Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data

A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 183; pp. 504 - 521
Main Authors Samper-González, Jorge, Burgos, Ninon, Bottani, Simona, Fontanella, Sabrina, Lu, Pascal, Marcoux, Arnaud, Routier, Alexandre, Guillon, Jérémy, Bacci, Michael, Wen, Junhao, Bertrand, Anne, Bertin, Hugo, Habert, Marie-Odile, Durrleman, Stanley, Evgeniou, Theodoros, Colliot, Olivier
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2018
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.08.042

Cover

Abstract A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.
AbstractList A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://github.com/aramis-lab/AD-ML.
A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.
A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.
Author Routier, Alexandre
Samper-González, Jorge
Colliot, Olivier
Bertrand, Anne
Habert, Marie-Odile
Evgeniou, Theodoros
Wen, Junhao
Burgos, Ninon
Fontanella, Sabrina
Bertin, Hugo
Lu, Pascal
Marcoux, Arnaud
Bottani, Simona
Bacci, Michael
Durrleman, Stanley
Guillon, Jérémy
Author_xml – sequence: 1
  givenname: Jorge
  surname: Samper-González
  fullname: Samper-González, Jorge
  email: jorge.samper-gonzalez@inria.fr
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 2
  givenname: Ninon
  surname: Burgos
  fullname: Burgos, Ninon
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 3
  givenname: Simona
  surname: Bottani
  fullname: Bottani, Simona
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 4
  givenname: Sabrina
  surname: Fontanella
  fullname: Fontanella, Sabrina
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 5
  givenname: Pascal
  surname: Lu
  fullname: Lu, Pascal
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 6
  givenname: Arnaud
  surname: Marcoux
  fullname: Marcoux, Arnaud
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 7
  givenname: Alexandre
  surname: Routier
  fullname: Routier, Alexandre
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 8
  givenname: Jérémy
  surname: Guillon
  fullname: Guillon, Jérémy
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 9
  givenname: Michael
  surname: Bacci
  fullname: Bacci, Michael
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 10
  givenname: Junhao
  surname: Wen
  fullname: Wen, Junhao
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 11
  givenname: Anne
  surname: Bertrand
  fullname: Bertrand, Anne
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 12
  givenname: Hugo
  surname: Bertin
  fullname: Bertin, Hugo
  organization: Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France
– sequence: 13
  givenname: Marie-Odile
  surname: Habert
  fullname: Habert, Marie-Odile
  organization: Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France
– sequence: 14
  givenname: Stanley
  surname: Durrleman
  fullname: Durrleman, Stanley
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
– sequence: 15
  givenname: Theodoros
  surname: Evgeniou
  fullname: Evgeniou, Theodoros
  organization: INSEAD, Bd de Constance, 77305, Fontainebleau, France
– sequence: 16
  givenname: Olivier
  surname: Colliot
  fullname: Colliot, Olivier
  email: olivier.colliot@upmc.fr
  organization: Inria, ARAMIS Project-team, F-75013, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130647$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01858384$$DView record in HAL
BookMark eNqNkVtv1DAQhSNURC_wF5AlHoCHLL4kjsNDxVK1tNIiUFWeLceZsN469mInW5Vfj7dpi7RPK41ka_TNseec4-zAeQdZhgieEUz4p9XMwRi86dVvmFFMxAynKuiL7IjguszrsqIH23vJckFIfZgdx7jCGNekEK-yQ4YJw7yojrK7a1gH347aNBYQbJQd1WC8Q75D2qoYTWf01OlhWPo2IuPQ3P5dgukhvI-oNRFUhM_oIqge7ny4Rcq1SK3X9mly8Oj79dVD--f5DWrVoF5nLztlI7x5PE-yXxfnN2eX-eLHt6uz-SLXHNdDzluCMe8o4YwXmoiqbNISglJFcUWKWlSkbnjFS1YTjVXXdUoXUDYdw6ypWs5Oso-T7lJZuQ7JsXAvvTLycr6Q214yrxRMFBua2A8Tmxz5M0IcZG-iBmuVAz9GSZN9ghLG6oS-20FXfgwubSIpobQgZVWyRL19pMamh_b5_Sf7EyAmQAcfY4DuGSFYbpOWK_k_ablNWuJUxfazpzuj2gwPdg9BGbuPwNdJAJL9GwNBRm3AaWhNAD3I1pt9RL7siGhrXMrd3sL9fhL_AFxg34g
CitedBy_id crossref_primary_10_3390_math9233101
crossref_primary_10_1016_j_media_2021_102219
crossref_primary_10_1016_j_neurad_2019_01_001
crossref_primary_10_3390_electronics12020467
crossref_primary_10_3389_fncom_2019_00072
crossref_primary_10_1002_ima_22650
crossref_primary_10_3389_fninf_2024_1420315
crossref_primary_10_1016_j_media_2020_101848
crossref_primary_10_1155_2022_8680737
crossref_primary_10_1016_j_compbiomed_2024_108869
crossref_primary_10_3390_app11052187
crossref_primary_10_1016_j_bpsc_2020_12_007
crossref_primary_10_1007_s11042_024_19104_z
crossref_primary_10_1109_TCDS_2022_3204782
crossref_primary_10_3390_app9153063
crossref_primary_10_1016_j_nicl_2020_102199
crossref_primary_10_1007_s10072_024_07649_8
crossref_primary_10_1186_s12883_023_03347_8
crossref_primary_10_3390_bdcc6010002
crossref_primary_10_1016_j_neurobiolaging_2024_12_009
crossref_primary_10_1038_s41598_022_04943_3
crossref_primary_10_1002_ana_26710
crossref_primary_10_1093_jtm_taae021
crossref_primary_10_1007_s12021_020_09469_5
crossref_primary_10_1016_j_media_2023_102903
crossref_primary_10_1073_pnas_2300842120
crossref_primary_10_1038_s41598_021_87434_1
crossref_primary_10_1259_bjr_20211253
crossref_primary_10_1002_ima_23054
crossref_primary_10_1016_j_neuroimage_2019_116208
crossref_primary_10_1016_j_media_2021_102304
crossref_primary_10_1088_1361_6560_ac8f10
crossref_primary_10_3389_fpsyt_2022_1016807
crossref_primary_10_2174_1567205018666210218150223
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1186_s12880_024_01242_3
crossref_primary_10_1186_s13195_021_00879_4
crossref_primary_10_1016_j_eswa_2019_04_022
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_3233_JAD_215164
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_1002_alz_12422
crossref_primary_10_2174_1573405615666190404163233
crossref_primary_10_1016_j_cmpb_2022_107291
crossref_primary_10_1016_j_bbi_2023_06_027
crossref_primary_10_1155_2020_2825037
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_1371_journal_pone_0243535
crossref_primary_10_1016_j_compbiomed_2023_107050
crossref_primary_10_3390_s21217259
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_3233_IDT_230524
crossref_primary_10_1016_j_bspc_2024_107085
crossref_primary_10_3390_s23063062
crossref_primary_10_3389_fnins_2019_01053
crossref_primary_10_1016_j_neuroimage_2022_119621
crossref_primary_10_3233_KES_220007
crossref_primary_10_1038_s41598_022_08231_y
crossref_primary_10_1016_j_nicl_2019_101821
crossref_primary_10_1007_s10586_023_04103_w
crossref_primary_10_1016_j_bspc_2024_107367
crossref_primary_10_3389_fninf_2021_689675
crossref_primary_10_1007_s42979_023_01688_2
crossref_primary_10_3390_s22124609
crossref_primary_10_1016_j_compbiomed_2023_107304
crossref_primary_10_1016_j_neuroimage_2024_120929
crossref_primary_10_1088_1742_6596_1641_1_012025
crossref_primary_10_3390_medicina58070952
crossref_primary_10_1155_2022_7275433
crossref_primary_10_3389_fnins_2020_569706
crossref_primary_10_1177_0271678X19880450
crossref_primary_10_1007_s40031_021_00571_z
crossref_primary_10_1166_jctn_2020_9455
crossref_primary_10_1038_s41467_024_46796_6
crossref_primary_10_1097_WCO_0000000000000838
crossref_primary_10_1109_TMI_2022_3151118
crossref_primary_10_1007_s11042_023_16023_3
crossref_primary_10_1038_s41597_024_04157_4
crossref_primary_10_3389_fnagi_2023_1224723
crossref_primary_10_1016_j_compbiomed_2019_103527
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1155_2023_1110500
crossref_primary_10_1002_alz_13056
crossref_primary_10_1007_s11227_021_03901_6
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1371_journal_pone_0236868
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1016_j_neuroscience_2022_03_026
crossref_primary_10_3389_fnagi_2020_00238
crossref_primary_10_3390_app12126211
crossref_primary_10_3390_make5020035
crossref_primary_10_1038_s41598_024_78308_3
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_3389_fnagi_2019_00220
Cites_doi 10.1093/brain/awm319
10.1016/j.jneumeth.2016.03.001
10.1007/s12021-014-9238-1
10.1016/j.neuroimage.2009.05.056
10.1016/j.jneumeth.2015.07.013
10.1002/jmri.21049
10.1016/S1474-4422(09)70299-6
10.1016/j.neuroimage.2016.02.079
10.3389/fnagi.2014.00264
10.1016/j.neuroimage.2007.10.031
10.1023/A:1024068626366
10.1016/j.neuroimage.2007.09.031
10.1212/WNL.34.7.939
10.1016/S1474-4422(07)70178-3
10.1016/j.neuroimage.2014.03.036
10.1016/j.neuroimage.2012.09.058
10.1007/s00259-011-1745-9
10.1016/j.neuroimage.2016.10.038
10.1016/j.neuroimage.2011.06.029
10.1016/j.neuroimage.2012.09.065
10.1016/j.jneumeth.2015.08.020
10.1016/j.pscychresns.2012.11.005
10.1016/j.jalz.2011.03.008
10.1016/j.pscychresns.2012.04.007
10.1016/j.neuroimage.2012.01.055
10.3233/JAD-2011-0014
10.1016/j.compbiomed.2015.01.003
10.1016/j.media.2017.10.005
10.1162/jocn.2007.19.9.1498
10.1088/0031-9155/61/22/7975
10.1371/journal.pone.0018111
10.3389/fnins.2015.00307
10.1016/j.jalz.2011.03.005
10.1371/journal.pone.0129250
10.1016/S1474-4422(14)70090-0
10.3233/JAD-131928
10.1111/j.1365-2796.2004.01380.x
10.1016/j.neuroimage.2017.03.057
10.1088/1361-6560/aa5dbe
10.1016/j.mri.2018.03.003
10.1017/S1041610209009405
10.2967/jnumed.112.109009
10.1016/j.jneumeth.2013.10.003
10.1016/j.neuroimage.2012.01.021
10.1016/j.jneumeth.2018.01.003
10.1016/j.compbiomed.2015.07.006
10.1007/s12021-015-9292-3
10.1038/sdata.2016.44
10.1038/s41598-018-22871-z
10.1016/j.media.2014.04.006
10.1016/j.neuroimage.2011.11.066
10.1016/j.neuroimage.2015.01.048
10.1016/j.jalz.2010.03.003
10.1002/hbm.22741
10.1016/j.jalz.2011.03.003
10.1016/j.nicl.2013.05.004
10.1016/j.neuroimage.2014.10.002
10.1016/j.neuroimage.2014.05.078
10.1016/j.nicl.2012.10.002
10.1002/hbm.22926
10.1016/j.neuroimage.2007.11.034
10.1006/nimg.2001.0978
10.1016/j.nicl.2015.05.006
10.1007/s10548-012-0246-x
10.1371/journal.pone.0025446
10.1016/j.neuroimage.2005.02.018
10.3389/fninf.2011.00013
10.1016/j.neuroimage.2007.09.073
10.1016/j.nicl.2016.05.017
10.1016/j.neuroimage.2007.07.007
10.1002/hbm.10123
10.1016/j.jalz.2011.03.004
10.1016/j.jalz.2015.05.001
10.1038/nrn.2016.167
10.1016/j.jalz.2016.02.006
10.1016/j.neuroimage.2011.01.008
10.1097/00004728-199803000-00032
10.1016/j.jalz.2010.03.004
10.1002/hbm.22642
10.1016/j.neuroimage.2010.01.005
10.1016/j.media.2017.01.008
10.1016/j.tins.2011.05.005
10.1016/j.jalz.2010.03.009
10.1093/brain/awp105
10.1002/hbm.460030303
10.1212/WNL.0b013e3181cb3e25
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Attribution
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
– notice: Attribution
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
the Australian Imaging Biomarkers and Lifestyle flagship study of ageing
Australian Imaging Biomarkers and Lifestyle flagship study of ageing
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Australian Imaging Biomarkers and Lifestyle flagship study of ageing
– name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
– name: Australian Imaging Biomarkers and Lifestyle flagship study of ageing
DBID AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOI 10.1016/j.neuroimage.2018.08.042
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 521
ExternalDocumentID oai_HAL_hal_01858384v2
30130647
10_1016_j_neuroimage_2018_08_042
S1053811918307407
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
ID FETCH-LOGICAL-c609t-6d1006f216364c1875b009822a2071498719b6765391c0afffac4e5bf303b7d63
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Fri Sep 12 12:42:37 EDT 2025
Thu Sep 04 21:23:07 EDT 2025
Wed Aug 13 08:32:54 EDT 2025
Mon Jul 21 05:55:18 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Tue Jul 01 03:01:59 EDT 2025
Fri Feb 23 02:45:22 EST 2024
Tue Aug 26 20:08:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Open-source
Magnetic resonance imaging
Reproducibility
Alzheimer's disease
Positron emission tomography
Classification
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-6d1006f216364c1875b009822a2071498719b6765391c0afffac4e5bf303b7d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9836-654X
0000-0001-7683-507X
0000-0002-9450-6920
0000-0003-1603-8049
0000-0002-4668-2006
0000-0002-7719-9746
OpenAccessLink https://inria.hal.science/hal-01858384
PMID 30130647
PQID 2122415753
PQPubID 2031077
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_01858384v2
proquest_miscellaneous_2091821339
proquest_journals_2122415753
pubmed_primary_30130647
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_citationtrail_10_1016_j_neuroimage_2018_08_042
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_08_042
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_08_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
2018-12
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib31) 2011; 5
Sabuncu, Konukoglu (bib73) 2015; 13
Eskildsen, Coupé, García-Lorenzo, Fonov, Pruessner, Collins (bib23) 2013; 65
Nadeau, Bengio (bib62) 2003; 52
Ashburner, Friston (bib7) 2005; 26
Moradi, Pepe, Gaser, Huttunen, Tohka (bib61) 2015; 104
Jie, Zhang, Cheng, Shen (bib46) 2015; 36
Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine, Park, Reiman, Rowe, Siemers, Stern, Yaffe, Carrillo, Thies, Morrison-Bogorad, Wagster, Phelps (bib78) 2011; 7
Jagust, Bandy, Chen, Foster, Landau, Mathis, Price, Reiman, Skovronsky, Koeppe (bib44) 2010; 6
Guerrero, Wolz, Rao, Rueckert (bib35) 2014; 94
Voevodskaya, Simmons, Nordenskjöld, Kullberg, Ahlström, Lind, Wahlund, Larsson, Westman (bib88) 2014; 6
Knopman, DeKosky, Cummings, Chui, Corey-Bloom, Relkin, Small, Miller, Stevens (bib50) 2001; 56
Ota, Oishi, Ito, Fukuyama (bib64) 2015; 256
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib76) 2008; 39
Coupé, Fonov, Bernard, Zandifar, Eskildsen, Helmer, Manjón, Amieva, Dartigues, Allard, Catheline, Collins (bib15) 2015; 36
Ashburner (bib6) 2007; 38
Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter (bib19) 2013; 212
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib85) 2002; 15
Dubois, Feldman, Jacova, Dekosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha, Meguro, O’brien, Pasquier, Robert, Rossor, Salloway, Stern, Visser, Scheltens (bib17) 2007; 6
Thomas, Cuplov, Bousse, Mendes, Thielemans, Hutton, Erlandsson (bib81) 2016; 61
Liu, Zhang, Shen (bib53) 2012; 60
Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib58) 2007; 19
Bron, Smits, van der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Méndez Orellana, Meijboom, Pinto, Meireles, Garrett, Bastos-Leite, Abdulkadir, Ronneberger, Amoroso, Bellotti, Cárdenas-Peña, Álvarez-Meza, Dolph, Iftekharuddin, Eskildsen, Coupé, Fonov, Franke, Gaser, Ledig, Guerrero, Tong, Gray, Moradi, Tohka, Routier, Durrleman, Sarica, Di Fatta, Sensi, Chincarini, Smith, Stoyanov, Sørensen, Nielsen, Tangaro, Inglese, Wachinger, Reuter, van Swieten, Niessen, Klein (bib11) 2015; 111
Fan, Batmanghelich, Clark, Davatzikos (bib26) 2008; 39
Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen, Snyder, Carrillo, Thies, Phelps (bib3) 2011; 7
Suk, Lee, Shen (bib79) 2017; 37
Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bib1) 2011; 58
Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga, Trojanowski, Weiner (bib66) 2010; 74
Winblad, Palmer, Kivipelto, Jelic, Fratiglioni, Wahlund, Nordberg, Bäckman, Albert, Almkvist, Arai, Basun, Blennow, de Leon, DeCarli, Erkinjuntti, Giacobini, Graff, Hardy, Jack, Jorm, Ritchie, van Duijn, Visser, Petersen (bib90) 2004; 256
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib60) 2011; 7
Young, Modat, Cardoso, Mendelson, Cash, Ourselin (bib92) 2013; 2
Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow, DeKosky, Gauthier, Selkoe, Bateman, Cappa, Crutch, Engelborghs, Frisoni, Fox, Galasko, Habert, Jicha, Nordberg, Pasquier, Rabinovici, Robert, Rowe, Salloway, Sarazin, Epelbaum, de Souza, Vellas, Visser, Schneider, Stern, Scheltens, Cummings (bib18) 2014; 13
Cabral, Morgado, Campos Costa, Silveira (bib12) 2015; 58
Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins (bib14) 2012; 1
Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (bib32) 2016; 3
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib71) 2017; 155
Fischl (bib27) 2012; 62
Gousias, Rueckert, Heckemann, Dyet, Boardman, Edwards, Hammers (bib33) 2008; 40
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bib16) 2011; 56
Beheshti, Demirel (bib9) 2015; 64
Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bib38) 2009; 48
Liu, Zhang, Adeli, Shen (bib55) 2018; 43
Liu, Zhang, Shen (bib54) 2015; 36
Tohka, Moradi, Huttunen (bib83) 2016; 14
Falahati, Westman, Simmons (bib25) 2014; 41
Gray, Aljabar, Heckemann, Hammers, Rueckert (bib34) 2013; 65
Ellis, Rowe, Villemagne, Martins, Masters, Salvado, Szoeke, Ames (bib22) 2010; 6
Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert (bib84) 2014; 18
Jack, Albert, Knopman, McKhann, Sperling, Carrillo, Thies, Phelps (bib40) 2011; 7
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib42) 2008; 27
Querbes, Aubry, Pariente, Lotterie, Démonet, Duret, Puel, Berry, Fort, Celsis (bib68) 2009; 132
Raamana, Strother (bib70) 2017
Bengio, Grandvalet (bib10) 2004; 5
Sørensen, Nielsen (bib77) 2018; 302
Jack, Bernstein, Borowski, Gunter, Fox, Thompson, Schuff, Krueger, Killiany, DeCarli, Dale, Carmichael, Tosun, Weiner (bib41) 2010; 6
Li, Morgan, Ashburner, Smith, Rorden (bib52) 2016; 264
(bib48) 2017
Joliot, Jobard, Naveau, Delcroix, Petit, Zago, Crivello, Mellet, Mazoyer, Tzourio-Mazoyer (bib47) 2015; 254
Teipel, Kurth, Krause, Grothe (bib80) 2015; 8
Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib86) 2017; 145
Allen, Amoroso, Anghel, Balagurusamy, Bare, Beaton, Bellotti, Bennett, Boehme, Boutros, Caberlotto, Caloian, Campbell, Neto, Chang, Chen, Chen, Chien, Clark, Das, Davatzikos, Deng, Dillenberger, Dobson, Dong, Doshi, Duma, Errico, Erus, Everett, Fardo, Friend, Fröhlich, Gan, George-Hyslop, Ghosh, Glaab, Green, Guan, Hong, Huang, Hwang, Ibrahim, Inglese, Iyappan, Jiang, Katsumata, Kauwe, Klein, Kong, Krause, Lalonde, Lauria, Lee, Lin, Liu, Livingstone, Logsdon, Lovestone, Ma, Malhotra, Mangravite, Maxwell, Merrill, Nagorski, Namasivayam, Narayan, Naz, Newhouse, Norman, Nurtdinov, Oyang, Pawitan, Peng, Peters, Piccolo, Praveen, Priami, Sabelnykova, Senger, Shen, Simmons, Sotiras, Stolovitzky, Tangaro, Tateo, Tung, Tustison, Varol, Vradenburg, Weiner, Xiao, Xie, Xie, Xu, Yang, Zhan, Zhou, Zhu, Zhu, Zhu (bib4) 2016; 12
Ellis, Bush, Darby, Fazio, Foster, Hudson, Lautenschlager, Lenzo, Martins, Maruff, Masters, Milner, Pike, Rowe, Savage, Szoeke, Taddei, Villemagne, Woodward, Ames (bib21) 2009; 21
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib49) 2008; 131
Dukart, Mueller, Horstmann, Barthel, Möller, Villringer, Sabri, Schroeter (bib20) 2011; 6
Thomas, Erlandsson, Modat, Thurfjell, Vandenberghe, Ourselin, Hutton (bib82) 2011; 38
Salvatore, Cerasa, Battista, Gilardi, Quattrone, Castiglioni (bib74) 2015; 9
Schwarz, Gunter, Wiste, Przybelski, Weigand, Ward, Senjem, Vemuri, Murray, Dickson, Parisi, Kantarci, Weiner, Petersen, Jack (bib75) 2016; 11
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bib87) 2008; 39
Franke, Ziegler, Klöppel, Gaser (bib28) 2010; 50
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib43) 2010; 9
Arbabshirani, Plis, Sui, Calhoun (bib5) 2017; 145
Bäckström, Nazari, Gu, Jakola (bib8) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib65) 2011; 12
Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib37) 2003; 19
Maggipinto, Bellotti, Amoroso, Diacono, Donvito, Lella, Monaco, Scelsi, Tangaro, Initiative (bib57) 2017; 62
Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen (bib91) 2011; 6
Routier, Guillon, Burgos, Samper-Gonzalez, Wen, Fontanella, Bottani, Jacquemont, Marcoux, Gori, Lu, Moreau, Bacci, Durrleman, Colliot (bib72) 2018
Ota, Oishi, Ito, Fukuyama (bib63) 2014; 221
Gómez-Sancho, Tohka, Gómez-Verdejo (bib30) 2018; 50
Jagust, Landau, Koeppe, Reiman, Chen, Mathis, Price, Foster, Wang (bib45) 2015; 11
Westman, Aguilar, Muehlboeck, Simmons (bib89) 2013; 26
Lu, Popuri, Ding, Balachandar, Beg (bib56) 2018; 8
Ewers, Sperling, Klunk, Weiner, Hampel (bib24) 2011; 34
Aguilar, Westman, Muehlboeck, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Lovestone, Spenger, Simmons, Wahlund (bib2) 2013; 212
Raamana (bib69) 2017
Yun, Kwak, Lee, Initiative (bib93) 2015; 10
Poldrack, Baker, Durnez, Gorgolewski, Matthews, Munafò, Nichols, Poline, Vul, Yarkoni (bib67) 2017; 18
Chu, Hsu, Chou, Bandettini, Lin (bib13) 2012; 60
Landau, Breault, Joshi, Pontecorvo, Mathis, Jagust, Mintun (bib51) 2013; 54
Friston, Ashburner, Frith, Poline, Heather, Frackowiak (bib29) 1995; 3
Haller, Lovblad, Giannakopoulos (bib36) 2011; 26
Zhang, Wang, Zhou, Yuan, Shen (bib94) 2011; 55
Holmes, Hoge, Collins, Woods, Toga, Evans (bib39) 1998; 22
Zhu, Suk, Shen (bib95) 2014; 100
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib59) 1984; 34
Dukart (10.1016/j.neuroimage.2018.08.042_bib20) 2011; 6
Sabuncu (10.1016/j.neuroimage.2018.08.042_bib73) 2015; 13
Bengio (10.1016/j.neuroimage.2018.08.042_bib10) 2004; 5
Landau (10.1016/j.neuroimage.2018.08.042_bib51) 2013; 54
Marcus (10.1016/j.neuroimage.2018.08.042_bib58) 2007; 19
Chu (10.1016/j.neuroimage.2018.08.042_bib13) 2012; 60
Ellis (10.1016/j.neuroimage.2018.08.042_bib22) 2010; 6
Ashburner (10.1016/j.neuroimage.2018.08.042_bib6) 2007; 38
Jack (10.1016/j.neuroimage.2018.08.042_bib43) 2010; 9
Cabral (10.1016/j.neuroimage.2018.08.042_bib12) 2015; 58
Varoquaux (10.1016/j.neuroimage.2018.08.042_bib86) 2017; 145
Poldrack (10.1016/j.neuroimage.2018.08.042_bib67) 2017; 18
Allen (10.1016/j.neuroimage.2018.08.042_bib4) 2016; 12
Zhu (10.1016/j.neuroimage.2018.08.042_bib95) 2014; 100
Gorgolewski (10.1016/j.neuroimage.2018.08.042_bib31) 2011; 5
Li (10.1016/j.neuroimage.2018.08.042_bib52) 2016; 264
Albert (10.1016/j.neuroimage.2018.08.042_bib3) 2011; 7
Fan (10.1016/j.neuroimage.2018.08.042_bib26) 2008; 39
Liu (10.1016/j.neuroimage.2018.08.042_bib54) 2015; 36
Hinrichs (10.1016/j.neuroimage.2018.08.042_bib38) 2009; 48
Dubois (10.1016/j.neuroimage.2018.08.042_bib18) 2014; 13
Schwarz (10.1016/j.neuroimage.2018.08.042_bib75) 2016; 11
Bron (10.1016/j.neuroimage.2018.08.042_bib11) 2015; 111
Vemuri (10.1016/j.neuroimage.2018.08.042_bib87) 2008; 39
Yun (10.1016/j.neuroimage.2018.08.042_bib93) 2015; 10
Moradi (10.1016/j.neuroimage.2018.08.042_bib61) 2015; 104
Franke (10.1016/j.neuroimage.2018.08.042_bib28) 2010; 50
Liu (10.1016/j.neuroimage.2018.08.042_bib55) 2018; 43
Rathore (10.1016/j.neuroimage.2018.08.042_bib71) 2017; 155
Dukart (10.1016/j.neuroimage.2018.08.042_bib19) 2013; 212
Ellis (10.1016/j.neuroimage.2018.08.042_bib21) 2009; 21
Coupé (10.1016/j.neuroimage.2018.08.042_bib15) 2015; 36
Eskildsen (10.1016/j.neuroimage.2018.08.042_bib23) 2013; 65
Petersen (10.1016/j.neuroimage.2018.08.042_bib66) 2010; 74
Jack (10.1016/j.neuroimage.2018.08.042_bib42) 2008; 27
Querbes (10.1016/j.neuroimage.2018.08.042_bib68) 2009; 132
Falahati (10.1016/j.neuroimage.2018.08.042_bib25) 2014; 41
Dubois (10.1016/j.neuroimage.2018.08.042_bib17) 2007; 6
Young (10.1016/j.neuroimage.2018.08.042_bib92) 2013; 2
Zhang (10.1016/j.neuroimage.2018.08.042_bib94) 2011; 55
McKhann (10.1016/j.neuroimage.2018.08.042_bib60) 2011; 7
Abdulkadir (10.1016/j.neuroimage.2018.08.042_bib1) 2011; 58
Sørensen (10.1016/j.neuroimage.2018.08.042_bib77) 2018; 302
Cuingnet (10.1016/j.neuroimage.2018.08.042_bib16) 2011; 56
Sperling (10.1016/j.neuroimage.2018.08.042_bib78) 2011; 7
Gray (10.1016/j.neuroimage.2018.08.042_bib34) 2013; 65
Jie (10.1016/j.neuroimage.2018.08.042_bib46) 2015; 36
Arbabshirani (10.1016/j.neuroimage.2018.08.042_bib5) 2017; 145
Liu (10.1016/j.neuroimage.2018.08.042_bib53) 2012; 60
McKhann (10.1016/j.neuroimage.2018.08.042_bib59) 1984; 34
Friston (10.1016/j.neuroimage.2018.08.042_bib29) 1995; 3
Hammers (10.1016/j.neuroimage.2018.08.042_bib37) 2003; 19
Ota (10.1016/j.neuroimage.2018.08.042_bib64) 2015; 256
Ota (10.1016/j.neuroimage.2018.08.042_bib63) 2014; 221
Thomas (10.1016/j.neuroimage.2018.08.042_bib81) 2016; 61
Wolz (10.1016/j.neuroimage.2018.08.042_bib91) 2011; 6
Aguilar (10.1016/j.neuroimage.2018.08.042_bib2) 2013; 212
Joliot (10.1016/j.neuroimage.2018.08.042_bib47) 2015; 254
Raamana (10.1016/j.neuroimage.2018.08.042_bib69) 2017
Shattuck (10.1016/j.neuroimage.2018.08.042_bib76) 2008; 39
Winblad (10.1016/j.neuroimage.2018.08.042_bib90) 2004; 256
Westman (10.1016/j.neuroimage.2018.08.042_bib89) 2013; 26
Haller (10.1016/j.neuroimage.2018.08.042_bib36) 2011; 26
Salvatore (10.1016/j.neuroimage.2018.08.042_bib74) 2015; 9
Gorgolewski (10.1016/j.neuroimage.2018.08.042_bib32) 2016; 3
Suk (10.1016/j.neuroimage.2018.08.042_bib79) 2017; 37
Fischl (10.1016/j.neuroimage.2018.08.042_bib27) 2012; 62
Routier (10.1016/j.neuroimage.2018.08.042_bib72) 2018
Tohka (10.1016/j.neuroimage.2018.08.042_bib83) 2016; 14
Lu (10.1016/j.neuroimage.2018.08.042_bib56) 2018; 8
Jack (10.1016/j.neuroimage.2018.08.042_bib41) 2010; 6
(10.1016/j.neuroimage.2018.08.042_bib48) 2017
Raamana (10.1016/j.neuroimage.2018.08.042_bib70) 2017
Ewers (10.1016/j.neuroimage.2018.08.042_bib24) 2011; 34
Knopman (10.1016/j.neuroimage.2018.08.042_bib50) 2001; 56
Gousias (10.1016/j.neuroimage.2018.08.042_bib33) 2008; 40
Tzourio-Mazoyer (10.1016/j.neuroimage.2018.08.042_bib85) 2002; 15
Teipel (10.1016/j.neuroimage.2018.08.042_bib80) 2015; 8
Pedregosa (10.1016/j.neuroimage.2018.08.042_bib65) 2011; 12
Thomas (10.1016/j.neuroimage.2018.08.042_bib82) 2011; 38
Jagust (10.1016/j.neuroimage.2018.08.042_bib44) 2010; 6
Beheshti (10.1016/j.neuroimage.2018.08.042_bib9) 2015; 64
Jagust (10.1016/j.neuroimage.2018.08.042_bib45) 2015; 11
Voevodskaya (10.1016/j.neuroimage.2018.08.042_bib88) 2014; 6
Tong (10.1016/j.neuroimage.2018.08.042_bib84) 2014; 18
Holmes (10.1016/j.neuroimage.2018.08.042_bib39) 1998; 22
Klöppel (10.1016/j.neuroimage.2018.08.042_bib49) 2008; 131
Jack (10.1016/j.neuroimage.2018.08.042_bib40) 2011; 7
Maggipinto (10.1016/j.neuroimage.2018.08.042_bib57) 2017; 62
Nadeau (10.1016/j.neuroimage.2018.08.042_bib62) 2003; 52
Gómez-Sancho (10.1016/j.neuroimage.2018.08.042_bib30) 2018; 50
Bäckström (10.1016/j.neuroimage.2018.08.042_bib8) 2018
Coupé (10.1016/j.neuroimage.2018.08.042_bib14) 2012; 1
Ashburner (10.1016/j.neuroimage.2018.08.042_bib7) 2005; 26
Guerrero (10.1016/j.neuroimage.2018.08.042_bib35) 2014; 94
References_xml – volume: 212
  start-page: 89
  year: 2013
  end-page: 98
  ident: bib2
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatr. Res.
– volume: 39
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: bib26
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
– volume: 8
  start-page: 583
  year: 2015
  end-page: 593
  ident: bib80
  article-title: The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment — beyond classical regression
  publication-title: Neuroimage: Clinical
– volume: 6
  start-page: 221
  year: 2010
  end-page: 229
  ident: bib44
  article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core
  publication-title: Alzheimer's Dementia
– volume: 254
  start-page: 46
  year: 2015
  end-page: 59
  ident: bib47
  article-title: AICHA: an atlas of intrinsic connectivity of homotopic areas
  publication-title: J. Neurosci. Meth.
– volume: 11
  start-page: 802
  year: 2016
  end-page: 812
  ident: bib75
  article-title: A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity
  publication-title: Neuroimage Clin
– volume: 145
  start-page: 166
  year: 2017
  end-page: 179
  ident: bib86
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: bib55
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 256
  start-page: 240
  year: 2004
  end-page: 246
  ident: bib90
  article-title: Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment
  publication-title: J. Intern. Med.
– volume: 6
  start-page: 291
  year: 2010
  end-page: 296
  ident: bib22
  article-title: Addressing population aging and Alzheimer's disease through the australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimer's Dementia
– volume: 256
  start-page: 168
  year: 2015
  end-page: 183
  ident: bib64
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease
  publication-title: J. Neurosci. Meth.
– year: 2017
  ident: bib69
  article-title: Neuropredict: Easy Machine Learning and Standardized Predictive Analysis of Biomarkers
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: bib87
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
– volume: 10
  year: 2015
  ident: bib93
  article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism
  publication-title: PLoS One
– volume: 2
  start-page: 735
  year: 2013
  end-page: 745
  ident: bib92
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: Neuroimage: Clinical
– volume: 6
  year: 2011
  ident: bib91
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS One
– volume: 58
  start-page: 785
  year: 2011
  end-page: 792
  ident: bib1
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: Neuroimage
– year: 2017
  ident: bib48
  article-title: Reproducibility in machine learning research
  publication-title: Workshop of the International Conference on Machine Learning, Sydney, Australia
– volume: 54
  start-page: 70
  year: 2013
  end-page: 77
  ident: bib51
  article-title: Amyloid-β imaging with pittsburgh compound B and Florbetapir: comparing radiotracers and quantification methods
  publication-title: J. Nucl. Med.
– volume: 62
  start-page: 2361
  year: 2017
  ident: bib57
  article-title: DTI measurements for Alzheimer's classification
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 685
  year: 2014
  end-page: 708
  ident: bib25
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheim. Dis.
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: bib71
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: Neuroimage
– volume: 6
  year: 2011
  ident: bib20
  article-title: Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia
  publication-title: PLoS One
– year: 2017
  ident: bib70
  article-title: Impact of Spatial Scale and Edge Weight on Predictive Power of Cortical Thickness Networks
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib27
  publication-title: FreeSurfer. Neuroimage
– volume: 19
  start-page: 224
  year: 2003
  end-page: 247
  ident: bib37
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
– year: 2018
  ident: bib72
  article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies
  publication-title: Presented at the Annual Meeting of the Organization for Human Brain Mapping - OHBM 2018
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib94
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 34
  start-page: 430
  year: 2011
  end-page: 442
  ident: bib24
  article-title: Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia
  publication-title: Trends Neurosci.
– volume: 100
  start-page: 91
  year: 2014
  end-page: 105
  ident: bib95
  article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
  publication-title: Neuroimage
– volume: 212
  start-page: 230
  year: 2013
  end-page: 236
  ident: bib19
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib7
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 302
  start-page: 66
  year: 2018
  end-page: 74
  ident: bib77
  article-title: Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination
  publication-title: J. Neurosci. Meth.
– volume: 36
  start-page: 4758
  year: 2015
  end-page: 4770
  ident: bib15
  article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis
  publication-title: Hum. Brain Mapp.
– volume: 48
  start-page: 138
  year: 2009
  end-page: 149
  ident: bib38
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: bib39
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– volume: 36
  start-page: 489
  year: 2015
  end-page: 507
  ident: bib46
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: bib78
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 64
  start-page: 208
  year: 2015
  end-page: 216
  ident: bib9
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
– volume: 3
  start-page: 160044
  year: 2016
  ident: bib32
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Scientific Data
– volume: 36
  start-page: 1847
  year: 2015
  end-page: 1865
  ident: bib54
  article-title: View-centralized multi-atlas classification for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  ident: bib59
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib85
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib61
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib6
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 7
  start-page: 257
  year: 2011
  end-page: 262
  ident: bib40
  article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: bib3
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 3
  start-page: 165
  year: 1995
  end-page: 189
  ident: bib29
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
– volume: 94
  start-page: 275
  year: 2014
  end-page: 286
  ident: bib35
  article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO
  publication-title: Neuroimage
– volume: 1
  start-page: 141
  year: 2012
  end-page: 152
  ident: bib14
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
  publication-title: Neuroimage: Clinical
– volume: 5
  start-page: 13
  year: 2011
  ident: bib31
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
– volume: 18
  start-page: 115
  year: 2017
  end-page: 126
  ident: bib67
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosci.
– volume: 40
  start-page: 672
  year: 2008
  end-page: 684
  ident: bib33
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: Neuroimage
– volume: 50
  start-page: 84
  year: 2018
  end-page: 95
  ident: bib30
  article-title: Comparison of feature representations in MRI-based MCI-to-AD conversion prediction
  publication-title: Magn. Reson. Imaging
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bib60
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 11
  start-page: 757
  year: 2015
  end-page: 771
  ident: bib45
  article-title: The Alzheimer's disease neuroimaging initiative 2 PET core: 2015
  publication-title: Alzheimer's Dementia
– volume: 6
  start-page: 212
  year: 2010
  end-page: 220
  ident: bib41
  article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimer's Dementia
– volume: 8
  start-page: 5697
  year: 2018
  ident: bib56
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images
  publication-title: Sci. Rep.
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bib16
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage, Multivariate Decoding and Brain Reading
– volume: 26
  start-page: 389
  year: 2011
  end-page: 394
  ident: bib36
  article-title: Principles of classification analyses in mild cognitive impairment (MCI) and alzheimer disease
  publication-title: J. Alzheim. Dis.
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bib43
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: bib79
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib5
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 65
  start-page: 511
  year: 2013
  end-page: 521
  ident: bib23
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: Neuroimage
– volume: 52
  start-page: 239
  year: 2003
  end-page: 281
  ident: bib62
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
– start-page: 149
  year: 2018
  end-page: 153
  ident: bib8
  article-title: An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 221
  start-page: 139
  year: 2014
  end-page: 150
  ident: bib63
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: J. Neurosci. Meth.
– volume: 60
  start-page: 59
  year: 2012
  end-page: 70
  ident: bib13
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  ident: bib11
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
– volume: 13
  start-page: 614
  year: 2014
  end-page: 629
  ident: bib18
  article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria
  publication-title: Lancet Neurol.
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bib28
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 60
  start-page: 1106
  year: 2012
  end-page: 1116
  ident: bib53
  article-title: Ensemble sparse classification of Alzheimer's disease
  publication-title: Neuroimage
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib65
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: bib84
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
– volume: 6
  start-page: 734
  year: 2007
  end-page: 746
  ident: bib17
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol.
– volume: 5
  start-page: 1089
  year: 2004
  end-page: 1105
  ident: bib10
  article-title: No unbiased estimator of the variance of K-Fold cross-validation
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 1104
  year: 2011
  end-page: 1119
  ident: bib82
  article-title: The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 21
  start-page: 672
  year: 2009
  end-page: 687
  ident: bib21
  article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease
  publication-title: Int. Psychogeriatr.
– volume: 74
  start-page: 201
  year: 2010
  end-page: 209
  ident: bib66
  article-title: Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization
  publication-title: Neurology
– volume: 9
  year: 2015
  ident: bib74
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front. Neurosci.
– volume: 14
  start-page: 279
  year: 2016
  end-page: 296
  ident: bib83
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
– volume: 6
  start-page: 264
  year: 2014
  ident: bib88
  article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease
  publication-title: Front. Aging Neurosci.
– volume: 13
  start-page: 31
  year: 2015
  end-page: 46
  ident: bib73
  article-title: Clinical prediction from structural brain mri scans: a large-scale empirical study
  publication-title: Neuroinformatics
– volume: 12
  start-page: 645
  year: 2016
  end-page: 653
  ident: bib4
  article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease
  publication-title: Alzheimer's Dementia: The Journal of the Alzheimer’s Association
– volume: 56
  start-page: 1143
  year: 2001
  end-page: 1153
  ident: bib50
  article-title: Practice parameter: diagnosis of dementia (an evidence-based review)
  publication-title: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bib49
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 132
  start-page: 2036
  year: 2009
  end-page: 2047
  ident: bib68
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 264
  start-page: 47
  year: 2016
  end-page: 56
  ident: bib52
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Meth.
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: bib58
  article-title: Open access Series of imaging studies (OASIS): cross-sectional MRI data in Young, Middle aged, nondemented, and demented older Adults
  publication-title: J. Cognit. Neurosci.
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bib76
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
– volume: 61
  start-page: 7975
  year: 2016
  end-page: 7993
  ident: bib81
  article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography
  publication-title: Phys. Med. Biol.
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: bib34
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
  publication-title: Neuroimage
– volume: 58
  start-page: 101
  year: 2015
  end-page: 109
  ident: bib12
  article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
  publication-title: Comput. Biol. Med.
– volume: 26
  start-page: 9
  year: 2013
  end-page: 23
  ident: bib89
  article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Topogr.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib42
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imag.
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib49
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 264
  start-page: 47
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib52
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2016.03.001
– volume: 13
  start-page: 31
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib73
  article-title: Clinical prediction from structural brain mri scans: a large-scale empirical study
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9238-1
– volume: 48
  start-page: 138
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.042_bib38
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 254
  start-page: 46
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib47
  article-title: AICHA: an atlas of intrinsic connectivity of homotopic areas
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2015.07.013
– year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib70
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib42
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.21049
– volume: 9
  start-page: 119
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib43
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib5
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 6
  start-page: 264
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib88
  article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00264
– volume: 39
  start-page: 1731
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib26
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.031
– volume: 52
  start-page: 239
  year: 2003
  ident: 10.1016/j.neuroimage.2018.08.042_bib62
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib76
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 34
  start-page: 939
  year: 1984
  ident: 10.1016/j.neuroimage.2018.08.042_bib59
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 6
  start-page: 734
  year: 2007
  ident: 10.1016/j.neuroimage.2018.08.042_bib17
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 94
  start-page: 275
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib35
  article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.036
– volume: 65
  start-page: 511
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib23
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.058
– year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib48
  article-title: Reproducibility in machine learning research
– volume: 38
  start-page: 1104
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib82
  article-title: The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-011-1745-9
– volume: 145
  start-page: 166
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib86
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 58
  start-page: 785
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib1
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.029
– volume: 65
  start-page: 167
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib34
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 256
  start-page: 168
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib64
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2015.08.020
– year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib72
  article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies
– volume: 212
  start-page: 89
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib2
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatr. Res.
  doi: 10.1016/j.pscychresns.2012.11.005
– volume: 7
  start-page: 270
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib3
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.008
– volume: 212
  start-page: 230
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib19
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2012.04.007
– volume: 60
  start-page: 1106
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.042_bib53
  article-title: Ensemble sparse classification of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 26
  start-page: 389
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib36
  article-title: Principles of classification analyses in mild cognitive impairment (MCI) and alzheimer disease
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-2011-0014
– volume: 58
  start-page: 101
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib12
  article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.01.003
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib55
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.005
– volume: 19
  start-page: 1498
  year: 2007
  ident: 10.1016/j.neuroimage.2018.08.042_bib58
  article-title: Open access Series of imaging studies (OASIS): cross-sectional MRI data in Young, Middle aged, nondemented, and demented older Adults
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib69
– volume: 61
  start-page: 7975
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib81
  article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/22/7975
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib20
  article-title: Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018111
– volume: 56
  start-page: 1143
  year: 2001
  ident: 10.1016/j.neuroimage.2018.08.042_bib50
  article-title: Practice parameter: diagnosis of dementia (an evidence-based review)
  publication-title: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology
– volume: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib74
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00307
– volume: 7
  start-page: 263
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib60
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 5
  start-page: 1089
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.042_bib10
  article-title: No unbiased estimator of the variance of K-Fold cross-validation
  publication-title: J. Mach. Learn. Res.
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib93
  article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129250
– volume: 13
  start-page: 614
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib18
  article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70090-0
– volume: 41
  start-page: 685
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib25
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-131928
– volume: 256
  start-page: 240
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.042_bib90
  article-title: Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2004.01380.x
– volume: 155
  start-page: 530
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib71
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 62
  start-page: 2361
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib57
  article-title: DTI measurements for Alzheimer's classification
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5dbe
– volume: 50
  start-page: 84
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib30
  article-title: Comparison of feature representations in MRI-based MCI-to-AD conversion prediction
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2018.03.003
– volume: 21
  start-page: 672
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.042_bib21
  article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610209009405
– volume: 54
  start-page: 70
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib51
  article-title: Amyloid-β imaging with pittsburgh compound B and Florbetapir: comparing radiotracers and quantification methods
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.112.109009
– volume: 221
  start-page: 139
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib63
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2013.10.003
– start-page: 149
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib8
  article-title: An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.042_bib27
  publication-title: FreeSurfer. Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 302
  start-page: 66
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib77
  article-title: Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2018.01.003
– volume: 64
  start-page: 208
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib9
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.006
– volume: 14
  start-page: 279
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib83
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9292-3
– volume: 3
  start-page: 160044
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib32
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.44
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib65
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 5697
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.042_bib56
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22871-z
– volume: 18
  start-page: 808
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib84
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.006
– volume: 60
  start-page: 59
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.042_bib13
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume: 111
  start-page: 562
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib11
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 6
  start-page: 221
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib44
  article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2010.03.003
– volume: 36
  start-page: 1847
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib54
  article-title: View-centralized multi-atlas classification for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22741
– volume: 7
  start-page: 280
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib78
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.003
– volume: 2
  start-page: 735
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib92
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2013.05.004
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib61
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 100
  start-page: 91
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.042_bib95
  article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.078
– volume: 1
  start-page: 141
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.042_bib14
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2012.10.002
– volume: 36
  start-page: 4758
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib15
  article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22926
– volume: 40
  start-page: 672
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib33
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.034
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.042_bib85
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 56
  start-page: 766
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib16
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage, Multivariate Decoding and Brain Reading
– volume: 8
  start-page: 583
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib80
  article-title: The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment — beyond classical regression
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2015.05.006
– volume: 26
  start-page: 9
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.042_bib89
  article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-012-0246-x
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib91
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025446
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2018.08.042_bib7
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 5
  start-page: 13
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib31
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2011.00013
– volume: 39
  start-page: 1186
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.042_bib87
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 11
  start-page: 802
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib75
  article-title: A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2016.05.017
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.neuroimage.2018.08.042_bib6
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 19
  start-page: 224
  year: 2003
  ident: 10.1016/j.neuroimage.2018.08.042_bib37
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10123
– volume: 7
  start-page: 257
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib40
  article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.004
– volume: 11
  start-page: 757
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib45
  article-title: The Alzheimer's disease neuroimaging initiative 2 PET core: 2015
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2015.05.001
– volume: 18
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib67
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.167
– volume: 12
  start-page: 645
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.042_bib4
  article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease
  publication-title: Alzheimer's Dementia: The Journal of the Alzheimer’s Association
  doi: 10.1016/j.jalz.2016.02.006
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib94
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 22
  start-page: 324
  year: 1998
  ident: 10.1016/j.neuroimage.2018.08.042_bib39
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 6
  start-page: 212
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib41
  article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2010.03.004
– volume: 36
  start-page: 489
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.042_bib46
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22642
– volume: 50
  start-page: 883
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib28
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 37
  start-page: 101
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.042_bib79
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.008
– volume: 34
  start-page: 430
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.042_bib24
  article-title: Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.05.005
– volume: 6
  start-page: 291
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib22
  article-title: Addressing population aging and Alzheimer's disease through the australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2010.03.009
– volume: 132
  start-page: 2036
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.042_bib68
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
  doi: 10.1093/brain/awp105
– volume: 3
  start-page: 165
  year: 1995
  ident: 10.1016/j.neuroimage.2018.08.042_bib29
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030303
– volume: 74
  start-page: 201
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.042_bib66
  article-title: Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
SSID ssj0009148
Score 2.622672
Snippet A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD)....
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 504
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Artificial intelligence
Biomarkers
Classification
Cognitive science
Computer Science
Data processing
Datasets
Experiments
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical imaging
Neurodegenerative diseases
Neuroscience
NMR
Nuclear magnetic resonance
Open-source
Positron emission tomography
Reproducibility
Studies
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1di9QwFA3uCuKL-O3oKlEEn4JtmrapPsggO4ziiMguzFvIV9mR2XbdmVXw13tvknZ8WZnXNLctyU1ykntyLiGvSy19U_OS2VxLJkrpmJTOMS1srZ011ocsCouv1fxUfF6Wy3Tgtkm0ymFODBO16y2ekb_lIQQE4KL4cPGTYdYojK6mFBoH5GYOSARTN9TLeie6m4t4Fa4smIQKickT-V1BL3J1DqMWCV4yCHkKft3ydHCGPMnrQGhYjGZ3yZ2EIuk0dvs9csN398mtRYqTPyC_AVcHKdeVWXu6U_SmfUst4mUkCMWSmEJ6Q1cdna7_nPnVub98s6EpcPOOzgb2FtWdo__Eu-m2p4vvn0Lxt-MTilzTh-R0dnzycc5SigVmq6zZssrlMOxaDqisEjaHzYtBhVHONcebTQ1spxpT1ahfm9tMt22rrfClaWHlM7WrikfksOs7_wRa1pVZ7h23ujRCmkxLUThAO5nwlQFgNSH10LLKJv1xTIOxVgPR7Ifa9YnCPlGYIVPwCclHy4uowbGHTTN0nhrumMKsqGCh2MP2_WibcEjEF3tavwJfGX8U5bvn0y8Ky6ASRqnFL6h0NLiSSpPGRu1cfEJejo9huGMMR3e-v4I64NSS50XRTMjj6ILjpwqMQleifvr_lz8jt_F3IyfniBxuL6_8c0BWW_MiDJ-_ipYhQA
  priority: 102
  providerName: ProQuest
Title Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918307407
https://dx.doi.org/10.1016/j.neuroimage.2018.08.042
https://www.ncbi.nlm.nih.gov/pubmed/30130647
https://www.proquest.com/docview/2122415753
https://www.proquest.com/docview/2091821339
https://inria.hal.science/hal-01858384
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdtCmOX0X1n7YI2Bjt5sWXZlrdTFhLSrQkhayE3Icky9Uid0qQb7LC_fe_ZsrMdCoFdHKzoYSG9j594X4S8i5SwacIizwRKeDwSmSdElnmKm0RlRhtbdVGYzuLJJf-yjJYHZNjkwmBYpdP9tU6vtLUb6bvd7N8URf8bIAMwN3DfEMCnHDPKjxhYe9EhR4Ozr5PZrvZuwOuMuCj0kMAF9NRhXlXZyOIahBfjvERVz5Oz-6zU4RWGS96HRSubND4mjxyYpIN6vY_JgS2fkAdT5y5_Sn4CvK4quhZ6ZemusDdd59QgbMY4oXqk7iS9oUVJB6tfV7a4trfvN9T5bz7ScRPERVWZ0b_c3nS7ptPFWTU8H11QDDl9Ri7Ho4vhxHOdFjwT--nWi7MApC9nAM5ibgK4w2gsNMqYYpjglMKtKtVxgmVsA-OrPM-V4TbSORhAnWRx-Jx0ynVpX8LOZpEf2IwZFWkutK8EDzMAPT63sQZ81SVJs7PSuDLk2A1jJZt4s-9ydyYSz0Rio0zOuiRoKW_qUhx70KTN4ckm1RSUowR7sQftp5b2H5bck_ot8Eq7UKziPRmcSxyDSeis5j9g0mnDStLpjo1klbMTYHTYJW_av0Hq0ZWjSru-gznA1IIFYZh2yYuaBdtPheiMjnny6r_Wf0Ie4lsduXNKOtvbO_sa8NdW98jhh98BPJNl0gNZGy7O5z0nc_D7eTSbL_4ABl4zLQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2TgJeEN8UBhgE4ikidpwv0IQKtGpZW01TJ-3NOLajFXXJWDsm-HH8Nu5NnJSXob7s1fFNIvv6-iT3-FxCXocqsWnMQ08zlXgiTIyXJMZ4SuhYGZ1pW1VRmEyj4ZH4ehweb5E_zVkYpFU2MbEK1KbU-I_8Ha9SQAAugo9nPzysGoXZ1aaEhnKlFcxeJTHmDnbs21-X8Am33Bt9gfl-w_mgP_s89FyVAU9HfrryIsPA83IOwCQSmgF-z1Bkk3PF8XAPfJOzNItilHBl2ld5nistbJjlEPyz2EQB3Heb7Aj8gdIhO5_604PDtewvE_VhvDDwEsZSxyWqGWaVYuX8FOIGUsySSkpU8Ks2yO0TZGpeBYOr7XBwh9x2OJb2ase7S7ZscY_cmLhM_X1yCci-EpOdZwtL15ritMypRsSOFKW6pS5ivaTzgvYWv0_s_NSev11Slzp6TwcNf4yqwtB_Mu50VdLJ4ahqPujPKLJdH5Cjaxn-h6RTlIV9DCNrQp9Zw7UKM5FkvkpEYABv-cJGGUC7LombkZXaKaBjIY6FbKhu3-V6TiTOicQanYJ3CWstz2oVkA1s0mbyZHPKFeKyhK1qA9sPra1DQjXC2dD6FfhK-6IoID7sjSW2QSfMk4uf0Gm3cSXpwtZSrhdZl7xsL0PAwSySKmx5AX3AqRPOgiDtkke1C7aPCjAPHon4yf9v_oLcHM4mYzkeTfefklv46jVDaJd0VucX9hngvFX23C0mSr5d9_r9C-byYjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEG-2FDAIxClq7DgvEEIr2tUu7VYVaqW9Gb-iLtombXdLBT-NX8dMnGS5FO2lV8eTRPZ4_CXz-RtC3sYqc3nK48AwlQUizmyQZdYGSphUWaONq6sojA-T4Yn4Ookna-RPexYGaZVtTKwDta0M_iPf4XUKCMBFtFM0tIij3cHn84sAK0hhprUtp-FdZN_9uobPt_mn0S7M9TvOB3vHX4ZBU2EgMEmYL4LEMvC6ggMoSYRhgN01Cmxyrjge7IHvcZbrJEX5VmZCVRSFMsLFuoDAr1ObRHDfdXInjYTAshHpJF0K_jLhj-HFUZAxljcsIs8tq7Uqp2cQMZBcltUiooLftDWunyJH8yYAXG-Eg_vkXoNgad-73AOy5sqHZHPc5OgfkWvA9LWM7FTPHF2qidOqoAaxOpKTfIsvXz2n05L2Z79P3fTMXb6f0yZp9IEOWuYYVaWl_-Ta6aKi42-juvlo75giz_UxObmVwX9CNsqqdM9gZG0cMme5UbEWmQ5VJiILSCsULtEA6nokbUdWmkb7HEtwzGRLcvshl3MicU4kVucUvEdYZ3nu9T9WsMnbyZPt-VaIyBI2qRVsP3a2DQby2GZF6zfgK92LonT4sH8gsQ06YYZc_IRO260rySZgzeVyefXI6-4yhBrMH6nSVVfQB5w64yyK8h556l2we1SEGfBEpFv_v_krsgmrVh6MDvefk7v45p4atE02FpdX7gUAvIV-Wa8kSr7f9tL9Cyp4X9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducible+evaluation+of+classification+methods+in+Alzheimer%27s+disease%3A+Framework+and+application+to+MRI+and+PET+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Samper-Gonz%C3%A1lez%2C+Jorge&rft.au=Burgos%2C+Ninon&rft.au=Bottani%2C+Simona&rft.au=Fontanella%2C+Sabrina&rft.date=2018-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=183&rft.spage=504&rft.epage=521&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.08.042&rft.externalDocID=S1053811918307407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon