Consequences of reproductive barriers for genealogical discordance in the European corn borer

Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, g...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 102; no. 41; pp. 14706 - 14711
Main Authors Dopman, E.B, Perez, L, Bogdanowicz, S.M, Harrison, R.G
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.10.2005
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.0502054102

Cover

Abstract Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.
AbstractList Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.
Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to “speciation genes,” genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth ( Ostrinia nubilalis ) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi , has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor ( Pdd ) affecting differences in postdiapause development time. The major factor ( Resp ) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.
Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains.
Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to “speciation genes,” genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth ( Ostrinia nubilalis ) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi , has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor ( Pdd ) affecting differences in postdiapause development time. The major factor ( Resp ) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. genealogy genetic linkage map introgression selective sweep speciation
Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic or exclusive genetic groups. However, for recently diverged populations or species between which reproductive isolation is often incomplete, gene genealogies will be discordant, and most regions of the genome will display nonexclusive genealogical patterns. In these situations, genome regions for which one or both species are exclusive groups may mark the footprint of recent selective sweeps. Alternatively, such regions may include or be closely linked to "speciation genes," genes involved in reproductive isolation. Therefore, comparisons of gene genealogies allow inferences about the genetic architectures of both reproductive isolation and adaptation. Contrasting genealogical relationships in sexually isolated pheromone strains of the European corn borer moth (Ostrinia nubilalis) demonstrate the relevance of this approach. Genealogies for five gene regions are discordant, and only one molecular marker, the sex-linked gene Tpi, has evidence for pheromone strain exclusivity. Tpi maps to a position on the sex chromosome that is indistinguishable from a major factor (Pdd) affecting differences in postdiapause development time. The major factor (Resp) determining male behavioral response to pheromone is also sex-linked, but maps 20-30 cM away. Exclusivity at Tpi may be a consequence of these linkage relationships because evidence from phenotypic variation in natural populations implicates both Pdd and Resp as candidates for genes involved in recent sweeps and/or reproductive isolation between strains. [PUBLICATION ABSTRACT]
Author Bogdanowicz, S.M
Dopman, E.B
Perez, L
Harrison, R.G
AuthorAffiliation Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853
AuthorAffiliation_xml – name: Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853
Author_xml – sequence: 1
  fullname: Dopman, E.B
– sequence: 2
  fullname: Perez, L
– sequence: 3
  fullname: Bogdanowicz, S.M
– sequence: 4
  fullname: Harrison, R.G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16204000$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPCmg0CiwUSi7TXz7E3SCgqD6kSC-gSWR6PJ3U0sYM9U8G_x1FCA12QjS3rfOfa9_ieoZOYokfoOYELAg273ERbLkAABcEJ0EdoRkCTueQaTtAMgDZzxSk_RWelrABACwVP0CmRFHg9ztD3RYrF_5h8dL7g1OPsNzl1kxvDncetzTn4XHCfMl766O2QlsHZAXehuJQ7W204RDzeenw15bTxNuIqRNym7PNT9Li3Q_HP9vs5uvlw9W3xaX795ePnxfvruZOgx7ltmW6dJtpa5hwQ2QjJeq4sFVwR8J3uwDvGrXLCWdlxCr4HqbSirMKanaN3u7qbqV37zvk4ZjuYTQ5rm3-ZZIP5V4nh1izTnSFUMMFpLfBmXyCnGkYZzbo26IfBRp-mYqSSTVOXoyCXihHVNEdB0jAteMMq-PoBuEpTjjUuQ4FQTQjjFXr5d4P3nf35yApc7gCXUynZ9wcEzHZUzHZUzGFUqkM8cLgw2jGkbUJh-I_v7f4pW-FwCzWcGMIbkKafhmH0P8fK4iNsRV7skFUZU75nOOGMKVLlVzu5t8nYZQ7F3HytuTAgIBqhKfsNKSzuCA
CitedBy_id crossref_primary_10_1111_j_1471_8286_2007_01974_x
crossref_primary_10_1186_s12862_020_1598_6
crossref_primary_10_1111_j_1558_5646_2012_01785_x
crossref_primary_10_1111_mec_15234
crossref_primary_10_1242_jeb_126136
crossref_primary_10_1038_hdy_2008_55
crossref_primary_10_1111_j_1365_2311_2009_01141_x
crossref_primary_10_1007_s10886_010_9856_5
crossref_primary_10_1111_j_1365_294X_2010_04624_x
crossref_primary_10_1038_hdy_2010_94
crossref_primary_10_1038_hdy_2015_110
crossref_primary_10_1534_genetics_112_142299
crossref_primary_10_1111_j_1095_8312_2008_01091_x
crossref_primary_10_1371_journal_pone_0029664
crossref_primary_10_1111_imb_12324
crossref_primary_10_1111_j_1558_5646_2007_00299_x
crossref_primary_10_1016_j_ympev_2010_12_018
crossref_primary_10_1016_j_cub_2019_08_053
crossref_primary_10_1111_j_1365_294X_2011_05349_x
crossref_primary_10_1007_s10709_010_9514_4
crossref_primary_10_1007_s10709_010_9518_0
crossref_primary_10_1038_hdy_2011_58
crossref_primary_10_1111_jeb_13677
crossref_primary_10_1016_j_jprot_2015_10_015
crossref_primary_10_1371_journal_pone_0197378
crossref_primary_10_1111_j_1365_294X_2008_03715_x
crossref_primary_10_1111_jeb_12227
crossref_primary_10_1111_j_1420_9101_2007_01297_x
crossref_primary_10_1111_jeb_13676
crossref_primary_10_1038_nature09058
crossref_primary_10_1111_j_1365_294X_2008_03946_x
crossref_primary_10_7717_peerj_1678
crossref_primary_10_1038_hdy_2013_113
crossref_primary_10_1111_brv_12698
crossref_primary_10_1016_j_ympev_2011_03_006
crossref_primary_10_1111_jse_12033
crossref_primary_10_1017_S0007485316000195
crossref_primary_10_1111_j_1365_294X_2007_03412_x
crossref_primary_10_1111_mec_14126
crossref_primary_10_1111_phen_12220
crossref_primary_10_1534_genetics_107_072108
crossref_primary_10_1073_pnas_0901397106
crossref_primary_10_1093_icb_icr073
crossref_primary_10_1007_s00442_009_1493_8
crossref_primary_10_1038_hdy_2015_72
crossref_primary_10_1554_05_337_1
crossref_primary_10_1139_G08_104
crossref_primary_10_1093_jeb_voae092
crossref_primary_10_1016_j_tree_2008_10_011
crossref_primary_10_1016_j_tree_2011_01_001
crossref_primary_10_1111_jeb_12562
crossref_primary_10_1038_hdy_2008_26
crossref_primary_10_1093_cz_zow017
crossref_primary_10_1371_journal_pone_0000555
crossref_primary_10_1371_journal_pntd_0002495
crossref_primary_10_1111_phen_12194
crossref_primary_10_1242_jeb_245244
crossref_primary_10_1038_s41467_021_23026_x
crossref_primary_10_1111_j_1365_294X_2008_03792_x
crossref_primary_10_1093_molbev_msp227
crossref_primary_10_1890_09_0067_1
crossref_primary_10_1093_nsr_nwz138
crossref_primary_10_1002_ece3_639
crossref_primary_10_3389_finsc_2023_1154651
crossref_primary_10_1111_j_1439_0418_2008_01374_x
crossref_primary_10_1002_ece3_7829
crossref_primary_10_1016_j_jinsphys_2019_02_005
crossref_primary_10_1111_j_1744_7917_2010_01367_x
crossref_primary_10_1371_journal_pgen_1000729
crossref_primary_10_1007_s00438_011_0624_1
crossref_primary_10_1016_j_cois_2018_01_005
crossref_primary_10_1111_mec_12154
crossref_primary_10_1111_imb_12249
crossref_primary_10_1111_j_1558_5646_2009_00943_x
crossref_primary_10_1111_j_1558_5646_2009_00883_x
crossref_primary_10_1111_j_1420_9101_2011_02244_x
crossref_primary_10_1371_journal_pone_0001907
crossref_primary_10_1038_s41597_025_04609_5
crossref_primary_10_1098_rspb_2016_2182
crossref_primary_10_1111_j_0014_3820_2006_tb01107_x
crossref_primary_10_1111_j_1365_294X_2008_03921_x
crossref_primary_10_1073_pnas_1601074113
crossref_primary_10_1186_1471_2148_10_293
crossref_primary_10_1093_molbev_msad112
crossref_primary_10_1111_j_1558_5646_2011_01239_x
crossref_primary_10_3390_insects5010199
crossref_primary_10_1016_j_cois_2019_08_003
crossref_primary_10_1038_hdy_2014_128
crossref_primary_10_1002_ece3_70643
crossref_primary_10_1186_1471_2148_14_154
crossref_primary_10_1111_j_1558_5646_2007_00076_x
crossref_primary_10_1371_journal_pone_0018843
crossref_primary_10_3390_genes9040180
crossref_primary_10_3390_genes9060279
crossref_primary_10_1111_evo_14466
crossref_primary_10_1093_evolut_qpac053
crossref_primary_10_1603_AN12072
crossref_primary_10_1093_jhered_esu033
crossref_primary_10_1111_mec_12011
crossref_primary_10_1534_g3_115_021246
crossref_primary_10_1111_mec_15001
crossref_primary_10_1002_ece3_7972
crossref_primary_10_3390_insects5010001
crossref_primary_10_1111_mec_14036
crossref_primary_10_1101_cshperspect_a041432
crossref_primary_10_1007_s10577_011_9262_z
crossref_primary_10_1016_j_ympev_2012_10_009
crossref_primary_10_1098_rspb_2008_0423
crossref_primary_10_1134_S0013873824020015
crossref_primary_10_1111_j_1744_7917_2010_01357_x
crossref_primary_10_1038_s41437_020_0325_9
crossref_primary_10_1098_rstb_2008_0081
crossref_primary_10_1111_j_1558_5646_2009_00767_x
Cites_doi 10.1002/arch.940200203
10.1002/arch.940150202
10.1093/bioinformatics/14.9.817
10.1007/BF01014249
10.1093/aesa/70.5.717
10.1093/aesa/68.2.305
10.1093/oxfordjournals.molbev.a026201
10.1073/pnas.84.21.7585
10.1093/oxfordjournals.molbev.a004042
10.5962/bhl.title.108390
10.1007/BF01012071
10.1093/genetics/147.3.1091
10.1016/B978-0-12-398760-0.50026-2
10.1093/ee/20.5.1356
10.1534/genetics.167.1.301
10.1111/j.1570-7458.1992.tb01607.x
10.1073/pnas.090541597
10.1111/j.0014-3820.2002.tb01467.x
10.1038/hdy.1980.80
10.1046/j.1365-2583.1999.820213.x
10.1093/ee/8.3.423
10.1554/0014-3820(2001)055[0512:TGORIA]2.0.CO;2
10.1093/ee/12.2.393
10.1093/genetics/156.4.1913
10.1093/aesa/91.5.719
10.1046/j.1420-9101.2001.00335.x
10.1126/science.181.4100.661
10.1093/genetics/153.4.1743
10.1093/genetics/163.4.1389
10.1017/S0016672300014634
10.1093/genetics/105.2.437
10.1098/rspb.2003.2333
ContentType Journal Article
Copyright Copyright 2005 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 11, 2005
Copyright © 2005, The National Academy of Sciences 2005
Copyright_xml – notice: Copyright 2005 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 11, 2005
– notice: Copyright © 2005, The National Academy of Sciences 2005
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0502054102
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Entomology Abstracts
MEDLINE
CrossRef
MEDLINE - Academic



Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14711
ExternalDocumentID PMC1253542
915683911
16204000
10_1073_pnas_0502054102
102_41_14706
4143381
US201301057592
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations New York
Europe
GeographicLocations_xml – name: New York
– name: Europe
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c609t-ab39bc919aa3cc0167563f48a254810ed9d0ec34a8c5ca6d420ef068982316793
ISSN 0027-8424
IngestDate Thu Aug 21 18:05:41 EDT 2025
Fri Sep 05 13:00:34 EDT 2025
Fri Sep 05 07:43:03 EDT 2025
Fri Sep 05 14:50:34 EDT 2025
Mon Jun 30 08:45:47 EDT 2025
Wed Feb 19 01:41:56 EST 2025
Tue Jul 01 04:00:16 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Thu May 30 15:50:00 EDT 2019
Wed Nov 11 00:29:44 EST 2020
Thu May 29 08:42:44 EDT 2025
Wed Dec 27 19:17:47 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c609t-ab39bc919aa3cc0167563f48a254810ed9d0ec34a8c5ca6d420ef068982316793
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
To whom correspondence should be sent at the present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138. E-mail: edopman@oeb.harvard.edu.
Abbreviations: ECB, European corn borer moth; ACB, Asian corn borer moth; AFLP, amplified fragment length polymorphism; PDD, postdiapause development; TPI, triose-phosphate isomerase; Pbp, pheromone binding protein; ML, maximum likelihood; MP, maximum parsimony; indels, insertions/deletions.
This paper was submitted directly (Track II) to the PNAS office.
Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. DQ204878-DQ205062).
Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved August 18, 2005
PMID 16204000
PQID 201291134
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_4143381
crossref_primary_10_1073_pnas_0502054102
pnas_primary_102_41_14706_fulltext
pubmed_primary_16204000
crossref_citationtrail_10_1073_pnas_0502054102
proquest_miscellaneous_46831877
proquest_miscellaneous_17395473
proquest_miscellaneous_68677686
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1253542
proquest_journals_201291134
fao_agris_US201301057592
pnas_primary_102_41_14706
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-10-11
PublicationDateYYYYMMDD 2005-10-11
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2005
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
(e_1_3_2_12_2) 1990; 7
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
10581281 - Genetics. 1999 Dec;153(4):1743-51
24310269 - J Chem Ecol. 1985 Jul;11(7):829-36
11102384 - Genetics. 2000 Dec;156(4):1913-31
12816659 - Proc Biol Sci. 2003 Jun 7;270(1520):1193-202
24277143 - J Chem Ecol. 1988 Nov;14(11):2047-61
9918953 - Bioinformatics. 1998;14(9):817-8
10779562 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313-6
6628982 - Genetics. 1983 Oct;105(2):437-60
17736980 - Science. 1973 Aug 17;181(4100):661-3
12446809 - Mol Biol Evol. 2002 Dec;19(12):2176-90
15166156 - Genetics. 2004 May;167(1):301-9
16593886 - Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585-9
10380105 - Insect Mol Biol. 1999 May;8(2):213-21
12353748 - Evolution. 2002 Aug;56(8):1557-65
12702683 - Genetics. 2003 Apr;163(4):1389-401
9383055 - Genetics. 1997 Nov;147(3):1091-106
11327159 - Evolution. 2001 Mar;55(3):512-21
4407212 - Genet Res. 1974 Feb;23(1):23-35
References_xml – ident: e_1_3_2_24_2
  doi: 10.1002/arch.940200203
– ident: e_1_3_2_17_2
  doi: 10.1002/arch.940150202
– ident: e_1_3_2_35_2
  doi: 10.1093/bioinformatics/14.9.817
– ident: e_1_3_2_18_2
  doi: 10.1007/BF01014249
– ident: e_1_3_2_27_2
  doi: 10.1093/aesa/70.5.717
– ident: e_1_3_2_26_2
  doi: 10.1093/aesa/68.2.305
– ident: e_1_3_2_33_2
  doi: 10.1093/oxfordjournals.molbev.a026201
– ident: e_1_3_2_34_2
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.84.21.7585
– ident: e_1_3_2_11_2
– ident: e_1_3_2_7_2
  doi: 10.1093/oxfordjournals.molbev.a004042
– ident: e_1_3_2_14_2
  doi: 10.5962/bhl.title.108390
– ident: e_1_3_2_22_2
  doi: 10.1007/BF01012071
– ident: e_1_3_2_4_2
  doi: 10.1093/genetics/147.3.1091
– ident: e_1_3_2_2_2
  doi: 10.1016/B978-0-12-398760-0.50026-2
– ident: e_1_3_2_19_2
  doi: 10.1093/ee/20.5.1356
– ident: e_1_3_2_21_2
  doi: 10.1534/genetics.167.1.301
– ident: e_1_3_2_32_2
  doi: 10.1111/j.1570-7458.1992.tb01607.x
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.090541597
– ident: e_1_3_2_3_2
  doi: 10.1111/j.0014-3820.2002.tb01467.x
– ident: e_1_3_2_28_2
  doi: 10.1038/hdy.1980.80
– ident: e_1_3_2_29_2
  doi: 10.1046/j.1365-2583.1999.820213.x
– ident: e_1_3_2_25_2
– volume: 7
  start-page: 69
  year: 1990
  ident: e_1_3_2_12_2
  publication-title: Oxford Surveys in Evolutionary Biology
– ident: e_1_3_2_20_2
  doi: 10.1093/ee/8.3.423
– ident: e_1_3_2_36_2
  doi: 10.1554/0014-3820(2001)055[0512:TGORIA]2.0.CO;2
– ident: e_1_3_2_23_2
  doi: 10.1093/ee/12.2.393
– ident: e_1_3_2_6_2
  doi: 10.1093/genetics/156.4.1913
– ident: e_1_3_2_30_2
  doi: 10.1093/aesa/91.5.719
– ident: e_1_3_2_13_2
  doi: 10.1046/j.1420-9101.2001.00335.x
– ident: e_1_3_2_15_2
  doi: 10.1126/science.181.4100.661
– ident: e_1_3_2_31_2
  doi: 10.1093/genetics/153.4.1743
– ident: e_1_3_2_8_2
  doi: 10.1093/genetics/163.4.1389
– ident: e_1_3_2_10_2
  doi: 10.1017/S0016672300014634
– ident: e_1_3_2_1_2
  doi: 10.1093/genetics/105.2.437
– ident: e_1_3_2_9_2
  doi: 10.1098/rspb.2003.2333
– reference: 9918953 - Bioinformatics. 1998;14(9):817-8
– reference: 17736980 - Science. 1973 Aug 17;181(4100):661-3
– reference: 12816659 - Proc Biol Sci. 2003 Jun 7;270(1520):1193-202
– reference: 6628982 - Genetics. 1983 Oct;105(2):437-60
– reference: 16593886 - Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585-9
– reference: 11102384 - Genetics. 2000 Dec;156(4):1913-31
– reference: 4407212 - Genet Res. 1974 Feb;23(1):23-35
– reference: 10380105 - Insect Mol Biol. 1999 May;8(2):213-21
– reference: 11327159 - Evolution. 2001 Mar;55(3):512-21
– reference: 15166156 - Genetics. 2004 May;167(1):301-9
– reference: 12446809 - Mol Biol Evol. 2002 Dec;19(12):2176-90
– reference: 10779562 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313-6
– reference: 9383055 - Genetics. 1997 Nov;147(3):1091-106
– reference: 10581281 - Genetics. 1999 Dec;153(4):1743-51
– reference: 24277143 - J Chem Ecol. 1988 Nov;14(11):2047-61
– reference: 12353748 - Evolution. 2002 Aug;56(8):1557-65
– reference: 24310269 - J Chem Ecol. 1985 Jul;11(7):829-36
– reference: 12702683 - Genetics. 2003 Apr;163(4):1389-401
SSID ssj0009580
Score 2.2162828
Snippet Speciation involves the origin of trait differences that limit or prevent gene exchange and ultimately results in daughter populations that form monophyletic...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14706
SubjectTerms Alleles
amplified fragment length polymorphism
Animal behavior
Animal reproduction
Animals
Base Sequence
Biological Sciences
Butterflies & moths
Carrier Proteins - genetics
chromosome mapping
Corn
diapause
DNA Primers
Electron Transport Complex IV - genetics
Evolutionary genetics
Genealogy
Genes
Genes, Insect - genetics
Genetic loci
genetic markers
Genomics
insect pests
Insect Proteins - genetics
introgression
isomerases
L-Lactate Dehydrogenase - genetics
Likelihood Functions
linkage groups
Microfilament Proteins - genetics
microsatellite repeats
Microsatellite Repeats - genetics
Models, Genetic
Molecular Sequence Data
Monophyly
Moths
Moths - genetics
Moths - physiology
Natural populations
New York
Nucleic Acid Amplification Techniques
nucleotide sequences
Ostrinia nubilalis
Phenotypic variations
Pheromones
Phylogeny
Polymorphism, Restriction Fragment Length
Population Dynamics
Reproduction - genetics
reproductive barriers
Sequence Analysis, DNA
Sex chromosomes
Speciation
Species Specificity
Tpi gene
triose-phosphate isomerase
Triose-Phosphate Isomerase - genetics
Title Consequences of reproductive barriers for genealogical discordance in the European corn borer
URI https://www.jstor.org/stable/4143381
http://www.pnas.org/content/102/41/14706.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16204000
https://www.proquest.com/docview/201291134
https://www.proquest.com/docview/17395473
https://www.proquest.com/docview/46831877
https://www.proquest.com/docview/68677686
https://pubmed.ncbi.nlm.nih.gov/PMC1253542
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgsjA8L8TAUJSSxnTiPa_mYkFZVYpP2giLXTUYFSqakFVL_I_5Lzo6dpGNFwEvU1q5r-X69O9t3v0PotUzSPMoZ8QJScI8KKTyessQLaQHGfs5ZEKhs5LNpfHpBP12yy9Ho5yBqab2a-3Jza17J_0gVPgO5qizZf5BsNyh8AK9BvvAECcPzr2Q8GYRCt6wi1y2BqwoHGotaVaPTfAuaXVr0aq5Re06dLGDCHLtD-UlVl-64qk3QrnFbZ52Za2xQwdSeIp70OSlGUTSu586mfYXjd5VNcQCt-80d-10U0HrZCHfWXtbX-aY7G6iuYHbVj6XcmEg0UMnumd-ry1qXThwwA7gf_a0DDE18GvYHGH-a7lBzR2BNaZtv3WnuIBpAtCXQMoo4pEkQD6w6vG9_8zeTATpO1TkuReMHDJxnRu2w2zzcFDxLopL870YJuGn2YKjjd-ZttpOZpmWRSsjbG0NvOUB3ClHZSFhFrwtdb9vq3IzYHbhA5w_QfbN3wSctEPfRKC8fon27ivjYUJi_eYS-DJGJqwIPkYktMjEgEw-RiQfIxMsSA86wRSZWyMQamQfo4sP788mpZwp5eDIO0pUn5iSdyzRMhSBSqsQXFpOCchHBfjkM8kW6CHJJqOCSSREvaBTkRRDzVN1Rx2BBHqO9sirzQ4QZTSUL-SLkMqcJlyIKuFhI8Dp5LCOROMi3q5tJw3Kviq18z3S0RUIytcZZLw4HHXdfuG4JXnZ3PQRxZeIKIJ5dfI7Upb8qk81SaDrQMuyGMGhxkKMH6UeOoCnT6HTQq51tWWFCvxx0ZNGQGc3TZJE6PQ5DQh30smsFs6Du-kSZV-smC9UFPE3I7h405mDPk2R3j1hxXcLDQU9a9PVTVVUsAPUOSrZw2XVQpPXbLeXyqyavhw0VYTR6umPBjtC9Xkc8Q3urep0_B7d_NX-h_3C_AL2xAKo
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consequences+of+Reproductive+Barriers+for+Genealogical+Discordance+in+the+European+Corn+Borer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dopman%2C+Erik+B.&rft.au=Luisa+P%C3%A9rez&rft.au=Bogdanowicz%2C+Steven+M.&rft.au=Harrison%2C+Richard+G.&rft.date=2005-10-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=102&rft.issue=41&rft.spage=14706&rft.epage=14711&rft_id=info:doi/10.1073%2Fpnas.0502054102&rft.externalDocID=4143381
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F41.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F41.cover.gif