Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data
A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 183; pp. 504 - 521 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2018
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2018.08.042 |
Cover
Abstract | A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML. |
---|---|
AbstractList | A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://github.com/aramis-lab/AD-ML. A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML. A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML. |
Author | Routier, Alexandre Samper-González, Jorge Colliot, Olivier Bertrand, Anne Habert, Marie-Odile Evgeniou, Theodoros Wen, Junhao Burgos, Ninon Fontanella, Sabrina Bertin, Hugo Lu, Pascal Marcoux, Arnaud Bottani, Simona Bacci, Michael Durrleman, Stanley Guillon, Jérémy |
Author_xml | – sequence: 1 givenname: Jorge surname: Samper-González fullname: Samper-González, Jorge email: jorge.samper-gonzalez@inria.fr organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 2 givenname: Ninon surname: Burgos fullname: Burgos, Ninon organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 3 givenname: Simona surname: Bottani fullname: Bottani, Simona organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 4 givenname: Sabrina surname: Fontanella fullname: Fontanella, Sabrina organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 5 givenname: Pascal surname: Lu fullname: Lu, Pascal organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 6 givenname: Arnaud surname: Marcoux fullname: Marcoux, Arnaud organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 7 givenname: Alexandre surname: Routier fullname: Routier, Alexandre organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 8 givenname: Jérémy surname: Guillon fullname: Guillon, Jérémy organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 9 givenname: Michael surname: Bacci fullname: Bacci, Michael organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 10 givenname: Junhao surname: Wen fullname: Wen, Junhao organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 11 givenname: Anne surname: Bertrand fullname: Bertrand, Anne organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 12 givenname: Hugo surname: Bertin fullname: Bertin, Hugo organization: Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France – sequence: 13 givenname: Marie-Odile surname: Habert fullname: Habert, Marie-Odile organization: Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France – sequence: 14 givenname: Stanley surname: Durrleman fullname: Durrleman, Stanley organization: Inria, ARAMIS Project-team, F-75013, Paris, France – sequence: 15 givenname: Theodoros surname: Evgeniou fullname: Evgeniou, Theodoros organization: INSEAD, Bd de Constance, 77305, Fontainebleau, France – sequence: 16 givenname: Olivier surname: Colliot fullname: Colliot, Olivier email: olivier.colliot@upmc.fr organization: Inria, ARAMIS Project-team, F-75013, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30130647$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-01858384$$DView record in HAL |
BookMark | eNqNkVtv1DAQhSNURC_wF5AlHoCHLL4kjsNDxVK1tNIiUFWeLceZsN469mInW5Vfj7dpi7RPK41ka_TNseec4-zAeQdZhgieEUz4p9XMwRi86dVvmFFMxAynKuiL7IjguszrsqIH23vJckFIfZgdx7jCGNekEK-yQ4YJw7yojrK7a1gH347aNBYQbJQd1WC8Q75D2qoYTWf01OlhWPo2IuPQ3P5dgukhvI-oNRFUhM_oIqge7ny4Rcq1SK3X9mly8Oj79dVD--f5DWrVoF5nLztlI7x5PE-yXxfnN2eX-eLHt6uz-SLXHNdDzluCMe8o4YwXmoiqbNISglJFcUWKWlSkbnjFS1YTjVXXdUoXUDYdw6ypWs5Oso-T7lJZuQ7JsXAvvTLycr6Q214yrxRMFBua2A8Tmxz5M0IcZG-iBmuVAz9GSZN9ghLG6oS-20FXfgwubSIpobQgZVWyRL19pMamh_b5_Sf7EyAmQAcfY4DuGSFYbpOWK_k_ablNWuJUxfazpzuj2gwPdg9BGbuPwNdJAJL9GwNBRm3AaWhNAD3I1pt9RL7siGhrXMrd3sL9fhL_AFxg34g |
CitedBy_id | crossref_primary_10_3390_math9233101 crossref_primary_10_1016_j_media_2021_102219 crossref_primary_10_1016_j_neurad_2019_01_001 crossref_primary_10_3390_electronics12020467 crossref_primary_10_3389_fncom_2019_00072 crossref_primary_10_1002_ima_22650 crossref_primary_10_3389_fninf_2024_1420315 crossref_primary_10_1016_j_media_2020_101848 crossref_primary_10_1155_2022_8680737 crossref_primary_10_1016_j_compbiomed_2024_108869 crossref_primary_10_3390_app11052187 crossref_primary_10_1016_j_bpsc_2020_12_007 crossref_primary_10_1007_s11042_024_19104_z crossref_primary_10_1109_TCDS_2022_3204782 crossref_primary_10_3390_app9153063 crossref_primary_10_1016_j_nicl_2020_102199 crossref_primary_10_1007_s10072_024_07649_8 crossref_primary_10_1186_s12883_023_03347_8 crossref_primary_10_3390_bdcc6010002 crossref_primary_10_1016_j_neurobiolaging_2024_12_009 crossref_primary_10_1038_s41598_022_04943_3 crossref_primary_10_1002_ana_26710 crossref_primary_10_1093_jtm_taae021 crossref_primary_10_1007_s12021_020_09469_5 crossref_primary_10_1016_j_media_2023_102903 crossref_primary_10_1073_pnas_2300842120 crossref_primary_10_1038_s41598_021_87434_1 crossref_primary_10_1259_bjr_20211253 crossref_primary_10_1002_ima_23054 crossref_primary_10_1016_j_neuroimage_2019_116208 crossref_primary_10_1016_j_media_2021_102304 crossref_primary_10_1088_1361_6560_ac8f10 crossref_primary_10_3389_fpsyt_2022_1016807 crossref_primary_10_2174_1567205018666210218150223 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1186_s12880_024_01242_3 crossref_primary_10_1186_s13195_021_00879_4 crossref_primary_10_1016_j_eswa_2019_04_022 crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_3233_JAD_215164 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_1002_alz_12422 crossref_primary_10_2174_1573405615666190404163233 crossref_primary_10_1016_j_cmpb_2022_107291 crossref_primary_10_1016_j_bbi_2023_06_027 crossref_primary_10_1155_2020_2825037 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_1371_journal_pone_0243535 crossref_primary_10_1016_j_compbiomed_2023_107050 crossref_primary_10_3390_s21217259 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_3233_IDT_230524 crossref_primary_10_1016_j_bspc_2024_107085 crossref_primary_10_3390_s23063062 crossref_primary_10_3389_fnins_2019_01053 crossref_primary_10_1016_j_neuroimage_2022_119621 crossref_primary_10_3233_KES_220007 crossref_primary_10_1038_s41598_022_08231_y crossref_primary_10_1016_j_nicl_2019_101821 crossref_primary_10_1007_s10586_023_04103_w crossref_primary_10_1016_j_bspc_2024_107367 crossref_primary_10_3389_fninf_2021_689675 crossref_primary_10_1007_s42979_023_01688_2 crossref_primary_10_3390_s22124609 crossref_primary_10_1016_j_compbiomed_2023_107304 crossref_primary_10_1016_j_neuroimage_2024_120929 crossref_primary_10_1088_1742_6596_1641_1_012025 crossref_primary_10_3390_medicina58070952 crossref_primary_10_1155_2022_7275433 crossref_primary_10_3389_fnins_2020_569706 crossref_primary_10_1177_0271678X19880450 crossref_primary_10_1007_s40031_021_00571_z crossref_primary_10_1166_jctn_2020_9455 crossref_primary_10_1038_s41467_024_46796_6 crossref_primary_10_1097_WCO_0000000000000838 crossref_primary_10_1109_TMI_2022_3151118 crossref_primary_10_1007_s11042_023_16023_3 crossref_primary_10_1038_s41597_024_04157_4 crossref_primary_10_3389_fnagi_2023_1224723 crossref_primary_10_1016_j_compbiomed_2019_103527 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1155_2023_1110500 crossref_primary_10_1002_alz_13056 crossref_primary_10_1007_s11227_021_03901_6 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_1371_journal_pone_0236868 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1016_j_neuroscience_2022_03_026 crossref_primary_10_3389_fnagi_2020_00238 crossref_primary_10_3390_app12126211 crossref_primary_10_3390_make5020035 crossref_primary_10_1038_s41598_024_78308_3 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_3389_fnagi_2019_00220 |
Cites_doi | 10.1093/brain/awm319 10.1016/j.jneumeth.2016.03.001 10.1007/s12021-014-9238-1 10.1016/j.neuroimage.2009.05.056 10.1016/j.jneumeth.2015.07.013 10.1002/jmri.21049 10.1016/S1474-4422(09)70299-6 10.1016/j.neuroimage.2016.02.079 10.3389/fnagi.2014.00264 10.1016/j.neuroimage.2007.10.031 10.1023/A:1024068626366 10.1016/j.neuroimage.2007.09.031 10.1212/WNL.34.7.939 10.1016/S1474-4422(07)70178-3 10.1016/j.neuroimage.2014.03.036 10.1016/j.neuroimage.2012.09.058 10.1007/s00259-011-1745-9 10.1016/j.neuroimage.2016.10.038 10.1016/j.neuroimage.2011.06.029 10.1016/j.neuroimage.2012.09.065 10.1016/j.jneumeth.2015.08.020 10.1016/j.pscychresns.2012.11.005 10.1016/j.jalz.2011.03.008 10.1016/j.pscychresns.2012.04.007 10.1016/j.neuroimage.2012.01.055 10.3233/JAD-2011-0014 10.1016/j.compbiomed.2015.01.003 10.1016/j.media.2017.10.005 10.1162/jocn.2007.19.9.1498 10.1088/0031-9155/61/22/7975 10.1371/journal.pone.0018111 10.3389/fnins.2015.00307 10.1016/j.jalz.2011.03.005 10.1371/journal.pone.0129250 10.1016/S1474-4422(14)70090-0 10.3233/JAD-131928 10.1111/j.1365-2796.2004.01380.x 10.1016/j.neuroimage.2017.03.057 10.1088/1361-6560/aa5dbe 10.1016/j.mri.2018.03.003 10.1017/S1041610209009405 10.2967/jnumed.112.109009 10.1016/j.jneumeth.2013.10.003 10.1016/j.neuroimage.2012.01.021 10.1016/j.jneumeth.2018.01.003 10.1016/j.compbiomed.2015.07.006 10.1007/s12021-015-9292-3 10.1038/sdata.2016.44 10.1038/s41598-018-22871-z 10.1016/j.media.2014.04.006 10.1016/j.neuroimage.2011.11.066 10.1016/j.neuroimage.2015.01.048 10.1016/j.jalz.2010.03.003 10.1002/hbm.22741 10.1016/j.jalz.2011.03.003 10.1016/j.nicl.2013.05.004 10.1016/j.neuroimage.2014.10.002 10.1016/j.neuroimage.2014.05.078 10.1016/j.nicl.2012.10.002 10.1002/hbm.22926 10.1016/j.neuroimage.2007.11.034 10.1006/nimg.2001.0978 10.1016/j.nicl.2015.05.006 10.1007/s10548-012-0246-x 10.1371/journal.pone.0025446 10.1016/j.neuroimage.2005.02.018 10.3389/fninf.2011.00013 10.1016/j.neuroimage.2007.09.073 10.1016/j.nicl.2016.05.017 10.1016/j.neuroimage.2007.07.007 10.1002/hbm.10123 10.1016/j.jalz.2011.03.004 10.1016/j.jalz.2015.05.001 10.1038/nrn.2016.167 10.1016/j.jalz.2016.02.006 10.1016/j.neuroimage.2011.01.008 10.1097/00004728-199803000-00032 10.1016/j.jalz.2010.03.004 10.1002/hbm.22642 10.1016/j.neuroimage.2010.01.005 10.1016/j.media.2017.01.008 10.1016/j.tins.2011.05.005 10.1016/j.jalz.2010.03.009 10.1093/brain/awp105 10.1002/hbm.460030303 10.1212/WNL.0b013e3181cb3e25 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. Attribution |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. – notice: Attribution |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative the Australian Imaging Biomarkers and Lifestyle flagship study of ageing Australian Imaging Biomarkers and Lifestyle flagship study of ageing Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: the Australian Imaging Biomarkers and Lifestyle flagship study of ageing – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative – name: Australian Imaging Biomarkers and Lifestyle flagship study of ageing |
DBID | AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES |
DOI | 10.1016/j.neuroimage.2018.08.042 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1095-9572 |
EndPage | 521 |
ExternalDocumentID | oai_HAL_hal_01858384v2 30130647 10_1016_j_neuroimage_2018_08_042 S1053811918307407 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c609t-6d1006f216364c1875b009822a2071498719b6765391c0afffac4e5bf303b7d63 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Sep 12 12:42:37 EDT 2025 Thu Sep 04 21:23:07 EDT 2025 Wed Aug 13 08:32:54 EDT 2025 Mon Jul 21 05:55:18 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Tue Jul 01 03:01:59 EDT 2025 Fri Feb 23 02:45:22 EST 2024 Tue Aug 26 20:08:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Open-source Magnetic resonance imaging Reproducibility Alzheimer's disease Positron emission tomography Classification |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-6d1006f216364c1875b009822a2071498719b6765391c0afffac4e5bf303b7d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9836-654X 0000-0001-7683-507X 0000-0002-9450-6920 0000-0003-1603-8049 0000-0002-4668-2006 0000-0002-7719-9746 |
OpenAccessLink | https://inria.hal.science/hal-01858384 |
PMID | 30130647 |
PQID | 2122415753 |
PQPubID | 2031077 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_01858384v2 proquest_miscellaneous_2091821339 proquest_journals_2122415753 pubmed_primary_30130647 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_citationtrail_10_1016_j_neuroimage_2018_08_042 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_08_042 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_08_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 2018-12 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib31) 2011; 5 Sabuncu, Konukoglu (bib73) 2015; 13 Eskildsen, Coupé, García-Lorenzo, Fonov, Pruessner, Collins (bib23) 2013; 65 Nadeau, Bengio (bib62) 2003; 52 Ashburner, Friston (bib7) 2005; 26 Moradi, Pepe, Gaser, Huttunen, Tohka (bib61) 2015; 104 Jie, Zhang, Cheng, Shen (bib46) 2015; 36 Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine, Park, Reiman, Rowe, Siemers, Stern, Yaffe, Carrillo, Thies, Morrison-Bogorad, Wagster, Phelps (bib78) 2011; 7 Jagust, Bandy, Chen, Foster, Landau, Mathis, Price, Reiman, Skovronsky, Koeppe (bib44) 2010; 6 Guerrero, Wolz, Rao, Rueckert (bib35) 2014; 94 Voevodskaya, Simmons, Nordenskjöld, Kullberg, Ahlström, Lind, Wahlund, Larsson, Westman (bib88) 2014; 6 Knopman, DeKosky, Cummings, Chui, Corey-Bloom, Relkin, Small, Miller, Stevens (bib50) 2001; 56 Ota, Oishi, Ito, Fukuyama (bib64) 2015; 256 Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib76) 2008; 39 Coupé, Fonov, Bernard, Zandifar, Eskildsen, Helmer, Manjón, Amieva, Dartigues, Allard, Catheline, Collins (bib15) 2015; 36 Ashburner (bib6) 2007; 38 Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter (bib19) 2013; 212 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib85) 2002; 15 Dubois, Feldman, Jacova, Dekosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha, Meguro, O’brien, Pasquier, Robert, Rossor, Salloway, Stern, Visser, Scheltens (bib17) 2007; 6 Thomas, Cuplov, Bousse, Mendes, Thielemans, Hutton, Erlandsson (bib81) 2016; 61 Liu, Zhang, Shen (bib53) 2012; 60 Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib58) 2007; 19 Bron, Smits, van der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Méndez Orellana, Meijboom, Pinto, Meireles, Garrett, Bastos-Leite, Abdulkadir, Ronneberger, Amoroso, Bellotti, Cárdenas-Peña, Álvarez-Meza, Dolph, Iftekharuddin, Eskildsen, Coupé, Fonov, Franke, Gaser, Ledig, Guerrero, Tong, Gray, Moradi, Tohka, Routier, Durrleman, Sarica, Di Fatta, Sensi, Chincarini, Smith, Stoyanov, Sørensen, Nielsen, Tangaro, Inglese, Wachinger, Reuter, van Swieten, Niessen, Klein (bib11) 2015; 111 Fan, Batmanghelich, Clark, Davatzikos (bib26) 2008; 39 Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen, Snyder, Carrillo, Thies, Phelps (bib3) 2011; 7 Suk, Lee, Shen (bib79) 2017; 37 Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bib1) 2011; 58 Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga, Trojanowski, Weiner (bib66) 2010; 74 Winblad, Palmer, Kivipelto, Jelic, Fratiglioni, Wahlund, Nordberg, Bäckman, Albert, Almkvist, Arai, Basun, Blennow, de Leon, DeCarli, Erkinjuntti, Giacobini, Graff, Hardy, Jack, Jorm, Ritchie, van Duijn, Visser, Petersen (bib90) 2004; 256 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib60) 2011; 7 Young, Modat, Cardoso, Mendelson, Cash, Ourselin (bib92) 2013; 2 Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow, DeKosky, Gauthier, Selkoe, Bateman, Cappa, Crutch, Engelborghs, Frisoni, Fox, Galasko, Habert, Jicha, Nordberg, Pasquier, Rabinovici, Robert, Rowe, Salloway, Sarazin, Epelbaum, de Souza, Vellas, Visser, Schneider, Stern, Scheltens, Cummings (bib18) 2014; 13 Cabral, Morgado, Campos Costa, Silveira (bib12) 2015; 58 Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins (bib14) 2012; 1 Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (bib32) 2016; 3 Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib71) 2017; 155 Fischl (bib27) 2012; 62 Gousias, Rueckert, Heckemann, Dyet, Boardman, Edwards, Hammers (bib33) 2008; 40 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bib16) 2011; 56 Beheshti, Demirel (bib9) 2015; 64 Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bib38) 2009; 48 Liu, Zhang, Adeli, Shen (bib55) 2018; 43 Liu, Zhang, Shen (bib54) 2015; 36 Tohka, Moradi, Huttunen (bib83) 2016; 14 Falahati, Westman, Simmons (bib25) 2014; 41 Gray, Aljabar, Heckemann, Hammers, Rueckert (bib34) 2013; 65 Ellis, Rowe, Villemagne, Martins, Masters, Salvado, Szoeke, Ames (bib22) 2010; 6 Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert (bib84) 2014; 18 Jack, Albert, Knopman, McKhann, Sperling, Carrillo, Thies, Phelps (bib40) 2011; 7 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib42) 2008; 27 Querbes, Aubry, Pariente, Lotterie, Démonet, Duret, Puel, Berry, Fort, Celsis (bib68) 2009; 132 Raamana, Strother (bib70) 2017 Bengio, Grandvalet (bib10) 2004; 5 Sørensen, Nielsen (bib77) 2018; 302 Jack, Bernstein, Borowski, Gunter, Fox, Thompson, Schuff, Krueger, Killiany, DeCarli, Dale, Carmichael, Tosun, Weiner (bib41) 2010; 6 Li, Morgan, Ashburner, Smith, Rorden (bib52) 2016; 264 (bib48) 2017 Joliot, Jobard, Naveau, Delcroix, Petit, Zago, Crivello, Mellet, Mazoyer, Tzourio-Mazoyer (bib47) 2015; 254 Teipel, Kurth, Krause, Grothe (bib80) 2015; 8 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib86) 2017; 145 Allen, Amoroso, Anghel, Balagurusamy, Bare, Beaton, Bellotti, Bennett, Boehme, Boutros, Caberlotto, Caloian, Campbell, Neto, Chang, Chen, Chen, Chien, Clark, Das, Davatzikos, Deng, Dillenberger, Dobson, Dong, Doshi, Duma, Errico, Erus, Everett, Fardo, Friend, Fröhlich, Gan, George-Hyslop, Ghosh, Glaab, Green, Guan, Hong, Huang, Hwang, Ibrahim, Inglese, Iyappan, Jiang, Katsumata, Kauwe, Klein, Kong, Krause, Lalonde, Lauria, Lee, Lin, Liu, Livingstone, Logsdon, Lovestone, Ma, Malhotra, Mangravite, Maxwell, Merrill, Nagorski, Namasivayam, Narayan, Naz, Newhouse, Norman, Nurtdinov, Oyang, Pawitan, Peng, Peters, Piccolo, Praveen, Priami, Sabelnykova, Senger, Shen, Simmons, Sotiras, Stolovitzky, Tangaro, Tateo, Tung, Tustison, Varol, Vradenburg, Weiner, Xiao, Xie, Xie, Xu, Yang, Zhan, Zhou, Zhu, Zhu, Zhu (bib4) 2016; 12 Ellis, Bush, Darby, Fazio, Foster, Hudson, Lautenschlager, Lenzo, Martins, Maruff, Masters, Milner, Pike, Rowe, Savage, Szoeke, Taddei, Villemagne, Woodward, Ames (bib21) 2009; 21 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib49) 2008; 131 Dukart, Mueller, Horstmann, Barthel, Möller, Villringer, Sabri, Schroeter (bib20) 2011; 6 Thomas, Erlandsson, Modat, Thurfjell, Vandenberghe, Ourselin, Hutton (bib82) 2011; 38 Salvatore, Cerasa, Battista, Gilardi, Quattrone, Castiglioni (bib74) 2015; 9 Schwarz, Gunter, Wiste, Przybelski, Weigand, Ward, Senjem, Vemuri, Murray, Dickson, Parisi, Kantarci, Weiner, Petersen, Jack (bib75) 2016; 11 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bib87) 2008; 39 Franke, Ziegler, Klöppel, Gaser (bib28) 2010; 50 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib43) 2010; 9 Arbabshirani, Plis, Sui, Calhoun (bib5) 2017; 145 Bäckström, Nazari, Gu, Jakola (bib8) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib65) 2011; 12 Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib37) 2003; 19 Maggipinto, Bellotti, Amoroso, Diacono, Donvito, Lella, Monaco, Scelsi, Tangaro, Initiative (bib57) 2017; 62 Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen (bib91) 2011; 6 Routier, Guillon, Burgos, Samper-Gonzalez, Wen, Fontanella, Bottani, Jacquemont, Marcoux, Gori, Lu, Moreau, Bacci, Durrleman, Colliot (bib72) 2018 Ota, Oishi, Ito, Fukuyama (bib63) 2014; 221 Gómez-Sancho, Tohka, Gómez-Verdejo (bib30) 2018; 50 Jagust, Landau, Koeppe, Reiman, Chen, Mathis, Price, Foster, Wang (bib45) 2015; 11 Westman, Aguilar, Muehlboeck, Simmons (bib89) 2013; 26 Lu, Popuri, Ding, Balachandar, Beg (bib56) 2018; 8 Ewers, Sperling, Klunk, Weiner, Hampel (bib24) 2011; 34 Aguilar, Westman, Muehlboeck, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Lovestone, Spenger, Simmons, Wahlund (bib2) 2013; 212 Raamana (bib69) 2017 Yun, Kwak, Lee, Initiative (bib93) 2015; 10 Poldrack, Baker, Durnez, Gorgolewski, Matthews, Munafò, Nichols, Poline, Vul, Yarkoni (bib67) 2017; 18 Chu, Hsu, Chou, Bandettini, Lin (bib13) 2012; 60 Landau, Breault, Joshi, Pontecorvo, Mathis, Jagust, Mintun (bib51) 2013; 54 Friston, Ashburner, Frith, Poline, Heather, Frackowiak (bib29) 1995; 3 Haller, Lovblad, Giannakopoulos (bib36) 2011; 26 Zhang, Wang, Zhou, Yuan, Shen (bib94) 2011; 55 Holmes, Hoge, Collins, Woods, Toga, Evans (bib39) 1998; 22 Zhu, Suk, Shen (bib95) 2014; 100 McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib59) 1984; 34 Dukart (10.1016/j.neuroimage.2018.08.042_bib20) 2011; 6 Sabuncu (10.1016/j.neuroimage.2018.08.042_bib73) 2015; 13 Bengio (10.1016/j.neuroimage.2018.08.042_bib10) 2004; 5 Landau (10.1016/j.neuroimage.2018.08.042_bib51) 2013; 54 Marcus (10.1016/j.neuroimage.2018.08.042_bib58) 2007; 19 Chu (10.1016/j.neuroimage.2018.08.042_bib13) 2012; 60 Ellis (10.1016/j.neuroimage.2018.08.042_bib22) 2010; 6 Ashburner (10.1016/j.neuroimage.2018.08.042_bib6) 2007; 38 Jack (10.1016/j.neuroimage.2018.08.042_bib43) 2010; 9 Cabral (10.1016/j.neuroimage.2018.08.042_bib12) 2015; 58 Varoquaux (10.1016/j.neuroimage.2018.08.042_bib86) 2017; 145 Poldrack (10.1016/j.neuroimage.2018.08.042_bib67) 2017; 18 Allen (10.1016/j.neuroimage.2018.08.042_bib4) 2016; 12 Zhu (10.1016/j.neuroimage.2018.08.042_bib95) 2014; 100 Gorgolewski (10.1016/j.neuroimage.2018.08.042_bib31) 2011; 5 Li (10.1016/j.neuroimage.2018.08.042_bib52) 2016; 264 Albert (10.1016/j.neuroimage.2018.08.042_bib3) 2011; 7 Fan (10.1016/j.neuroimage.2018.08.042_bib26) 2008; 39 Liu (10.1016/j.neuroimage.2018.08.042_bib54) 2015; 36 Hinrichs (10.1016/j.neuroimage.2018.08.042_bib38) 2009; 48 Dubois (10.1016/j.neuroimage.2018.08.042_bib18) 2014; 13 Schwarz (10.1016/j.neuroimage.2018.08.042_bib75) 2016; 11 Bron (10.1016/j.neuroimage.2018.08.042_bib11) 2015; 111 Vemuri (10.1016/j.neuroimage.2018.08.042_bib87) 2008; 39 Yun (10.1016/j.neuroimage.2018.08.042_bib93) 2015; 10 Moradi (10.1016/j.neuroimage.2018.08.042_bib61) 2015; 104 Franke (10.1016/j.neuroimage.2018.08.042_bib28) 2010; 50 Liu (10.1016/j.neuroimage.2018.08.042_bib55) 2018; 43 Rathore (10.1016/j.neuroimage.2018.08.042_bib71) 2017; 155 Dukart (10.1016/j.neuroimage.2018.08.042_bib19) 2013; 212 Ellis (10.1016/j.neuroimage.2018.08.042_bib21) 2009; 21 Coupé (10.1016/j.neuroimage.2018.08.042_bib15) 2015; 36 Eskildsen (10.1016/j.neuroimage.2018.08.042_bib23) 2013; 65 Petersen (10.1016/j.neuroimage.2018.08.042_bib66) 2010; 74 Jack (10.1016/j.neuroimage.2018.08.042_bib42) 2008; 27 Querbes (10.1016/j.neuroimage.2018.08.042_bib68) 2009; 132 Falahati (10.1016/j.neuroimage.2018.08.042_bib25) 2014; 41 Dubois (10.1016/j.neuroimage.2018.08.042_bib17) 2007; 6 Young (10.1016/j.neuroimage.2018.08.042_bib92) 2013; 2 Zhang (10.1016/j.neuroimage.2018.08.042_bib94) 2011; 55 McKhann (10.1016/j.neuroimage.2018.08.042_bib60) 2011; 7 Abdulkadir (10.1016/j.neuroimage.2018.08.042_bib1) 2011; 58 Sørensen (10.1016/j.neuroimage.2018.08.042_bib77) 2018; 302 Cuingnet (10.1016/j.neuroimage.2018.08.042_bib16) 2011; 56 Sperling (10.1016/j.neuroimage.2018.08.042_bib78) 2011; 7 Gray (10.1016/j.neuroimage.2018.08.042_bib34) 2013; 65 Jie (10.1016/j.neuroimage.2018.08.042_bib46) 2015; 36 Arbabshirani (10.1016/j.neuroimage.2018.08.042_bib5) 2017; 145 Liu (10.1016/j.neuroimage.2018.08.042_bib53) 2012; 60 McKhann (10.1016/j.neuroimage.2018.08.042_bib59) 1984; 34 Friston (10.1016/j.neuroimage.2018.08.042_bib29) 1995; 3 Hammers (10.1016/j.neuroimage.2018.08.042_bib37) 2003; 19 Ota (10.1016/j.neuroimage.2018.08.042_bib64) 2015; 256 Ota (10.1016/j.neuroimage.2018.08.042_bib63) 2014; 221 Thomas (10.1016/j.neuroimage.2018.08.042_bib81) 2016; 61 Wolz (10.1016/j.neuroimage.2018.08.042_bib91) 2011; 6 Aguilar (10.1016/j.neuroimage.2018.08.042_bib2) 2013; 212 Joliot (10.1016/j.neuroimage.2018.08.042_bib47) 2015; 254 Raamana (10.1016/j.neuroimage.2018.08.042_bib69) 2017 Shattuck (10.1016/j.neuroimage.2018.08.042_bib76) 2008; 39 Winblad (10.1016/j.neuroimage.2018.08.042_bib90) 2004; 256 Westman (10.1016/j.neuroimage.2018.08.042_bib89) 2013; 26 Haller (10.1016/j.neuroimage.2018.08.042_bib36) 2011; 26 Salvatore (10.1016/j.neuroimage.2018.08.042_bib74) 2015; 9 Gorgolewski (10.1016/j.neuroimage.2018.08.042_bib32) 2016; 3 Suk (10.1016/j.neuroimage.2018.08.042_bib79) 2017; 37 Fischl (10.1016/j.neuroimage.2018.08.042_bib27) 2012; 62 Routier (10.1016/j.neuroimage.2018.08.042_bib72) 2018 Tohka (10.1016/j.neuroimage.2018.08.042_bib83) 2016; 14 Lu (10.1016/j.neuroimage.2018.08.042_bib56) 2018; 8 Jack (10.1016/j.neuroimage.2018.08.042_bib41) 2010; 6 (10.1016/j.neuroimage.2018.08.042_bib48) 2017 Raamana (10.1016/j.neuroimage.2018.08.042_bib70) 2017 Ewers (10.1016/j.neuroimage.2018.08.042_bib24) 2011; 34 Knopman (10.1016/j.neuroimage.2018.08.042_bib50) 2001; 56 Gousias (10.1016/j.neuroimage.2018.08.042_bib33) 2008; 40 Tzourio-Mazoyer (10.1016/j.neuroimage.2018.08.042_bib85) 2002; 15 Teipel (10.1016/j.neuroimage.2018.08.042_bib80) 2015; 8 Pedregosa (10.1016/j.neuroimage.2018.08.042_bib65) 2011; 12 Thomas (10.1016/j.neuroimage.2018.08.042_bib82) 2011; 38 Jagust (10.1016/j.neuroimage.2018.08.042_bib44) 2010; 6 Beheshti (10.1016/j.neuroimage.2018.08.042_bib9) 2015; 64 Jagust (10.1016/j.neuroimage.2018.08.042_bib45) 2015; 11 Voevodskaya (10.1016/j.neuroimage.2018.08.042_bib88) 2014; 6 Tong (10.1016/j.neuroimage.2018.08.042_bib84) 2014; 18 Holmes (10.1016/j.neuroimage.2018.08.042_bib39) 1998; 22 Klöppel (10.1016/j.neuroimage.2018.08.042_bib49) 2008; 131 Jack (10.1016/j.neuroimage.2018.08.042_bib40) 2011; 7 Maggipinto (10.1016/j.neuroimage.2018.08.042_bib57) 2017; 62 Nadeau (10.1016/j.neuroimage.2018.08.042_bib62) 2003; 52 Gómez-Sancho (10.1016/j.neuroimage.2018.08.042_bib30) 2018; 50 Bäckström (10.1016/j.neuroimage.2018.08.042_bib8) 2018 Coupé (10.1016/j.neuroimage.2018.08.042_bib14) 2012; 1 Ashburner (10.1016/j.neuroimage.2018.08.042_bib7) 2005; 26 Guerrero (10.1016/j.neuroimage.2018.08.042_bib35) 2014; 94 |
References_xml | – volume: 212 start-page: 89 year: 2013 end-page: 98 ident: bib2 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatr. Res. – volume: 39 start-page: 1731 year: 2008 end-page: 1743 ident: bib26 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage – volume: 8 start-page: 583 year: 2015 end-page: 593 ident: bib80 article-title: The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment — beyond classical regression publication-title: Neuroimage: Clinical – volume: 6 start-page: 221 year: 2010 end-page: 229 ident: bib44 article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core publication-title: Alzheimer's Dementia – volume: 254 start-page: 46 year: 2015 end-page: 59 ident: bib47 article-title: AICHA: an atlas of intrinsic connectivity of homotopic areas publication-title: J. Neurosci. Meth. – volume: 11 start-page: 802 year: 2016 end-page: 812 ident: bib75 article-title: A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity publication-title: Neuroimage Clin – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: bib86 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: bib55 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. – volume: 256 start-page: 240 year: 2004 end-page: 246 ident: bib90 article-title: Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment publication-title: J. Intern. Med. – volume: 6 start-page: 291 year: 2010 end-page: 296 ident: bib22 article-title: Addressing population aging and Alzheimer's disease through the australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's disease neuroimaging initiative publication-title: Alzheimer's Dementia – volume: 256 start-page: 168 year: 2015 end-page: 183 ident: bib64 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease publication-title: J. Neurosci. Meth. – year: 2017 ident: bib69 article-title: Neuropredict: Easy Machine Learning and Standardized Predictive Analysis of Biomarkers – volume: 39 start-page: 1186 year: 2008 end-page: 1197 ident: bib87 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage – volume: 10 year: 2015 ident: bib93 article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism publication-title: PLoS One – volume: 2 start-page: 735 year: 2013 end-page: 745 ident: bib92 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: Neuroimage: Clinical – volume: 6 year: 2011 ident: bib91 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS One – volume: 58 start-page: 785 year: 2011 end-page: 792 ident: bib1 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: Neuroimage – year: 2017 ident: bib48 article-title: Reproducibility in machine learning research publication-title: Workshop of the International Conference on Machine Learning, Sydney, Australia – volume: 54 start-page: 70 year: 2013 end-page: 77 ident: bib51 article-title: Amyloid-β imaging with pittsburgh compound B and Florbetapir: comparing radiotracers and quantification methods publication-title: J. Nucl. Med. – volume: 62 start-page: 2361 year: 2017 ident: bib57 article-title: DTI measurements for Alzheimer's classification publication-title: Phys. Med. Biol. – volume: 41 start-page: 685 year: 2014 end-page: 708 ident: bib25 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheim. Dis. – volume: 155 start-page: 530 year: 2017 end-page: 548 ident: bib71 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages publication-title: Neuroimage – volume: 6 year: 2011 ident: bib20 article-title: Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia publication-title: PLoS One – year: 2017 ident: bib70 article-title: Impact of Spatial Scale and Edge Weight on Predictive Power of Cortical Thickness Networks – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib27 publication-title: FreeSurfer. Neuroimage – volume: 19 start-page: 224 year: 2003 end-page: 247 ident: bib37 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. – year: 2018 ident: bib72 article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies publication-title: Presented at the Annual Meeting of the Organization for Human Brain Mapping - OHBM 2018 – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib94 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 34 start-page: 430 year: 2011 end-page: 442 ident: bib24 article-title: Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia publication-title: Trends Neurosci. – volume: 100 start-page: 91 year: 2014 end-page: 105 ident: bib95 article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis publication-title: Neuroimage – volume: 212 start-page: 230 year: 2013 end-page: 236 ident: bib19 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatr. Res. Neuroimaging – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib7 article-title: Unified segmentation publication-title: Neuroimage – volume: 302 start-page: 66 year: 2018 end-page: 74 ident: bib77 article-title: Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination publication-title: J. Neurosci. Meth. – volume: 36 start-page: 4758 year: 2015 end-page: 4770 ident: bib15 article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis publication-title: Hum. Brain Mapp. – volume: 48 start-page: 138 year: 2009 end-page: 149 ident: bib38 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: bib39 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. – volume: 36 start-page: 489 year: 2015 end-page: 507 ident: bib46 article-title: Manifold regularized multitask feature learning for multimodality disease classification publication-title: Hum. Brain Mapp. – volume: 7 start-page: 280 year: 2011 end-page: 292 ident: bib78 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 64 start-page: 208 year: 2015 end-page: 216 ident: bib9 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput. Biol. Med. – volume: 3 start-page: 160044 year: 2016 ident: bib32 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Scientific Data – volume: 36 start-page: 1847 year: 2015 end-page: 1865 ident: bib54 article-title: View-centralized multi-atlas classification for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. – volume: 34 start-page: 939 year: 1984 end-page: 944 ident: bib59 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib85 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib61 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib6 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 7 start-page: 257 year: 2011 end-page: 262 ident: bib40 article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: bib3 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 3 start-page: 165 year: 1995 end-page: 189 ident: bib29 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. – volume: 94 start-page: 275 year: 2014 end-page: 286 ident: bib35 article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO publication-title: Neuroimage – volume: 1 start-page: 141 year: 2012 end-page: 152 ident: bib14 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease publication-title: Neuroimage: Clinical – volume: 5 start-page: 13 year: 2011 ident: bib31 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. – volume: 18 start-page: 115 year: 2017 end-page: 126 ident: bib67 article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research publication-title: Nat. Rev. Neurosci. – volume: 40 start-page: 672 year: 2008 end-page: 684 ident: bib33 article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest publication-title: Neuroimage – volume: 50 start-page: 84 year: 2018 end-page: 95 ident: bib30 article-title: Comparison of feature representations in MRI-based MCI-to-AD conversion prediction publication-title: Magn. Reson. Imaging – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bib60 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 11 start-page: 757 year: 2015 end-page: 771 ident: bib45 article-title: The Alzheimer's disease neuroimaging initiative 2 PET core: 2015 publication-title: Alzheimer's Dementia – volume: 6 start-page: 212 year: 2010 end-page: 220 ident: bib41 article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative publication-title: Alzheimer's Dementia – volume: 8 start-page: 5697 year: 2018 ident: bib56 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images publication-title: Sci. Rep. – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bib16 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage, Multivariate Decoding and Brain Reading – volume: 26 start-page: 389 year: 2011 end-page: 394 ident: bib36 article-title: Principles of classification analyses in mild cognitive impairment (MCI) and alzheimer disease publication-title: J. Alzheim. Dis. – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bib43 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: bib79 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib5 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 65 start-page: 511 year: 2013 end-page: 521 ident: bib23 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: Neuroimage – volume: 52 start-page: 239 year: 2003 end-page: 281 ident: bib62 article-title: Inference for the generalization error publication-title: Mach. Learn. – start-page: 149 year: 2018 end-page: 153 ident: bib8 article-title: An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) – volume: 221 start-page: 139 year: 2014 end-page: 150 ident: bib63 article-title: A comparison of three brain atlases for MCI prediction publication-title: J. Neurosci. Meth. – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: bib13 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage – volume: 111 start-page: 562 year: 2015 end-page: 579 ident: bib11 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage – volume: 13 start-page: 614 year: 2014 end-page: 629 ident: bib18 article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria publication-title: Lancet Neurol. – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bib28 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage – volume: 60 start-page: 1106 year: 2012 end-page: 1116 ident: bib53 article-title: Ensemble sparse classification of Alzheimer's disease publication-title: Neuroimage – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib65 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bib84 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. – volume: 6 start-page: 734 year: 2007 end-page: 746 ident: bib17 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol. – volume: 5 start-page: 1089 year: 2004 end-page: 1105 ident: bib10 article-title: No unbiased estimator of the variance of K-Fold cross-validation publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 1104 year: 2011 end-page: 1119 ident: bib82 article-title: The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 21 start-page: 672 year: 2009 end-page: 687 ident: bib21 article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease publication-title: Int. Psychogeriatr. – volume: 74 start-page: 201 year: 2010 end-page: 209 ident: bib66 article-title: Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology – volume: 9 year: 2015 ident: bib74 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach publication-title: Front. Neurosci. – volume: 14 start-page: 279 year: 2016 end-page: 296 ident: bib83 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics – volume: 6 start-page: 264 year: 2014 ident: bib88 article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease publication-title: Front. Aging Neurosci. – volume: 13 start-page: 31 year: 2015 end-page: 46 ident: bib73 article-title: Clinical prediction from structural brain mri scans: a large-scale empirical study publication-title: Neuroinformatics – volume: 12 start-page: 645 year: 2016 end-page: 653 ident: bib4 article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease publication-title: Alzheimer's Dementia: The Journal of the Alzheimer’s Association – volume: 56 start-page: 1143 year: 2001 end-page: 1153 ident: bib50 article-title: Practice parameter: diagnosis of dementia (an evidence-based review) publication-title: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bib49 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 132 start-page: 2036 year: 2009 end-page: 2047 ident: bib68 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 264 start-page: 47 year: 2016 end-page: 56 ident: bib52 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Meth. – volume: 19 start-page: 1498 year: 2007 end-page: 1507 ident: bib58 article-title: Open access Series of imaging studies (OASIS): cross-sectional MRI data in Young, Middle aged, nondemented, and demented older Adults publication-title: J. Cognit. Neurosci. – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bib76 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage – volume: 61 start-page: 7975 year: 2016 end-page: 7993 ident: bib81 article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. – volume: 65 start-page: 167 year: 2013 end-page: 175 ident: bib34 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease publication-title: Neuroimage – volume: 58 start-page: 101 year: 2015 end-page: 109 ident: bib12 article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages publication-title: Comput. Biol. Med. – volume: 26 start-page: 9 year: 2013 end-page: 23 ident: bib89 article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment publication-title: Brain Topogr. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib42 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imag. – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib49 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 264 start-page: 47 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib52 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2016.03.001 – volume: 13 start-page: 31 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib73 article-title: Clinical prediction from structural brain mri scans: a large-scale empirical study publication-title: Neuroinformatics doi: 10.1007/s12021-014-9238-1 – volume: 48 start-page: 138 year: 2009 ident: 10.1016/j.neuroimage.2018.08.042_bib38 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.056 – volume: 254 start-page: 46 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib47 article-title: AICHA: an atlas of intrinsic connectivity of homotopic areas publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2015.07.013 – year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib70 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib42 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.21049 – volume: 9 start-page: 119 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib43 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib5 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 6 start-page: 264 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib88 article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00264 – volume: 39 start-page: 1731 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib26 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.031 – volume: 52 start-page: 239 year: 2003 ident: 10.1016/j.neuroimage.2018.08.042_bib62 article-title: Inference for the generalization error publication-title: Mach. Learn. doi: 10.1023/A:1024068626366 – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib76 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 34 start-page: 939 year: 1984 ident: 10.1016/j.neuroimage.2018.08.042_bib59 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 6 start-page: 734 year: 2007 ident: 10.1016/j.neuroimage.2018.08.042_bib17 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70178-3 – volume: 94 start-page: 275 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib35 article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.036 – volume: 65 start-page: 511 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib23 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.058 – year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib48 article-title: Reproducibility in machine learning research – volume: 38 start-page: 1104 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib82 article-title: The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-011-1745-9 – volume: 145 start-page: 166 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib86 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 58 start-page: 785 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib1 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.029 – volume: 65 start-page: 167 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib34 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 256 start-page: 168 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib64 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2015.08.020 – year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib72 article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies – volume: 212 start-page: 89 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib2 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatr. Res. doi: 10.1016/j.pscychresns.2012.11.005 – volume: 7 start-page: 270 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib3 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.008 – volume: 212 start-page: 230 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib19 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2012.04.007 – volume: 60 start-page: 1106 year: 2012 ident: 10.1016/j.neuroimage.2018.08.042_bib53 article-title: Ensemble sparse classification of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 26 start-page: 389 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib36 article-title: Principles of classification analyses in mild cognitive impairment (MCI) and alzheimer disease publication-title: J. Alzheim. Dis. doi: 10.3233/JAD-2011-0014 – volume: 58 start-page: 101 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib12 article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.01.003 – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib55 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.005 – volume: 19 start-page: 1498 year: 2007 ident: 10.1016/j.neuroimage.2018.08.042_bib58 article-title: Open access Series of imaging studies (OASIS): cross-sectional MRI data in Young, Middle aged, nondemented, and demented older Adults publication-title: J. Cognit. Neurosci. doi: 10.1162/jocn.2007.19.9.1498 – year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib69 – volume: 61 start-page: 7975 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib81 article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/22/7975 – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib20 article-title: Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia publication-title: PLoS One doi: 10.1371/journal.pone.0018111 – volume: 56 start-page: 1143 year: 2001 ident: 10.1016/j.neuroimage.2018.08.042_bib50 article-title: Practice parameter: diagnosis of dementia (an evidence-based review) publication-title: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology – volume: 9 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib74 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00307 – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib60 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 5 start-page: 1089 year: 2004 ident: 10.1016/j.neuroimage.2018.08.042_bib10 article-title: No unbiased estimator of the variance of K-Fold cross-validation publication-title: J. Mach. Learn. Res. – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib93 article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism publication-title: PLoS One doi: 10.1371/journal.pone.0129250 – volume: 13 start-page: 614 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib18 article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(14)70090-0 – volume: 41 start-page: 685 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib25 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheim. Dis. doi: 10.3233/JAD-131928 – volume: 256 start-page: 240 year: 2004 ident: 10.1016/j.neuroimage.2018.08.042_bib90 article-title: Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01380.x – volume: 155 start-page: 530 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib71 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 62 start-page: 2361 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib57 article-title: DTI measurements for Alzheimer's classification publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5dbe – volume: 50 start-page: 84 year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib30 article-title: Comparison of feature representations in MRI-based MCI-to-AD conversion prediction publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2018.03.003 – volume: 21 start-page: 672 year: 2009 ident: 10.1016/j.neuroimage.2018.08.042_bib21 article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610209009405 – volume: 54 start-page: 70 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib51 article-title: Amyloid-β imaging with pittsburgh compound B and Florbetapir: comparing radiotracers and quantification methods publication-title: J. Nucl. Med. doi: 10.2967/jnumed.112.109009 – volume: 221 start-page: 139 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib63 article-title: A comparison of three brain atlases for MCI prediction publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2013.10.003 – start-page: 149 year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib8 article-title: An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2018.08.042_bib27 publication-title: FreeSurfer. Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 302 start-page: 66 year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib77 article-title: Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2018.01.003 – volume: 64 start-page: 208 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib9 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.07.006 – volume: 14 start-page: 279 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib83 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics doi: 10.1007/s12021-015-9292-3 – volume: 3 start-page: 160044 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib32 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Scientific Data doi: 10.1038/sdata.2016.44 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib65 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 5697 year: 2018 ident: 10.1016/j.neuroimage.2018.08.042_bib56 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images publication-title: Sci. Rep. doi: 10.1038/s41598-018-22871-z – volume: 18 start-page: 808 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib84 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: 60 start-page: 59 year: 2012 ident: 10.1016/j.neuroimage.2018.08.042_bib13 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 111 start-page: 562 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib11 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.048 – volume: 6 start-page: 221 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib44 article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2010.03.003 – volume: 36 start-page: 1847 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib54 article-title: View-centralized multi-atlas classification for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22741 – volume: 7 start-page: 280 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib78 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 2 start-page: 735 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib92 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2013.05.004 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib61 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 100 start-page: 91 year: 2014 ident: 10.1016/j.neuroimage.2018.08.042_bib95 article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.078 – volume: 1 start-page: 141 year: 2012 ident: 10.1016/j.neuroimage.2018.08.042_bib14 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2012.10.002 – volume: 36 start-page: 4758 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib15 article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22926 – volume: 40 start-page: 672 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib33 article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.034 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2018.08.042_bib85 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 56 start-page: 766 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib16 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage, Multivariate Decoding and Brain Reading – volume: 8 start-page: 583 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib80 article-title: The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment — beyond classical regression publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2015.05.006 – volume: 26 start-page: 9 year: 2013 ident: 10.1016/j.neuroimage.2018.08.042_bib89 article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment publication-title: Brain Topogr. doi: 10.1007/s10548-012-0246-x – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib91 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0025446 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2018.08.042_bib7 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 5 start-page: 13 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib31 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. doi: 10.3389/fninf.2011.00013 – volume: 39 start-page: 1186 year: 2008 ident: 10.1016/j.neuroimage.2018.08.042_bib87 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 11 start-page: 802 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib75 article-title: A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2016.05.017 – volume: 38 start-page: 95 year: 2007 ident: 10.1016/j.neuroimage.2018.08.042_bib6 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 19 start-page: 224 year: 2003 ident: 10.1016/j.neuroimage.2018.08.042_bib37 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10123 – volume: 7 start-page: 257 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib40 article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.004 – volume: 11 start-page: 757 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib45 article-title: The Alzheimer's disease neuroimaging initiative 2 PET core: 2015 publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2015.05.001 – volume: 18 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib67 article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.167 – volume: 12 start-page: 645 year: 2016 ident: 10.1016/j.neuroimage.2018.08.042_bib4 article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease publication-title: Alzheimer's Dementia: The Journal of the Alzheimer’s Association doi: 10.1016/j.jalz.2016.02.006 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib94 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 22 start-page: 324 year: 1998 ident: 10.1016/j.neuroimage.2018.08.042_bib39 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 6 start-page: 212 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib41 article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2010.03.004 – volume: 36 start-page: 489 year: 2015 ident: 10.1016/j.neuroimage.2018.08.042_bib46 article-title: Manifold regularized multitask feature learning for multimodality disease classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22642 – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib28 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 37 start-page: 101 year: 2017 ident: 10.1016/j.neuroimage.2018.08.042_bib79 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.008 – volume: 34 start-page: 430 year: 2011 ident: 10.1016/j.neuroimage.2018.08.042_bib24 article-title: Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.05.005 – volume: 6 start-page: 291 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib22 article-title: Addressing population aging and Alzheimer's disease through the australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's disease neuroimaging initiative publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2010.03.009 – volume: 132 start-page: 2036 year: 2009 ident: 10.1016/j.neuroimage.2018.08.042_bib68 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain doi: 10.1093/brain/awp105 – volume: 3 start-page: 165 year: 1995 ident: 10.1016/j.neuroimage.2018.08.042_bib29 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030303 – volume: 74 start-page: 201 year: 2010 ident: 10.1016/j.neuroimage.2018.08.042_bib66 article-title: Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 |
SSID | ssj0009148 |
Score | 2.622672 |
Snippet | A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD).... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 504 |
SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial intelligence Biomarkers Classification Cognitive science Computer Science Data processing Datasets Experiments Learning algorithms Machine learning Magnetic resonance imaging Medical imaging Neurodegenerative diseases Neuroscience NMR Nuclear magnetic resonance Open-source Positron emission tomography Reproducibility Studies |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1di9QwFA3uCuKL-O3oKlEEn4JtmrapPsggO4ziiMguzFvIV9mR2XbdmVXw13tvknZ8WZnXNLctyU1ykntyLiGvSy19U_OS2VxLJkrpmJTOMS1srZ011ocsCouv1fxUfF6Wy3Tgtkm0ymFODBO16y2ekb_lIQQE4KL4cPGTYdYojK6mFBoH5GYOSARTN9TLeie6m4t4Fa4smIQKickT-V1BL3J1DqMWCV4yCHkKft3ydHCGPMnrQGhYjGZ3yZ2EIuk0dvs9csN398mtRYqTPyC_AVcHKdeVWXu6U_SmfUst4mUkCMWSmEJ6Q1cdna7_nPnVub98s6EpcPOOzgb2FtWdo__Eu-m2p4vvn0Lxt-MTilzTh-R0dnzycc5SigVmq6zZssrlMOxaDqisEjaHzYtBhVHONcebTQ1spxpT1ahfm9tMt22rrfClaWHlM7WrikfksOs7_wRa1pVZ7h23ujRCmkxLUThAO5nwlQFgNSH10LLKJv1xTIOxVgPR7Ifa9YnCPlGYIVPwCclHy4uowbGHTTN0nhrumMKsqGCh2MP2_WibcEjEF3tavwJfGX8U5bvn0y8Ky6ASRqnFL6h0NLiSSpPGRu1cfEJejo9huGMMR3e-v4I64NSS50XRTMjj6ILjpwqMQleifvr_lz8jt_F3IyfniBxuL6_8c0BWW_MiDJ-_ipYhQA priority: 102 providerName: ProQuest |
Title | Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918307407 https://dx.doi.org/10.1016/j.neuroimage.2018.08.042 https://www.ncbi.nlm.nih.gov/pubmed/30130647 https://www.proquest.com/docview/2122415753 https://www.proquest.com/docview/2091821339 https://inria.hal.science/hal-01858384 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdtCmOX0X1n7YI2Bjt5sWXZlrdTFhLSrQkhayE3Icky9Uid0qQb7LC_fe_ZsrMdCoFdHKzoYSG9j594X4S8i5SwacIizwRKeDwSmSdElnmKm0RlRhtbdVGYzuLJJf-yjJYHZNjkwmBYpdP9tU6vtLUb6bvd7N8URf8bIAMwN3DfEMCnHDPKjxhYe9EhR4Ozr5PZrvZuwOuMuCj0kMAF9NRhXlXZyOIahBfjvERVz5Oz-6zU4RWGS96HRSubND4mjxyYpIN6vY_JgS2fkAdT5y5_Sn4CvK4quhZ6ZemusDdd59QgbMY4oXqk7iS9oUVJB6tfV7a4trfvN9T5bz7ScRPERVWZ0b_c3nS7ptPFWTU8H11QDDl9Ri7Ho4vhxHOdFjwT--nWi7MApC9nAM5ibgK4w2gsNMqYYpjglMKtKtVxgmVsA-OrPM-V4TbSORhAnWRx-Jx0ynVpX8LOZpEf2IwZFWkutK8EDzMAPT63sQZ81SVJs7PSuDLk2A1jJZt4s-9ydyYSz0Rio0zOuiRoKW_qUhx70KTN4ckm1RSUowR7sQftp5b2H5bck_ot8Eq7UKziPRmcSxyDSeis5j9g0mnDStLpjo1klbMTYHTYJW_av0Hq0ZWjSru-gznA1IIFYZh2yYuaBdtPheiMjnny6r_Wf0Ie4lsduXNKOtvbO_sa8NdW98jhh98BPJNl0gNZGy7O5z0nc_D7eTSbL_4ABl4zLQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2TgJeEN8UBhgE4ikidpwv0IQKtGpZW01TJ-3NOLajFXXJWDsm-HH8Nu5NnJSXob7s1fFNIvv6-iT3-FxCXocqsWnMQ08zlXgiTIyXJMZ4SuhYGZ1pW1VRmEyj4ZH4ehweb5E_zVkYpFU2MbEK1KbU-I_8Ha9SQAAugo9nPzysGoXZ1aaEhnKlFcxeJTHmDnbs21-X8Am33Bt9gfl-w_mgP_s89FyVAU9HfrryIsPA83IOwCQSmgF-z1Bkk3PF8XAPfJOzNItilHBl2ld5nistbJjlEPyz2EQB3Heb7Aj8gdIhO5_604PDtewvE_VhvDDwEsZSxyWqGWaVYuX8FOIGUsySSkpU8Ks2yO0TZGpeBYOr7XBwh9x2OJb2ase7S7ZscY_cmLhM_X1yCci-EpOdZwtL15ritMypRsSOFKW6pS5ivaTzgvYWv0_s_NSev11Slzp6TwcNf4yqwtB_Mu50VdLJ4ahqPujPKLJdH5Cjaxn-h6RTlIV9DCNrQp9Zw7UKM5FkvkpEYABv-cJGGUC7LombkZXaKaBjIY6FbKhu3-V6TiTOicQanYJ3CWstz2oVkA1s0mbyZHPKFeKyhK1qA9sPra1DQjXC2dD6FfhK-6IoID7sjSW2QSfMk4uf0Gm3cSXpwtZSrhdZl7xsL0PAwSySKmx5AX3AqRPOgiDtkke1C7aPCjAPHon4yf9v_oLcHM4mYzkeTfefklv46jVDaJd0VucX9hngvFX23C0mSr5d9_r9C-byYjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEG-2FDAIxClq7DgvEEIr2tUu7VYVaqW9Gb-iLtombXdLBT-NX8dMnGS5FO2lV8eTRPZ4_CXz-RtC3sYqc3nK48AwlQUizmyQZdYGSphUWaONq6sojA-T4Yn4Ookna-RPexYGaZVtTKwDta0M_iPf4XUKCMBFtFM0tIij3cHn84sAK0hhprUtp-FdZN_9uobPt_mn0S7M9TvOB3vHX4ZBU2EgMEmYL4LEMvC6ggMoSYRhgN01Cmxyrjge7IHvcZbrJEX5VmZCVRSFMsLFuoDAr1ObRHDfdXInjYTAshHpJF0K_jLhj-HFUZAxljcsIs8tq7Uqp2cQMZBcltUiooLftDWunyJH8yYAXG-Eg_vkXoNgad-73AOy5sqHZHPc5OgfkWvA9LWM7FTPHF2qidOqoAaxOpKTfIsvXz2n05L2Z79P3fTMXb6f0yZp9IEOWuYYVaWl_-Ta6aKi42-juvlo75giz_UxObmVwX9CNsqqdM9gZG0cMme5UbEWmQ5VJiILSCsULtEA6nokbUdWmkb7HEtwzGRLcvshl3MicU4kVucUvEdYZ3nu9T9WsMnbyZPt-VaIyBI2qRVsP3a2DQby2GZF6zfgK92LonT4sH8gsQ06YYZc_IRO260rySZgzeVyefXI6-4yhBrMH6nSVVfQB5w64yyK8h556l2we1SEGfBEpFv_v_krsgmrVh6MDvefk7v45p4atE02FpdX7gUAvIV-Wa8kSr7f9tL9Cyp4X9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducible+evaluation+of+classification+methods+in+Alzheimer%27s+disease%3A+Framework+and+application+to+MRI+and+PET+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Samper-Gonz%C3%A1lez%2C+Jorge&rft.au=Burgos%2C+Ninon&rft.au=Bottani%2C+Simona&rft.au=Fontanella%2C+Sabrina&rft.date=2018-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=183&rft.spage=504&rft.epage=521&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.08.042&rft.externalDocID=S1053811918307407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |