Spherical: an iterative workflow for assembling metagenomic datasets

Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. 1; pp. 20 - 8
Main Authors Hitch, Thomas C. A., Creevey, Christopher J.
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.01.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-018-2028-2

Cover

Abstract Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical ) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant ( P  < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
AbstractList Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical ) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant ( P  < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.BACKGROUNDThe consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner.RESULTSWe propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner.We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .CONCLUSIONSWe demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
Abstract Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a “divide and conquer” manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical.
Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. Results We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. Conclusions We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: Keywords: Assembly, Metagenome, Genomics
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
ArticleNumber 20
Audience Academic
Author Hitch, Thomas C. A.
Creevey, Christopher J.
Author_xml – sequence: 1
  givenname: Thomas C. A.
  surname: Hitch
  fullname: Hitch, Thomas C. A.
  email: thitch@ukaachen.de
  organization: Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Functional Microbiome Research Group, Institute of Medical Microbiology, Uniklinik RWTH Aachen
– sequence: 2
  givenname: Christopher J.
  surname: Creevey
  fullname: Creevey, Christopher J.
  organization: Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29361904$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1v1SAYxhsz4z70D_DGNPFGLzqB0lK8MFnm10mWmDi9Jm8pdBxbOAO64_57qT0uO8Yspgkl8HseeB_e4-zAOquy7DlGpxg39ZuASVPxAuGmIIik4VF2hCnDBcGoOrg3P8yOQ1gjhFmDqifZIeFljTmiR9n7y82V8kbC8DYHm5uoPERzo_Kt8z_04La5dj6HENTYDsb2-agi9Mq60ci8gwhBxfA0e6xhCOrZ7n-Sff_44dv55-Liy6fV-dlFIWvEY8EapRVhHceYMZJug4msO1lLoKRudNeySmtUck4r1HWshAaBxB2hpZaEtaw8yVaLb-dgLTbejOBvhQMjfi843wvw0chBiZK3mJUt0kR3tCQUEIea1VzRBqGyxcmLLF6T3cDtFobhzhAjMccrlnhFilfM8QqSRO8W0WZqR9VJZaOHYe8m-zvWXIne3YiKNZjU86mvdgbeXU8qRDGaINUwgFVuCgJzjpqKsmY-6-WC9pDqMVa75ChnXJxVtC45pZQn6vQfVPo6lV4otYs2aX1P8HpPkJiofsYephDE6vLrPvvifrl3df5pnwSwBZDeheCVFtLE1D9urt4MDyaJ_1L-T_q7JwuJtb3yYu0mb1PHPSD6BW-z9a8
CitedBy_id crossref_primary_10_1093_femsle_fnz161
crossref_primary_10_1186_s40168_019_0618_5
crossref_primary_10_3389_fmicb_2018_03349
crossref_primary_10_1007_s10142_021_00810_y
crossref_primary_10_3389_fmicb_2020_00393
Cites_doi 10.1016/S0022-2836(05)80360-2
10.1371/journal.pone.0002945
10.12688/f1000research.6924.1
10.1093/bioinformatics/bts297
10.1186/1471-2105-9-386
10.1038/ismej.2011.85
10.1371/journal.pone.0036740
10.1007/978-3-540-74126-8_27
10.1101/gr.089532.108
10.1093/bioinformatics/btr595
10.1038/nmeth.1923
10.1371/journal.pone.0031386
10.1371/journal.pone.0000830
10.1093/bioinformatics/btq608
10.1038/nrg3367
10.1093/bioinformatics/bts397
10.1038/nature12212
10.1038/nbt.2023
10.1093/nar/gkj161
10.1126/science.1093857
10.1093/bioinformatics/bts162
10.1128/AEM.01641-13
10.1093/bioinformatics/btv226
10.1093/bioinformatics/bts174
10.1093/nar/gks678
10.1093/bib/bbs031
10.1093/bioinformatics/btu638
10.1186/gb-2012-13-12-r122
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-018-2028-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 8
ExternalDocumentID oai_doaj_org_article_39b173b0f2fd4324a09a6769e48003b1
10.1186/s12859-018-2028-2
PMC5781261
A546394449
29361904
10_1186_s12859_018_2028_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: New Zealand fund for Global Partnerships in Livestock Emissions Research
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E/W/10964A01
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E/W/10964A01
– fundername: ;
– fundername: ;
  grantid: BB/E/W/10964A01
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
123
2VQ
4.4
ADTOC
AFFHD
AHSBF
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c609t-78efe27d91177200112c6dc6ca4268fdb75ff0399450dd73a80ac1d243fc27b73
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:48 EDT 2025
Wed Oct 29 12:00:22 EDT 2025
Tue Sep 30 15:44:05 EDT 2025
Wed Oct 01 13:16:04 EDT 2025
Mon Oct 20 21:55:37 EDT 2025
Mon Oct 20 16:24:25 EDT 2025
Thu Oct 16 14:55:47 EDT 2025
Thu Apr 03 07:01:32 EDT 2025
Wed Oct 01 04:15:30 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metagenome
Genomics
Assembly
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-78efe27d91177200112c6dc6ca4268fdb75ff0399450dd73a80ac1d243fc27b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2028-2
PMID 29361904
PQID 1990854782
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_39b173b0f2fd4324a09a6769e48003b1
unpaywall_primary_10_1186_s12859_018_2028_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5781261
proquest_miscellaneous_1990854782
gale_infotracmisc_A546394449
gale_infotracacademiconefile_A546394449
gale_incontextgauss_ISR_A546394449
pubmed_primary_29361904
crossref_citationtrail_10_1186_s12859_018_2028_2
crossref_primary_10_1186_s12859_018_2028_2
springer_journals_10_1186_s12859_018_2028_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-24
PublicationDateYYYYMMDD 2018-01-24
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References S Anders (2028_CR29) 2015; 31
2028_CR19
2028_CR18
SR Modi (2028_CR3) 2013; 499
B Langmead (2028_CR21) 2012; 9
2028_CR5
PEC Compeau (2028_CR10) 2011; 29
N Nagarajan (2028_CR4) 2013; 14
T Conway (2028_CR9) 2012; 28
MH Mohammed (2028_CR14) 2011; 27
DR Mende (2028_CR22) 2012; 7
D van der Lelie (2028_CR2) 2012; 7
B Lai (2028_CR12) 2012; 28
2028_CR15
2028_CR13
Y Peng (2028_CR17) 2012; 28
H Mirebrahim (2028_CR8) 2015; 31
Y Wang (2028_CR16) 2012; 28
SF Altschul (2028_CR26) 1990; 215
Y Zhao (2028_CR28) 2012; 28
P Belda-Ferre (2028_CR24) 2012; 6
A Qu (2028_CR23) 2008; 3
I Krohn-Molt (2028_CR1) 2013; 79
CH Wu (2028_CR27) 2006; 34
T Namiki (2028_CR6) 2012; 40
S Boisvert (2028_CR7) 2012; 13
2028_CR25
JC Venter (2028_CR11) 2004; 304
2028_CR20
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
21716308 - ISME J. 2012 Jan;6(1):46-56
26535114 - F1000Res. 2015 Sep 25;4:900
23259615 - Genome Biol. 2012 Dec 22;13(12):R122
22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155
22611131 - Bioinformatics. 2012 Jul 15;28(14):1937-8
16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91
22629327 - PLoS One. 2012;7(5):e36740
22851513 - Brief Bioinform. 2012 Nov;13(6):646-55
22495754 - Bioinformatics. 2012 Jun 1;28(11):1420-8
22962452 - Bioinformatics. 2012 Sep 15;28(18):i356-i362
23748443 - Nature. 2013 Jul 11;499(7457):219-22
21030462 - Bioinformatics. 2011 Jan 1;27(1):22-30
22495746 - Bioinformatics. 2012 Jun 1;28(11):1455-62
23913425 - Appl Environ Microbiol. 2013 Oct;79(20):6196-206
22384016 - PLoS One. 2012;7(2):e31386
22068540 - Nat Biotechnol. 2011 Nov 08;29(11):987-91
19251739 - Genome Res. 2009 Jun;19(6):1117-23
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
18698407 - PLoS One. 2008 Aug 13;3(8):e2945
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
26072514 - Bioinformatics. 2015 Jun 15;31(12):i9-16
15001713 - Science. 2004 Apr 2;304(5667):66-74
23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67
17786202 - PLoS One. 2007 Sep 05;2(9):e830
18803844 - BMC Bioinformatics. 2008 Sep 19;9:386
22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6
References_xml – volume: 215
  start-page: 403
  year: 1990
  ident: 2028_CR26
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 3
  start-page: 19
  year: 2008
  ident: 2028_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002945
– ident: 2028_CR19
  doi: 10.12688/f1000research.6924.1
– volume: 28
  start-page: 1937
  year: 2012
  ident: 2028_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts297
– ident: 2028_CR25
  doi: 10.1186/1471-2105-9-386
– ident: 2028_CR18
– volume: 6
  start-page: 46
  year: 2012
  ident: 2028_CR24
  publication-title: ISME J
  doi: 10.1038/ismej.2011.85
– volume: 7
  start-page: e36740
  year: 2012
  ident: 2028_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036740
– ident: 2028_CR5
  doi: 10.1007/978-3-540-74126-8_27
– ident: 2028_CR20
  doi: 10.1101/gr.089532.108
– volume: 28
  start-page: 125
  year: 2012
  ident: 2028_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr595
– volume: 9
  start-page: 357
  year: 2012
  ident: 2028_CR21
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 7
  year: 2012
  ident: 2028_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031386
– ident: 2028_CR13
  doi: 10.1371/journal.pone.0000830
– volume: 27
  start-page: 22
  year: 2011
  ident: 2028_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq608
– volume: 14
  start-page: 157
  year: 2013
  ident: 2028_CR4
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3367
– volume: 28
  start-page: i356
  year: 2012
  ident: 2028_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts397
– volume: 499
  start-page: 219
  year: 2013
  ident: 2028_CR3
  publication-title: Nature
  doi: 10.1038/nature12212
– volume: 29
  start-page: 987
  year: 2011
  ident: 2028_CR10
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2023
– volume: 34
  start-page: 187
  year: 2006
  ident: 2028_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj161
– volume: 304
  start-page: 66
  year: 2004
  ident: 2028_CR11
  publication-title: Science
  doi: 10.1126/science.1093857
– volume: 28
  start-page: 1455
  year: 2012
  ident: 2028_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts162
– volume: 79
  start-page: 6196
  year: 2013
  ident: 2028_CR1
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01641-13
– volume: 31
  start-page: i9
  year: 2015
  ident: 2028_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv226
– volume: 28
  start-page: 1420
  year: 2012
  ident: 2028_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts174
– volume: 40
  year: 2012
  ident: 2028_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks678
– ident: 2028_CR15
  doi: 10.1093/bib/bbs031
– volume: 31
  start-page: 166
  year: 2015
  ident: 2028_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 13
  start-page: R122
  year: 2012
  ident: 2028_CR7
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r122
– reference: 22384016 - PLoS One. 2012;7(2):e31386
– reference: 17786202 - PLoS One. 2007 Sep 05;2(9):e830
– reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23
– reference: 22611131 - Bioinformatics. 2012 Jul 15;28(14):1937-8
– reference: 26072514 - Bioinformatics. 2015 Jun 15;31(12):i9-16
– reference: 26535114 - F1000Res. 2015 Sep 25;4:900
– reference: 22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6
– reference: 22495746 - Bioinformatics. 2012 Jun 1;28(11):1455-62
– reference: 23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 21030462 - Bioinformatics. 2011 Jan 1;27(1):22-30
– reference: 16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91
– reference: 23913425 - Appl Environ Microbiol. 2013 Oct;79(20):6196-206
– reference: 22851513 - Brief Bioinform. 2012 Nov;13(6):646-55
– reference: 23748443 - Nature. 2013 Jul 11;499(7457):219-22
– reference: 18803844 - BMC Bioinformatics. 2008 Sep 19;9:386
– reference: 22962452 - Bioinformatics. 2012 Sep 15;28(18):i356-i362
– reference: 22629327 - PLoS One. 2012;7(5):e36740
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 23259615 - Genome Biol. 2012 Dec 22;13(12):R122
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 21716308 - ISME J. 2012 Jan;6(1):46-56
– reference: 15001713 - Science. 2004 Apr 2;304(5667):66-74
– reference: 22495754 - Bioinformatics. 2012 Jun 1;28(11):1420-8
– reference: 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155
– reference: 18698407 - PLoS One. 2008 Aug 13;3(8):e2945
– reference: 22068540 - Nat Biotechnol. 2011 Nov 08;29(11):987-91
SSID ssj0017805
Score 2.282899
Snippet Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and...
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly...
Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and...
Abstract Background The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Algorithms
Analysis
Animals
Assembly
Bioinformatics
Biomedical and Life Sciences
Cecum - microbiology
Chickens
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Genetic research
Genomics
Groundwater - microbiology
Humans
Information management
Internet
Life Sciences
Metagenome
Microarrays
Microbial colonies
Mouth - microbiology
Sequence analysis (applications)
Software
User-Computer Interface
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlENoeSvrtJC1uKRQaTCRZtuTekrQhLbSHpoHchCRLaWDXG2ovIf--M7bWrFtILr34sJo1aOZJM8OM3xDyTioBgWjJMidonYmcSzhSFnIeWwrjRVC-J9L-9r08ORNfz4vztVFf2BM20AMPitvPK8tkbmngoUb2OEMrg22Z8A4ApO0TH6qqVTIV6wfI1B9rmEyV-y1DnjZImxEVHB4TL9ST9f97Ja_5pL_7Jcei6UNyf9lcmZtrM5ut-aXjLfIoBpTpwbCRx-Seb56QzWHE5M1T8ukUeQPQEh9T06QDiTLccCk2ZIXZ4jqFqDWFCNrPLX6Zns59Z5C4dX7pUmwfbX3XPiNnx59_Hp1kcXJC5kpadZlUPngu6wpLstg1xbgra1c6Aw5ZhdrKIgQKsYkoaF3L3ChqHKu5yIPj0sr8OdloFo1_SdKC2sJDzOK8YaKomJEQ8BlIArGeqVyRELrSpHaRVhynW8x0n16oUg_K16B8jcrXPCEfxr9cDZwatwkfonlGQaTD7n8AkOgIEn0XSBLyFo2rkfCiwY6aC7NsW_3l9Ic-wHkAlRCiSsj7KBQWsANn4gcKoAfkyJpI7k4k4US6yfKbFYY0LmEbW-MXy1Yz8P0KGdRgWy8GTI0bg7gLklkqEiInaJvsfLrSXP7qCcHh1mWQCSdkb4VLHW-i9jbF7o3QvdsM2__DDDvkAcczSFnGxS7Z6H4v_SuI6Tr7uj--fwA3ZEFO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA86EfVB_La6SRRBcJQlaZq0e9umYwr64BzsLSRpooN7e4ftZey_95y2t9zqmPjSh-a0cE7OJ-fkF0Le6kJCIqp46iWrUpkJDSbloOZxStogYxE6IO0vX9XRifx8mp8OYNF4Fma9f88LtdNwRFiDghf3U8DjJrkFMUp1fVl1MDYMEJp_aFpe-dkk7HTo_H_74LUg9OeA5NglvUfuLOtze3lhZ7O1QHT4gNwfMki612_5Q3Ij1I_I7f5OycvH5MMxAgWg6HeprWmPmgwujeIEVpwtLiikqRRS5jB3eBSdzkNrEal1fuYpzos2oW2ekJPDj98PjtLhqoTUK1a2qS5CDEJXJfZgcUyKC68qr7yFCFzEyuk8RgbJiMxZVenMFsx6XgmZRS-009lTslEv6vCc0Jy5PECS4oPlMi-51ZDhWaj6sIFZ-DwhbCVJ4wcccbzOYma6eqJQphe-AeEbFL4RCXk_fnLeg2hcR7yP2zMSIv519wLUwgzmZLLScZ05FkWsEFPQstLisC5oFrgpxxPyBjfXIMJFjSM0P-yyacyn429mDy8AKKWUZULeDURxARx4O5xIADkgKNaEcnNCCSboJ8uvVzpkcAnn1uqwWDaGQ7AvEDIN2HrW69TIGCRaUL0ymRA90bYJ59OV-uxnhwAObhZsALjcXumlGVxPc51gt0fV_fc2vPivf78kdwUaG-OpkJtko_21DFuQrbXuVWenvwFOKDJf
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJCSmdHbixAlv5WMaSAzEqLQ9WbZjj2ptUi2ppvHXc5ekVTPQEBIvURVfpPp8d_6dfPczIS9FygGIJiwwnOYBj0IBLqUh59EJV5a71DZE2p_3k70x_3QYH26QL8teGD0zelJ2pKFIVDxcb0OfNrEbfpiTnXnuWpdPk52KIQ8bpMW46iE8rpDNJAZwPiCb4_2vo6Omx0iwABKcuDvb_ON3vd2pIfH_PVSv7VUX6yhXh6k3yLVFMVfnZ2o6Xduvdm-R-XKmbZnKyXBR66H5eYEE8j-q4ja52WFbf9Qa4x2yYYu75Gp72-X5PfL-ACkM0Cje-KrwWz5nCLY-1oa5aXnmw3_wAczbmcYmeX9ma4UcsrOJ8bGStbJ1dZ-Mdz98f7cXdJc4BCahWR2I1DobijzD02Es4GKhSXKTGAXYIHW5FrFzFGASj2mei0ilVBmWhzxyJhRaRA_IoCgL-4j4MdWxBfhkrGI8zpgSgD0V5KN4tJqa2CN0uXjSdAzneNHGVDaZTprIVjkSlCNROTL0yOvVJ_OW3uMy4bdoEStBZOZuXpSnx7JzdBllmolIUxe6HNkOFc0UlhGDzUMA1cwjL9CeJHJvFFjcc6wWVSU_HnyTI7yaIOOcZx551Qm5EpdYdb0SoAek6-pJbvUkITiY3vDzpdlKHMKKusKWi0oygCEpkrnBtB62ZryaGEBAyKsp94joGXhv5v2RYvKj4SaHDYBBUu6R7aUryC4oVpcpdnvlLX9fhsf_JP2EXA_RGSg4P98ig_p0YZ8Cjqz1sy42_AKOFGjT
  priority: 102
  providerName: Unpaywall
Title Spherical: an iterative workflow for assembling metagenomic datasets
URI https://link.springer.com/article/10.1186/s12859-018-2028-2
https://www.ncbi.nlm.nih.gov/pubmed/29361904
https://www.proquest.com/docview/1990854782
https://pubmed.ncbi.nlm.nih.gov/PMC5781261
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-018-2028-2
https://doaj.org/article/39b173b0f2fd4324a09a6769e48003b1
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_ugagfxPdFzxJFEDyim2STTQSRXr16Fq4cVwv107LZbO4O2vRsWs7-984kab3ocfolhey0sPPYmenM_gbgtYg4BqKh62jOUof7nkCTSjDnSUKuDM8iUwJpH_XDwyHvjYLRBqzGW9UMLK5N7Wie1HA2fvfzx_ITGvzH0uCj8H3hEgobJsUkcw8fm7CNjiqmSQ5H_HdRgeD7y8tGwnUw0wnqIue1P9FwUyWa_99n9hWn9WdD5bqqehduL_ILtbxU4_EVx9W9D_fqiNNuVyryADZM_hBuVTMol4_g84CABUhUH2yV2xXKMh6BNnVsZePppY1hrY0htpkkdHXdnpi5ImTXybm2qb-0MPPiMQy7B986h049WsHRIYvnjohMZjyRxlSzpbYq19NhqkOt0GNHWZqIIMsYBi88YGkqfBUxpd3U436mPZEI_wls5dPc7IAdsCQwGNRoo1wexK4SGBEqzBKp4BnpwAK24qTUNe44jb8YyzL_iEJZMV8i8yUxX3oWvF1_5aIC3biJeJ_EsyYkvOzyxXR2Kmvzk36cuMJPWOZlKWEQKhYrau5FTcRjLXEteEXClYSIkVPLzalaFIX8OjiRbRoYEHPOYwve1ETZFHegVX2DAflAIFoNyt0GJZqsbiy_XOmQpCXqc8vNdFFIF4ODiCDWcFtPK51abwwDM8x2GbdANLStsfPmSn5-ViKG47HsYqpswd5KL-XK0m5i7N5adf8thmf_w8HncMcjG2NogHwXtuazhXmBQd08acGmGAl8Rt0vLdhut3uDHn7uH_SPT_BtJ-y0yr9LWqVJ48qwf9z-_gt65Ek2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSo9IF6lgQIBISFRRdiOEyfclke1Xdoe2FbqzbIdp1TaTaomq6r_npm81AAq4pJDPInkeY9m_JmQdzIRkIjGLLCCZoEIuQSTMlDzmFhoJ_LENUDah0fx9ETMTqPT7hx31U-79y3JxlM3Zp3EHyuGWGtQ-qJkOTzuknWcsQJrXJ9MZvPZ0DxAmP6ugfnXD0chqEHq_9Mf3whIvw9LDh3TTbKxKi709ZVeLG4Epb2H5EGXTfqTVvyPyB1XPCb32vslr5-Qr3MEDUAxfPJ14bcIyuDefJzGyhfllQ8pqw_ps1saPJbuL12tEbV1eW59nB2tXF09JSd7346_TIPu2oTAxjStA5m43HGZpdiPxZEpxm2c2dhqiMZJnhkZ5TmFxERENMtkqBOqLcu4CHPLpZHhFlkrysJtEz-iJnKQsFinmYhSpiVkexoqQGxmJjbyCO05qWyHKY5XWyxUU1sksWqZr4D5CpmvuEc-DJ9ctIAatxF_RvEMhIiF3bwoL89UZ1oqTA2ToaE5zzPEF9Q01Ti4C1oGLsswj7xF4SpEuyhwnOZMr6pK7c9_qAleBpAKIVKPvO-I8hJ2YHV3OgH4gABZI8qdESWYox0tv-l1SOESzrAVrlxVikHgTxA-Dbb1rNWpYWOQdEElS4VH5EjbRjsfrxTnPxs0cHC5DMpgj-z2eqk6N1TdxtjdQXX_LYbn__Xv12Rjenx4oA72j76_IPc5Gh5lARc7ZK2-XLmXkMXV5lVntb8AfLs6uA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA868etB_JzVqVUEwVGWpGnT-jbvvGx-DHEO9haSNNkG97aXtZex_95z2t6yqkx86UNzWsjJ-eSc_A4hb2UmIBBNWWQFLSIRcwkqZSDnManQTvjMtUDa3_bT3UPx-Sg56uec1qtu91VJsrvTgChNZbO1KHyn4lm6VTPEXYM0GE-Zw-M6uSHAueEIg0k6GcoICNjflzL_-tnIGbWY_X9a5kuu6fe2yaF2epfcXpYLfXGuZ7NL7ml6n9zr48pwuxOEB-SaKx-Sm92kyYtHZOcA4QPwQD6Eugw7LGUwdCH2ZflZdR5C8BpCIO3mBi-oh3PXaMRvnZ_aELtIa9fUj8nh9NPPyW7UD1CIbErzJpKZ847LIsfKLDZPMW7TwqZWg1_OfGFk4j2FEEUktChkrDOqLSu4iL3l0sj4CVkrq9I9JWFCTeIgdLFOM5HkTEuI-zTkgljWzGwSELripLI9ujgOuZipNsvIUtUxXwHzFTJf8YC8Hz5ZdNAaVxF_xOMZCBEVu31RnR2rXslUnBsmY0M99wUiDWqaa2zhBXkD42VYQN7g4SrEvSixseZYL-ta7R38UNs4FiAXQuQBedcT-Qp2YHV_TwH4gFBZI8qNESUoph0tv17JkMIl7GYrXbWsFYMQIEMgNdjWeidTw8Yg_IKcloqAyJG0jXY-XilPT1pccDC-DBLigGyu5FL1Bqm-irGbg-j--xie_de_X5Fb33em6uve_pfn5A5HvaMs4mKDrDVnS_cCwrnGvGxV9hfaHj2V
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJCSmdHbixAlv5WMaSAzEqLQ9WbZjj2ptUi2ppvHXc5ekVTPQEBIvURVfpPp8d_6dfPczIS9FygGIJiwwnOYBj0IBLqUh59EJV5a71DZE2p_3k70x_3QYH26QL8teGD0zelJ2pKFIVDxcb0OfNrEbfpiTnXnuWpdPk52KIQ8bpMW46iE8rpDNJAZwPiCb4_2vo6Omx0iwABKcuDvb_ON3vd2pIfH_PVSv7VUX6yhXh6k3yLVFMVfnZ2o6Xduvdm-R-XKmbZnKyXBR66H5eYEE8j-q4ja52WFbf9Qa4x2yYYu75Gp72-X5PfL-ACkM0Cje-KrwWz5nCLY-1oa5aXnmw3_wAczbmcYmeX9ma4UcsrOJ8bGStbJ1dZ-Mdz98f7cXdJc4BCahWR2I1DobijzD02Es4GKhSXKTGAXYIHW5FrFzFGASj2mei0ilVBmWhzxyJhRaRA_IoCgL-4j4MdWxBfhkrGI8zpgSgD0V5KN4tJqa2CN0uXjSdAzneNHGVDaZTprIVjkSlCNROTL0yOvVJ_OW3uMy4bdoEStBZOZuXpSnx7JzdBllmolIUxe6HNkOFc0UlhGDzUMA1cwjL9CeJHJvFFjcc6wWVSU_HnyTI7yaIOOcZx551Qm5EpdYdb0SoAek6-pJbvUkITiY3vDzpdlKHMKKusKWi0oygCEpkrnBtB62ZryaGEBAyKsp94joGXhv5v2RYvKj4SaHDYBBUu6R7aUryC4oVpcpdnvlLX9fhsf_JP2EXA_RGSg4P98ig_p0YZ8Cjqz1sy42_AKOFGjT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spherical%3A+an+iterative+workflow+for+assembling+metagenomic+datasets&rft.jtitle=BMC+bioinformatics&rft.au=Hitch%2C+Thomas+C.+A&rft.au=Creevey%2C+Christopher+J&rft.date=2018-01-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2028-2&rft.externalDBID=ISR&rft.externalDocID=A546394449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon