Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization
This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model...
Saved in:
| Published in | Water resources management Vol. 28; no. 12; pp. 4075 - 4094 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer-Verlag
01.09.2014
Springer Netherlands Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-014-0728-6 |
Cover
| Abstract | This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs. |
|---|---|
| AbstractList | This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs. This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of plus or minus 5 % (or plus or minus 10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs. This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability ( R ) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R . On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs. |
| Author | Reddy, M. Janga Shibu, A |
| Author_xml | – sequence: 1 fullname: Shibu, A – sequence: 2 fullname: Reddy, M. Janga |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28696726$$DView record in Pascal Francis |
| BookMark | eNqNkluL1DAYhous4OzqD_DKggjeVL-kaQ6XMrMHYXFBHbwMaZoMWTtJTVpl5tebbleQvVi9CgnP--Y7vKfFiQ_eFMVLBO8QAHufEMJUVIBIBQzzij4pVqhhdYVoAyfFCgSGijCCnhWnKd0CZJWAVfHzZhjdXvXlxiS382Ww5Tc1mlhuXBqja6fRBV9-MuOvEL-nch18cp2Jzu_Ki-l4PJSfle_C3puUZu3G7PM9lds0E-sY8vO5H2MYDuXdT-6oZsfnxVOr-mRe3J9nxfbi_Ov6qrq-ufy4_nBdaQpirFjbdhYxZUTX4LoDDZa0XFNKRdty0VjLO0E0ICsEWMQFIE4A6VYT0igw9VnxdvEdYvgxmTTKvUva9L3yJkxJIk5JgwVi6D9QQgmqWS7knyildSM4BZrR1w_Q2zBFn3uWiDEiMK9xk6k395RKWvU2Kq9dkkPMq4kHiTkVlOHZjS2cnicbjZXajXcDHaNyvUQg5zTIJQ0yp0HOaZCzEj1Q_jF_TIMXTRrmhZv4V-2PiF4tIquCVLuY29h-wRnIkasFqXH9G6lK0a4 |
| CODEN | WRMAEJ |
| CitedBy_id | crossref_primary_10_1016_j_watres_2024_122701 crossref_primary_10_1051_ro_2018058 crossref_primary_10_1080_09715010_2019_1624630 crossref_primary_10_1016_j_scs_2022_104215 crossref_primary_10_2166_ws_2021_410 crossref_primary_10_3390_app9010091 crossref_primary_10_1061__ASCE_WR_1943_5452_0001244 crossref_primary_10_1007_s11269_019_02322_8 crossref_primary_10_1007_s11831_023_09944_7 crossref_primary_10_1080_1573062X_2019_1648527 crossref_primary_10_1016_j_compchemeng_2017_11_017 crossref_primary_10_1061_AJRUA6_0000903 crossref_primary_10_1080_02626667_2020_1735639 crossref_primary_10_1016_j_compchemeng_2024_108676 crossref_primary_10_1016_j_asoc_2022_108682 crossref_primary_10_1061_JWRMD5_WRENG_6555 crossref_primary_10_3390_w15050986 crossref_primary_10_1007_s11269_017_1629_2 crossref_primary_10_5004_dwt_2020_25822 crossref_primary_10_1080_1573062X_2023_2209063 crossref_primary_10_1007_s11269_021_02777_8 crossref_primary_10_2166_ws_2021_344 crossref_primary_10_1061_JOEEDU_EEENG_7375 crossref_primary_10_1109_ACCESS_2020_3009885 crossref_primary_10_2166_h2oj_2020_128 crossref_primary_10_1007_s00477_020_01913_x crossref_primary_10_3233_IFS_152102 crossref_primary_10_1680_jwama_20_00081 crossref_primary_10_1007_s12065_024_00922_x crossref_primary_10_1007_s11356_021_14547_5 crossref_primary_10_1007_s11269_015_0961_7 crossref_primary_10_1080_09715010_2017_1408038 crossref_primary_10_1007_s11269_014_0902_x crossref_primary_10_1007_s11269_017_1655_0 |
| Cites_doi | 10.1061/(ASCE)0733-9496(2009)135:1(38) 10.1061/(ASCE)0733-9496(2009)135:2(117) 10.1029/2004WR003787 10.1109/91.963757 10.1061/(ASCE)0733-9496(2004)130:1(63) 10.1007/s10479-005-5724-z 10.1016/S0019-9958(65)90241-X 10.1016/j.ejor.2007.10.035 10.1061/(ASCE)0733-9429(2002)128:1(93) 10.1016/j.jhydrol.2004.11.015 10.1061/(ASCE)PS.1949-1204.0000113 10.1080/10286608.2012.663359 10.1061/(ASCE)0733-9496(2008)134:2(147) 10.1061/(ASCE)0733-9496(2007)133:1(67) 10.1061/(ASCE)0733-9496(2008)134:2(107) 10.1016/S0377-2217(96)00385-2 10.1109/TEVC.2005.844168 10.1080/10286600601024822 10.1007/978-3-662-07358-2 10.1007/s11269-007-9230-8 10.1061/(ASCE)0733-9496(1998)124:4(218) 10.1007/978-1-4684-5287-7 10.1029/2010WR009138 10.1080/03052150601154671 10.1016/0020-0255(78)90019-1 10.1061/(ASCE)0733-9496(1999)125:6(352) 10.1061/(ASCE)0733-9496(1989)115:5(630) 10.1061/(ASCE)1076-0342(2001)7:1(32) 10.1061/(ASCE)0733-9372(1996)122:1(51) 10.1080/10286600600789425 10.1016/j.insmatheco.2008.05.008 10.1214/aoms/1177729694 10.1002/j.1538-7305.1948.tb01338.x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2014 2015 INIST-CNRS |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2014 – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-014-0728-6 |
| DatabaseName | AGRIS CrossRef Pascal-Francis ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (Proquest) Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 4094 |
| ExternalDocumentID | 3993306081 28696726 10_1007_s11269_014_0728_6 US201400139432 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 PQBZA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.0 L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c609t-7bbdf17ae9d523d0c0f4b8c6669bb895ff8d94c01f990f189018401cbc445a0e3 |
| IEDL.DBID | BENPR |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 12:25:10 EDT 2025 Tue Oct 07 09:43:08 EDT 2025 Fri Sep 05 09:06:12 EDT 2025 Sat Aug 23 13:36:52 EDT 2025 Wed Apr 02 07:25:11 EDT 2025 Wed Oct 01 01:44:51 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Fri Feb 21 02:26:45 EST 2025 Wed Dec 27 19:13:03 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Uncertainty Cross entropy Fuzziness Randomness Fuzzy random variable Optimization Water distribution network models cost sampling reliability water supply case studies networks surface water entropy optimization water resource management methodology theory standard deviation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c609t-7bbdf17ae9d523d0c0f4b8c6669bb895ff8d94c01f990f189018401cbc445a0e3 |
| Notes | http://dx.doi.org/10.1007/s11269-014-0728-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1774928325 |
| PQPubID | 54174 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1864529171 proquest_miscellaneous_1846413752 proquest_miscellaneous_1663598606 proquest_journals_1774928325 pascalfrancis_primary_28696726 crossref_citationtrail_10_1007_s11269_014_0728_6 crossref_primary_10_1007_s11269_014_0728_6 springer_journals_10_1007_s11269_014_0728_6 fao_agris_US201400139432 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | GuptaRBhavePRFuzzy parameters in pipe network analysisCivil Eng Environ Syst2007241335410.1080/10286600601024822 Zecchin AC, Simpson AR, Maier HR and Nixon JB (2005) Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans on Evol Comp 9( 2): 175–191 XuCGoulterICReliability-based optimal design of water distribution networkJ Water Resour Plan Manag ASCE1999125635236210.1061/(ASCE)0733-9496(1999)125:6(352) BranisavljevicNIvetiMFuzzy approach in the uncertainty analysis of the water distribution network of BECEJCiv Eng Environ Syst200623322123610.1080/10286600600789425 HuangTTangWRisk model with fuzzy random individual claim amountEur J Oper Res200919287989010.1016/j.ejor.2007.10.035 BabayanAVSavicDAWaltersGAKapelanZSRobust least-cost design of water distribution networks using redundancy and integration-based methodologiesJ Water Resour Plan Manag20071331677710.1061/(ASCE)0733-9496(2007)133:1(67) Reca J, Martinez J, Gil C, Banos R (2008) Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour Manage 22(10): 1367–1379 FuGKapelanZFuzzy probabilistic design of water distribution networksWater Resour Res20114711210.1029/2009WR008944W05538 Kadu MS, Gupta R, and Bhave PR 2008 Optimal Design of Water Networks Using a Modified Genetic Algorithm with Reduction in Search Space. J Water Resour Plang and Mgmt, ASCE, 134(2): 147–160 GuptaRBhavePRReliability based design of water distribution systemsJ Environ Eng ASCE19961221515410.1061/(ASCE)0733-9372(1996)122:1(51) ShannonCEA mathematical theory of communicationBell System Tech J19482737942310.1002/j.1538-7305.1948.tb01338.x Abebe A, Guinot V, Solomatine D (2000) Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. Proc. 4th Int. Conf. on Hydroinformatics, Iowa City, US, pp 1–8 LanseyKUncertainty in water distribution network modelingJ Contemp Water Res Educ1997312226 McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239245 PerelmanLOstfeldAAn adaptive heuristic cross-entropy algorithm for optimal design of water distribution systemsEng Optim200739441342810.1080/03052150601154671 KapelanZSSavicDAWaltersGAMultiobjective design of water distribution systems under uncertaintyWater Resour Res20054110.1029/2004WR003787 De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A Tutorial of the Cross Entropy Method. Annals of Operations Research 134: 19–67 DuboisDPradeHPossibility theory1988New YorkPlenum10.1007/978-1-4684-5287-7 LiuBFuzzy random chance-constrained programmingIEEE Trans Fuzzy Syst20019571372010.1109/91.963757 TolsonBAMaierHRSimpsonARGenetic algorithms for reliability-based optimization of water distribution systemsJ Water Resour Plan Manag ASCE20041301637210.1061/(ASCE)0733-9496(2004)130:1(63) FuGButlerDKhuSTSunSImprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theoryWater Resour Res201147W0253410.1029/2009WR008944 Jinesh Babu KS and Vijayalakshmi DP (2013) Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. J of Pipeline Systems Engineering and Practice 4 (1): 57 - 67 MerzBThiekenAHSeparating natural and epistemic uncertainty in flood frequency analysisJ Hydrol20053091–411413210.1016/j.jhydrol.2004.11.015 DeryaSLanseyKEffect of uncertainty on water distribution system model design decisionsJ Water Resour Plan Manag20091351384710.1061/(ASCE)0733-9496(2009)135:1(38) Ostfeld A and Tubaltzev A (2008) Ant Colony Optimization for Least-Cost Design and Operation of Pumping Water Distribution Systems. J Water Resour Plang and Mgmt, ASCE, 134(2): 107–118 SpiliotisMTsakirisGWater distribution network design under variable water demandCivil Eng Environ Syst (Taylor and Francis)201229210712210.1080/10286608.2012.663359 CunhaMCSousaJHydraulic infrastructures design using simulated annealingJ Infrastruct Syst200171323910.1061/(ASCE)1076-0342(2001)7:1(32) ZadehLAFuzzy setsInf Control1965833835310.1016/S0019-9958(65)90241-X GiustolisiOLaucelliDColomboAFDeterministic versus stochastic design of water distribution networksJ Water Resour Plann Manage ASCE2009135211712710.1061/(ASCE)0733-9496(2009)135:2(117) RevelliRRidolfiLFuzzy approach for analysis of pipe networksJ Hydraul Eng200212819310110.1061/(ASCE)0733-9429(2002)128:1(93) RubinsteinRYOptimization of computer simulation models with rare eventsEur J Oper Res1997998911210.1016/S0377-2217(96)00385-2 LanseyKDuanNMaysLWTungYKWater distribution design under uncertaintyJ Water Resour Plan Manag ASCE1989115563064510.1061/(ASCE)0733-9496(1989)115:5(630) XuCGoulterICProbabilistic model for water distribution reliabilityJ Water Resour Plan Manag ASCE1998124421822810.1061/(ASCE)0733-9496(1998)124:4(218) RossmanLAEpanet2 users manual. report, U.S2000Washington, DCEnviron. Prot. Agency KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122798610.1214/aoms/1177729694 ShapiroAFFuzzy random variablesInsur Math Econ200944230731410.1016/j.insmatheco.2008.05.008 RossJLOzbekMMPinderGFAleatoric and epistemic uncertainty in groundwater flow and transport simulationWater Resour Res200945W00B1510.1029/2007WR006799 SchaakeJLaiDLinear programming and dynamic programming applications to water distribution network design, Rep. No. 1161969CambridgeDept. of Civil Engineering, Massachusetts Institute of Technology MöllerBBeerMFuzzy randomness: uncertainty in civil engineering and computational mechanics2004BerlinSpringer10.1007/978-3-662-07358-2 KwakernaakHFuzzy random variables—I. Definitions and theoremsInf Sci197815112910.1016/0020-0255(78)90019-1 AF Shapiro (728_CR34) 2009; 44 H Kwakernaak (728_CR18) 1978; 15 C Xu (728_CR38) 1999; 125 JL Ross (728_CR29) 2009; 45 S Derya (728_CR6) 2009; 135 R Revelli (728_CR28) 2002; 128 G Fu (728_CR8) 2011; 47 R Gupta (728_CR11) 1996; 122 J Schaake (728_CR32) 1969 G Fu (728_CR9) 2011; 47 T Huang (728_CR13) 2009; 192 728_CR14 728_CR15 R Gupta (728_CR12) 2007; 24 MC Cunha (728_CR4) 2001; 7 K Lansey (728_CR19) 1997; 3 ZS Kapelan (728_CR16) 2005; 41 RY Rubinstein (728_CR31) 1997; 99 CE Shannon (728_CR33) 1948; 27 K Lansey (728_CR20) 1989; 115 AV Babayan (728_CR2) 2007; 133 B Liu (728_CR21) 2001; 9 728_CR1 BA Tolson (728_CR36) 2004; 130 MD McKay (728_CR22) 1979; 21 C Xu (728_CR37) 1998; 124 728_CR5 M Spiliotis (728_CR35) 2012; 29 728_CR40 N Branisavljevic (728_CR3) 2006; 23 O Giustolisi (728_CR10) 2009; 135 B Möller (728_CR24) 2004 LA Zadeh (728_CR39) 1965; 8 728_CR27 D Dubois (728_CR7) 1988 B Merz (728_CR23) 2005; 309 728_CR25 L Perelman (728_CR26) 2007; 39 LA Rossman (728_CR30) 2000 S Kullback (728_CR17) 1951; 22 |
| References_xml | – reference: XuCGoulterICProbabilistic model for water distribution reliabilityJ Water Resour Plan Manag ASCE1998124421822810.1061/(ASCE)0733-9496(1998)124:4(218) – reference: FuGKapelanZFuzzy probabilistic design of water distribution networksWater Resour Res20114711210.1029/2009WR008944W05538 – reference: RevelliRRidolfiLFuzzy approach for analysis of pipe networksJ Hydraul Eng200212819310110.1061/(ASCE)0733-9429(2002)128:1(93) – reference: RossJLOzbekMMPinderGFAleatoric and epistemic uncertainty in groundwater flow and transport simulationWater Resour Res200945W00B1510.1029/2007WR006799 – reference: BabayanAVSavicDAWaltersGAKapelanZSRobust least-cost design of water distribution networks using redundancy and integration-based methodologiesJ Water Resour Plan Manag20071331677710.1061/(ASCE)0733-9496(2007)133:1(67) – reference: SchaakeJLaiDLinear programming and dynamic programming applications to water distribution network design, Rep. No. 1161969CambridgeDept. of Civil Engineering, Massachusetts Institute of Technology – reference: ZadehLAFuzzy setsInf Control1965833835310.1016/S0019-9958(65)90241-X – reference: Zecchin AC, Simpson AR, Maier HR and Nixon JB (2005) Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans on Evol Comp 9( 2): 175–191 – reference: ShapiroAFFuzzy random variablesInsur Math Econ200944230731410.1016/j.insmatheco.2008.05.008 – reference: Abebe A, Guinot V, Solomatine D (2000) Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. Proc. 4th Int. Conf. on Hydroinformatics, Iowa City, US, pp 1–8 – reference: GuptaRBhavePRReliability based design of water distribution systemsJ Environ Eng ASCE19961221515410.1061/(ASCE)0733-9372(1996)122:1(51) – reference: KapelanZSSavicDAWaltersGAMultiobjective design of water distribution systems under uncertaintyWater Resour Res20054110.1029/2004WR003787 – reference: Reca J, Martinez J, Gil C, Banos R (2008) Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour Manage 22(10): 1367–1379 – reference: Jinesh Babu KS and Vijayalakshmi DP (2013) Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. J of Pipeline Systems Engineering and Practice 4 (1): 57 - 67 – reference: GiustolisiOLaucelliDColomboAFDeterministic versus stochastic design of water distribution networksJ Water Resour Plann Manage ASCE2009135211712710.1061/(ASCE)0733-9496(2009)135:2(117) – reference: RubinsteinRYOptimization of computer simulation models with rare eventsEur J Oper Res1997998911210.1016/S0377-2217(96)00385-2 – reference: LanseyKUncertainty in water distribution network modelingJ Contemp Water Res Educ1997312226 – reference: McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239245 – reference: KwakernaakHFuzzy random variables—I. Definitions and theoremsInf Sci197815112910.1016/0020-0255(78)90019-1 – reference: BranisavljevicNIvetiMFuzzy approach in the uncertainty analysis of the water distribution network of BECEJCiv Eng Environ Syst200623322123610.1080/10286600600789425 – reference: CunhaMCSousaJHydraulic infrastructures design using simulated annealingJ Infrastruct Syst200171323910.1061/(ASCE)1076-0342(2001)7:1(32) – reference: RossmanLAEpanet2 users manual. report, U.S2000Washington, DCEnviron. Prot. Agency – reference: ShannonCEA mathematical theory of communicationBell System Tech J19482737942310.1002/j.1538-7305.1948.tb01338.x – reference: DeryaSLanseyKEffect of uncertainty on water distribution system model design decisionsJ Water Resour Plan Manag20091351384710.1061/(ASCE)0733-9496(2009)135:1(38) – reference: MerzBThiekenAHSeparating natural and epistemic uncertainty in flood frequency analysisJ Hydrol20053091–411413210.1016/j.jhydrol.2004.11.015 – reference: SpiliotisMTsakirisGWater distribution network design under variable water demandCivil Eng Environ Syst (Taylor and Francis)201229210712210.1080/10286608.2012.663359 – reference: TolsonBAMaierHRSimpsonARGenetic algorithms for reliability-based optimization of water distribution systemsJ Water Resour Plan Manag ASCE20041301637210.1061/(ASCE)0733-9496(2004)130:1(63) – reference: Ostfeld A and Tubaltzev A (2008) Ant Colony Optimization for Least-Cost Design and Operation of Pumping Water Distribution Systems. J Water Resour Plang and Mgmt, ASCE, 134(2): 107–118 – reference: LiuBFuzzy random chance-constrained programmingIEEE Trans Fuzzy Syst20019571372010.1109/91.963757 – reference: PerelmanLOstfeldAAn adaptive heuristic cross-entropy algorithm for optimal design of water distribution systemsEng Optim200739441342810.1080/03052150601154671 – reference: DuboisDPradeHPossibility theory1988New YorkPlenum10.1007/978-1-4684-5287-7 – reference: FuGButlerDKhuSTSunSImprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theoryWater Resour Res201147W0253410.1029/2009WR008944 – reference: Kadu MS, Gupta R, and Bhave PR 2008 Optimal Design of Water Networks Using a Modified Genetic Algorithm with Reduction in Search Space. J Water Resour Plang and Mgmt, ASCE, 134(2): 147–160 – reference: De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A Tutorial of the Cross Entropy Method. Annals of Operations Research 134: 19–67 – reference: LanseyKDuanNMaysLWTungYKWater distribution design under uncertaintyJ Water Resour Plan Manag ASCE1989115563064510.1061/(ASCE)0733-9496(1989)115:5(630) – reference: XuCGoulterICReliability-based optimal design of water distribution networkJ Water Resour Plan Manag ASCE1999125635236210.1061/(ASCE)0733-9496(1999)125:6(352) – reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122798610.1214/aoms/1177729694 – reference: GuptaRBhavePRFuzzy parameters in pipe network analysisCivil Eng Environ Syst2007241335410.1080/10286600601024822 – reference: HuangTTangWRisk model with fuzzy random individual claim amountEur J Oper Res200919287989010.1016/j.ejor.2007.10.035 – reference: MöllerBBeerMFuzzy randomness: uncertainty in civil engineering and computational mechanics2004BerlinSpringer10.1007/978-3-662-07358-2 – volume: 135 start-page: 38 issue: 1 year: 2009 ident: 728_CR6 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2009)135:1(38) – volume: 135 start-page: 117 issue: 2 year: 2009 ident: 728_CR10 publication-title: J Water Resour Plann Manage ASCE doi: 10.1061/(ASCE)0733-9496(2009)135:2(117) – volume: 41 year: 2005 ident: 728_CR16 publication-title: Water Resour Res doi: 10.1029/2004WR003787 – volume: 9 start-page: 713 issue: 5 year: 2001 ident: 728_CR21 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.963757 – volume: 130 start-page: 63 issue: 1 year: 2004 ident: 728_CR36 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(2004)130:1(63) – ident: 728_CR5 doi: 10.1007/s10479-005-5724-z – volume-title: Linear programming and dynamic programming applications to water distribution network design, Rep. No. 116 year: 1969 ident: 728_CR32 – volume: 8 start-page: 338 year: 1965 ident: 728_CR39 publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – volume: 192 start-page: 879 year: 2009 ident: 728_CR13 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.10.035 – volume: 128 start-page: 93 issue: 1 year: 2002 ident: 728_CR28 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2002)128:1(93) – volume: 309 start-page: 114 issue: 1–4 year: 2005 ident: 728_CR23 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.11.015 – volume: 47 start-page: W02534 year: 2011 ident: 728_CR9 publication-title: Water Resour Res – ident: 728_CR14 doi: 10.1061/(ASCE)PS.1949-1204.0000113 – volume: 29 start-page: 107 issue: 2 year: 2012 ident: 728_CR35 publication-title: Civil Eng Environ Syst (Taylor and Francis) doi: 10.1080/10286608.2012.663359 – ident: 728_CR15 doi: 10.1061/(ASCE)0733-9496(2008)134:2(147) – volume: 133 start-page: 67 issue: 1 year: 2007 ident: 728_CR2 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2007)133:1(67) – ident: 728_CR25 doi: 10.1061/(ASCE)0733-9496(2008)134:2(107) – volume: 99 start-page: 89 year: 1997 ident: 728_CR31 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(96)00385-2 – ident: 728_CR40 doi: 10.1109/TEVC.2005.844168 – volume: 24 start-page: 33 issue: 1 year: 2007 ident: 728_CR12 publication-title: Civil Eng Environ Syst doi: 10.1080/10286600601024822 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 728_CR22 publication-title: Technometrics – volume-title: Fuzzy randomness: uncertainty in civil engineering and computational mechanics year: 2004 ident: 728_CR24 doi: 10.1007/978-3-662-07358-2 – ident: 728_CR27 doi: 10.1007/s11269-007-9230-8 – volume: 3 start-page: 22 issue: 1 year: 1997 ident: 728_CR19 publication-title: J Contemp Water Res Educ – volume: 124 start-page: 218 issue: 4 year: 1998 ident: 728_CR37 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(1998)124:4(218) – volume-title: Epanet2 users manual. report, U.S year: 2000 ident: 728_CR30 – volume-title: Possibility theory year: 1988 ident: 728_CR7 doi: 10.1007/978-1-4684-5287-7 – volume: 47 start-page: 1 year: 2011 ident: 728_CR8 publication-title: Water Resour Res doi: 10.1029/2010WR009138 – volume: 39 start-page: 413 issue: 4 year: 2007 ident: 728_CR26 publication-title: Eng Optim doi: 10.1080/03052150601154671 – volume: 15 start-page: 1 issue: 1 year: 1978 ident: 728_CR18 publication-title: Inf Sci doi: 10.1016/0020-0255(78)90019-1 – volume: 125 start-page: 352 issue: 6 year: 1999 ident: 728_CR38 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(1999)125:6(352) – volume: 115 start-page: 630 issue: 5 year: 1989 ident: 728_CR20 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(1989)115:5(630) – volume: 45 start-page: W00B15 year: 2009 ident: 728_CR29 publication-title: Water Resour Res – volume: 7 start-page: 32 issue: 1 year: 2001 ident: 728_CR4 publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)1076-0342(2001)7:1(32) – volume: 122 start-page: 51 issue: 1 year: 1996 ident: 728_CR11 publication-title: J Environ Eng ASCE doi: 10.1061/(ASCE)0733-9372(1996)122:1(51) – volume: 23 start-page: 221 issue: 3 year: 2006 ident: 728_CR3 publication-title: Civ Eng Environ Syst doi: 10.1080/10286600600789425 – volume: 44 start-page: 307 issue: 2 year: 2009 ident: 728_CR34 publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2008.05.008 – volume: 22 start-page: 79 year: 1951 ident: 728_CR17 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – ident: 728_CR1 – volume: 27 start-page: 379 year: 1948 ident: 728_CR33 publication-title: Bell System Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x |
| SSID | ssj0010090 |
| Score | 2.245421 |
| Snippet | This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is... |
| SourceID | proquest pascalfrancis crossref springer fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4075 |
| SubjectTerms | Atmospheric Sciences case studies Civil Engineering Demand Design Design engineering Design optimization Earth and Environmental Science Earth Sciences Earth, ocean, space Entropy Environment Exact sciences and technology Fuzzy Fuzzy sets Fuzzy systems Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology Hydrology. Hydrogeology Hydrology/Water Resources Mathematical models Methodology Methods Negligence Optimization Optimization techniques Random variables seeds Set theory uncertainty Water demand Water distribution Water resources |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTyMxDI54XOCAWB6ivJSVOIEiTdLMI0dEqdBKy0pABbcoySRc6AyiLRL8eux0ptDVbiXO42SSOLE_x45NyEnJvcW06czZsmRSKsdsUIH5Lo_pv00W73R_X2dXA_nrIX1o3nGP2mj31iUZJfXnYzcuMoztkSzJRcGyZbKaYjYv2MQDcT5zHQBoiBcrCuwiCfqydWX-q4s5ZbQcTI2hkWYEqxOmZS3mcOdfrtKogfqbZKOBjvR8yusfZMlXW2T9S0LBbfL6ByTAEIh6MTCD1oHeA5h8oT3Mj9uUtqLX09DvEW2rdUJb2p-8v7_RG1OV9RDFH7bt-SG-BKYxroBe4BzoJYa2P7_R-KfmEecOGfQv7y6uWFNZgTlY-zHLrS0Dz41XJRiiZeKSIG3hwJRR1hYqDaEolXQJD6CsAi8ANIAhyJ11UqYm8d1dslLVld8j1CkXrLDozAcw4oJJbVfJIvMSo7Fc2iFJu8TaNWnHsfrFk_5MmIxc0cAVjVzRWYeczpo8T3NuLCLeA75p8wgyUQ9uBVqMCGtlV3TI8RwzZ52JIlNZLqDtYctd3RzdkeYAiBUWcIKh_5x9hkOHnhRT-XoCNIjTVAHG3wIaQHaAEPJULKJBvzJYzLxDztrd9WUo_5v0_reoD8iaiHset_4hWRm_TPwRQKmxPY5H5wNLGxPr priority: 102 providerName: Springer Nature |
| Title | Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization |
| URI | https://link.springer.com/article/10.1007/s11269-014-0728-6 https://www.proquest.com/docview/1774928325 https://www.proquest.com/docview/1663598606 https://www.proquest.com/docview/1846413752 https://www.proquest.com/docview/1864529171 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB41yQUOqLzUhRIZiRPIYtfxPnyoUGiSViACKkSU02ptr7mQ3dAkSO2vZ8bZTRskct2Ms48Zj7_xjL8BeGWjUhNtOjfaWi6lMlw75Xg5iDz9d5H4Pd1P0-R8Jj9cxpcHMG3PwlBZZesTvaO2taE98rcR4hRFfXXid4vfnLpGUXa1baFRNK0V7ImnGOtATxAzVhd678fTLxfbvAIiCr_rojBokriYtnlOf5guEgnVDkkepiLjyc5K1XFFTXWTxRI_ndv0vNgBpf_kUf3yNDmEBw2uZMONITyEg7J6BPfvsA0-hj-f0T3MUWjkqzZY7dh3RJpXbETkuU3fKzbd1IUvWdvKE8eyyfrm5ppdFJWt5-QbaeyonNMxYeaLDtgpvQMbU9374pr5OzUnPJ_AbDL-dnrOm7YL3KBiVjzV2rooLUplMUq1oQmd1JnBOEdpnanYucwqacLI4UrmogwRBUaJkdFGyrgIy8FT6FZ1VR4BM8o4LTRl-hGpGFfEeqBklpSSSrVMHEDYfuLcNJzk1BrjV37LpkxayVErOWklTwJ4vR2y2BBy7BM-Qr3lxU90mPnsq6BwkjCvHIgA-jvK3P6ZyBKVpALHHrfazZt5vcxvrTCAl9ufcUZSmqWoynqNMgTiVIaR4R4ZhH0IH9JY7JOhpDOG01EAb1rruvMo_3vpZ_sf_DncE97IydaPobu6WpcvEFitdB862eSsD73h2Y-P434zd_DqTAz_Agp5IVQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71cQAOiKdqKGWR4AKysNfrxx4qBE2ilLYBlUb0tnhfXIgdmgSU_jh-GzMbO22QyK1nz67XntnZb3ZehLw0sVVYNj3UypiQc6FD5YQLbRL78t9l5u90TwZZf8g_nqfnG-RPmwuDYZWtTvSK2tQa78jfxoBTBPbVSd-Nf4bYNQq9q20LjbJprWD2fYmxJrHjyM5_gwk32T_sAL9fMdbrnh30w6bLQKhhHdMwV8q4OC-tMGCUmUhHjqtCA6wXShUida4wgusodqC4XVzAAQpGUayV5jwtI5vAvJtkmydcgPG3_aE7-Hy69GMAgvG3PAKMNA6Hd-tX9cl7McswVomHUc6KMFs5GTddWWOcZjkBVrlFj40VEPyP39Yfh7175G6DY-n7heDdJxu2ekDuXKtu-JD8-gTqaAREHR8lQmtHvwKyvaAdLNbb9Nmig0Uc-oS2rUNhLO3NLi_n9LSsTD1CXYxjO3aEacnUBznQA_wG2sU4-_Gc-jc1GaWPyPBGGPCYbFV1ZXcI1UI7xRRGFgAy0q5MVSJ4kVmOoWE6DUjU_mKpmxro2Irjh7yq3oxckcAViVyRWUBeL4eMFwVA1hHvAN9k-R0UtBx-YWi-IsbmCQvI3gozl5OxIhNZzmDsbstd2eiRibyS-oC8WD4GDYBunbKy9QxoEDSKAizRNTQAMwGu5ClbR4NObjDf44C8aaXr2lL-99FP1i_8ObnVPzs5lseHg6On5DbzAo9yv0u2phcz-wxA3VTtNTuHkm83vVn_AtXCWyk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2ISF4QHxqgTGMBC8ga4nrfPgBIbQsbAwKAir25sWOzQtNytqCuj-Nv447J-lWJPq259qpkzuff-f73R0hz6rIaiybzoyuKiaENEw76ZgdRL78d5n4O90Pw-RwJN6dxCcb5E-fC4O0yt4mekNdNQbvyPciwCkS--rEe66jRXzKi9eTnww7SGGktW-n0arIsV38Bvdt-uooB1k_57w4-Lp_yLoOA8zAGmYs1bpyUVpaWYFDVoUmdEJnBiC91DqTsXNZJYUJIwdG20UZHJ7gEEVGGyHiMrQDeO4muZZiFXfMUi_eLiMYgF38_Y4E90zAsd1HVH3aXsQTZCkJFqY8Y8nKmbjpygYZmuUUhOTa7hor8PefiK0_CIvb5FaHYOmbVuXukA1b3yU3L9U1vEd-fQRDNIZBueeH0MbRb4Bpz2iOZXq7Dlt02DLQp7RvGgpzaTE_P1_Qz2VdNWO0wjg3t2NMSKae3kD38R3oATLsJwvq_6nLJb1PRlfy-R-Qrbqp7TahRhqnuUZOAWAi48pYD6TIEiuQFGbigIT9J1amq36OTTh-qIu6zSgVBVJRKBWVBOTFcsqkLf2xbvA2yE2V38E0q9EXjo4romsx4AHZXRHm8mE8S2SScpi700tXdRZkqi70PSBPlz_D3seATlnbZg5jEC7KDHzQNWMAYAJQSWO-bgyGt8FxjwLysteuS0v530s_XL_wJ-Q6bFH1_mh4_Ijc4F7fUe13yNbsbG4fA5qb6V2_bSg5vep9-hdHXFjD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Design+of+Water+Distribution+Networks+Considering+Fuzzy+Randomness+of+Demands+Using+Cross+Entropy+Optimization&rft.jtitle=Water+resources+management&rft.au=Shibu%2C+A&rft.au=Reddy%2C+M+Janga&rft.date=2014-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=28&rft.issue=12&rft.spage=4075&rft_id=info:doi/10.1007%2Fs11269-014-0728-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3993306081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |