A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast...
Saved in:
Published in | Cell Vol. 148; no. 1-2; pp. 126 - 138 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2011.10.048 |
Cover
Abstract | A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
[Display omitted]
► Candida biofilms are controlled by a network of six master transcription regulators ► The biofilm network is highly interconnected and contains > 1,000 target genes ► Computational analysis indicates that the biofilm network has rapidly evolved ► The network interconnectedness provides clues as to how complex circuits evolve
Biofilms of the pathogenic fungus C. albicans coat medical devices and contribute to drug-resistant infections. Revealing the transcriptional circuit responsible for biofilm formation provides insight into how complex cell behaviors arise from the evolution of regulatory circuits. |
---|---|
AbstractList | A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. [Display omitted] ► Candida biofilms are controlled by a network of six master transcription regulators ► The biofilm network is highly interconnected and contains > 1,000 target genes ► Computational analysis indicates that the biofilm network has rapidly evolved ► The network interconnectedness provides clues as to how complex circuits evolve Biofilms of the pathogenic fungus C. albicans coat medical devices and contribute to drug-resistant infections. Revealing the transcriptional circuit responsible for biofilm formation provides insight into how complex cell behaviors arise from the evolution of regulatory circuits. A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with similar to 1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. A biofilm is an organized, resilient group of microbes where individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans , whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ~1000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted towards genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. |
Author | Nett, Jeniel E. Andes, David R. Mitrovich, Quinn M. Johnson, Alexander D. Sorrells, Trevor R. Nobile, Clarissa J. Hernday, Aaron D. Tuch, Brian B. Fox, Emily P. |
AuthorAffiliation | 1 Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA 2 Tetrad Program, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA, USA 3 Department of Medicine, University of Wisconsin, Madison, WI, USA |
AuthorAffiliation_xml | – name: 2 Tetrad Program, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA, USA – name: 3 Department of Medicine, University of Wisconsin, Madison, WI, USA – name: 1 Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA |
Author_xml | – sequence: 1 givenname: Clarissa J. surname: Nobile fullname: Nobile, Clarissa J. email: clarissa.nobile@ucsf.edu organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 2 givenname: Emily P. surname: Fox fullname: Fox, Emily P. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 3 givenname: Jeniel E. surname: Nett fullname: Nett, Jeniel E. organization: Department of Medicine, University of Wisconsin, Madison, WI 53706, USA – sequence: 4 givenname: Trevor R. surname: Sorrells fullname: Sorrells, Trevor R. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 5 givenname: Quinn M. surname: Mitrovich fullname: Mitrovich, Quinn M. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 6 givenname: Aaron D. surname: Hernday fullname: Hernday, Aaron D. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 7 givenname: Brian B. surname: Tuch fullname: Tuch, Brian B. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA – sequence: 8 givenname: David R. surname: Andes fullname: Andes, David R. organization: Department of Medicine, University of Wisconsin, Madison, WI 53706, USA – sequence: 9 givenname: Alexander D. surname: Johnson fullname: Johnson, Alexander D. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22265407$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhi1URNPCC7CA2cFmgu3xZUZClUpaLlIFErQrFpbHPikOjh3syVR9ezykRcAirCwdf_9_rkfoIMQACD0leE4wEa9WcwPezykmpATmmLUP0IzgTtaMSHqAZhh3tG6FZIfoKOcVxrjlnD9Ch5RSwRmWM_T1tPoMBsLgb6vzMfoRbHWZdMgmuc3gYtC--gjDTUzfq0UMQ4o-V29cXDq_rs5gBB836yKvXKgWOlhndaV970yxeIweLrXP8OTuPUZXb88vF-_ri0_vPixOL2ojcDfUxAgJpSLGdde1hktmJAXR9NCzlgneMdtray0YwTWWvDCks4QII9vemKY5Ric73822X4Oduknaq01ya51uVdRO_f0T3Dd1HUfVUFHGIIvBizuDFH9sIQ9q7fI0Wx0gbrPqqGhbymX7f5JILmXDSCFf7iVp2QZuOKNT-md_1v-78PstFaDdASbFnBMslXGDnrZT2nFeEaymg1ArNSVQ00FMsXIQRUr_kd677xU934mWOip9nVxWV18KIPCvoruJeL0joOx1dJBUNg6CAesSmEHZ6PYl-AmRuti7 |
CitedBy_id | crossref_primary_10_1016_j_resmic_2025_104280 crossref_primary_10_1093_femsec_fiaa224 crossref_primary_10_1371_journal_ppat_1012643 crossref_primary_10_1007_s12275_014_3630_2 crossref_primary_10_1371_journal_pgen_1003118 crossref_primary_10_3390_ijms17101643 crossref_primary_10_1371_journal_pgen_1004567 crossref_primary_10_3389_fcimb_2020_00029 crossref_primary_10_1101_gad_303362_117 crossref_primary_10_1093_femspd_ftw005 crossref_primary_10_1093_mmy_myaa063 crossref_primary_10_1111_omi_12206 crossref_primary_10_1155_2024_5518156 crossref_primary_10_3389_fmicb_2016_00645 crossref_primary_10_1016_j_bcab_2022_102337 crossref_primary_10_1021_acsabm_0c00985 crossref_primary_10_1088_1361_6463_aab8c8 crossref_primary_10_3390_jof5010017 crossref_primary_10_1093_g3journal_jkaa043 crossref_primary_10_1016_j_fgb_2015_01_011 crossref_primary_10_1128_AAC_00024_20 crossref_primary_10_1007_s12210_022_01115_3 crossref_primary_10_1093_gbe_evx143 crossref_primary_10_1534_genetics_116_190645 crossref_primary_10_3390_microorganisms9020276 crossref_primary_10_1093_femspd_ftw018 crossref_primary_10_1038_s41522_019_0094_5 crossref_primary_10_1111_jam_14872 crossref_primary_10_1007_s12275_016_6080_1 crossref_primary_10_1080_21505594_2020_1870082 crossref_primary_10_3390_jof4040123 crossref_primary_10_1016_j_fct_2018_02_042 crossref_primary_10_1093_femsre_fuaa060 crossref_primary_10_1111_jam_13324 crossref_primary_10_1002_ardp_201400360 crossref_primary_10_1080_1040841X_2021_1935447 crossref_primary_10_1016_j_bmc_2020_115810 crossref_primary_10_1128_microbiolspec_MB_0007_2014 crossref_primary_10_1038_s41467_021_26525_z crossref_primary_10_1111_myc_12554 crossref_primary_10_1038_s41522_021_00238_z crossref_primary_10_1021_acs_jmedchem_4c02598 crossref_primary_10_25208_vdv16820 crossref_primary_10_7554_eLife_18981 crossref_primary_10_1016_j_bioflm_2023_100126 crossref_primary_10_1128_mSphere_00545_18 crossref_primary_10_3389_fimmu_2017_01997 crossref_primary_10_1016_j_mib_2015_06_016 crossref_primary_10_1128_AAC_04650_14 crossref_primary_10_1371_journal_pgen_1008908 crossref_primary_10_1016_j_fbr_2017_07_002 crossref_primary_10_1111_mmi_15219 crossref_primary_10_1080_21505594_2017_1292198 crossref_primary_10_1038_s41564_022_01314_6 crossref_primary_10_1016_j_chom_2019_02_008 crossref_primary_10_1128_mbio_01249_24 crossref_primary_10_3389_fmicb_2020_01027 crossref_primary_10_1371_journal_ppat_1008478 crossref_primary_10_1128_mSystems_00257_19 crossref_primary_10_1186_s13104_020_04990_x crossref_primary_10_1038_srep35436 crossref_primary_10_1007_s12223_023_01034_2 crossref_primary_10_1073_pnas_1717421114 crossref_primary_10_1534_genetics_116_199679 crossref_primary_10_1016_j_bioflm_2023_100112 crossref_primary_10_1038_s42003_021_02412_7 crossref_primary_10_1186_1471_2180_14_80 crossref_primary_10_1007_s11046_023_00734_0 crossref_primary_10_1016_j_gene_2021_145530 crossref_primary_10_1016_j_semcdb_2013_02_007 crossref_primary_10_1007_s00438_014_0846_0 crossref_primary_10_1016_j_micpath_2021_104990 crossref_primary_10_1111_jam_13745 crossref_primary_10_1007_s00253_023_12916_3 crossref_primary_10_1080_21505594_2021_1878743 crossref_primary_10_1111_j_1365_2958_2012_08127_x crossref_primary_10_1093_g3journal_jkab216 crossref_primary_10_1093_femsyr_foab060 crossref_primary_10_1016_j_micinf_2019_06_011 crossref_primary_10_1007_s00294_017_0705_8 crossref_primary_10_3390_jof10010083 crossref_primary_10_1016_j_ijantimicag_2018_06_023 crossref_primary_10_1038_npjbiofilms_2015_12 crossref_primary_10_3390_jof10010086 crossref_primary_10_1111_1348_0421_12596 crossref_primary_10_1080_21505594_2018_1456228 crossref_primary_10_1093_g3journal_jkac301 crossref_primary_10_1016_j_mib_2019_04_001 crossref_primary_10_1007_s00294_013_0400_3 crossref_primary_10_7554_eLife_84155 crossref_primary_10_1016_j_tim_2014_09_001 crossref_primary_10_1088_2053_1591_aa90ef crossref_primary_10_1038_srep26860 crossref_primary_10_1248_bpb_b15_00475 crossref_primary_10_1016_j_tcsw_2018_03_002 crossref_primary_10_3389_fcimb_2022_907519 crossref_primary_10_1534_g3_115_017566 crossref_primary_10_1080_20002297_2017_1385372 crossref_primary_10_1111_cmi_13307 crossref_primary_10_1128_AAC_01466_20 crossref_primary_10_3402_jom_v6_23419 crossref_primary_10_1128_AAC_02046_19 crossref_primary_10_1111_jam_14949 crossref_primary_10_1155_2015_783639 crossref_primary_10_1128_CMR_00111_18 crossref_primary_10_1146_annurev_micro_091014_104330 crossref_primary_10_1038_s41396_020_00823_8 crossref_primary_10_3390_genes9110540 crossref_primary_10_1128_mbio_03283_24 crossref_primary_10_1016_j_micres_2022_127146 crossref_primary_10_1126_sciadv_ade7689 crossref_primary_10_1128_EC_00127_13 crossref_primary_10_1111_cmi_12216 crossref_primary_10_1371_journal_pgen_1005447 crossref_primary_10_3389_fcimb_2021_796929 crossref_primary_10_1128_EC_00094_13 crossref_primary_10_1128_spectrum_01789_23 crossref_primary_10_1038_s41467_021_26390_w crossref_primary_10_1016_j_bmc_2014_11_038 crossref_primary_10_1534_g3_117_300515 crossref_primary_10_3390_jof3010011 crossref_primary_10_3109_1040841X_2013_813904 crossref_primary_10_2217_fmb_12_48 crossref_primary_10_1016_j_mib_2013_03_007 crossref_primary_10_1007_s00294_023_01263_5 crossref_primary_10_1016_j_chom_2016_05_001 crossref_primary_10_3389_fcimb_2023_1136698 crossref_primary_10_1016_j_funbio_2021_04_009 crossref_primary_10_1016_j_mimet_2022_106420 crossref_primary_10_1371_journal_pbio_3002693 crossref_primary_10_1016_j_jim_2014_03_022 crossref_primary_10_1371_journal_pone_0280233 crossref_primary_10_3390_jof7080613 crossref_primary_10_1128_mBio_00637_12 crossref_primary_10_1016_j_micinf_2016_01_002 crossref_primary_10_1128_mBio_01565_15 crossref_primary_10_1111_1567_1364_12071 crossref_primary_10_1371_journal_ppat_1007342 crossref_primary_10_3390_ijms232012307 crossref_primary_10_1371_journal_ppat_1009884 crossref_primary_10_1128_mBio_00433_12 crossref_primary_10_3390_molecules23102522 crossref_primary_10_3390_molecules24010153 crossref_primary_10_1038_s41522_022_00341_9 crossref_primary_10_1007_s12281_014_0178_x crossref_primary_10_1099_jmm_0_045054_0 crossref_primary_10_1128_msphere_00029_22 crossref_primary_10_1016_j_cub_2014_08_057 crossref_primary_10_1371_journal_ppat_1011833 crossref_primary_10_1111_cmi_12593 crossref_primary_10_1080_08927014_2017_1350947 crossref_primary_10_7554_eLife_58349 crossref_primary_10_1128_mBio_01766_19 crossref_primary_10_1016_j_mib_2021_05_012 crossref_primary_10_1016_j_fgb_2015_03_012 crossref_primary_10_1111_2049_632X_12161 crossref_primary_10_3389_fcimb_2022_855229 crossref_primary_10_1186_s40729_021_00338_7 crossref_primary_10_1186_1471_2164_14_842 crossref_primary_10_1038_s41598_017_08239_9 crossref_primary_10_1080_08927014_2023_2189011 crossref_primary_10_3389_fcimb_2021_765942 crossref_primary_10_3389_fmicb_2020_629526 crossref_primary_10_1093_femsyr_fov027 crossref_primary_10_3390_microorganisms12112138 crossref_primary_10_1021_acs_jmedchem_4c00470 crossref_primary_10_1371_journal_pone_0201969 crossref_primary_10_1002_yea_3370 crossref_primary_10_7554_eLife_23250 crossref_primary_10_1128_MMBR_00068_15 crossref_primary_10_3389_fmicb_2020_00794 crossref_primary_10_3389_fmicb_2016_01238 crossref_primary_10_1007_s00253_018_9303_z crossref_primary_10_1016_j_mimet_2020_106080 crossref_primary_10_1128_mBio_01514_16 crossref_primary_10_1128_EC_00103_12 crossref_primary_10_1038_nrmicro_2017_107 crossref_primary_10_1016_j_micpath_2023_106507 crossref_primary_10_3389_fgene_2023_1245445 crossref_primary_10_1002_adma_202307680 crossref_primary_10_1007_s10529_019_02747_6 crossref_primary_10_1128_mSphere_00050_17 crossref_primary_10_1111_mmi_13320 crossref_primary_10_1128_EC_00148_14 crossref_primary_10_1371_journal_ppat_1006355 crossref_primary_10_1371_journal_pgen_1004824 crossref_primary_10_1016_j_micpath_2015_02_004 crossref_primary_10_1371_journal_pgen_1003854 crossref_primary_10_3390_pathogens10040493 crossref_primary_10_1016_j_ijmm_2014_07_004 crossref_primary_10_1371_journal_ppat_1007316 crossref_primary_10_1111_mmi_12345 crossref_primary_10_1093_infdis_jiae631 crossref_primary_10_1128_spectrum_03285_22 crossref_primary_10_3389_fphar_2017_00425 crossref_primary_10_1016_j_mib_2022_102237 crossref_primary_10_1016_j_fgb_2016_08_005 crossref_primary_10_3389_fcimb_2020_605711 crossref_primary_10_1128_mBio_03020_21 crossref_primary_10_1111_apm_13336 crossref_primary_10_3390_ijms21228873 crossref_primary_10_1371_journal_ppat_1007787 crossref_primary_10_1371_journal_pbio_2006966 crossref_primary_10_1534_g3_120_401340 crossref_primary_10_3390_pathogens4030573 crossref_primary_10_1007_s00044_014_1258_8 crossref_primary_10_1093_infdis_jix130 crossref_primary_10_1016_j_coph_2013_08_008 crossref_primary_10_1038_s41522_022_00347_3 crossref_primary_10_1111_mmi_12576 crossref_primary_10_1371_journal_ppat_1006699 crossref_primary_10_1517_17460441_2013_807245 crossref_primary_10_1007_s12281_012_0126_6 crossref_primary_10_1111_mmi_13494 crossref_primary_10_1038_srep31124 crossref_primary_10_1007_s12281_012_0104_z crossref_primary_10_1128_mSphere_00467_18 crossref_primary_10_1016_j_semcdb_2016_04_006 crossref_primary_10_1016_j_nano_2021_102469 crossref_primary_10_1093_nar_gkad564 crossref_primary_10_1371_journal_pgen_1006948 crossref_primary_10_1007_s12275_016_5514_0 crossref_primary_10_1371_journal_pgen_1006949 crossref_primary_10_1016_S1773_035X_13_71945_2 crossref_primary_10_3390_ijms25094775 crossref_primary_10_1080_14787210_2023_2179036 crossref_primary_10_1186_s12941_020_0347_4 crossref_primary_10_2174_1381612826666200317125956 crossref_primary_10_1128_spectrum_01531_24 crossref_primary_10_1093_abbs_gmv011 crossref_primary_10_2174_1389557518666180924121209 crossref_primary_10_3389_fmicb_2019_01792 crossref_primary_10_1093_bfgp_elv035 crossref_primary_10_1111_mmi_13247 crossref_primary_10_1111_mmi_13002 crossref_primary_10_3389_fgene_2020_00375 crossref_primary_10_1016_j_pdpdt_2021_102525 crossref_primary_10_1073_pnas_2211424119 crossref_primary_10_1093_femsyr_fov111 crossref_primary_10_1007_s00018_016_2294_y crossref_primary_10_1007_s10989_022_10413_1 crossref_primary_10_1128_IAI_00087_14 crossref_primary_10_1093_femsre_fuaa027 crossref_primary_10_3390_pharmaceutics13101529 crossref_primary_10_3389_fmicb_2021_638609 crossref_primary_10_4161_viru_22913 crossref_primary_10_1111_mmi_13475 crossref_primary_10_1371_journal_ppat_1004487 crossref_primary_10_1016_j_micpath_2025_107368 crossref_primary_10_1371_journal_ppat_1004365 crossref_primary_10_1371_journal_pbio_1002076 crossref_primary_10_1080_08927014_2017_1280731 crossref_primary_10_1371_journal_pone_0080677 crossref_primary_10_2147_IDR_S247944 crossref_primary_10_1016_j_micpath_2022_105418 crossref_primary_10_3390_jof4040140 crossref_primary_10_1097_JD9_0000000000000223 crossref_primary_10_1128_msphere_00980_24 crossref_primary_10_1371_journal_ppat_1006414 crossref_primary_10_1093_genetics_iyae122 crossref_primary_10_1007_s00294_015_0473_2 crossref_primary_10_1080_21505594_2017_1326438 crossref_primary_10_1073_pnas_1620432114 crossref_primary_10_1128_EC_00181_13 crossref_primary_10_1038_s41598_019_45624_y crossref_primary_10_1371_journal_ppat_1006407 crossref_primary_10_1038_s41522_020_00149_5 crossref_primary_10_1128_MCB_01599_13 crossref_primary_10_1371_journal_ppat_1006403 crossref_primary_10_1371_journal_ppat_1006763 crossref_primary_10_3390_microorganisms9030654 crossref_primary_10_1016_j_ejmech_2025_117528 crossref_primary_10_1016_j_ijmm_2021_151490 crossref_primary_10_1111_mmi_13738 crossref_primary_10_1128_mBio_01179_19 crossref_primary_10_3389_fcimb_2023_1108235 crossref_primary_10_1128_AAC_02749_16 crossref_primary_10_3389_ffunb_2021_658899 crossref_primary_10_12688_f1000research_9617_1 crossref_primary_10_1093_infdis_jit391 crossref_primary_10_1073_pnas_1413659111 crossref_primary_10_4161_viru_20746 crossref_primary_10_3390_jof6030182 crossref_primary_10_3389_fmicb_2020_544480 crossref_primary_10_1007_s11046_016_0088_2 crossref_primary_10_1016_j_chom_2013_10_008 crossref_primary_10_1128_mBio_00942_15 crossref_primary_10_1093_femsyr_foy025 crossref_primary_10_1038_ncomms11704 crossref_primary_10_1038_s41589_022_01035_1 crossref_primary_10_1111_mmi_14818 crossref_primary_10_1371_journal_pcbi_1008690 crossref_primary_10_1016_j_micres_2019_06_002 crossref_primary_10_3389_fmicb_2018_00018 crossref_primary_10_1016_j_chom_2021_03_019 crossref_primary_10_1089_mab_2013_0089 crossref_primary_10_3390_ijms20092345 crossref_primary_10_1074_jbc_RA117_001225 crossref_primary_10_1038_nrdp_2018_26 crossref_primary_10_1586_14787210_2015_1056162 crossref_primary_10_1016_j_biopha_2022_112814 crossref_primary_10_1128_EC_00238_12 crossref_primary_10_1128_mBio_01338_18 crossref_primary_10_7554_eLife_00662 crossref_primary_10_1128_mBio_00586_21 crossref_primary_10_1128_mSphere_00002_19 crossref_primary_10_1128_mbio_03447_21 crossref_primary_10_1016_j_meegid_2013_07_013 crossref_primary_10_1093_femsyr_fov087 crossref_primary_10_1002_cpmc_60 crossref_primary_10_1371_journal_pgen_1011632 crossref_primary_10_3390_jof4020060 crossref_primary_10_1007_s40496_013_0011_6 crossref_primary_10_3390_pathogens10111463 crossref_primary_10_1007_s40588_021_00169_5 crossref_primary_10_1091_mbc_e12_02_0094 crossref_primary_10_1111_omi_12095 crossref_primary_10_17116_klinderma2021200217 crossref_primary_10_1371_journal_pgen_1008582 crossref_primary_10_1016_j_bioorg_2024_107293 crossref_primary_10_1093_femsyr_fov092 crossref_primary_10_1016_j_omtn_2021_12_018 crossref_primary_10_3390_jof6010010 crossref_primary_10_1071_MA23026 crossref_primary_10_1080_21505594_2016_1237332 crossref_primary_10_1093_femsre_fuv042 crossref_primary_10_1016_j_lwt_2023_115332 crossref_primary_10_1128_mbio_01872_24 crossref_primary_10_3390_molecules22030360 crossref_primary_10_3390_jof6010014 crossref_primary_10_1021_acsinfecdis_9b00033 crossref_primary_10_1111_mmi_13944 crossref_primary_10_1534_g3_115_024885 crossref_primary_10_1038_s41564_018_0160_4 crossref_primary_10_1534_g3_115_021378 crossref_primary_10_3390_genes9070332 crossref_primary_10_1080_08927014_2020_1793963 crossref_primary_10_1371_journal_pone_0159692 crossref_primary_10_1128_mbio_01840_23 crossref_primary_10_1016_j_cell_2015_04_014 crossref_primary_10_1016_j_heliyon_2020_e04663 crossref_primary_10_1007_s11046_020_00445_w crossref_primary_10_1016_j_tim_2016_09_004 crossref_primary_10_1111_mmi_12565 crossref_primary_10_1093_g3journal_jkad070 crossref_primary_10_1128_microbiolspec_MB_0005_2014 crossref_primary_10_1016_j_ijmm_2014_11_001 crossref_primary_10_1371_journal_ppat_1004542 crossref_primary_10_3390_jof9111078 crossref_primary_10_3390_microorganisms8020154 crossref_primary_10_1016_j_fgb_2014_12_007 crossref_primary_10_1111_jam_14289 crossref_primary_10_1038_nmicrobiol_2017_14 crossref_primary_10_1111_mmi_12329 crossref_primary_10_1371_journal_pone_0183176 crossref_primary_10_1101_gr_174623_114 crossref_primary_10_1371_journal_ppat_1012154 crossref_primary_10_1038_s44259_024_00040_9 crossref_primary_10_1007_s13205_018_1383_z crossref_primary_10_1080_21505594_2017_1414132 crossref_primary_10_1128_mbio_02063_23 crossref_primary_10_3390_ijms242417227 crossref_primary_10_1534_genetics_112_138958 crossref_primary_10_3389_fmicb_2020_00996 crossref_primary_10_3390_jof4010012 crossref_primary_10_3390_jof8030233 crossref_primary_10_3390_microorganisms8050660 crossref_primary_10_1080_1040841X_2021_1884641 crossref_primary_10_1371_journal_pone_0286547 crossref_primary_10_1111_mmi_12310 crossref_primary_10_1021_acssuschemeng_6b00309 crossref_primary_10_1016_j_tcsw_2022_100084 crossref_primary_10_3389_fmicb_2018_00198 crossref_primary_10_1016_j_resmic_2021_103813 crossref_primary_10_1093_bib_bbt071 crossref_primary_10_1080_08927014_2021_1919301 crossref_primary_10_1128_spectrum_01689_23 crossref_primary_10_1038_s41579_025_01147_0 crossref_primary_10_1099_mic_0_001447 crossref_primary_10_1038_s41467_024_48525_5 crossref_primary_10_3390_jof9010080 crossref_primary_10_3390_cancers10010011 crossref_primary_10_1128_mBio_01911_14 crossref_primary_10_1073_pnas_2003700117 crossref_primary_10_1111_myc_13291 crossref_primary_10_1111_mmi_13758 crossref_primary_10_1016_j_tcsw_2023_100111 crossref_primary_10_1038_s41522_020_0114_5 crossref_primary_10_3390_jof9010098 crossref_primary_10_1016_j_phyplu_2022_100285 crossref_primary_10_1128_AAC_01851_13 crossref_primary_10_1128_mBio_01201_14 crossref_primary_10_2144_fsoa_2019_0027 crossref_primary_10_1371_journal_ppat_1003305 crossref_primary_10_1128_AAC_02290_12 crossref_primary_10_1039_D2BM01797K crossref_primary_10_1128_mSphere_00161_17 crossref_primary_10_1128_IAI_00914_12 crossref_primary_10_1371_journal_ppat_1003780 crossref_primary_10_1128_AAC_00543_15 crossref_primary_10_2174_1389203720666191007103004 crossref_primary_10_1371_journal_pbio_1001510 crossref_primary_10_1016_j_mib_2024_102493 crossref_primary_10_1016_j_tig_2019_01_005 crossref_primary_10_1016_j_actbio_2024_06_002 crossref_primary_10_1038_s41564_020_0760_7 crossref_primary_10_1534_genetics_116_195024 crossref_primary_10_3389_fmicb_2022_990318 crossref_primary_10_2174_1389203720666190722152415 crossref_primary_10_1371_journal_pgen_1006350 crossref_primary_10_7554_eLife_45954 crossref_primary_10_1016_S2666_5247_23_00067_8 crossref_primary_10_1111_j_1365_2958_2012_08193_x crossref_primary_10_3390_jof7010037 crossref_primary_10_1111_omi_12049 crossref_primary_10_1128_microbiolspec_FUNK_0014_2016 crossref_primary_10_1038_s41467_020_20010_9 crossref_primary_10_1007_s42770_024_01558_w crossref_primary_10_1038_s41467_021_22845_2 crossref_primary_10_2174_1570180815666180917125916 crossref_primary_10_1007_s00253_022_12211_7 crossref_primary_10_1007_s00253_021_11187_0 crossref_primary_10_1038_srep26667 crossref_primary_10_1128_AAC_00726_15 crossref_primary_10_1371_journal_pbio_3000957 crossref_primary_10_1016_j_mimet_2015_06_004 crossref_primary_10_3390_jof7020097 crossref_primary_10_1007_s12038_014_9435_y crossref_primary_10_1371_journal_ppat_1003519 crossref_primary_10_1016_j_bioorg_2024_107311 crossref_primary_10_1371_journal_pone_0063736 crossref_primary_10_1016_j_xcrm_2022_100632 crossref_primary_10_1111_mmi_12913 crossref_primary_10_1111_cmi_12890 crossref_primary_10_1128_EC_00292_13 crossref_primary_10_1371_journal_ppat_1012225 crossref_primary_10_1128_mbio_01521_23 crossref_primary_10_1177_0022034517714414 crossref_primary_10_3389_fcell_2021_607188 crossref_primary_10_1080_1040841X_2020_1843400 crossref_primary_10_1111_mmi_15050 crossref_primary_10_1016_j_riam_2014_11_001 crossref_primary_10_1093_femsyr_foy078 crossref_primary_10_1371_journal_pone_0129903 crossref_primary_10_7554_eLife_64682 crossref_primary_10_1371_journal_ppat_1002663 crossref_primary_10_3389_fmicb_2022_957879 crossref_primary_10_1007_s00294_018_0804_1 crossref_primary_10_1016_j_mito_2017_08_003 crossref_primary_10_5604_01_3001_0013_1605 crossref_primary_10_1128_mBio_01991_17 crossref_primary_10_1007_s11046_020_00511_3 crossref_primary_10_3390_antibiotics11111474 crossref_primary_10_1128_EC_00235_14 crossref_primary_10_1073_pnas_1221734110 crossref_primary_10_1371_journal_pgen_1005590 crossref_primary_10_1128_mSphere_00646_20 crossref_primary_10_1093_femsyr_foz057 crossref_primary_10_1080_1040841X_2024_2418125 crossref_primary_10_1371_journal_pgen_1007884 crossref_primary_10_3389_fmed_2018_00028 crossref_primary_10_1016_j_jmii_2018_04_002 crossref_primary_10_1038_s41435_019_0071_2 crossref_primary_10_1038_s41598_020_59750_5 crossref_primary_10_1016_j_biomed_2012_12_004 crossref_primary_10_1128_mSphere_00169_18 crossref_primary_10_1186_1471_2180_13_246 crossref_primary_10_1128_spectrum_02195_24 crossref_primary_10_1016_j_omtn_2019_09_016 crossref_primary_10_4161_trns_22281 crossref_primary_10_3389_fcimb_2021_700305 crossref_primary_10_1371_journal_ppat_1011109 crossref_primary_10_1038_s41522_023_00371_x crossref_primary_10_3390_jof6010026 crossref_primary_10_1016_j_chembiol_2023_04_010 crossref_primary_10_1590_1678_7757_2019_0578 crossref_primary_10_1128_spectrum_02152_23 crossref_primary_10_1073_pnas_1305982110 crossref_primary_10_1007_s10096_020_03912_w crossref_primary_10_1021_acsbiomaterials_3c00938 crossref_primary_10_1093_jac_dkz400 crossref_primary_10_1093_mmy_myad126 crossref_primary_10_1097_INF_0b013e3182863a1c crossref_primary_10_3390_ma15113750 crossref_primary_10_1016_j_cub_2014_09_030 crossref_primary_10_3390_jof7010065 crossref_primary_10_1111_omi_12111 crossref_primary_10_1002_yea_3855 crossref_primary_10_3390_pathogens11091014 crossref_primary_10_1534_genetics_117_300295 crossref_primary_10_1007_s10096_015_2369_y crossref_primary_10_1128_microbiolspec_FUNK_0024_2016 crossref_primary_10_2217_fmb_2016_0025 crossref_primary_10_1371_journal_pbio_3000422 crossref_primary_10_1371_journal_pgen_1006373 crossref_primary_10_1016_j_resmic_2022_104014 crossref_primary_10_3389_fmicb_2019_01085 crossref_primary_10_1111_omi_12109 crossref_primary_10_1371_journal_pgen_1006487 crossref_primary_10_1128_spectrum_04255_22 crossref_primary_10_1111_cmi_12767 crossref_primary_10_31083_j_fbe1502013 crossref_primary_10_1186_s40168_021_01085_y crossref_primary_10_3389_fmicb_2020_581184 crossref_primary_10_1128_EC_00163_12 crossref_primary_10_1371_journal_pbio_1001525 crossref_primary_10_1371_journal_ppat_1008399 crossref_primary_10_1128_cmr_00019_23 crossref_primary_10_3389_fmolb_2014_00027 crossref_primary_10_5812_jjm_132692 crossref_primary_10_1016_j_ijmm_2020_151414 crossref_primary_10_1016_j_csbj_2022_06_030 crossref_primary_10_1016_j_csbj_2021_10_012 crossref_primary_10_1128_mSphere_00334_18 crossref_primary_10_1038_srep36055 crossref_primary_10_1111_1751_7915_13307 crossref_primary_10_1093_mmy_myz009 crossref_primary_10_1016_j_tim_2014_07_001 crossref_primary_10_1371_journal_pone_0137947 crossref_primary_10_1038_srep27463 |
Cites_doi | 10.1038/nature02579 10.1128/MCB.18.10.5750 10.1016/S0092-8674(85)80119-7 10.1046/j.1365-2958.2000.02132.x 10.1099/mic.0.27696-0 10.1128/IAI.72.10.6023-6031.2004 10.1038/441300a 10.1093/nar/gkj013 10.1111/j.1365-2958.2010.07504.x 10.1101/gr.109553.110 10.1186/gb-2010-11-7-r71 10.1126/science.284.5418.1318 10.1038/nature09992 10.1128/JB.183.18.5385-5394.2001 10.1016/j.biocel.2009.07.009 10.1128/JB.181.20.6441-6448.1999 10.1126/science.275.5304.1314 10.1111/j.1365-2958.2010.07331.x 10.1128/CMR.17.2.255-267.2004 10.1126/science.8259520 10.1111/j.1574-6968.2002.tb11330.x 10.1186/gb-2010-11-12-r127 10.1371/journal.ppat.0020063 10.1099/mic.0.26003-0 10.1126/science.290.5500.2306 10.1016/j.cub.2008.06.034 10.1111/j.1574-6976.1995.tb00155.x 10.1093/bioinformatics/btm193 10.1016/j.cub.2010.06.031 10.1038/nature02800 10.1128/EC.00074-09 10.1016/j.plaphy.2010.01.017 10.1111/j.1365-2958.1996.tb02470.x 10.1126/science.7992058 10.2166/wst.2008.585 10.1186/gb-2007-8-4-r52 10.1371/journal.pgen.1000783 10.1101/gr.090233.108 10.1371/journal.pbio.1000133 10.1128/mcb.14.3.2100-2112.1994 10.1093/bioinformatics/btp612 10.1371/journal.pgen.1001070 10.1099/mic.0.043851-0 10.1038/nature09560 10.1093/emboj/16.8.1982 10.1186/1741-7007-8-49 10.1371/journal.pbio.0060038 10.1128/CMR.15.2.167-193.2002 10.1006/jmbi.2000.5197 10.1128/EC.4.2.298-309.2005 10.1038/ng.605 10.1038/msb4100018 10.1016/j.cub.2005.05.047 10.1038/nature04588 10.1093/bioinformatics/bth349 10.1371/journal.pbio.1000329 10.1128/EC.00194-06 10.1086/380796 10.1111/j.1834-7819.1998.tb00157.x 10.1016/j.mib.2006.06.007 10.1016/S0092-8674(00)80358-X 10.1128/EC.00325-09 10.1146/annurev.micro.59.030804.121310 10.1152/ajpendo.91002.2008 10.1128/MCB.23.22.8189-8201.2003 10.1111/j.1462-5822.2008.01198.x 10.1016/j.gene.2004.06.021 10.1128/IAI.01452-08 10.1128/AAC.48.12.4505-4512.2004 10.1371/journal.pcbi.1000279 10.1016/j.stem.2010.07.016 10.1186/1471-2148-4-2 10.1016/j.tripleo.2003.04.002 10.1126/science.1061320 10.1074/jbc.271.11.6298 10.1111/j.1365-2958.2006.05367.x 10.1101/gr.6111907 10.1038/sj.bdj.4809821 10.1038/nature08064 10.1073/pnas.1530509100 10.1101/gad.1781909 10.1038/355601a0 10.1016/j.cell.2011.01.032 10.1126/science.1204349 10.1126/science.1140748 10.1016/j.cub.2007.05.017 10.1128/MCB.15.12.6854 10.1016/S0966-842X(02)00002-1 10.1128/EC.1.3.353-365.2002 10.1126/science.1194554 10.1099/00222615-48-7-671 10.1371/journal.pbio.1000363 10.1038/nrg1204 10.1086/599838 10.1126/science.277.5322.105 10.1093/bioinformatics/bth078 10.1186/1471-2164-11-581 10.1038/nature06107 10.1128/AAC.48.5.1727-1732.2004 10.1111/j.1567-1364.2006.00074.x 10.1093/bioinformatics/14.1.48 10.1016/S0076-6879(10)70031-8 10.1101/gad.1389306 10.1128/IAI.00480-10 10.1371/journal.ppat.1000828 10.1128/EC.00111-10 10.1128/iai.62.3.915-921.1994 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. 2011 Elsevier Inc. All rights reserved. 2011 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: 2011 Elsevier Inc. All rights reserved. 2011 |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 M7N 5PM |
DOI | 10.1016/j.cell.2011.10.048 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 138 |
ExternalDocumentID | PMC3266547 22265407 10_1016_j_cell_2011_10_048 US201600000398 S0092867411013614 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01AI049187 – fundername: NHLBI NIH HHS grantid: T32 HL007899 – fundername: NIAID NIH HHS grantid: R01 AI073289 – fundername: NIAID NIH HHS grantid: F32AI088822 – fundername: NIAID NIH HHS grantid: T32 AI060537 – fundername: NIAID NIH HHS grantid: R01 AI083311 – fundername: NIAID NIH HHS grantid: R01AI073289 – fundername: NIAID NIH HHS grantid: T32AI060537 – fundername: NIAID NIH HHS grantid: F32 AI088822 – fundername: NIAID NIH HHS grantid: R01 AI049187 – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: R01 AI073289-05 || AI – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: R01 AI049187-09 || AI |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO AAYJJ ABCQX ABJNI ABMAC ABOCM ABTAH ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YYQ YZZ ZCA ZY4 .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 6TJ AAIAV AAQXK AAUCE AAXJY ABEFU ABMWF ABPTK ABVKL ADJPV ADMUD AEQTP AETEA AFDAS AI. ALKID FBQ FEDTE FGOYB G-2 G8K HVGLF H~9 MVM NCXOZ OHT OMK OZT PUQ R2- RCE UBW UHB VH1 VQA WQ6 X7M XFK YYP ZA5 ZGI ZHY ZKB AAYWO AAYXX ABDGV ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7S9 L.6 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c609t-1c67e22245a998c574c72e63beb4846594dbadddec65a07598c19d116c78bcc33 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:12:50 EDT 2025 Thu Sep 04 22:04:48 EDT 2025 Fri Sep 05 04:46:02 EDT 2025 Fri Sep 05 10:13:42 EDT 2025 Mon Jul 21 06:06:20 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 03:52:02 EDT 2025 Wed Dec 27 19:19:27 EST 2023 Sun Apr 06 06:54:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-1c67e22245a998c574c72e63beb4846594dbadddec65a07598c19d116c78bcc33 |
Notes | http://dx.doi.org/10.1016/j.cell.2011.10.048 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Current Address: Amyris, Emeryville, CA, USA Current Address: Genome Analysis Unit, Amgen, South San Francisco, CA, USA |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867411013614 |
PMID | 22265407 |
PQID | 2000035427 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3266547 proquest_miscellaneous_926882578 proquest_miscellaneous_917577341 proquest_miscellaneous_2000035427 pubmed_primary_22265407 crossref_citationtrail_10_1016_j_cell_2011_10_048 crossref_primary_10_1016_j_cell_2011_10_048 fao_agris_US201600000398 elsevier_sciencedirect_doi_10_1016_j_cell_2011_10_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-20 |
PublicationDateYYYYMMDD | 2012-01-20 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2012 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mitrovich, Tuch, De La Vega, Guthrie, Johnson (bib27) 2010; 330 Donlan, Costerton (bib10) 2002; 15 Nobile, Mitchell (bib32) 2005; 15 Hepworth, Friesen, Segall (bib16) 1998; 18 Madhani, Fink (bib26) 1997; 275 Kojic, Darouiche (bib19) 2004; 17 Chandra, Kuhn, Mukherjee, Hoyer, McCormick, Ghannoum (bib7) 2001; 183 Douglas (bib11) 2003; 11 Nett, Marchillo, Spiegel, Andes (bib30) 2010; 78 Hamoen, Venema, Kuipers (bib13) 2003; 149 Harbison, Gordon, Lee, Rinaldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo (bib14) 2004; 431 Sellam, Hogues, Askew, Tebbji, van Het Hoog, Lavoie, Kumamoto, Whiteway, Nantel (bib42) 2010; 11 Tuch, Mitrovich, Homann, Hernday, Monighetti, De La Vega, Johnson (bib45) 2010; 6 Nobile, Andes, Nett, Smith, Yue, Phan, Edwards, Filler, Mitchell (bib33) 2006; 2 Webb, Thomas, Willcox, Harty, Knox (bib49) 1998; 43 Long, Betrán, Thornton, Wang (bib24) 2003; 4 Sahni, Yi, Daniels, Huang, Srikantha, Soll (bib39) 2010; 8 Kolter, Greenberg (bib20) 2006; 441 Süel, Garcia-Ojalvo, Liberman, Elowitz (bib43) 2006; 440 Zhu, Byers, McCord, Shi, Berger, Newburger, Saulrieta, Smith, Shah, Radhakrishnan (bib53) 2009; 19 Nett, Andes (bib29) 2006; 9 Wilson, Foster, Wang, Knezevic, Schütte, Kaimakis, Chilarska, Kinston, Ouwehand, Dzierzak (bib51) 2010; 7 Müller, Stelling (bib28) 2009; 5 Wapinski, Pfeffer, Friedman, Regev (bib48) 2007; 449 Young (bib52) 2011; 144 Nobile, Schneider, Nett, Sheppard, Filler, Andes, Mitchell (bib35) 2008; 18 Askew, Sellam, Epp, Mallick, Hogues, Mullick, Nantel, Whiteway (bib3) 2011; 79 Lin, Wu, Liang, Woo, Li (bib22) 2010; 11 Uppuluri, Pierce, Thomas, Bubeck, Saville, Lopez-Ribot (bib47) 2010; 9 Locke, Southern, Kozma-Bognár, Hibberd, Brown, Turner, Millar (bib23) 2005; 1 Borneman, Leigh-Bell, Yu, Bertone, Gerstein, Snyder (bib5) 2006; 20 Lavoie, Hogues, Mallick, Sellam, Nantel, Whiteway (bib21) 2010; 8 Ramage, VandeWalle, López-Ribot, Wickes (bib37) 2002; 214 Bruno, Wang, Marjani, Euskirchen, Martin, Sherlock, Snyder (bib6) 2010; 20 Homann, Johnson (bib17) 2010; 8 Uppuluri, Chaturvedi, Srinivasan, Banerjee, Ramasubramaniam, Köhler, Kadosh, Lopez-Ribot (bib46) 2010; 6 Ramage, Tomsett, Wickes, López-Ribot, Redding (bib38) 2004; 98 Hawser, Douglas (bib15) 1994; 62 Baillie, Douglas (bib4) 1999; 48 Fernández, Lynch (bib12) 2011; 474 Homann, Dea, Noble, Johnson (bib18) 2009; 5 Sugino, Innan (bib44) 2011 Andes, Nett, Oschel, Albrecht, Marchillo, Pitula (bib2) 2004; 72 Schinabeck, Long, Hossain, Chandra, Mukherjee, Mohamed, Ghannoum (bib40) 2004; 48 Sellam, Tebbji, Nantel (bib41) 2009; 8 Costerton, Stewart, Greenberg (bib8) 1999; 284 Losick, Stragier (bib25) 1992; 355 Wilson (bib50) 1998; 185 de Hoon, Eichenberger, Vitkup (bib9) 2010; 20 Alabadí, Oyama, Yanovsky, Harmon, Más, Kay (bib1) 2001; 293 Nobile, Nett, Andes, Mitchell (bib34) 2006; 5 Nobile, Nett, Hernday, Homann, Deneault, Nantel, Andes, Johnson, Mitchell (bib36) 2009; 7 Ni, Bruce, Hart, Leigh-Bell, Gelperin, Umansky, Gerstein, Snyder (bib31) 2009; 23 Sugino (10.1016/j.cell.2011.10.048_bib44) 2011 Costerton (10.1016/j.cell.2011.10.048_bib8) 1999; 284 Ramage (10.1016/j.cell.2011.10.048_bib38) 2004; 98 10.1016/j.cell.2011.10.048_bib70 10.1016/j.cell.2011.10.048_bib71 Nobile (10.1016/j.cell.2011.10.048_bib35) 2008; 18 10.1016/j.cell.2011.10.048_bib67 10.1016/j.cell.2011.10.048_bib68 10.1016/j.cell.2011.10.048_bib65 10.1016/j.cell.2011.10.048_bib66 10.1016/j.cell.2011.10.048_bib63 10.1016/j.cell.2011.10.048_bib64 10.1016/j.cell.2011.10.048_bib61 10.1016/j.cell.2011.10.048_bib62 10.1016/j.cell.2011.10.048_bib69 Ni (10.1016/j.cell.2011.10.048_bib31) 2009; 23 10.1016/j.cell.2011.10.048_bib81 10.1016/j.cell.2011.10.048_bib82 Nett (10.1016/j.cell.2011.10.048_bib30) 2010; 78 10.1016/j.cell.2011.10.048_bib80 10.1016/j.cell.2011.10.048_bib78 10.1016/j.cell.2011.10.048_bib79 Harbison (10.1016/j.cell.2011.10.048_bib14) 2004; 431 10.1016/j.cell.2011.10.048_bib76 Kolter (10.1016/j.cell.2011.10.048_bib20) 2006; 441 10.1016/j.cell.2011.10.048_bib77 10.1016/j.cell.2011.10.048_bib74 10.1016/j.cell.2011.10.048_bib75 10.1016/j.cell.2011.10.048_bib72 10.1016/j.cell.2011.10.048_bib73 Wilson (10.1016/j.cell.2011.10.048_bib50) 1998; 185 Lavoie (10.1016/j.cell.2011.10.048_bib21) 2010; 8 Losick (10.1016/j.cell.2011.10.048_bib25) 1992; 355 Baillie (10.1016/j.cell.2011.10.048_bib4) 1999; 48 Mitrovich (10.1016/j.cell.2011.10.048_bib27) 2010; 330 Madhani (10.1016/j.cell.2011.10.048_bib26) 1997; 275 Müller (10.1016/j.cell.2011.10.048_bib28) 2009; 5 Askew (10.1016/j.cell.2011.10.048_bib3) 2011; 79 Long (10.1016/j.cell.2011.10.048_bib24) 2003; 4 Wapinski (10.1016/j.cell.2011.10.048_bib48) 2007; 449 Lin (10.1016/j.cell.2011.10.048_bib22) 2010; 11 Kojic (10.1016/j.cell.2011.10.048_bib19) 2004; 17 Uppuluri (10.1016/j.cell.2011.10.048_bib46) 2010; 6 10.1016/j.cell.2011.10.048_bib60 10.1016/j.cell.2011.10.048_bib108 Nobile (10.1016/j.cell.2011.10.048_bib32) 2005; 15 10.1016/j.cell.2011.10.048_bib106 Schinabeck (10.1016/j.cell.2011.10.048_bib40) 2004; 48 10.1016/j.cell.2011.10.048_bib107 10.1016/j.cell.2011.10.048_bib104 10.1016/j.cell.2011.10.048_bib105 10.1016/j.cell.2011.10.048_bib56 10.1016/j.cell.2011.10.048_bib102 Nobile (10.1016/j.cell.2011.10.048_bib33) 2006; 2 10.1016/j.cell.2011.10.048_bib57 10.1016/j.cell.2011.10.048_bib103 10.1016/j.cell.2011.10.048_bib54 10.1016/j.cell.2011.10.048_bib100 10.1016/j.cell.2011.10.048_bib55 10.1016/j.cell.2011.10.048_bib101 10.1016/j.cell.2011.10.048_bib58 10.1016/j.cell.2011.10.048_bib59 Alabadí (10.1016/j.cell.2011.10.048_bib1) 2001; 293 Douglas (10.1016/j.cell.2011.10.048_bib11) 2003; 11 Sellam (10.1016/j.cell.2011.10.048_bib42) 2010; 11 Zhu (10.1016/j.cell.2011.10.048_bib53) 2009; 19 Wilson (10.1016/j.cell.2011.10.048_bib51) 2010; 7 Homann (10.1016/j.cell.2011.10.048_bib18) 2009; 5 Young (10.1016/j.cell.2011.10.048_bib52) 2011; 144 Nobile (10.1016/j.cell.2011.10.048_bib34) 2006; 5 Andes (10.1016/j.cell.2011.10.048_bib2) 2004; 72 Locke (10.1016/j.cell.2011.10.048_bib23) 2005; 1 Süel (10.1016/j.cell.2011.10.048_bib43) 2006; 440 Borneman (10.1016/j.cell.2011.10.048_bib5) 2006; 20 Hamoen (10.1016/j.cell.2011.10.048_bib13) 2003; 149 Uppuluri (10.1016/j.cell.2011.10.048_bib47) 2010; 9 Homann (10.1016/j.cell.2011.10.048_bib17) 2010; 8 Webb (10.1016/j.cell.2011.10.048_bib49) 1998; 43 Hepworth (10.1016/j.cell.2011.10.048_bib16) 1998; 18 10.1016/j.cell.2011.10.048_bib92 10.1016/j.cell.2011.10.048_bib93 10.1016/j.cell.2011.10.048_bib90 10.1016/j.cell.2011.10.048_bib91 10.1016/j.cell.2011.10.048_bib89 Nobile (10.1016/j.cell.2011.10.048_bib36) 2009; 7 10.1016/j.cell.2011.10.048_bib87 10.1016/j.cell.2011.10.048_bib88 Sahni (10.1016/j.cell.2011.10.048_bib39) 2010; 8 10.1016/j.cell.2011.10.048_bib85 10.1016/j.cell.2011.10.048_bib86 10.1016/j.cell.2011.10.048_bib83 10.1016/j.cell.2011.10.048_bib84 de Hoon (10.1016/j.cell.2011.10.048_bib9) 2010; 20 Fernández (10.1016/j.cell.2011.10.048_bib12) 2011; 474 Tuch (10.1016/j.cell.2011.10.048_bib45) 2010; 6 Bruno (10.1016/j.cell.2011.10.048_bib6) 2010; 20 10.1016/j.cell.2011.10.048_bib98 10.1016/j.cell.2011.10.048_bib99 Donlan (10.1016/j.cell.2011.10.048_bib10) 2002; 15 10.1016/j.cell.2011.10.048_bib96 10.1016/j.cell.2011.10.048_bib97 Ramage (10.1016/j.cell.2011.10.048_bib37) 2002; 214 10.1016/j.cell.2011.10.048_bib94 10.1016/j.cell.2011.10.048_bib95 Sellam (10.1016/j.cell.2011.10.048_bib41) 2009; 8 Nett (10.1016/j.cell.2011.10.048_bib29) 2006; 9 Chandra (10.1016/j.cell.2011.10.048_bib7) 2001; 183 Hawser (10.1016/j.cell.2011.10.048_bib15) 1994; 62 |
References_xml | – volume: 330 start-page: 838 year: 2010 end-page: 841 ident: bib27 article-title: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss publication-title: Science – volume: 8 start-page: 49 year: 2010 ident: bib17 article-title: MochiView: versatile software for genome browsing and DNA motif analysis publication-title: BMC Biol. – volume: 214 start-page: 95 year: 2002 end-page: 100 ident: bib37 article-title: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans publication-title: FEMS Microbiol. Lett. – volume: 8 start-page: e1000329 year: 2010 ident: bib21 article-title: Evolutionary tinkering with conserved components of a transcriptional regulatory network publication-title: PLoS Biol. – volume: 15 start-page: 1150 year: 2005 end-page: 1155 ident: bib32 article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p publication-title: Curr. Biol. – volume: 48 start-page: 671 year: 1999 end-page: 679 ident: bib4 article-title: Role of dimorphism in the development of Candida albicans biofilms publication-title: J. Med. Microbiol. – volume: 293 start-page: 880 year: 2001 end-page: 883 ident: bib1 article-title: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock publication-title: Science – volume: 98 start-page: 53 year: 2004 end-page: 59 ident: bib38 article-title: Denture stomatitis: a role for Candida biofilms publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. – volume: 1 year: 2005 ident: bib23 article-title: Extension of a genetic network model by iterative experimentation and mathematical analysis publication-title: Mol. Syst. Biol. – volume: 62 start-page: 915 year: 1994 end-page: 921 ident: bib15 article-title: Biofilm formation by Candida species on the surface of catheter materials in vitro publication-title: Infect. Immun. – volume: 23 start-page: 1351 year: 2009 end-page: 1363 ident: bib31 article-title: Dynamic and complex transcription factor binding during an inducible response in yeast publication-title: Genes Dev. – volume: 20 start-page: 435 year: 2006 end-page: 448 ident: bib5 article-title: Target hub proteins serve as master regulators of development in yeast publication-title: Genes Dev. – volume: 4 start-page: 865 year: 2003 end-page: 875 ident: bib24 article-title: The origin of new genes: glimpses from the young and old publication-title: Nat. Rev. Genet. – volume: 5 start-page: e1000279 year: 2009 ident: bib28 article-title: Precise regulation of gene expression dynamics favors complex promoter architectures publication-title: PLoS Comput. Biol. – volume: 5 start-page: e1000783 year: 2009 ident: bib18 article-title: A phenotypic profile of the Candida albicans regulatory network publication-title: PLoS Genet. – volume: 11 start-page: R71 year: 2010 ident: bib42 article-title: Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays publication-title: Genome Biol. – volume: 72 start-page: 6023 year: 2004 end-page: 6031 ident: bib2 article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model publication-title: Infect. Immun. – volume: 7 start-page: e1000133 year: 2009 ident: bib36 article-title: Biofilm matrix regulation by Candida albicans Zap1 publication-title: PLoS Biol. – volume: 185 start-page: 380 year: 1998 end-page: 384 ident: bib50 article-title: The aetiology, diagnosis and management of denture stomatitis publication-title: Br. Dent. J. – volume: 449 start-page: 54 year: 2007 end-page: 61 ident: bib48 article-title: Natural history and evolutionary principles of gene duplication in fungi publication-title: Nature – volume: 8 start-page: e1000363 year: 2010 ident: bib39 article-title: Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways publication-title: PLoS Biol. – volume: 18 start-page: 5750 year: 1998 end-page: 5761 ident: bib16 article-title: NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. – volume: 149 start-page: 9 year: 2003 end-page: 17 ident: bib13 article-title: Controlling competence in Bacillus subtilis: shared use of regulators publication-title: Microbiology – volume: 441 start-page: 300 year: 2006 end-page: 302 ident: bib20 article-title: Microbial sciences: the superficial life of microbes publication-title: Nature – volume: 78 start-page: 3650 year: 2010 end-page: 3659 ident: bib30 article-title: Development and validation of an in vivo Candida albicans biofilm denture model publication-title: Infect. Immun. – volume: 79 start-page: 940 year: 2011 end-page: 953 ident: bib3 article-title: The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion publication-title: Mol. Microbiol. – year: 2011 ident: bib44 article-title: Natural selection on gene order in the genome re-organization process after whole genome duplication of yeast publication-title: Mol. Biol. Evol. – volume: 284 start-page: 1318 year: 1999 end-page: 1322 ident: bib8 article-title: Bacterial biofilms: a common cause of persistent infections publication-title: Science – volume: 275 start-page: 1314 year: 1997 end-page: 1317 ident: bib26 article-title: Combinatorial control required for the specificity of yeast MAPK signaling publication-title: Science – volume: 474 start-page: 502 year: 2011 end-page: 505 ident: bib12 article-title: Non-adaptive origins of interactome complexity publication-title: Nature – volume: 43 start-page: 160 year: 1998 end-page: 166 ident: bib49 article-title: Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species publication-title: Aust. Dent. J. – volume: 9 start-page: 340 year: 2006 end-page: 345 ident: bib29 article-title: Candida albicans biofilm development, modeling a host-pathogen interaction publication-title: Curr. Opin. Microbiol. – volume: 144 start-page: 940 year: 2011 end-page: 954 ident: bib52 article-title: Control of the embryonic stem cell state publication-title: Cell – volume: 440 start-page: 545 year: 2006 end-page: 550 ident: bib43 article-title: An excitable gene regulatory circuit induces transient cellular differentiation publication-title: Nature – volume: 2 start-page: e63 year: 2006 ident: bib33 article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo publication-title: PLoS Pathog. – volume: 5 start-page: 1604 year: 2006 end-page: 1610 ident: bib34 article-title: Function of Candida albicans adhesin Hwp1 in biofilm formation publication-title: Eukaryot. Cell – volume: 48 start-page: 1727 year: 2004 end-page: 1732 ident: bib40 article-title: Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy publication-title: Antimicrob. Agents Chemother. – volume: 6 start-page: e1001070 year: 2010 ident: bib45 article-title: The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation publication-title: PLoS Genet. – volume: 9 start-page: 1531 year: 2010 end-page: 1537 ident: bib47 article-title: The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion publication-title: Eukaryot. Cell – volume: 19 start-page: 556 year: 2009 end-page: 566 ident: bib53 article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors publication-title: Genome Res. – volume: 17 start-page: 255 year: 2004 end-page: 267 ident: bib19 article-title: Candida infections of medical devices publication-title: Clin. Microbiol. Rev. – volume: 6 start-page: e1000828 year: 2010 ident: bib46 article-title: Dispersion as an important step in the Candida albicans biofilm developmental cycle publication-title: PLoS Pathog. – volume: 20 start-page: R735 year: 2010 end-page: R745 ident: bib9 article-title: Hierarchical evolution of the bacterial sporulation network publication-title: Curr. Biol. – volume: 15 start-page: 167 year: 2002 end-page: 193 ident: bib10 article-title: Biofilms: survival mechanisms of clinically relevant microorganisms publication-title: Clin. Microbiol. Rev. – volume: 8 start-page: 1174 year: 2009 end-page: 1183 ident: bib41 article-title: Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans publication-title: Eukaryot. Cell – volume: 11 start-page: 30 year: 2003 end-page: 36 ident: bib11 article-title: Candida biofilms and their role in infection publication-title: Trends Microbiol. – volume: 11 start-page: 581 year: 2010 ident: bib22 article-title: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation publication-title: BMC Genomics – volume: 355 start-page: 601 year: 1992 end-page: 604 ident: bib25 article-title: Crisscross regulation of cell-type-specific gene expression during development in B. subtilis publication-title: Nature – volume: 183 start-page: 5385 year: 2001 end-page: 5394 ident: bib7 article-title: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance publication-title: J. Bacteriol. – volume: 431 start-page: 99 year: 2004 end-page: 104 ident: bib14 article-title: Transcriptional regulatory code of a eukaryotic genome publication-title: Nature – volume: 20 start-page: 1451 year: 2010 end-page: 1458 ident: bib6 article-title: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq publication-title: Genome Res. – volume: 7 start-page: 532 year: 2010 end-page: 544 ident: bib51 article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators publication-title: Cell Stem Cell – volume: 18 start-page: 1017 year: 2008 end-page: 1024 ident: bib35 article-title: Complementary adhesin function in C. albicans biofilm formation publication-title: Curr. Biol. – ident: 10.1016/j.cell.2011.10.048_bib68 doi: 10.1038/nature02579 – volume: 18 start-page: 5750 year: 1998 ident: 10.1016/j.cell.2011.10.048_bib16 article-title: NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.10.5750 – ident: 10.1016/j.cell.2011.10.048_bib79 doi: 10.1016/S0092-8674(85)80119-7 – ident: 10.1016/j.cell.2011.10.048_bib95 doi: 10.1046/j.1365-2958.2000.02132.x – ident: 10.1016/j.cell.2011.10.048_bib73 doi: 10.1099/mic.0.27696-0 – volume: 72 start-page: 6023 year: 2004 ident: 10.1016/j.cell.2011.10.048_bib2 article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model publication-title: Infect. Immun. doi: 10.1128/IAI.72.10.6023-6031.2004 – volume: 441 start-page: 300 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib20 article-title: Microbial sciences: the superficial life of microbes publication-title: Nature doi: 10.1038/441300a – ident: 10.1016/j.cell.2011.10.048_bib101 doi: 10.1093/nar/gkj013 – volume: 79 start-page: 940 year: 2011 ident: 10.1016/j.cell.2011.10.048_bib3 article-title: The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07504.x – volume: 20 start-page: 1451 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib6 article-title: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq publication-title: Genome Res. doi: 10.1101/gr.109553.110 – volume: 11 start-page: R71 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib42 article-title: Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays publication-title: Genome Biol. doi: 10.1186/gb-2010-11-7-r71 – volume: 284 start-page: 1318 year: 1999 ident: 10.1016/j.cell.2011.10.048_bib8 article-title: Bacterial biofilms: a common cause of persistent infections publication-title: Science doi: 10.1126/science.284.5418.1318 – volume: 474 start-page: 502 year: 2011 ident: 10.1016/j.cell.2011.10.048_bib12 article-title: Non-adaptive origins of interactome complexity publication-title: Nature doi: 10.1038/nature09992 – volume: 183 start-page: 5385 year: 2001 ident: 10.1016/j.cell.2011.10.048_bib7 article-title: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance publication-title: J. Bacteriol. doi: 10.1128/JB.183.18.5385-5394.2001 – ident: 10.1016/j.cell.2011.10.048_bib78 doi: 10.1016/j.biocel.2009.07.009 – ident: 10.1016/j.cell.2011.10.048_bib54 doi: 10.1128/JB.181.20.6441-6448.1999 – volume: 275 start-page: 1314 year: 1997 ident: 10.1016/j.cell.2011.10.048_bib26 article-title: Combinatorial control required for the specificity of yeast MAPK signaling publication-title: Science doi: 10.1126/science.275.5304.1314 – ident: 10.1016/j.cell.2011.10.048_bib83 doi: 10.1111/j.1365-2958.2010.07331.x – volume: 17 start-page: 255 year: 2004 ident: 10.1016/j.cell.2011.10.048_bib19 article-title: Candida infections of medical devices publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.17.2.255-267.2004 – ident: 10.1016/j.cell.2011.10.048_bib80 doi: 10.1126/science.8259520 – volume: 214 start-page: 95 year: 2002 ident: 10.1016/j.cell.2011.10.048_bib37 article-title: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2002.tb11330.x – ident: 10.1016/j.cell.2011.10.048_bib63 doi: 10.1186/gb-2010-11-12-r127 – volume: 2 start-page: e63 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib33 article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0020063 – volume: 149 start-page: 9 year: 2003 ident: 10.1016/j.cell.2011.10.048_bib13 article-title: Controlling competence in Bacillus subtilis: shared use of regulators publication-title: Microbiology doi: 10.1099/mic.0.26003-0 – ident: 10.1016/j.cell.2011.10.048_bib92 doi: 10.1126/science.290.5500.2306 – volume: 18 start-page: 1017 year: 2008 ident: 10.1016/j.cell.2011.10.048_bib35 article-title: Complementary adhesin function in C. albicans biofilm formation publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.06.034 – ident: 10.1016/j.cell.2011.10.048_bib97 doi: 10.1111/j.1574-6976.1995.tb00155.x – ident: 10.1016/j.cell.2011.10.048_bib106 doi: 10.1093/bioinformatics/btm193 – volume: 20 start-page: R735 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib9 article-title: Hierarchical evolution of the bacterial sporulation network publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.06.031 – volume: 431 start-page: 99 year: 2004 ident: 10.1016/j.cell.2011.10.048_bib14 article-title: Transcriptional regulatory code of a eukaryotic genome publication-title: Nature doi: 10.1038/nature02800 – volume: 8 start-page: 1174 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib41 article-title: Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans publication-title: Eukaryot. Cell doi: 10.1128/EC.00074-09 – ident: 10.1016/j.cell.2011.10.048_bib77 doi: 10.1016/j.plaphy.2010.01.017 – ident: 10.1016/j.cell.2011.10.048_bib70 doi: 10.1111/j.1365-2958.1996.tb02470.x – ident: 10.1016/j.cell.2011.10.048_bib81 doi: 10.1126/science.7992058 – ident: 10.1016/j.cell.2011.10.048_bib69 doi: 10.2166/wst.2008.585 – ident: 10.1016/j.cell.2011.10.048_bib104 doi: 10.1186/gb-2007-8-4-r52 – volume: 5 start-page: e1000783 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib18 article-title: A phenotypic profile of the Candida albicans regulatory network publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000783 – volume: 19 start-page: 556 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib53 article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors publication-title: Genome Res. doi: 10.1101/gr.090233.108 – volume: 7 start-page: e1000133 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib36 article-title: Biofilm matrix regulation by Candida albicans Zap1 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000133 – ident: 10.1016/j.cell.2011.10.048_bib72 doi: 10.1128/mcb.14.3.2100-2112.1994 – ident: 10.1016/j.cell.2011.10.048_bib105 doi: 10.1093/bioinformatics/btp612 – volume: 6 start-page: e1001070 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib45 article-title: The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001070 – ident: 10.1016/j.cell.2011.10.048_bib65 doi: 10.1099/mic.0.043851-0 – ident: 10.1016/j.cell.2011.10.048_bib59 doi: 10.1038/nature09560 – ident: 10.1016/j.cell.2011.10.048_bib99 doi: 10.1093/emboj/16.8.1982 – volume: 8 start-page: 49 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib17 article-title: MochiView: versatile software for genome browsing and DNA motif analysis publication-title: BMC Biol. doi: 10.1186/1741-7007-8-49 – ident: 10.1016/j.cell.2011.10.048_bib102 doi: 10.1371/journal.pbio.0060038 – volume: 15 start-page: 167 year: 2002 ident: 10.1016/j.cell.2011.10.048_bib10 article-title: Biofilms: survival mechanisms of clinically relevant microorganisms publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.15.2.167-193.2002 – ident: 10.1016/j.cell.2011.10.048_bib91 doi: 10.1006/jmbi.2000.5197 – ident: 10.1016/j.cell.2011.10.048_bib88 doi: 10.1128/EC.4.2.298-309.2005 – ident: 10.1016/j.cell.2011.10.048_bib89 doi: 10.1038/ng.605 – volume: 1 year: 2005 ident: 10.1016/j.cell.2011.10.048_bib23 article-title: Extension of a genetic network model by iterative experimentation and mathematical analysis publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100018 – volume: 15 start-page: 1150 year: 2005 ident: 10.1016/j.cell.2011.10.048_bib32 article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.05.047 – volume: 440 start-page: 545 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib43 article-title: An excitable gene regulatory circuit induces transient cellular differentiation publication-title: Nature doi: 10.1038/nature04588 – ident: 10.1016/j.cell.2011.10.048_bib94 doi: 10.1093/bioinformatics/bth349 – volume: 8 start-page: e1000329 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib21 article-title: Evolutionary tinkering with conserved components of a transcriptional regulatory network publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000329 – volume: 5 start-page: 1604 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib34 article-title: Function of Candida albicans adhesin Hwp1 in biofilm formation publication-title: Eukaryot. Cell doi: 10.1128/EC.00194-06 – ident: 10.1016/j.cell.2011.10.048_bib90 doi: 10.1086/380796 – volume: 43 start-page: 160 year: 1998 ident: 10.1016/j.cell.2011.10.048_bib49 article-title: Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species publication-title: Aust. Dent. J. doi: 10.1111/j.1834-7819.1998.tb00157.x – volume: 9 start-page: 340 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib29 article-title: Candida albicans biofilm development, modeling a host-pathogen interaction publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2006.06.007 – ident: 10.1016/j.cell.2011.10.048_bib82 doi: 10.1016/S0092-8674(00)80358-X – ident: 10.1016/j.cell.2011.10.048_bib96 doi: 10.1128/EC.00325-09 – ident: 10.1016/j.cell.2011.10.048_bib56 doi: 10.1146/annurev.micro.59.030804.121310 – ident: 10.1016/j.cell.2011.10.048_bib76 doi: 10.1152/ajpendo.91002.2008 – ident: 10.1016/j.cell.2011.10.048_bib58 doi: 10.1128/MCB.23.22.8189-8201.2003 – ident: 10.1016/j.cell.2011.10.048_bib87 doi: 10.1111/j.1462-5822.2008.01198.x – ident: 10.1016/j.cell.2011.10.048_bib93 doi: 10.1016/j.gene.2004.06.021 – ident: 10.1016/j.cell.2011.10.048_bib71 doi: 10.1128/IAI.01452-08 – ident: 10.1016/j.cell.2011.10.048_bib64 doi: 10.1128/AAC.48.12.4505-4512.2004 – volume: 5 start-page: e1000279 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib28 article-title: Precise regulation of gene expression dynamics favors complex promoter architectures publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000279 – volume: 7 start-page: 532 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib51 article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.016 – ident: 10.1016/j.cell.2011.10.048_bib74 doi: 10.1186/1471-2148-4-2 – volume: 98 start-page: 53 year: 2004 ident: 10.1016/j.cell.2011.10.048_bib38 article-title: Denture stomatitis: a role for Candida biofilms publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. doi: 10.1016/j.tripleo.2003.04.002 – volume: 293 start-page: 880 year: 2001 ident: 10.1016/j.cell.2011.10.048_bib1 article-title: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock publication-title: Science doi: 10.1126/science.1061320 – ident: 10.1016/j.cell.2011.10.048_bib98 doi: 10.1074/jbc.271.11.6298 – ident: 10.1016/j.cell.2011.10.048_bib57 doi: 10.1111/j.1365-2958.2006.05367.x – ident: 10.1016/j.cell.2011.10.048_bib85 doi: 10.1101/gr.6111907 – volume: 185 start-page: 380 year: 1998 ident: 10.1016/j.cell.2011.10.048_bib50 article-title: The aetiology, diagnosis and management of denture stomatitis publication-title: Br. Dent. J. doi: 10.1038/sj.bdj.4809821 – ident: 10.1016/j.cell.2011.10.048_bib62 doi: 10.1038/nature08064 – ident: 10.1016/j.cell.2011.10.048_bib100 doi: 10.1073/pnas.1530509100 – volume: 23 start-page: 1351 year: 2009 ident: 10.1016/j.cell.2011.10.048_bib31 article-title: Dynamic and complex transcription factor binding during an inducible response in yeast publication-title: Genes Dev. doi: 10.1101/gad.1781909 – volume: 355 start-page: 601 year: 1992 ident: 10.1016/j.cell.2011.10.048_bib25 article-title: Crisscross regulation of cell-type-specific gene expression during development in B. subtilis publication-title: Nature doi: 10.1038/355601a0 – volume: 144 start-page: 940 year: 2011 ident: 10.1016/j.cell.2011.10.048_bib52 article-title: Control of the embryonic stem cell state publication-title: Cell doi: 10.1016/j.cell.2011.01.032 – ident: 10.1016/j.cell.2011.10.048_bib103 doi: 10.1126/science.1204349 – ident: 10.1016/j.cell.2011.10.048_bib60 doi: 10.1126/science.1140748 – ident: 10.1016/j.cell.2011.10.048_bib84 doi: 10.1016/j.cub.2007.05.017 – ident: 10.1016/j.cell.2011.10.048_bib107 doi: 10.1128/MCB.15.12.6854 – volume: 11 start-page: 30 year: 2003 ident: 10.1016/j.cell.2011.10.048_bib11 article-title: Candida biofilms and their role in infection publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(02)00002-1 – ident: 10.1016/j.cell.2011.10.048_bib108 doi: 10.1128/EC.1.3.353-365.2002 – volume: 330 start-page: 838 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib27 article-title: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss publication-title: Science doi: 10.1126/science.1194554 – volume: 48 start-page: 671 year: 1999 ident: 10.1016/j.cell.2011.10.048_bib4 article-title: Role of dimorphism in the development of Candida albicans biofilms publication-title: J. Med. Microbiol. doi: 10.1099/00222615-48-7-671 – volume: 8 start-page: e1000363 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib39 article-title: Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000363 – volume: 4 start-page: 865 year: 2003 ident: 10.1016/j.cell.2011.10.048_bib24 article-title: The origin of new genes: glimpses from the young and old publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1204 – ident: 10.1016/j.cell.2011.10.048_bib86 doi: 10.1086/599838 – ident: 10.1016/j.cell.2011.10.048_bib61 doi: 10.1126/science.277.5322.105 – ident: 10.1016/j.cell.2011.10.048_bib67 doi: 10.1093/bioinformatics/bth078 – volume: 11 start-page: 581 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib22 article-title: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation publication-title: BMC Genomics doi: 10.1186/1471-2164-11-581 – volume: 449 start-page: 54 year: 2007 ident: 10.1016/j.cell.2011.10.048_bib48 article-title: Natural history and evolutionary principles of gene duplication in fungi publication-title: Nature doi: 10.1038/nature06107 – volume: 48 start-page: 1727 year: 2004 ident: 10.1016/j.cell.2011.10.048_bib40 article-title: Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.5.1727-1732.2004 – ident: 10.1016/j.cell.2011.10.048_bib66 doi: 10.1111/j.1567-1364.2006.00074.x – ident: 10.1016/j.cell.2011.10.048_bib55 doi: 10.1093/bioinformatics/14.1.48 – ident: 10.1016/j.cell.2011.10.048_bib75 doi: 10.1016/S0076-6879(10)70031-8 – volume: 20 start-page: 435 year: 2006 ident: 10.1016/j.cell.2011.10.048_bib5 article-title: Target hub proteins serve as master regulators of development in yeast publication-title: Genes Dev. doi: 10.1101/gad.1389306 – volume: 78 start-page: 3650 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib30 article-title: Development and validation of an in vivo Candida albicans biofilm denture model publication-title: Infect. Immun. doi: 10.1128/IAI.00480-10 – year: 2011 ident: 10.1016/j.cell.2011.10.048_bib44 article-title: Natural selection on gene order in the genome re-organization process after whole genome duplication of yeast publication-title: Mol. Biol. Evol. – volume: 6 start-page: e1000828 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib46 article-title: Dispersion as an important step in the Candida albicans biofilm developmental cycle publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000828 – volume: 9 start-page: 1531 year: 2010 ident: 10.1016/j.cell.2011.10.048_bib47 article-title: The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion publication-title: Eukaryot. Cell doi: 10.1128/EC.00111-10 – volume: 62 start-page: 915 year: 1994 ident: 10.1016/j.cell.2011.10.048_bib15 article-title: Biofilm formation by Candida species on the surface of catheter materials in vitro publication-title: Infect. Immun. doi: 10.1128/iai.62.3.915-921.1994 |
SSID | ssj0008555 |
Score | 2.5796983 |
Snippet | A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those... A biofilm is an organized, resilient group of microbes where individual cells acquire properties, such as drug resistance, that are distinct from those... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126 |
SubjectTerms | animal models Animals biofilm Biofilms - growth & development Candida albicans Candida albicans - genetics Candida albicans - physiology Candida albicans - ultrastructure Candidiasis, Oral - microbiology Candidiasis, Vulvovaginal - microbiology Catheter-Related Infections - microbiology Disease Models, Animal drug resistance evolution Evolution, Molecular Female Gene Expression Profiling Gene Expression Regulation, Fungal Gene Regulatory Networks genes Genes, Fungal Male mammals Microscopy, Confocal Rats Rats, Sprague-Dawley Stomatitis, Denture - microbiology transcription (genetics) transcription factors yeasts |
Title | A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans |
URI | https://dx.doi.org/10.1016/j.cell.2011.10.048 https://www.ncbi.nlm.nih.gov/pubmed/22265407 https://www.proquest.com/docview/2000035427 https://www.proquest.com/docview/917577341 https://www.proquest.com/docview/926882578 https://pubmed.ncbi.nlm.nih.gov/PMC3266547 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfBFav1orJYVfJPQ29x-JI_1aKmKfdGDAx-W_YpGzlzxroX-953JJkev1HvwMZsZSHZ2fzObzMwP4H3tizoE5_PgeMyF9VVelt7lpS-iR8SUsqN7-3qhzqfi80zOdmAy1MJQWmWP_QnTO7TuR4772Ty-bBqq8a2KUqFH5NR3rCOzpqpSKuKbfVyjcSllYjGocOejdF84k3K86ON4auNJGV7EAfSwc3pU28VDIej9TMo7rulsD572MSU7SY_9DHZiuw-PE8vkzXP4ccIwOETV-Q07RTS6joF1LmoADNS9SNngbJIy15cMtetm_ofdSSpiTcsmVAUTLLNzR_i5fAHTs9Pvk_O851TIvRpVq5x7pSPGBEJaPGh5qYXXRVRjF53AUERWIjiEvBC9khbDCZThVeBceV0678fjl7DbLtp4AGwkycqh0No7UVdlaUc8eFdRvxycdJEBHybT-L7hOPFezM2QWfbbkAEMGYDG0AAZfFjrXKZ2G1ul5WAjs7FoDPqDrXoHaFBjfyKOmum3grrsjboyZbz1brCywY1GmraNi6sl8XXSb1dR6AzYP2Tw7Cs1vj_fIlIoPNQgTmbwKq2d9YuiWRT1Q8xAb6yqtQC1At-80za_upbgGIQTi_Tr_5yQQ3iCV5Sjg6j5BnZXf6_iWwy2Vu4Ijxmfvhx1e-oWS_QoYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN6Gfau99SA3QajkSNZ9rELWqRbm8saIMAOgl7uPGRO0aQD-u9HWnbQDF0Ou1okEJPSRyomPwJ8rFxWeW9d6i0PqTCuTIvC2bRwWXCImFK2497OJvl4Kr7M5GwHRn0vDJVVdtgfMb1F6-7JQWfNg8u6ph7fMityjIiceMdomPV9zAYGtLVPZp_XcFxIGccYlHj0UbzrnIlFXvTveOTxpBIvGgJ0d3S6V5nFXTno36WUt2LT8WN41CWV7DD-7iewE5qn8CCOmbx5Bt8PGWaHqDq_YUcIR7-DZ22M6hEDdSexHJyNYun6kqF2Vc9_sVtVRaxu2IjaYLxhZm4JQJfPYXp8dD4ap91QhdShbVYpd7kKmBQIafCm5aQSTmUhH9pgBeYishTeIub54HJpMJ9AGV56znOnCuvccPgCdptFE_aBDSS52WdKOSuqsijMgHtnSyLMQaOLBHhvTO06xnEafDHXfWnZT00O0OQAeoYOSODTWucy8m1slZa9j_TGrtEYELbq7aNDtblAINXTbxnR7A3aPmVc-tB7WeNJI03ThMX1kgZ20ndXkakE2D9k8PIrFb4_3yKS5XirQaBM4GXcO-sXRbfkRIiYgNrYVWsB4gLfXGnqHy0nOGbhNEb61X8a5D08HJ-fnerTk8nX17CHK1SwgxD6BnZXV9fhLWZeK_uuPVl_ADy1Koo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recently+Evolved+Transcriptional+Network+Controls+Biofilm+Development+in+Candida+albicans&rft.jtitle=Cell&rft.au=Nobile%2C+Clarissa+J&rft.au=Fox%2C+Emily+P&rft.au=Nett%2C+Jeniel+E&rft.au=Sorrells%2C+Trevor+R&rft.date=2012-01-20&rft.issn=0092-8674&rft.volume=148&rft.issue=1-2&rft.spage=126&rft.epage=138&rft_id=info:doi/10.1016%2Fj.cell.2011.10.048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |