Spherical: an iterative workflow for assembling metagenomic datasets
Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 19; no. 1; pp. 20 - 8 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        24.01.2018
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-018-2028-2 | 
Cover
| Abstract | Background
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.
Results
We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called
Spherical
) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner.
Conclusions
We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (
P
 < 0.05) changes in the predicted taxonomic profile of all datasets analysed.
Spherical
is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at:
https://github.com/thh32/Spherical
. | 
    
|---|---|
| AbstractList | Background
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.
Results
We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called
Spherical
) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner.
Conclusions
We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (
P
 < 0.05) changes in the predicted taxonomic profile of all datasets analysed.
Spherical
is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at:
https://github.com/thh32/Spherical
. The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.BACKGROUNDThe consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner.RESULTSWe propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner.We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .CONCLUSIONSWe demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical . Abstract Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical . The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical. Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: Keywords: Assembly, Metagenome, Genomics The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .  | 
    
| ArticleNumber | 20 | 
    
| Audience | Academic | 
    
| Author | Hitch, Thomas C. A. Creevey, Christopher J.  | 
    
| Author_xml | – sequence: 1 givenname: Thomas C. A. surname: Hitch fullname: Hitch, Thomas C. A. email: thitch@ukaachen.de organization: Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Functional Microbiome Research Group, Institute of Medical Microbiology, Uniklinik RWTH Aachen – sequence: 2 givenname: Christopher J. surname: Creevey fullname: Creevey, Christopher J. organization: Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29361904$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkt1v1SAYxhsz4z70D_DGNPFGLzqB0lK8MFnm10mWmDi9Jm8pdBxbOAO64_57qT0uO8Yspgkl8HseeB_e4-zAOquy7DlGpxg39ZuASVPxAuGmIIik4VF2hCnDBcGoOrg3P8yOQ1gjhFmDqifZIeFljTmiR9n7y82V8kbC8DYHm5uoPERzo_Kt8z_04La5dj6HENTYDsb2-agi9Mq60ci8gwhBxfA0e6xhCOrZ7n-Sff_44dv55-Liy6fV-dlFIWvEY8EapRVhHceYMZJug4msO1lLoKRudNeySmtUck4r1HWshAaBxB2hpZaEtaw8yVaLb-dgLTbejOBvhQMjfi843wvw0chBiZK3mJUt0kR3tCQUEIea1VzRBqGyxcmLLF6T3cDtFobhzhAjMccrlnhFilfM8QqSRO8W0WZqR9VJZaOHYe8m-zvWXIne3YiKNZjU86mvdgbeXU8qRDGaINUwgFVuCgJzjpqKsmY-6-WC9pDqMVa75ChnXJxVtC45pZQn6vQfVPo6lV4otYs2aX1P8HpPkJiofsYephDE6vLrPvvifrl3df5pnwSwBZDeheCVFtLE1D9urt4MDyaJ_1L-T_q7JwuJtb3yYu0mb1PHPSD6BW-z9a8 | 
    
| CitedBy_id | crossref_primary_10_1093_femsle_fnz161 crossref_primary_10_1186_s40168_019_0618_5 crossref_primary_10_3389_fmicb_2018_03349 crossref_primary_10_1007_s10142_021_00810_y crossref_primary_10_3389_fmicb_2020_00393  | 
    
| Cites_doi | 10.1016/S0022-2836(05)80360-2 10.1371/journal.pone.0002945 10.12688/f1000research.6924.1 10.1093/bioinformatics/bts297 10.1186/1471-2105-9-386 10.1038/ismej.2011.85 10.1371/journal.pone.0036740 10.1007/978-3-540-74126-8_27 10.1101/gr.089532.108 10.1093/bioinformatics/btr595 10.1038/nmeth.1923 10.1371/journal.pone.0031386 10.1371/journal.pone.0000830 10.1093/bioinformatics/btq608 10.1038/nrg3367 10.1093/bioinformatics/bts397 10.1038/nature12212 10.1038/nbt.2023 10.1093/nar/gkj161 10.1126/science.1093857 10.1093/bioinformatics/bts162 10.1128/AEM.01641-13 10.1093/bioinformatics/btv226 10.1093/bioinformatics/bts174 10.1093/nar/gks678 10.1093/bib/bbs031 10.1093/bioinformatics/btu638 10.1186/gb-2012-13-12-r122  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12859-018-2028-2 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 8 | 
    
| ExternalDocumentID | oai_doaj_org_article_39b173b0f2fd4324a09a6769e48003b1 10.1186/s12859-018-2028-2 PMC5781261 A546394449 29361904 10_1186_s12859_018_2028_2  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: New Zealand fund for Global Partnerships in Livestock Emissions Research – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E/W/10964A01 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E/W/10964A01 – fundername: ; – fundername: ; grantid: BB/E/W/10964A01  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 123 2VQ 4.4 ADTOC AFFHD AHSBF C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c609t-78efe27d91177200112c6dc6ca4268fdb75ff0399450dd73a80ac1d243fc27b73 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:53:48 EDT 2025 Wed Oct 29 12:00:22 EDT 2025 Tue Sep 30 15:44:05 EDT 2025 Wed Oct 01 13:16:04 EDT 2025 Mon Oct 20 21:55:37 EDT 2025 Mon Oct 20 16:24:25 EDT 2025 Thu Oct 16 14:55:47 EDT 2025 Thu Apr 03 07:01:32 EDT 2025 Wed Oct 01 04:15:30 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Sat Sep 06 07:27:15 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Metagenome Genomics Assembly  | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c609t-78efe27d91177200112c6dc6ca4268fdb75ff0399450dd73a80ac1d243fc27b73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2028-2 | 
    
| PMID | 29361904 | 
    
| PQID | 1990854782 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39b173b0f2fd4324a09a6769e48003b1 unpaywall_primary_10_1186_s12859_018_2028_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5781261 proquest_miscellaneous_1990854782 gale_infotracmisc_A546394449 gale_infotracacademiconefile_A546394449 gale_incontextgauss_ISR_A546394449 pubmed_primary_29361904 crossref_citationtrail_10_1186_s12859_018_2028_2 crossref_primary_10_1186_s12859_018_2028_2 springer_journals_10_1186_s12859_018_2028_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-01-24 | 
    
| PublicationDateYYYYMMDD | 2018-01-24 | 
    
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-24 day: 24  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | BMC series – open, inclusive and trusted | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2018 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | S Anders (2028_CR29) 2015; 31 2028_CR19 2028_CR18 SR Modi (2028_CR3) 2013; 499 B Langmead (2028_CR21) 2012; 9 2028_CR5 PEC Compeau (2028_CR10) 2011; 29 N Nagarajan (2028_CR4) 2013; 14 T Conway (2028_CR9) 2012; 28 MH Mohammed (2028_CR14) 2011; 27 DR Mende (2028_CR22) 2012; 7 D van der Lelie (2028_CR2) 2012; 7 B Lai (2028_CR12) 2012; 28 2028_CR15 2028_CR13 Y Peng (2028_CR17) 2012; 28 H Mirebrahim (2028_CR8) 2015; 31 Y Wang (2028_CR16) 2012; 28 SF Altschul (2028_CR26) 1990; 215 Y Zhao (2028_CR28) 2012; 28 P Belda-Ferre (2028_CR24) 2012; 6 A Qu (2028_CR23) 2008; 3 I Krohn-Molt (2028_CR1) 2013; 79 CH Wu (2028_CR27) 2006; 34 T Namiki (2028_CR6) 2012; 40 S Boisvert (2028_CR7) 2012; 13 2028_CR25 JC Venter (2028_CR11) 2004; 304 2028_CR20 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 21716308 - ISME J. 2012 Jan;6(1):46-56 26535114 - F1000Res. 2015 Sep 25;4:900 23259615 - Genome Biol. 2012 Dec 22;13(12):R122 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155 22611131 - Bioinformatics. 2012 Jul 15;28(14):1937-8 16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91 22629327 - PLoS One. 2012;7(5):e36740 22851513 - Brief Bioinform. 2012 Nov;13(6):646-55 22495754 - Bioinformatics. 2012 Jun 1;28(11):1420-8 22962452 - Bioinformatics. 2012 Sep 15;28(18):i356-i362 23748443 - Nature. 2013 Jul 11;499(7457):219-22 21030462 - Bioinformatics. 2011 Jan 1;27(1):22-30 22495746 - Bioinformatics. 2012 Jun 1;28(11):1455-62 23913425 - Appl Environ Microbiol. 2013 Oct;79(20):6196-206 22384016 - PLoS One. 2012;7(2):e31386 22068540 - Nat Biotechnol. 2011 Nov 08;29(11):987-91 19251739 - Genome Res. 2009 Jun;19(6):1117-23 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 18698407 - PLoS One. 2008 Aug 13;3(8):e2945 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 26072514 - Bioinformatics. 2015 Jun 15;31(12):i9-16 15001713 - Science. 2004 Apr 2;304(5667):66-74 23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67 17786202 - PLoS One. 2007 Sep 05;2(9):e830 18803844 - BMC Bioinformatics. 2008 Sep 19;9:386 22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6  | 
    
| References_xml | – volume: 215 start-page: 403 year: 1990 ident: 2028_CR26 publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 3 start-page: 19 year: 2008 ident: 2028_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0002945 – ident: 2028_CR19 doi: 10.12688/f1000research.6924.1 – volume: 28 start-page: 1937 year: 2012 ident: 2028_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts297 – ident: 2028_CR25 doi: 10.1186/1471-2105-9-386 – ident: 2028_CR18 – volume: 6 start-page: 46 year: 2012 ident: 2028_CR24 publication-title: ISME J doi: 10.1038/ismej.2011.85 – volume: 7 start-page: e36740 year: 2012 ident: 2028_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0036740 – ident: 2028_CR5 doi: 10.1007/978-3-540-74126-8_27 – ident: 2028_CR20 doi: 10.1101/gr.089532.108 – volume: 28 start-page: 125 year: 2012 ident: 2028_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr595 – volume: 9 start-page: 357 year: 2012 ident: 2028_CR21 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 7 year: 2012 ident: 2028_CR22 publication-title: PLoS One doi: 10.1371/journal.pone.0031386 – ident: 2028_CR13 doi: 10.1371/journal.pone.0000830 – volume: 27 start-page: 22 year: 2011 ident: 2028_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq608 – volume: 14 start-page: 157 year: 2013 ident: 2028_CR4 publication-title: Nat Rev Genet doi: 10.1038/nrg3367 – volume: 28 start-page: i356 year: 2012 ident: 2028_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts397 – volume: 499 start-page: 219 year: 2013 ident: 2028_CR3 publication-title: Nature doi: 10.1038/nature12212 – volume: 29 start-page: 987 year: 2011 ident: 2028_CR10 publication-title: Nat Biotechnol doi: 10.1038/nbt.2023 – volume: 34 start-page: 187 year: 2006 ident: 2028_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj161 – volume: 304 start-page: 66 year: 2004 ident: 2028_CR11 publication-title: Science doi: 10.1126/science.1093857 – volume: 28 start-page: 1455 year: 2012 ident: 2028_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts162 – volume: 79 start-page: 6196 year: 2013 ident: 2028_CR1 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01641-13 – volume: 31 start-page: i9 year: 2015 ident: 2028_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv226 – volume: 28 start-page: 1420 year: 2012 ident: 2028_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – volume: 40 year: 2012 ident: 2028_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks678 – ident: 2028_CR15 doi: 10.1093/bib/bbs031 – volume: 31 start-page: 166 year: 2015 ident: 2028_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 13 start-page: R122 year: 2012 ident: 2028_CR7 publication-title: Genome Biol doi: 10.1186/gb-2012-13-12-r122 – reference: 22384016 - PLoS One. 2012;7(2):e31386 – reference: 17786202 - PLoS One. 2007 Sep 05;2(9):e830 – reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23 – reference: 22611131 - Bioinformatics. 2012 Jul 15;28(14):1937-8 – reference: 26072514 - Bioinformatics. 2015 Jun 15;31(12):i9-16 – reference: 26535114 - F1000Res. 2015 Sep 25;4:900 – reference: 22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6 – reference: 22495746 - Bioinformatics. 2012 Jun 1;28(11):1455-62 – reference: 23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 21030462 - Bioinformatics. 2011 Jan 1;27(1):22-30 – reference: 16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91 – reference: 23913425 - Appl Environ Microbiol. 2013 Oct;79(20):6196-206 – reference: 22851513 - Brief Bioinform. 2012 Nov;13(6):646-55 – reference: 23748443 - Nature. 2013 Jul 11;499(7457):219-22 – reference: 18803844 - BMC Bioinformatics. 2008 Sep 19;9:386 – reference: 22962452 - Bioinformatics. 2012 Sep 15;28(18):i356-i362 – reference: 22629327 - PLoS One. 2012;7(5):e36740 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 23259615 - Genome Biol. 2012 Dec 22;13(12):R122 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 21716308 - ISME J. 2012 Jan;6(1):46-56 – reference: 15001713 - Science. 2004 Apr 2;304(5667):66-74 – reference: 22495754 - Bioinformatics. 2012 Jun 1;28(11):1420-8 – reference: 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155 – reference: 18698407 - PLoS One. 2008 Aug 13;3(8):e2945 – reference: 22068540 - Nat Biotechnol. 2011 Nov 08;29(11):987-91  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.282899 | 
    
| Snippet | Background
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and... The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly... Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and... Abstract Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 20 | 
    
| SubjectTerms | Algorithms Analysis Animals Assembly Bioinformatics Biomedical and Life Sciences Cecum - microbiology Chickens Computational Biology/Bioinformatics Computer Appl. in Life Sciences Genetic research Genomics Groundwater - microbiology Humans Information management Internet Life Sciences Metagenome Microarrays Microbial colonies Mouth - microbiology Sequence analysis (applications) Software User-Computer Interface  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlENoeSvrtJC1uKRQaTCRZtuTekrQhLbSHpoHchCRLaWDXG2ovIf--M7bWrFtILr34sJo1aOZJM8OM3xDyTioBgWjJMidonYmcSzhSFnIeWwrjRVC-J9L-9r08ORNfz4vztVFf2BM20AMPitvPK8tkbmngoUb2OEMrg22Z8A4ApO0TH6qqVTIV6wfI1B9rmEyV-y1DnjZImxEVHB4TL9ST9f97Ja_5pL_7Jcei6UNyf9lcmZtrM5ut-aXjLfIoBpTpwbCRx-Seb56QzWHE5M1T8ukUeQPQEh9T06QDiTLccCk2ZIXZ4jqFqDWFCNrPLX6Zns59Z5C4dX7pUmwfbX3XPiNnx59_Hp1kcXJC5kpadZlUPngu6wpLstg1xbgra1c6Aw5ZhdrKIgQKsYkoaF3L3ChqHKu5yIPj0sr8OdloFo1_SdKC2sJDzOK8YaKomJEQ8BlIArGeqVyRELrSpHaRVhynW8x0n16oUg_K16B8jcrXPCEfxr9cDZwatwkfonlGQaTD7n8AkOgIEn0XSBLyFo2rkfCiwY6aC7NsW_3l9Ic-wHkAlRCiSsj7KBQWsANn4gcKoAfkyJpI7k4k4US6yfKbFYY0LmEbW-MXy1Yz8P0KGdRgWy8GTI0bg7gLklkqEiInaJvsfLrSXP7qCcHh1mWQCSdkb4VLHW-i9jbF7o3QvdsM2__DDDvkAcczSFnGxS7Z6H4v_SuI6Tr7uj--fwA3ZEFO priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA86EfVB_La6SRRBcJQlaZq0e9umYwr64BzsLSRpooN7e4ftZey_95y2t9zqmPjSh-a0cE7OJ-fkF0Le6kJCIqp46iWrUpkJDSbloOZxStogYxE6IO0vX9XRifx8mp8OYNF4Fma9f88LtdNwRFiDghf3U8DjJrkFMUp1fVl1MDYMEJp_aFpe-dkk7HTo_H_74LUg9OeA5NglvUfuLOtze3lhZ7O1QHT4gNwfMki612_5Q3Ij1I_I7f5OycvH5MMxAgWg6HeprWmPmgwujeIEVpwtLiikqRRS5jB3eBSdzkNrEal1fuYpzos2oW2ekJPDj98PjtLhqoTUK1a2qS5CDEJXJfZgcUyKC68qr7yFCFzEyuk8RgbJiMxZVenMFsx6XgmZRS-009lTslEv6vCc0Jy5PECS4oPlMi-51ZDhWaj6sIFZ-DwhbCVJ4wcccbzOYma6eqJQphe-AeEbFL4RCXk_fnLeg2hcR7yP2zMSIv519wLUwgzmZLLScZ05FkWsEFPQstLisC5oFrgpxxPyBjfXIMJFjSM0P-yyacyn429mDy8AKKWUZULeDURxARx4O5xIADkgKNaEcnNCCSboJ8uvVzpkcAnn1uqwWDaGQ7AvEDIN2HrW69TIGCRaUL0ymRA90bYJ59OV-uxnhwAObhZsALjcXumlGVxPc51gt0fV_fc2vPivf78kdwUaG-OpkJtko_21DFuQrbXuVWenvwFOKDJf priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJCSmdHbixAlv5WMaSAzEqLQ9WbZjj2ptUi2ppvHXc5ekVTPQEBIvURVfpPp8d_6dfPczIS9FygGIJiwwnOYBj0IBLqUh59EJV5a71DZE2p_3k70x_3QYH26QL8teGD0zelJ2pKFIVDxcb0OfNrEbfpiTnXnuWpdPk52KIQ8bpMW46iE8rpDNJAZwPiCb4_2vo6Omx0iwABKcuDvb_ON3vd2pIfH_PVSv7VUX6yhXh6k3yLVFMVfnZ2o6Xduvdm-R-XKmbZnKyXBR66H5eYEE8j-q4ja52WFbf9Qa4x2yYYu75Gp72-X5PfL-ACkM0Cje-KrwWz5nCLY-1oa5aXnmw3_wAczbmcYmeX9ma4UcsrOJ8bGStbJ1dZ-Mdz98f7cXdJc4BCahWR2I1DobijzD02Es4GKhSXKTGAXYIHW5FrFzFGASj2mei0ilVBmWhzxyJhRaRA_IoCgL-4j4MdWxBfhkrGI8zpgSgD0V5KN4tJqa2CN0uXjSdAzneNHGVDaZTprIVjkSlCNROTL0yOvVJ_OW3uMy4bdoEStBZOZuXpSnx7JzdBllmolIUxe6HNkOFc0UlhGDzUMA1cwjL9CeJHJvFFjcc6wWVSU_HnyTI7yaIOOcZx551Qm5EpdYdb0SoAek6-pJbvUkITiY3vDzpdlKHMKKusKWi0oygCEpkrnBtB62ZryaGEBAyKsp94joGXhv5v2RYvKj4SaHDYBBUu6R7aUryC4oVpcpdnvlLX9fhsf_JP2EXA_RGSg4P98ig_p0YZ8Cjqz1sy42_AKOFGjT priority: 102 providerName: Unpaywall  | 
    
| Title | Spherical: an iterative workflow for assembling metagenomic datasets | 
    
| URI | https://link.springer.com/article/10.1186/s12859-018-2028-2 https://www.ncbi.nlm.nih.gov/pubmed/29361904 https://www.proquest.com/docview/1990854782 https://pubmed.ncbi.nlm.nih.gov/PMC5781261 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-018-2028-2 https://doaj.org/article/39b173b0f2fd4324a09a6769e48003b1  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_ugagfxPdFzxJFEDyim2STTQSRXr16Fq4cVwv107LZbO4O2vRsWs7-984kab3ocfolhey0sPPYmenM_gbgtYg4BqKh62jOUof7nkCTSjDnSUKuDM8iUwJpH_XDwyHvjYLRBqzGW9UMLK5N7Wie1HA2fvfzx_ITGvzH0uCj8H3hEgobJsUkcw8fm7CNjiqmSQ5H_HdRgeD7y8tGwnUw0wnqIue1P9FwUyWa_99n9hWn9WdD5bqqehduL_ILtbxU4_EVx9W9D_fqiNNuVyryADZM_hBuVTMol4_g84CABUhUH2yV2xXKMh6BNnVsZePppY1hrY0htpkkdHXdnpi5ImTXybm2qb-0MPPiMQy7B986h049WsHRIYvnjohMZjyRxlSzpbYq19NhqkOt0GNHWZqIIMsYBi88YGkqfBUxpd3U436mPZEI_wls5dPc7IAdsCQwGNRoo1wexK4SGBEqzBKp4BnpwAK24qTUNe44jb8YyzL_iEJZMV8i8yUxX3oWvF1_5aIC3biJeJ_EsyYkvOzyxXR2Kmvzk36cuMJPWOZlKWEQKhYrau5FTcRjLXEteEXClYSIkVPLzalaFIX8OjiRbRoYEHPOYwve1ETZFHegVX2DAflAIFoNyt0GJZqsbiy_XOmQpCXqc8vNdFFIF4ODiCDWcFtPK51abwwDM8x2GbdANLStsfPmSn5-ViKG47HsYqpswd5KL-XK0m5i7N5adf8thmf_w8HncMcjG2NogHwXtuazhXmBQd08acGmGAl8Rt0vLdhut3uDHn7uH_SPT_BtJ-y0yr9LWqVJ48qwf9z-_gt65Ek2 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSo9IF6lgQIBISFRRdiOEyfclke1Xdoe2FbqzbIdp1TaTaomq6r_npm81AAq4pJDPInkeY9m_JmQdzIRkIjGLLCCZoEIuQSTMlDzmFhoJ_LENUDah0fx9ETMTqPT7hx31U-79y3JxlM3Zp3EHyuGWGtQ-qJkOTzuknWcsQJrXJ9MZvPZ0DxAmP6ugfnXD0chqEHq_9Mf3whIvw9LDh3TTbKxKi709ZVeLG4Epb2H5EGXTfqTVvyPyB1XPCb32vslr5-Qr3MEDUAxfPJ14bcIyuDefJzGyhfllQ8pqw_ps1saPJbuL12tEbV1eW59nB2tXF09JSd7346_TIPu2oTAxjStA5m43HGZpdiPxZEpxm2c2dhqiMZJnhkZ5TmFxERENMtkqBOqLcu4CHPLpZHhFlkrysJtEz-iJnKQsFinmYhSpiVkexoqQGxmJjbyCO05qWyHKY5XWyxUU1sksWqZr4D5CpmvuEc-DJ9ctIAatxF_RvEMhIiF3bwoL89UZ1oqTA2ToaE5zzPEF9Q01Ti4C1oGLsswj7xF4SpEuyhwnOZMr6pK7c9_qAleBpAKIVKPvO-I8hJ2YHV3OgH4gABZI8qdESWYox0tv-l1SOESzrAVrlxVikHgTxA-Dbb1rNWpYWOQdEElS4VH5EjbRjsfrxTnPxs0cHC5DMpgj-z2eqk6N1TdxtjdQXX_LYbn__Xv12Rjenx4oA72j76_IPc5Gh5lARc7ZK2-XLmXkMXV5lVntb8AfLs6uA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA868etB_JzVqVUEwVGWpGnT-jbvvGx-DHEO9haSNNkG97aXtZex_95z2t6yqkx86UNzWsjJ-eSc_A4hb2UmIBBNWWQFLSIRcwkqZSDnManQTvjMtUDa3_bT3UPx-Sg56uec1qtu91VJsrvTgChNZbO1KHyn4lm6VTPEXYM0GE-Zw-M6uSHAueEIg0k6GcoICNjflzL_-tnIGbWY_X9a5kuu6fe2yaF2epfcXpYLfXGuZ7NL7ml6n9zr48pwuxOEB-SaKx-Sm92kyYtHZOcA4QPwQD6Eugw7LGUwdCH2ZflZdR5C8BpCIO3mBi-oh3PXaMRvnZ_aELtIa9fUj8nh9NPPyW7UD1CIbErzJpKZ847LIsfKLDZPMW7TwqZWg1_OfGFk4j2FEEUktChkrDOqLSu4iL3l0sj4CVkrq9I9JWFCTeIgdLFOM5HkTEuI-zTkgljWzGwSELripLI9ujgOuZipNsvIUtUxXwHzFTJf8YC8Hz5ZdNAaVxF_xOMZCBEVu31RnR2rXslUnBsmY0M99wUiDWqaa2zhBXkD42VYQN7g4SrEvSixseZYL-ta7R38UNs4FiAXQuQBedcT-Qp2YHV_TwH4gFBZI8qNESUoph0tv17JkMIl7GYrXbWsFYMQIEMgNdjWeidTw8Yg_IKcloqAyJG0jXY-XilPT1pccDC-DBLigGyu5FL1Bqm-irGbg-j--xie_de_X5Fb33em6uve_pfn5A5HvaMs4mKDrDVnS_cCwrnGvGxV9hfaHj2V | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJCSmdHbixAlv5WMaSAzEqLQ9WbZjj2ptUi2ppvHXc5ekVTPQEBIvURVfpPp8d_6dfPczIS9FygGIJiwwnOYBj0IBLqUh59EJV5a71DZE2p_3k70x_3QYH26QL8teGD0zelJ2pKFIVDxcb0OfNrEbfpiTnXnuWpdPk52KIQ8bpMW46iE8rpDNJAZwPiCb4_2vo6Omx0iwABKcuDvb_ON3vd2pIfH_PVSv7VUX6yhXh6k3yLVFMVfnZ2o6Xduvdm-R-XKmbZnKyXBR66H5eYEE8j-q4ja52WFbf9Qa4x2yYYu75Gp72-X5PfL-ACkM0Cje-KrwWz5nCLY-1oa5aXnmw3_wAczbmcYmeX9ma4UcsrOJ8bGStbJ1dZ-Mdz98f7cXdJc4BCahWR2I1DobijzD02Es4GKhSXKTGAXYIHW5FrFzFGASj2mei0ilVBmWhzxyJhRaRA_IoCgL-4j4MdWxBfhkrGI8zpgSgD0V5KN4tJqa2CN0uXjSdAzneNHGVDaZTprIVjkSlCNROTL0yOvVJ_OW3uMy4bdoEStBZOZuXpSnx7JzdBllmolIUxe6HNkOFc0UlhGDzUMA1cwjL9CeJHJvFFjcc6wWVSU_HnyTI7yaIOOcZx551Qm5EpdYdb0SoAek6-pJbvUkITiY3vDzpdlKHMKKusKWi0oygCEpkrnBtB62ZryaGEBAyKsp94joGXhv5v2RYvKj4SaHDYBBUu6R7aUryC4oVpcpdnvlLX9fhsf_JP2EXA_RGSg4P98ig_p0YZ8Cjqz1sy42_AKOFGjT | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spherical%3A+an+iterative+workflow+for+assembling+metagenomic+datasets&rft.jtitle=BMC+bioinformatics&rft.au=Hitch%2C+Thomas+C.+A&rft.au=Creevey%2C+Christopher+J&rft.date=2018-01-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2028-2&rft.externalDBID=ISR&rft.externalDocID=A546394449 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |