 2001 Mar;55(3):512-21 4407212 - Genet Res. 1974 Feb;23(1):23-35 |
References_xml | – ident: e_1_3_2_24_2 doi: 10.1002/arch.940200203 – ident: e_1_3_2_17_2 doi: 10.1002/arch.940150202 – ident: e_1_3_2_35_2 doi: 10.1093/bioinformatics/14.9.817 – ident: e_1_3_2_18_2 doi: 10.1007/BF01014249 – ident: e_1_3_2_27_2 doi: 10.1093/aesa/70.5.717 – ident: e_1_3_2_26_2 doi: 10.1093/aesa/68.2.305 – ident: e_1_3_2_33_2 doi: 10.1093/oxfordjournals.molbev.a026201 – ident: e_1_3_2_34_2 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.84.21.7585 – ident: e_1_3_2_11_2 – ident: e_1_3_2_7_2 doi: 10.1093/oxfordjournals.molbev.a004042 – ident: e_1_3_2_14_2 doi: 10.5962/bhl.title.108390 – ident: e_1_3_2_22_2 doi: 10.1007/BF01012071 – ident: e_1_3_2_4_2 doi: 10.1093/genetics/147.3.1091 – ident: e_1_3_2_2_2 doi: 10.1016/B978-0-12-398760-0.50026-2 – ident: e_1_3_2_19_2 doi: 10.1093/ee/20.5.1356 – ident: e_1_3_2_21_2 doi: 10.1534/genetics.167.1.301 – ident: e_1_3_2_32_2 doi: 10.1111/j.1570-7458.1992.tb01607.x – ident: e_1_3_2_5_2 doi: 10.1073/pnas.090541597 – ident: e_1_3_2_3_2 doi: 10.1111/j.0014-3820.2002.tb01467.x – ident: e_1_3_2_28_2 doi: 10.1038/hdy.1980.80 – ident: e_1_3_2_29_2 doi: 10.1046/j.1365-2583.1999.820213.x – ident: e_1_3_2_25_2 – volume: 7 start-page: 69 year: 1990 ident: e_1_3_2_12_2 publication-title: Oxford Surveys in Evolutionary Biology – ident: e_1_3_2_20_2 doi: 10.1093/ee/8.3.423 – ident: e_1_3_2_36_2 doi: 10.1554/0014-3820(2001)055[0512:TGORIA]2.0.CO;2 – ident: e_1_3_2_23_2 doi: 10.1093/ee/12.2.393 – ident: e_1_3_2_6_2 doi: 10.1093/genetics/156.4.1913 – ident: e_1_3_2_30_2 doi: 10.1093/aesa/91.5.719 – ident: e_1_3_2_13_2 doi: 10.1046/j.1420-9101.2001.00335.x – ident: e_1_3_2_15_2 doi: 10.1126/science.181.4100.661 – ident: e_1_3_2_31_2 doi: 10.1093/genetics/153.4.1743 – ident: e_1_3_2_8_2 doi: 10.1093/genetics/163.4.1389 – ident: e_1_3_2_10_2 doi: 10.1017/S0016672300014634 – ident: e_1_3_2_1_2 doi: 10.1093/genetics/105.2.437 – ident: e_1_3_2_9_2 doi: 10.1098/rspb.2003.2333 – reference: 9918953 - Bioinformatics. 1998;14(9):817-8 – reference: 17736980 - Science. 1973 Aug 17;181(4100):661-3 – reference: 12816659 - Proc Biol Sci. 2003 Jun 7;270(1520):1193-202 – reference: 6628982 - Genetics. 1983 Oct;105(2):437-60 – reference: 16593886 - Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585-9 – reference: 11102384 - Genetics. 2000 Dec;156(4):1913-31 – reference: 4407212 - Genet Res. 1974 Feb;23(1):23-35 – reference: 10380105 - Insect Mol Biol. 1999 May;8(2):213-21 – reference: 11327159 - Evolution. 2001 Mar;55(3):512-21 – reference: 15166156 - Genetics. 2004 May;167(1):301-9 – reference: 12446809 - Mol Biol Evol. 2002 Dec;19(12):2176-90 – reference: 10779562 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313-6 – reference: 9383055 - Genetics. 1997 Nov;147(3):1091-106 – reference: 10581281 - Genetics. 1999 Dec;153(4):1743-51 – reference: 24277143 - J Chem Ecol. 1988 Nov;14(11):2047-61 – reference: 12353748 - Evolution. 2002 Aug;56(8):1557-65 – reference: 24310269 - J Chem Ecol. 1985 Jul;11(7):829-36 – reference: 12702683 - Genetics. 2003 Apr;163(4):1389-401 |
SSID | ssj0009580 |
Score | 2.2162828 |
Snippet | Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14706 |
SubjectTerms | Alleles amplified fragment length polymorphism Animal behavior Animal reproduction Animals Base Sequence Biological Sciences Butterflies & moths Carrier Proteins - genetics chromosome mapping Corn diapause DNA Primers Electron Transport Complex IV - genetics Evolutionary genetics Genealogy Genes Genes, Insect - genetics Genetic loci genetic markers Genomics insect pests Insect Proteins - genetics introgression isomerases L-Lactate Dehydrogenase - genetics Likelihood Functions linkage groups Microfilament Proteins - genetics microsatellite repeats Microsatellite Repeats - genetics Models, Genetic Molecular Sequence Data Monophyly Moths Moths - genetics Moths - physiology Natural populations New York Nucleic Acid Amplification Techniques nucleotide sequences Ostrinia nubilalis Phenotypic variations Pheromones Phylogeny Polymorphism, Restriction Fragment Length Population Dynamics Reproduction - genetics reproductive barriers Sequence Analysis, DNA Sex chromosomes Speciation Species Specificity Tpi gene triose-phosphate isomerase Triose-Phosphate Isomerase - genetics |
Title | Consequences of reproductive barriers for genealogical discordance in the European corn borer |
URI | https://www.jstor.org/stable/4143381 http://www.pnas.org/content/102/41/14706.abstract https://www.ncbi.nlm.nih.gov/pubmed/16204000 https://www.proquest.com/docview/201291134 https://www.proquest.com/docview/17395473 https://www.proquest.com/docview/46831877 https://www.proquest.com/docview/68677686 https://pubmed.ncbi.nlm.nih.gov/PMC1253542 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgsjA8L8TAUJSSxnTiPa_mYkFZVYpP2giLXTUYFSqakFVL_I_5Lzo6dpGNFwEvU1q5r-X69O9t3v0PotUzSPMoZ8QJScI8KKTyessQLaQHGfs5ZEKhs5LNpfHpBP12yy9Ho5yBqab2a-3Jza17J_0gVPgO5qizZf5BsNyh8AK9BvvAECcPzr2Q8GYRCt6wi1y2BqwoHGotaVaPTfAuaXVr0aq5Re06dLGDCHLtD-UlVl-64qk3QrnFbZ52Za2xQwdSeIp70OSlGUTSu586mfYXjd5VNcQCt-80d-10U0HrZCHfWXtbX-aY7G6iuYHbVj6XcmEg0UMnumd-ry1qXThwwA7gf_a0DDE18GvYHGH-a7lBzR2BNaZtv3WnuIBpAtCXQMoo4pEkQD6w6vG9_8zeTATpO1TkuReMHDJxnRu2w2zzcFDxLopL870YJuGn2YKjjd-ZttpOZpmWRSsjbG0NvOUB3ClHZSFhFrwtdb9vq3IzYHbhA5w_QfbN3wSctEPfRKC8fon27ivjYUJi_eYS-DJGJqwIPkYktMjEgEw-RiQfIxMsSA86wRSZWyMQamQfo4sP788mpZwp5eDIO0pUn5iSdyzRMhSBSqsQXFpOCchHBfjkM8kW6CHJJqOCSSREvaBTkRRDzVN1Rx2BBHqO9sirzQ4QZTSUL-SLkMqcJlyIKuFhI8Dp5LCOROMi3q5tJw3Kviq18z3S0RUIytcZZLw4HHXdfuG4JXnZ3PQRxZeIKIJ5dfI7Upb8qk81SaDrQMuyGMGhxkKMH6UeOoCnT6HTQq51tWWFCvxx0ZNGQGc3TZJE6PQ5DQh30smsFs6Du-kSZV-smC9UFPE3I7h405mDPk2R3j1hxXcLDQU9a9PVTVVUsAPUOSrZw2XVQpPXbLeXyqyavhw0VYTR6umPBjtC9Xkc8Q3urep0_B7d_NX-h_3C_AL2xAKo |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consequences+of+Reproductive+Barriers+for+Genealogical+Discordance+in+the+European+Corn+Borer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dopman%2C+Erik+B.&rft.au=Luisa+P%C3%A9rez&rft.au=Bogdanowicz%2C+Steven+M.&rft.au=Harrison%2C+Richard+G.&rft.date=2005-10-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=102&rft.issue=41&rft.spage=14706&rft.epage=14711&rft_id=info:doi/10.1073%2Fpnas.0502054102&rft.externalDocID=4143381 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F41.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F41.cover.gif |