Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization

This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 28; no. 12; pp. 4075 - 4094
Main Authors Shibu, A, Reddy, M. Janga
Format Journal Article
LanguageEnglish
Published Dordrecht Springer-Verlag 01.09.2014
Springer Netherlands
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-014-0728-6

Cover

Abstract This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs.
AbstractList This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs.
This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of plus or minus 5 % (or plus or minus 10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability (R) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R. On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs.
This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is desired to achieve a minimum cost WDN that provides higher reliability in meeting the demands. To achieve these goals, an optimization model is formulated for design of WDNs with an objective of minimizing the total cost of WDN subject to meeting the nodal demands at a specified system reliability, mass conservation and other physical constraints. The uncertainty in future water demands is modeled using the theory of fuzzy random variable (FRV). The water demand at each node is assumed to be following a normal distribution with a fuzzy mean, and 10 % (or 20 %) of the fuzzy mean as its standard deviation. The water demand is represented as a triangular fuzzy number with the random demand as its kernel, and the interval of ±5 % (or ±10 %) variation of the random demand as its support for two scenarios. The fuzzy random system reliability ( R ) of WDNs is defined on the basis of necessity measure to assess system performance under fuzzy random demands and crisp head requirements. The latin hypercube sampling method is adopted for sampling of uncertain demands. The methodology is applied to two WDNs, and optimization models are solved through cross entropy optimization for different levels of reliability, and generated tradeoffs between the cost and R . On comparing the solutions obtained with the proposed methodology with earlier reported solutions, it is noted that the proposed method is very effective in producing robust optimal solutions. On analyzing the tradeoffs between reliability and costs, the results show that negligence of uncertainty can lead to under design of the WDNs, and the cost increases steeply at higher levels of reliability. The results of the two case studies demonstrate that the presented CE based methodology is effective for fuzzy-probabilistic design of WDNs.
Author Reddy, M. Janga
Shibu, A
Author_xml – sequence: 1
  fullname: Shibu, A
– sequence: 2
  fullname: Reddy, M. Janga
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28696726$$DView record in Pascal Francis
BookMark eNqNkluL1DAYhous4OzqD_DKggjeVL-kaQ6XMrMHYXFBHbwMaZoMWTtJTVpl5tebbleQvVi9CgnP--Y7vKfFiQ_eFMVLBO8QAHufEMJUVIBIBQzzij4pVqhhdYVoAyfFCgSGijCCnhWnKd0CZJWAVfHzZhjdXvXlxiS382Ww5Tc1mlhuXBqja6fRBV9-MuOvEL-nch18cp2Jzu_Ki-l4PJSfle_C3puUZu3G7PM9lds0E-sY8vO5H2MYDuXdT-6oZsfnxVOr-mRe3J9nxfbi_Ov6qrq-ufy4_nBdaQpirFjbdhYxZUTX4LoDDZa0XFNKRdty0VjLO0E0ICsEWMQFIE4A6VYT0igw9VnxdvEdYvgxmTTKvUva9L3yJkxJIk5JgwVi6D9QQgmqWS7knyildSM4BZrR1w_Q2zBFn3uWiDEiMK9xk6k395RKWvU2Kq9dkkPMq4kHiTkVlOHZjS2cnicbjZXajXcDHaNyvUQg5zTIJQ0yp0HOaZCzEj1Q_jF_TIMXTRrmhZv4V-2PiF4tIquCVLuY29h-wRnIkasFqXH9G6lK0a4
CODEN WRMAEJ
CitedBy_id crossref_primary_10_1016_j_watres_2024_122701
crossref_primary_10_1051_ro_2018058
crossref_primary_10_1080_09715010_2019_1624630
crossref_primary_10_1016_j_scs_2022_104215
crossref_primary_10_2166_ws_2021_410
crossref_primary_10_3390_app9010091
crossref_primary_10_1061__ASCE_WR_1943_5452_0001244
crossref_primary_10_1007_s11269_019_02322_8
crossref_primary_10_1007_s11831_023_09944_7
crossref_primary_10_1080_1573062X_2019_1648527
crossref_primary_10_1016_j_compchemeng_2017_11_017
crossref_primary_10_1061_AJRUA6_0000903
crossref_primary_10_1080_02626667_2020_1735639
crossref_primary_10_1016_j_compchemeng_2024_108676
crossref_primary_10_1016_j_asoc_2022_108682
crossref_primary_10_1061_JWRMD5_WRENG_6555
crossref_primary_10_3390_w15050986
crossref_primary_10_1007_s11269_017_1629_2
crossref_primary_10_5004_dwt_2020_25822
crossref_primary_10_1080_1573062X_2023_2209063
crossref_primary_10_1007_s11269_021_02777_8
crossref_primary_10_2166_ws_2021_344
crossref_primary_10_1061_JOEEDU_EEENG_7375
crossref_primary_10_1109_ACCESS_2020_3009885
crossref_primary_10_2166_h2oj_2020_128
crossref_primary_10_1007_s00477_020_01913_x
crossref_primary_10_3233_IFS_152102
crossref_primary_10_1680_jwama_20_00081
crossref_primary_10_1007_s12065_024_00922_x
crossref_primary_10_1007_s11356_021_14547_5
crossref_primary_10_1007_s11269_015_0961_7
crossref_primary_10_1080_09715010_2017_1408038
crossref_primary_10_1007_s11269_014_0902_x
crossref_primary_10_1007_s11269_017_1655_0
Cites_doi 10.1061/(ASCE)0733-9496(2009)135:1(38)
10.1061/(ASCE)0733-9496(2009)135:2(117)
10.1029/2004WR003787
10.1109/91.963757
10.1061/(ASCE)0733-9496(2004)130:1(63)
10.1007/s10479-005-5724-z
10.1016/S0019-9958(65)90241-X
10.1016/j.ejor.2007.10.035
10.1061/(ASCE)0733-9429(2002)128:1(93)
10.1016/j.jhydrol.2004.11.015
10.1061/(ASCE)PS.1949-1204.0000113
10.1080/10286608.2012.663359
10.1061/(ASCE)0733-9496(2008)134:2(147)
10.1061/(ASCE)0733-9496(2007)133:1(67)
10.1061/(ASCE)0733-9496(2008)134:2(107)
10.1016/S0377-2217(96)00385-2
10.1109/TEVC.2005.844168
10.1080/10286600601024822
10.1007/978-3-662-07358-2
10.1007/s11269-007-9230-8
10.1061/(ASCE)0733-9496(1998)124:4(218)
10.1007/978-1-4684-5287-7
10.1029/2010WR009138
10.1080/03052150601154671
10.1016/0020-0255(78)90019-1
10.1061/(ASCE)0733-9496(1999)125:6(352)
10.1061/(ASCE)0733-9496(1989)115:5(630)
10.1061/(ASCE)1076-0342(2001)7:1(32)
10.1061/(ASCE)0733-9372(1996)122:1(51)
10.1080/10286600600789425
10.1016/j.insmatheco.2008.05.008
10.1214/aoms/1177729694
10.1002/j.1538-7305.1948.tb01338.x
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2014
2015 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2014
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-014-0728-6
DatabaseName AGRIS
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (Proquest)
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4094
ExternalDocumentID 3993306081
28696726
10_1007_s11269_014_0728_6
US201400139432
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
PQBZA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c609t-7bbdf17ae9d523d0c0f4b8c6669bb895ff8d94c01f990f189018401cbc445a0e3
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Fri Sep 05 12:25:10 EDT 2025
Tue Oct 07 09:43:08 EDT 2025
Fri Sep 05 09:06:12 EDT 2025
Sat Aug 23 13:36:52 EDT 2025
Wed Apr 02 07:25:11 EDT 2025
Wed Oct 01 01:44:51 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Fri Feb 21 02:26:45 EST 2025
Wed Dec 27 19:13:03 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Uncertainty
Cross entropy
Fuzziness
Randomness
Fuzzy random variable
Optimization
Water distribution network
models
cost
sampling
reliability
water supply
case studies
networks
surface water
entropy
optimization
water resource management
methodology
theory
standard deviation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-7bbdf17ae9d523d0c0f4b8c6669bb895ff8d94c01f990f189018401cbc445a0e3
Notes http://dx.doi.org/10.1007/s11269-014-0728-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1774928325
PQPubID 54174
PageCount 20
ParticipantIDs proquest_miscellaneous_1864529171
proquest_miscellaneous_1846413752
proquest_miscellaneous_1663598606
proquest_journals_1774928325
pascalfrancis_primary_28696726
crossref_citationtrail_10_1007_s11269_014_0728_6
crossref_primary_10_1007_s11269_014_0728_6
springer_journals_10_1007_s11269_014_0728_6
fao_agris_US201400139432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2014
Publisher Springer-Verlag
Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References GuptaRBhavePRFuzzy parameters in pipe network analysisCivil Eng Environ Syst2007241335410.1080/10286600601024822
Zecchin AC, Simpson AR, Maier HR and Nixon JB (2005) Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans on Evol Comp 9( 2): 175–191
XuCGoulterICReliability-based optimal design of water distribution networkJ Water Resour Plan Manag ASCE1999125635236210.1061/(ASCE)0733-9496(1999)125:6(352)
BranisavljevicNIvetiMFuzzy approach in the uncertainty analysis of the water distribution network of BECEJCiv Eng Environ Syst200623322123610.1080/10286600600789425
HuangTTangWRisk model with fuzzy random individual claim amountEur J Oper Res200919287989010.1016/j.ejor.2007.10.035
BabayanAVSavicDAWaltersGAKapelanZSRobust least-cost design of water distribution networks using redundancy and integration-based methodologiesJ Water Resour Plan Manag20071331677710.1061/(ASCE)0733-9496(2007)133:1(67)
Reca J, Martinez J, Gil C, Banos R (2008) Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour Manage 22(10): 1367–1379
FuGKapelanZFuzzy probabilistic design of water distribution networksWater Resour Res20114711210.1029/2009WR008944W05538
Kadu MS, Gupta R, and Bhave PR 2008 Optimal Design of Water Networks Using a Modified Genetic Algorithm with Reduction in Search Space. J Water Resour Plang and Mgmt, ASCE, 134(2): 147–160
GuptaRBhavePRReliability based design of water distribution systemsJ Environ Eng ASCE19961221515410.1061/(ASCE)0733-9372(1996)122:1(51)
ShannonCEA mathematical theory of communicationBell System Tech J19482737942310.1002/j.1538-7305.1948.tb01338.x
Abebe A, Guinot V, Solomatine D (2000) Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. Proc. 4th Int. Conf. on Hydroinformatics, Iowa City, US, pp 1–8
LanseyKUncertainty in water distribution network modelingJ Contemp Water Res Educ1997312226
McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239245
PerelmanLOstfeldAAn adaptive heuristic cross-entropy algorithm for optimal design of water distribution systemsEng Optim200739441342810.1080/03052150601154671
KapelanZSSavicDAWaltersGAMultiobjective design of water distribution systems under uncertaintyWater Resour Res20054110.1029/2004WR003787
De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A Tutorial of the Cross Entropy Method. Annals of Operations Research 134: 19–67
DuboisDPradeHPossibility theory1988New YorkPlenum10.1007/978-1-4684-5287-7
LiuBFuzzy random chance-constrained programmingIEEE Trans Fuzzy Syst20019571372010.1109/91.963757
TolsonBAMaierHRSimpsonARGenetic algorithms for reliability-based optimization of water distribution systemsJ Water Resour Plan Manag ASCE20041301637210.1061/(ASCE)0733-9496(2004)130:1(63)
FuGButlerDKhuSTSunSImprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theoryWater Resour Res201147W0253410.1029/2009WR008944
Jinesh Babu KS and Vijayalakshmi DP (2013) Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. J of Pipeline Systems Engineering and Practice 4 (1): 57 - 67
MerzBThiekenAHSeparating natural and epistemic uncertainty in flood frequency analysisJ Hydrol20053091–411413210.1016/j.jhydrol.2004.11.015
DeryaSLanseyKEffect of uncertainty on water distribution system model design decisionsJ Water Resour Plan Manag20091351384710.1061/(ASCE)0733-9496(2009)135:1(38)
Ostfeld A and Tubaltzev A (2008) Ant Colony Optimization for Least-Cost Design and Operation of Pumping Water Distribution Systems. J Water Resour Plang and Mgmt, ASCE, 134(2): 107–118
SpiliotisMTsakirisGWater distribution network design under variable water demandCivil Eng Environ Syst (Taylor and Francis)201229210712210.1080/10286608.2012.663359
CunhaMCSousaJHydraulic infrastructures design using simulated annealingJ Infrastruct Syst200171323910.1061/(ASCE)1076-0342(2001)7:1(32)
ZadehLAFuzzy setsInf Control1965833835310.1016/S0019-9958(65)90241-X
GiustolisiOLaucelliDColomboAFDeterministic versus stochastic design of water distribution networksJ Water Resour Plann Manage ASCE2009135211712710.1061/(ASCE)0733-9496(2009)135:2(117)
RevelliRRidolfiLFuzzy approach for analysis of pipe networksJ Hydraul Eng200212819310110.1061/(ASCE)0733-9429(2002)128:1(93)
RubinsteinRYOptimization of computer simulation models with rare eventsEur J Oper Res1997998911210.1016/S0377-2217(96)00385-2
LanseyKDuanNMaysLWTungYKWater distribution design under uncertaintyJ Water Resour Plan Manag ASCE1989115563064510.1061/(ASCE)0733-9496(1989)115:5(630)
XuCGoulterICProbabilistic model for water distribution reliabilityJ Water Resour Plan Manag ASCE1998124421822810.1061/(ASCE)0733-9496(1998)124:4(218)
RossmanLAEpanet2 users manual. report, U.S2000Washington, DCEnviron. Prot. Agency
KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122798610.1214/aoms/1177729694
ShapiroAFFuzzy random variablesInsur Math Econ200944230731410.1016/j.insmatheco.2008.05.008
RossJLOzbekMMPinderGFAleatoric and epistemic uncertainty in groundwater flow and transport simulationWater Resour Res200945W00B1510.1029/2007WR006799
SchaakeJLaiDLinear programming and dynamic programming applications to water distribution network design, Rep. No. 1161969CambridgeDept. of Civil Engineering, Massachusetts Institute of Technology
MöllerBBeerMFuzzy randomness: uncertainty in civil engineering and computational mechanics2004BerlinSpringer10.1007/978-3-662-07358-2
KwakernaakHFuzzy random variables—I. Definitions and theoremsInf Sci197815112910.1016/0020-0255(78)90019-1
AF Shapiro (728_CR34) 2009; 44
H Kwakernaak (728_CR18) 1978; 15
C Xu (728_CR38) 1999; 125
JL Ross (728_CR29) 2009; 45
S Derya (728_CR6) 2009; 135
R Revelli (728_CR28) 2002; 128
G Fu (728_CR8) 2011; 47
R Gupta (728_CR11) 1996; 122
J Schaake (728_CR32) 1969
G Fu (728_CR9) 2011; 47
T Huang (728_CR13) 2009; 192
728_CR14
728_CR15
R Gupta (728_CR12) 2007; 24
MC Cunha (728_CR4) 2001; 7
K Lansey (728_CR19) 1997; 3
ZS Kapelan (728_CR16) 2005; 41
RY Rubinstein (728_CR31) 1997; 99
CE Shannon (728_CR33) 1948; 27
K Lansey (728_CR20) 1989; 115
AV Babayan (728_CR2) 2007; 133
B Liu (728_CR21) 2001; 9
728_CR1
BA Tolson (728_CR36) 2004; 130
MD McKay (728_CR22) 1979; 21
C Xu (728_CR37) 1998; 124
728_CR5
M Spiliotis (728_CR35) 2012; 29
728_CR40
N Branisavljevic (728_CR3) 2006; 23
O Giustolisi (728_CR10) 2009; 135
B Möller (728_CR24) 2004
LA Zadeh (728_CR39) 1965; 8
728_CR27
D Dubois (728_CR7) 1988
B Merz (728_CR23) 2005; 309
728_CR25
L Perelman (728_CR26) 2007; 39
LA Rossman (728_CR30) 2000
S Kullback (728_CR17) 1951; 22
References_xml – reference: XuCGoulterICProbabilistic model for water distribution reliabilityJ Water Resour Plan Manag ASCE1998124421822810.1061/(ASCE)0733-9496(1998)124:4(218)
– reference: FuGKapelanZFuzzy probabilistic design of water distribution networksWater Resour Res20114711210.1029/2009WR008944W05538
– reference: RevelliRRidolfiLFuzzy approach for analysis of pipe networksJ Hydraul Eng200212819310110.1061/(ASCE)0733-9429(2002)128:1(93)
– reference: RossJLOzbekMMPinderGFAleatoric and epistemic uncertainty in groundwater flow and transport simulationWater Resour Res200945W00B1510.1029/2007WR006799
– reference: BabayanAVSavicDAWaltersGAKapelanZSRobust least-cost design of water distribution networks using redundancy and integration-based methodologiesJ Water Resour Plan Manag20071331677710.1061/(ASCE)0733-9496(2007)133:1(67)
– reference: SchaakeJLaiDLinear programming and dynamic programming applications to water distribution network design, Rep. No. 1161969CambridgeDept. of Civil Engineering, Massachusetts Institute of Technology
– reference: ZadehLAFuzzy setsInf Control1965833835310.1016/S0019-9958(65)90241-X
– reference: Zecchin AC, Simpson AR, Maier HR and Nixon JB (2005) Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans on Evol Comp 9( 2): 175–191
– reference: ShapiroAFFuzzy random variablesInsur Math Econ200944230731410.1016/j.insmatheco.2008.05.008
– reference: Abebe A, Guinot V, Solomatine D (2000) Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. Proc. 4th Int. Conf. on Hydroinformatics, Iowa City, US, pp 1–8
– reference: GuptaRBhavePRReliability based design of water distribution systemsJ Environ Eng ASCE19961221515410.1061/(ASCE)0733-9372(1996)122:1(51)
– reference: KapelanZSSavicDAWaltersGAMultiobjective design of water distribution systems under uncertaintyWater Resour Res20054110.1029/2004WR003787
– reference: Reca J, Martinez J, Gil C, Banos R (2008) Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour Manage 22(10): 1367–1379
– reference: Jinesh Babu KS and Vijayalakshmi DP (2013) Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. J of Pipeline Systems Engineering and Practice 4 (1): 57 - 67
– reference: GiustolisiOLaucelliDColomboAFDeterministic versus stochastic design of water distribution networksJ Water Resour Plann Manage ASCE2009135211712710.1061/(ASCE)0733-9496(2009)135:2(117)
– reference: RubinsteinRYOptimization of computer simulation models with rare eventsEur J Oper Res1997998911210.1016/S0377-2217(96)00385-2
– reference: LanseyKUncertainty in water distribution network modelingJ Contemp Water Res Educ1997312226
– reference: McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239245
– reference: KwakernaakHFuzzy random variables—I. Definitions and theoremsInf Sci197815112910.1016/0020-0255(78)90019-1
– reference: BranisavljevicNIvetiMFuzzy approach in the uncertainty analysis of the water distribution network of BECEJCiv Eng Environ Syst200623322123610.1080/10286600600789425
– reference: CunhaMCSousaJHydraulic infrastructures design using simulated annealingJ Infrastruct Syst200171323910.1061/(ASCE)1076-0342(2001)7:1(32)
– reference: RossmanLAEpanet2 users manual. report, U.S2000Washington, DCEnviron. Prot. Agency
– reference: ShannonCEA mathematical theory of communicationBell System Tech J19482737942310.1002/j.1538-7305.1948.tb01338.x
– reference: DeryaSLanseyKEffect of uncertainty on water distribution system model design decisionsJ Water Resour Plan Manag20091351384710.1061/(ASCE)0733-9496(2009)135:1(38)
– reference: MerzBThiekenAHSeparating natural and epistemic uncertainty in flood frequency analysisJ Hydrol20053091–411413210.1016/j.jhydrol.2004.11.015
– reference: SpiliotisMTsakirisGWater distribution network design under variable water demandCivil Eng Environ Syst (Taylor and Francis)201229210712210.1080/10286608.2012.663359
– reference: TolsonBAMaierHRSimpsonARGenetic algorithms for reliability-based optimization of water distribution systemsJ Water Resour Plan Manag ASCE20041301637210.1061/(ASCE)0733-9496(2004)130:1(63)
– reference: Ostfeld A and Tubaltzev A (2008) Ant Colony Optimization for Least-Cost Design and Operation of Pumping Water Distribution Systems. J Water Resour Plang and Mgmt, ASCE, 134(2): 107–118
– reference: LiuBFuzzy random chance-constrained programmingIEEE Trans Fuzzy Syst20019571372010.1109/91.963757
– reference: PerelmanLOstfeldAAn adaptive heuristic cross-entropy algorithm for optimal design of water distribution systemsEng Optim200739441342810.1080/03052150601154671
– reference: DuboisDPradeHPossibility theory1988New YorkPlenum10.1007/978-1-4684-5287-7
– reference: FuGButlerDKhuSTSunSImprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theoryWater Resour Res201147W0253410.1029/2009WR008944
– reference: Kadu MS, Gupta R, and Bhave PR 2008 Optimal Design of Water Networks Using a Modified Genetic Algorithm with Reduction in Search Space. J Water Resour Plang and Mgmt, ASCE, 134(2): 147–160
– reference: De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A Tutorial of the Cross Entropy Method. Annals of Operations Research 134: 19–67
– reference: LanseyKDuanNMaysLWTungYKWater distribution design under uncertaintyJ Water Resour Plan Manag ASCE1989115563064510.1061/(ASCE)0733-9496(1989)115:5(630)
– reference: XuCGoulterICReliability-based optimal design of water distribution networkJ Water Resour Plan Manag ASCE1999125635236210.1061/(ASCE)0733-9496(1999)125:6(352)
– reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122798610.1214/aoms/1177729694
– reference: GuptaRBhavePRFuzzy parameters in pipe network analysisCivil Eng Environ Syst2007241335410.1080/10286600601024822
– reference: HuangTTangWRisk model with fuzzy random individual claim amountEur J Oper Res200919287989010.1016/j.ejor.2007.10.035
– reference: MöllerBBeerMFuzzy randomness: uncertainty in civil engineering and computational mechanics2004BerlinSpringer10.1007/978-3-662-07358-2
– volume: 135
  start-page: 38
  issue: 1
  year: 2009
  ident: 728_CR6
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2009)135:1(38)
– volume: 135
  start-page: 117
  issue: 2
  year: 2009
  ident: 728_CR10
  publication-title: J Water Resour Plann Manage ASCE
  doi: 10.1061/(ASCE)0733-9496(2009)135:2(117)
– volume: 41
  year: 2005
  ident: 728_CR16
  publication-title: Water Resour Res
  doi: 10.1029/2004WR003787
– volume: 9
  start-page: 713
  issue: 5
  year: 2001
  ident: 728_CR21
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.963757
– volume: 130
  start-page: 63
  issue: 1
  year: 2004
  ident: 728_CR36
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(2004)130:1(63)
– ident: 728_CR5
  doi: 10.1007/s10479-005-5724-z
– volume-title: Linear programming and dynamic programming applications to water distribution network design, Rep. No. 116
  year: 1969
  ident: 728_CR32
– volume: 8
  start-page: 338
  year: 1965
  ident: 728_CR39
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 192
  start-page: 879
  year: 2009
  ident: 728_CR13
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.10.035
– volume: 128
  start-page: 93
  issue: 1
  year: 2002
  ident: 728_CR28
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2002)128:1(93)
– volume: 309
  start-page: 114
  issue: 1–4
  year: 2005
  ident: 728_CR23
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.11.015
– volume: 47
  start-page: W02534
  year: 2011
  ident: 728_CR9
  publication-title: Water Resour Res
– ident: 728_CR14
  doi: 10.1061/(ASCE)PS.1949-1204.0000113
– volume: 29
  start-page: 107
  issue: 2
  year: 2012
  ident: 728_CR35
  publication-title: Civil Eng Environ Syst (Taylor and Francis)
  doi: 10.1080/10286608.2012.663359
– ident: 728_CR15
  doi: 10.1061/(ASCE)0733-9496(2008)134:2(147)
– volume: 133
  start-page: 67
  issue: 1
  year: 2007
  ident: 728_CR2
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2007)133:1(67)
– ident: 728_CR25
  doi: 10.1061/(ASCE)0733-9496(2008)134:2(107)
– volume: 99
  start-page: 89
  year: 1997
  ident: 728_CR31
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00385-2
– ident: 728_CR40
  doi: 10.1109/TEVC.2005.844168
– volume: 24
  start-page: 33
  issue: 1
  year: 2007
  ident: 728_CR12
  publication-title: Civil Eng Environ Syst
  doi: 10.1080/10286600601024822
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 728_CR22
  publication-title: Technometrics
– volume-title: Fuzzy randomness: uncertainty in civil engineering and computational mechanics
  year: 2004
  ident: 728_CR24
  doi: 10.1007/978-3-662-07358-2
– ident: 728_CR27
  doi: 10.1007/s11269-007-9230-8
– volume: 3
  start-page: 22
  issue: 1
  year: 1997
  ident: 728_CR19
  publication-title: J Contemp Water Res Educ
– volume: 124
  start-page: 218
  issue: 4
  year: 1998
  ident: 728_CR37
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(1998)124:4(218)
– volume-title: Epanet2 users manual. report, U.S
  year: 2000
  ident: 728_CR30
– volume-title: Possibility theory
  year: 1988
  ident: 728_CR7
  doi: 10.1007/978-1-4684-5287-7
– volume: 47
  start-page: 1
  year: 2011
  ident: 728_CR8
  publication-title: Water Resour Res
  doi: 10.1029/2010WR009138
– volume: 39
  start-page: 413
  issue: 4
  year: 2007
  ident: 728_CR26
  publication-title: Eng Optim
  doi: 10.1080/03052150601154671
– volume: 15
  start-page: 1
  issue: 1
  year: 1978
  ident: 728_CR18
  publication-title: Inf Sci
  doi: 10.1016/0020-0255(78)90019-1
– volume: 125
  start-page: 352
  issue: 6
  year: 1999
  ident: 728_CR38
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(1999)125:6(352)
– volume: 115
  start-page: 630
  issue: 5
  year: 1989
  ident: 728_CR20
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(1989)115:5(630)
– volume: 45
  start-page: W00B15
  year: 2009
  ident: 728_CR29
  publication-title: Water Resour Res
– volume: 7
  start-page: 32
  issue: 1
  year: 2001
  ident: 728_CR4
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)1076-0342(2001)7:1(32)
– volume: 122
  start-page: 51
  issue: 1
  year: 1996
  ident: 728_CR11
  publication-title: J Environ Eng ASCE
  doi: 10.1061/(ASCE)0733-9372(1996)122:1(51)
– volume: 23
  start-page: 221
  issue: 3
  year: 2006
  ident: 728_CR3
  publication-title: Civ Eng Environ Syst
  doi: 10.1080/10286600600789425
– volume: 44
  start-page: 307
  issue: 2
  year: 2009
  ident: 728_CR34
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2008.05.008
– volume: 22
  start-page: 79
  year: 1951
  ident: 728_CR17
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– ident: 728_CR1
– volume: 27
  start-page: 379
  year: 1948
  ident: 728_CR33
  publication-title: Bell System Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
SSID ssj0010090
Score 2.245421
Snippet This paper presents cross entropy (CE) optimization for optimal design of water distribution networks (WDN) under demand uncertainty. In design of WDNs, it is...
SourceID proquest
pascalfrancis
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4075
SubjectTerms Atmospheric Sciences
case studies
Civil Engineering
Demand
Design
Design engineering
Design optimization
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Entropy
Environment
Exact sciences and technology
Fuzzy
Fuzzy sets
Fuzzy systems
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
Mathematical models
Methodology
Methods
Negligence
Optimization
Optimization techniques
Random variables
seeds
Set theory
uncertainty
Water demand
Water distribution
Water resources
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTyMxDI54XOCAWB6ivJSVOIEiTdLMI0dEqdBKy0pABbcoySRc6AyiLRL8eux0ptDVbiXO42SSOLE_x45NyEnJvcW06czZsmRSKsdsUIH5Lo_pv00W73R_X2dXA_nrIX1o3nGP2mj31iUZJfXnYzcuMoztkSzJRcGyZbKaYjYv2MQDcT5zHQBoiBcrCuwiCfqydWX-q4s5ZbQcTI2hkWYEqxOmZS3mcOdfrtKogfqbZKOBjvR8yusfZMlXW2T9S0LBbfL6ByTAEIh6MTCD1oHeA5h8oT3Mj9uUtqLX09DvEW2rdUJb2p-8v7_RG1OV9RDFH7bt-SG-BKYxroBe4BzoJYa2P7_R-KfmEecOGfQv7y6uWFNZgTlY-zHLrS0Dz41XJRiiZeKSIG3hwJRR1hYqDaEolXQJD6CsAi8ANIAhyJ11UqYm8d1dslLVld8j1CkXrLDozAcw4oJJbVfJIvMSo7Fc2iFJu8TaNWnHsfrFk_5MmIxc0cAVjVzRWYeczpo8T3NuLCLeA75p8wgyUQ9uBVqMCGtlV3TI8RwzZ52JIlNZLqDtYctd3RzdkeYAiBUWcIKh_5x9hkOHnhRT-XoCNIjTVAHG3wIaQHaAEPJULKJBvzJYzLxDztrd9WUo_5v0_reoD8iaiHset_4hWRm_TPwRQKmxPY5H5wNLGxPr
  priority: 102
  providerName: Springer Nature
Title Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization
URI https://link.springer.com/article/10.1007/s11269-014-0728-6
https://www.proquest.com/docview/1774928325
https://www.proquest.com/docview/1663598606
https://www.proquest.com/docview/1846413752
https://www.proquest.com/docview/1864529171
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB41yQUOqLzUhRIZiRPIYtfxPnyoUGiSViACKkSU02ptr7mQ3dAkSO2vZ8bZTRskct2Ms48Zj7_xjL8BeGWjUhNtOjfaWi6lMlw75Xg5iDz9d5H4Pd1P0-R8Jj9cxpcHMG3PwlBZZesTvaO2taE98rcR4hRFfXXid4vfnLpGUXa1baFRNK0V7ImnGOtATxAzVhd678fTLxfbvAIiCr_rojBokriYtnlOf5guEgnVDkkepiLjyc5K1XFFTXWTxRI_ndv0vNgBpf_kUf3yNDmEBw2uZMONITyEg7J6BPfvsA0-hj-f0T3MUWjkqzZY7dh3RJpXbETkuU3fKzbd1IUvWdvKE8eyyfrm5ppdFJWt5-QbaeyonNMxYeaLDtgpvQMbU9374pr5OzUnPJ_AbDL-dnrOm7YL3KBiVjzV2rooLUplMUq1oQmd1JnBOEdpnanYucwqacLI4UrmogwRBUaJkdFGyrgIy8FT6FZ1VR4BM8o4LTRl-hGpGFfEeqBklpSSSrVMHEDYfuLcNJzk1BrjV37LpkxayVErOWklTwJ4vR2y2BBy7BM-Qr3lxU90mPnsq6BwkjCvHIgA-jvK3P6ZyBKVpALHHrfazZt5vcxvrTCAl9ufcUZSmqWoynqNMgTiVIaR4R4ZhH0IH9JY7JOhpDOG01EAb1rruvMo_3vpZ_sf_DncE97IydaPobu6WpcvEFitdB862eSsD73h2Y-P434zd_DqTAz_Agp5IVQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71cQAOiKdqKGWR4AKysNfrxx4qBE2ilLYBlUb0tnhfXIgdmgSU_jh-GzMbO22QyK1nz67XntnZb3ZehLw0sVVYNj3UypiQc6FD5YQLbRL78t9l5u90TwZZf8g_nqfnG-RPmwuDYZWtTvSK2tQa78jfxoBTBPbVSd-Nf4bYNQq9q20LjbJprWD2fYmxJrHjyM5_gwk32T_sAL9fMdbrnh30w6bLQKhhHdMwV8q4OC-tMGCUmUhHjqtCA6wXShUida4wgusodqC4XVzAAQpGUayV5jwtI5vAvJtkmydcgPG3_aE7-Hy69GMAgvG3PAKMNA6Hd-tX9cl7McswVomHUc6KMFs5GTddWWOcZjkBVrlFj40VEPyP39Yfh7175G6DY-n7heDdJxu2ekDuXKtu-JD8-gTqaAREHR8lQmtHvwKyvaAdLNbb9Nmig0Uc-oS2rUNhLO3NLi_n9LSsTD1CXYxjO3aEacnUBznQA_wG2sU4-_Gc-jc1GaWPyPBGGPCYbFV1ZXcI1UI7xRRGFgAy0q5MVSJ4kVmOoWE6DUjU_mKpmxro2Irjh7yq3oxckcAViVyRWUBeL4eMFwVA1hHvAN9k-R0UtBx-YWi-IsbmCQvI3gozl5OxIhNZzmDsbstd2eiRibyS-oC8WD4GDYBunbKy9QxoEDSKAizRNTQAMwGu5ClbR4NObjDf44C8aaXr2lL-99FP1i_8ObnVPzs5lseHg6On5DbzAo9yv0u2phcz-wxA3VTtNTuHkm83vVn_AtXCWyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2ISF4QHxqgTGMBC8ga4nrfPgBIbQsbAwKAir25sWOzQtNytqCuj-Nv447J-lWJPq259qpkzuff-f73R0hz6rIaiybzoyuKiaENEw76ZgdRL78d5n4O90Pw-RwJN6dxCcb5E-fC4O0yt4mekNdNQbvyPciwCkS--rEe66jRXzKi9eTnww7SGGktW-n0arIsV38Bvdt-uooB1k_57w4-Lp_yLoOA8zAGmYs1bpyUVpaWYFDVoUmdEJnBiC91DqTsXNZJYUJIwdG20UZHJ7gEEVGGyHiMrQDeO4muZZiFXfMUi_eLiMYgF38_Y4E90zAsd1HVH3aXsQTZCkJFqY8Y8nKmbjpygYZmuUUhOTa7hor8PefiK0_CIvb5FaHYOmbVuXukA1b3yU3L9U1vEd-fQRDNIZBueeH0MbRb4Bpz2iOZXq7Dlt02DLQp7RvGgpzaTE_P1_Qz2VdNWO0wjg3t2NMSKae3kD38R3oATLsJwvq_6nLJb1PRlfy-R-Qrbqp7TahRhqnuUZOAWAi48pYD6TIEiuQFGbigIT9J1amq36OTTh-qIu6zSgVBVJRKBWVBOTFcsqkLf2xbvA2yE2V38E0q9EXjo4romsx4AHZXRHm8mE8S2SScpi700tXdRZkqi70PSBPlz_D3seATlnbZg5jEC7KDHzQNWMAYAJQSWO-bgyGt8FxjwLysteuS0v530s_XL_wJ-Q6bFH1_mh4_Ijc4F7fUe13yNbsbG4fA5qb6V2_bSg5vep9-hdHXFjD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Design+of+Water+Distribution+Networks+Considering+Fuzzy+Randomness+of+Demands+Using+Cross+Entropy+Optimization&rft.jtitle=Water+resources+management&rft.au=Shibu%2C+A&rft.au=Reddy%2C+M+Janga&rft.date=2014-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=28&rft.issue=12&rft.spage=4075&rft_id=info:doi/10.1007%2Fs11269-014-0728-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3993306081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon