A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans

A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 148; no. 1-2; pp. 126 - 138
Main Authors Nobile, Clarissa J., Fox, Emily P., Nett, Jeniel E., Sorrells, Trevor R., Mitrovich, Quinn M., Hernday, Aaron D., Tuch, Brian B., Andes, David R., Johnson, Alexander D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.01.2012
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2011.10.048

Cover

Abstract A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. [Display omitted] ► Candida biofilms are controlled by a network of six master transcription regulators ► The biofilm network is highly interconnected and contains > 1,000 target genes ► Computational analysis indicates that the biofilm network has rapidly evolved ► The network interconnectedness provides clues as to how complex circuits evolve Biofilms of the pathogenic fungus C. albicans coat medical devices and contribute to drug-resistant infections. Revealing the transcriptional circuit responsible for biofilm formation provides insight into how complex cell behaviors arise from the evolution of regulatory circuits.
AbstractList A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits. [Display omitted] ► Candida biofilms are controlled by a network of six master transcription regulators ► The biofilm network is highly interconnected and contains > 1,000 target genes ► Computational analysis indicates that the biofilm network has rapidly evolved ► The network interconnectedness provides clues as to how complex circuits evolve Biofilms of the pathogenic fungus C. albicans coat medical devices and contribute to drug-resistant infections. Revealing the transcriptional circuit responsible for biofilm formation provides insight into how complex cell behaviors arise from the evolution of regulatory circuits.
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with similar to 1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
A biofilm is an organized, resilient group of microbes where individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans , whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ~1000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted towards genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
Author Nett, Jeniel E.
Andes, David R.
Mitrovich, Quinn M.
Johnson, Alexander D.
Sorrells, Trevor R.
Nobile, Clarissa J.
Hernday, Aaron D.
Tuch, Brian B.
Fox, Emily P.
AuthorAffiliation 1 Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
2 Tetrad Program, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA, USA
3 Department of Medicine, University of Wisconsin, Madison, WI, USA
AuthorAffiliation_xml – name: 2 Tetrad Program, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA, USA
– name: 3 Department of Medicine, University of Wisconsin, Madison, WI, USA
– name: 1 Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
Author_xml – sequence: 1
  givenname: Clarissa J.
  surname: Nobile
  fullname: Nobile, Clarissa J.
  email: clarissa.nobile@ucsf.edu
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 2
  givenname: Emily P.
  surname: Fox
  fullname: Fox, Emily P.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 3
  givenname: Jeniel E.
  surname: Nett
  fullname: Nett, Jeniel E.
  organization: Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
– sequence: 4
  givenname: Trevor R.
  surname: Sorrells
  fullname: Sorrells, Trevor R.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 5
  givenname: Quinn M.
  surname: Mitrovich
  fullname: Mitrovich, Quinn M.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 6
  givenname: Aaron D.
  surname: Hernday
  fullname: Hernday, Aaron D.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 7
  givenname: Brian B.
  surname: Tuch
  fullname: Tuch, Brian B.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
– sequence: 8
  givenname: David R.
  surname: Andes
  fullname: Andes, David R.
  organization: Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
– sequence: 9
  givenname: Alexander D.
  surname: Johnson
  fullname: Johnson, Alexander D.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22265407$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URNPCC7CA2cFmgu3xZUZClUpaLlIFErQrFpbHPikOjh3syVR9ezykRcAirCwdf_9_rkfoIMQACD0leE4wEa9WcwPezykmpATmmLUP0IzgTtaMSHqAZhh3tG6FZIfoKOcVxrjlnD9Ch5RSwRmWM_T1tPoMBsLgb6vzMfoRbHWZdMgmuc3gYtC--gjDTUzfq0UMQ4o-V29cXDq_rs5gBB836yKvXKgWOlhndaV970yxeIweLrXP8OTuPUZXb88vF-_ri0_vPixOL2ojcDfUxAgJpSLGdde1hktmJAXR9NCzlgneMdtray0YwTWWvDCks4QII9vemKY5Ric73822X4Oduknaq01ya51uVdRO_f0T3Dd1HUfVUFHGIIvBizuDFH9sIQ9q7fI0Wx0gbrPqqGhbymX7f5JILmXDSCFf7iVp2QZuOKNT-md_1v-78PstFaDdASbFnBMslXGDnrZT2nFeEaymg1ArNSVQ00FMsXIQRUr_kd677xU934mWOip9nVxWV18KIPCvoruJeL0joOx1dJBUNg6CAesSmEHZ6PYl-AmRuti7
CitedBy_id crossref_primary_10_1016_j_resmic_2025_104280
crossref_primary_10_1093_femsec_fiaa224
crossref_primary_10_1371_journal_ppat_1012643
crossref_primary_10_1007_s12275_014_3630_2
crossref_primary_10_1371_journal_pgen_1003118
crossref_primary_10_3390_ijms17101643
crossref_primary_10_1371_journal_pgen_1004567
crossref_primary_10_3389_fcimb_2020_00029
crossref_primary_10_1101_gad_303362_117
crossref_primary_10_1093_femspd_ftw005
crossref_primary_10_1093_mmy_myaa063
crossref_primary_10_1111_omi_12206
crossref_primary_10_1155_2024_5518156
crossref_primary_10_3389_fmicb_2016_00645
crossref_primary_10_1016_j_bcab_2022_102337
crossref_primary_10_1021_acsabm_0c00985
crossref_primary_10_1088_1361_6463_aab8c8
crossref_primary_10_3390_jof5010017
crossref_primary_10_1093_g3journal_jkaa043
crossref_primary_10_1016_j_fgb_2015_01_011
crossref_primary_10_1128_AAC_00024_20
crossref_primary_10_1007_s12210_022_01115_3
crossref_primary_10_1093_gbe_evx143
crossref_primary_10_1534_genetics_116_190645
crossref_primary_10_3390_microorganisms9020276
crossref_primary_10_1093_femspd_ftw018
crossref_primary_10_1038_s41522_019_0094_5
crossref_primary_10_1111_jam_14872
crossref_primary_10_1007_s12275_016_6080_1
crossref_primary_10_1080_21505594_2020_1870082
crossref_primary_10_3390_jof4040123
crossref_primary_10_1016_j_fct_2018_02_042
crossref_primary_10_1093_femsre_fuaa060
crossref_primary_10_1111_jam_13324
crossref_primary_10_1002_ardp_201400360
crossref_primary_10_1080_1040841X_2021_1935447
crossref_primary_10_1016_j_bmc_2020_115810
crossref_primary_10_1128_microbiolspec_MB_0007_2014
crossref_primary_10_1038_s41467_021_26525_z
crossref_primary_10_1111_myc_12554
crossref_primary_10_1038_s41522_021_00238_z
crossref_primary_10_1021_acs_jmedchem_4c02598
crossref_primary_10_25208_vdv16820
crossref_primary_10_7554_eLife_18981
crossref_primary_10_1016_j_bioflm_2023_100126
crossref_primary_10_1128_mSphere_00545_18
crossref_primary_10_3389_fimmu_2017_01997
crossref_primary_10_1016_j_mib_2015_06_016
crossref_primary_10_1128_AAC_04650_14
crossref_primary_10_1371_journal_pgen_1008908
crossref_primary_10_1016_j_fbr_2017_07_002
crossref_primary_10_1111_mmi_15219
crossref_primary_10_1080_21505594_2017_1292198
crossref_primary_10_1038_s41564_022_01314_6
crossref_primary_10_1016_j_chom_2019_02_008
crossref_primary_10_1128_mbio_01249_24
crossref_primary_10_3389_fmicb_2020_01027
crossref_primary_10_1371_journal_ppat_1008478
crossref_primary_10_1128_mSystems_00257_19
crossref_primary_10_1186_s13104_020_04990_x
crossref_primary_10_1038_srep35436
crossref_primary_10_1007_s12223_023_01034_2
crossref_primary_10_1073_pnas_1717421114
crossref_primary_10_1534_genetics_116_199679
crossref_primary_10_1016_j_bioflm_2023_100112
crossref_primary_10_1038_s42003_021_02412_7
crossref_primary_10_1186_1471_2180_14_80
crossref_primary_10_1007_s11046_023_00734_0
crossref_primary_10_1016_j_gene_2021_145530
crossref_primary_10_1016_j_semcdb_2013_02_007
crossref_primary_10_1007_s00438_014_0846_0
crossref_primary_10_1016_j_micpath_2021_104990
crossref_primary_10_1111_jam_13745
crossref_primary_10_1007_s00253_023_12916_3
crossref_primary_10_1080_21505594_2021_1878743
crossref_primary_10_1111_j_1365_2958_2012_08127_x
crossref_primary_10_1093_g3journal_jkab216
crossref_primary_10_1093_femsyr_foab060
crossref_primary_10_1016_j_micinf_2019_06_011
crossref_primary_10_1007_s00294_017_0705_8
crossref_primary_10_3390_jof10010083
crossref_primary_10_1016_j_ijantimicag_2018_06_023
crossref_primary_10_1038_npjbiofilms_2015_12
crossref_primary_10_3390_jof10010086
crossref_primary_10_1111_1348_0421_12596
crossref_primary_10_1080_21505594_2018_1456228
crossref_primary_10_1093_g3journal_jkac301
crossref_primary_10_1016_j_mib_2019_04_001
crossref_primary_10_1007_s00294_013_0400_3
crossref_primary_10_7554_eLife_84155
crossref_primary_10_1016_j_tim_2014_09_001
crossref_primary_10_1088_2053_1591_aa90ef
crossref_primary_10_1038_srep26860
crossref_primary_10_1248_bpb_b15_00475
crossref_primary_10_1016_j_tcsw_2018_03_002
crossref_primary_10_3389_fcimb_2022_907519
crossref_primary_10_1534_g3_115_017566
crossref_primary_10_1080_20002297_2017_1385372
crossref_primary_10_1111_cmi_13307
crossref_primary_10_1128_AAC_01466_20
crossref_primary_10_3402_jom_v6_23419
crossref_primary_10_1128_AAC_02046_19
crossref_primary_10_1111_jam_14949
crossref_primary_10_1155_2015_783639
crossref_primary_10_1128_CMR_00111_18
crossref_primary_10_1146_annurev_micro_091014_104330
crossref_primary_10_1038_s41396_020_00823_8
crossref_primary_10_3390_genes9110540
crossref_primary_10_1128_mbio_03283_24
crossref_primary_10_1016_j_micres_2022_127146
crossref_primary_10_1126_sciadv_ade7689
crossref_primary_10_1128_EC_00127_13
crossref_primary_10_1111_cmi_12216
crossref_primary_10_1371_journal_pgen_1005447
crossref_primary_10_3389_fcimb_2021_796929
crossref_primary_10_1128_EC_00094_13
crossref_primary_10_1128_spectrum_01789_23
crossref_primary_10_1038_s41467_021_26390_w
crossref_primary_10_1016_j_bmc_2014_11_038
crossref_primary_10_1534_g3_117_300515
crossref_primary_10_3390_jof3010011
crossref_primary_10_3109_1040841X_2013_813904
crossref_primary_10_2217_fmb_12_48
crossref_primary_10_1016_j_mib_2013_03_007
crossref_primary_10_1007_s00294_023_01263_5
crossref_primary_10_1016_j_chom_2016_05_001
crossref_primary_10_3389_fcimb_2023_1136698
crossref_primary_10_1016_j_funbio_2021_04_009
crossref_primary_10_1016_j_mimet_2022_106420
crossref_primary_10_1371_journal_pbio_3002693
crossref_primary_10_1016_j_jim_2014_03_022
crossref_primary_10_1371_journal_pone_0280233
crossref_primary_10_3390_jof7080613
crossref_primary_10_1128_mBio_00637_12
crossref_primary_10_1016_j_micinf_2016_01_002
crossref_primary_10_1128_mBio_01565_15
crossref_primary_10_1111_1567_1364_12071
crossref_primary_10_1371_journal_ppat_1007342
crossref_primary_10_3390_ijms232012307
crossref_primary_10_1371_journal_ppat_1009884
crossref_primary_10_1128_mBio_00433_12
crossref_primary_10_3390_molecules23102522
crossref_primary_10_3390_molecules24010153
crossref_primary_10_1038_s41522_022_00341_9
crossref_primary_10_1007_s12281_014_0178_x
crossref_primary_10_1099_jmm_0_045054_0
crossref_primary_10_1128_msphere_00029_22
crossref_primary_10_1016_j_cub_2014_08_057
crossref_primary_10_1371_journal_ppat_1011833
crossref_primary_10_1111_cmi_12593
crossref_primary_10_1080_08927014_2017_1350947
crossref_primary_10_7554_eLife_58349
crossref_primary_10_1128_mBio_01766_19
crossref_primary_10_1016_j_mib_2021_05_012
crossref_primary_10_1016_j_fgb_2015_03_012
crossref_primary_10_1111_2049_632X_12161
crossref_primary_10_3389_fcimb_2022_855229
crossref_primary_10_1186_s40729_021_00338_7
crossref_primary_10_1186_1471_2164_14_842
crossref_primary_10_1038_s41598_017_08239_9
crossref_primary_10_1080_08927014_2023_2189011
crossref_primary_10_3389_fcimb_2021_765942
crossref_primary_10_3389_fmicb_2020_629526
crossref_primary_10_1093_femsyr_fov027
crossref_primary_10_3390_microorganisms12112138
crossref_primary_10_1021_acs_jmedchem_4c00470
crossref_primary_10_1371_journal_pone_0201969
crossref_primary_10_1002_yea_3370
crossref_primary_10_7554_eLife_23250
crossref_primary_10_1128_MMBR_00068_15
crossref_primary_10_3389_fmicb_2020_00794
crossref_primary_10_3389_fmicb_2016_01238
crossref_primary_10_1007_s00253_018_9303_z
crossref_primary_10_1016_j_mimet_2020_106080
crossref_primary_10_1128_mBio_01514_16
crossref_primary_10_1128_EC_00103_12
crossref_primary_10_1038_nrmicro_2017_107
crossref_primary_10_1016_j_micpath_2023_106507
crossref_primary_10_3389_fgene_2023_1245445
crossref_primary_10_1002_adma_202307680
crossref_primary_10_1007_s10529_019_02747_6
crossref_primary_10_1128_mSphere_00050_17
crossref_primary_10_1111_mmi_13320
crossref_primary_10_1128_EC_00148_14
crossref_primary_10_1371_journal_ppat_1006355
crossref_primary_10_1371_journal_pgen_1004824
crossref_primary_10_1016_j_micpath_2015_02_004
crossref_primary_10_1371_journal_pgen_1003854
crossref_primary_10_3390_pathogens10040493
crossref_primary_10_1016_j_ijmm_2014_07_004
crossref_primary_10_1371_journal_ppat_1007316
crossref_primary_10_1111_mmi_12345
crossref_primary_10_1093_infdis_jiae631
crossref_primary_10_1128_spectrum_03285_22
crossref_primary_10_3389_fphar_2017_00425
crossref_primary_10_1016_j_mib_2022_102237
crossref_primary_10_1016_j_fgb_2016_08_005
crossref_primary_10_3389_fcimb_2020_605711
crossref_primary_10_1128_mBio_03020_21
crossref_primary_10_1111_apm_13336
crossref_primary_10_3390_ijms21228873
crossref_primary_10_1371_journal_ppat_1007787
crossref_primary_10_1371_journal_pbio_2006966
crossref_primary_10_1534_g3_120_401340
crossref_primary_10_3390_pathogens4030573
crossref_primary_10_1007_s00044_014_1258_8
crossref_primary_10_1093_infdis_jix130
crossref_primary_10_1016_j_coph_2013_08_008
crossref_primary_10_1038_s41522_022_00347_3
crossref_primary_10_1111_mmi_12576
crossref_primary_10_1371_journal_ppat_1006699
crossref_primary_10_1517_17460441_2013_807245
crossref_primary_10_1007_s12281_012_0126_6
crossref_primary_10_1111_mmi_13494
crossref_primary_10_1038_srep31124
crossref_primary_10_1007_s12281_012_0104_z
crossref_primary_10_1128_mSphere_00467_18
crossref_primary_10_1016_j_semcdb_2016_04_006
crossref_primary_10_1016_j_nano_2021_102469
crossref_primary_10_1093_nar_gkad564
crossref_primary_10_1371_journal_pgen_1006948
crossref_primary_10_1007_s12275_016_5514_0
crossref_primary_10_1371_journal_pgen_1006949
crossref_primary_10_1016_S1773_035X_13_71945_2
crossref_primary_10_3390_ijms25094775
crossref_primary_10_1080_14787210_2023_2179036
crossref_primary_10_1186_s12941_020_0347_4
crossref_primary_10_2174_1381612826666200317125956
crossref_primary_10_1128_spectrum_01531_24
crossref_primary_10_1093_abbs_gmv011
crossref_primary_10_2174_1389557518666180924121209
crossref_primary_10_3389_fmicb_2019_01792
crossref_primary_10_1093_bfgp_elv035
crossref_primary_10_1111_mmi_13247
crossref_primary_10_1111_mmi_13002
crossref_primary_10_3389_fgene_2020_00375
crossref_primary_10_1016_j_pdpdt_2021_102525
crossref_primary_10_1073_pnas_2211424119
crossref_primary_10_1093_femsyr_fov111
crossref_primary_10_1007_s00018_016_2294_y
crossref_primary_10_1007_s10989_022_10413_1
crossref_primary_10_1128_IAI_00087_14
crossref_primary_10_1093_femsre_fuaa027
crossref_primary_10_3390_pharmaceutics13101529
crossref_primary_10_3389_fmicb_2021_638609
crossref_primary_10_4161_viru_22913
crossref_primary_10_1111_mmi_13475
crossref_primary_10_1371_journal_ppat_1004487
crossref_primary_10_1016_j_micpath_2025_107368
crossref_primary_10_1371_journal_ppat_1004365
crossref_primary_10_1371_journal_pbio_1002076
crossref_primary_10_1080_08927014_2017_1280731
crossref_primary_10_1371_journal_pone_0080677
crossref_primary_10_2147_IDR_S247944
crossref_primary_10_1016_j_micpath_2022_105418
crossref_primary_10_3390_jof4040140
crossref_primary_10_1097_JD9_0000000000000223
crossref_primary_10_1128_msphere_00980_24
crossref_primary_10_1371_journal_ppat_1006414
crossref_primary_10_1093_genetics_iyae122
crossref_primary_10_1007_s00294_015_0473_2
crossref_primary_10_1080_21505594_2017_1326438
crossref_primary_10_1073_pnas_1620432114
crossref_primary_10_1128_EC_00181_13
crossref_primary_10_1038_s41598_019_45624_y
crossref_primary_10_1371_journal_ppat_1006407
crossref_primary_10_1038_s41522_020_00149_5
crossref_primary_10_1128_MCB_01599_13
crossref_primary_10_1371_journal_ppat_1006403
crossref_primary_10_1371_journal_ppat_1006763
crossref_primary_10_3390_microorganisms9030654
crossref_primary_10_1016_j_ejmech_2025_117528
crossref_primary_10_1016_j_ijmm_2021_151490
crossref_primary_10_1111_mmi_13738
crossref_primary_10_1128_mBio_01179_19
crossref_primary_10_3389_fcimb_2023_1108235
crossref_primary_10_1128_AAC_02749_16
crossref_primary_10_3389_ffunb_2021_658899
crossref_primary_10_12688_f1000research_9617_1
crossref_primary_10_1093_infdis_jit391
crossref_primary_10_1073_pnas_1413659111
crossref_primary_10_4161_viru_20746
crossref_primary_10_3390_jof6030182
crossref_primary_10_3389_fmicb_2020_544480
crossref_primary_10_1007_s11046_016_0088_2
crossref_primary_10_1016_j_chom_2013_10_008
crossref_primary_10_1128_mBio_00942_15
crossref_primary_10_1093_femsyr_foy025
crossref_primary_10_1038_ncomms11704
crossref_primary_10_1038_s41589_022_01035_1
crossref_primary_10_1111_mmi_14818
crossref_primary_10_1371_journal_pcbi_1008690
crossref_primary_10_1016_j_micres_2019_06_002
crossref_primary_10_3389_fmicb_2018_00018
crossref_primary_10_1016_j_chom_2021_03_019
crossref_primary_10_1089_mab_2013_0089
crossref_primary_10_3390_ijms20092345
crossref_primary_10_1074_jbc_RA117_001225
crossref_primary_10_1038_nrdp_2018_26
crossref_primary_10_1586_14787210_2015_1056162
crossref_primary_10_1016_j_biopha_2022_112814
crossref_primary_10_1128_EC_00238_12
crossref_primary_10_1128_mBio_01338_18
crossref_primary_10_7554_eLife_00662
crossref_primary_10_1128_mBio_00586_21
crossref_primary_10_1128_mSphere_00002_19
crossref_primary_10_1128_mbio_03447_21
crossref_primary_10_1016_j_meegid_2013_07_013
crossref_primary_10_1093_femsyr_fov087
crossref_primary_10_1002_cpmc_60
crossref_primary_10_1371_journal_pgen_1011632
crossref_primary_10_3390_jof4020060
crossref_primary_10_1007_s40496_013_0011_6
crossref_primary_10_3390_pathogens10111463
crossref_primary_10_1007_s40588_021_00169_5
crossref_primary_10_1091_mbc_e12_02_0094
crossref_primary_10_1111_omi_12095
crossref_primary_10_17116_klinderma2021200217
crossref_primary_10_1371_journal_pgen_1008582
crossref_primary_10_1016_j_bioorg_2024_107293
crossref_primary_10_1093_femsyr_fov092
crossref_primary_10_1016_j_omtn_2021_12_018
crossref_primary_10_3390_jof6010010
crossref_primary_10_1071_MA23026
crossref_primary_10_1080_21505594_2016_1237332
crossref_primary_10_1093_femsre_fuv042
crossref_primary_10_1016_j_lwt_2023_115332
crossref_primary_10_1128_mbio_01872_24
crossref_primary_10_3390_molecules22030360
crossref_primary_10_3390_jof6010014
crossref_primary_10_1021_acsinfecdis_9b00033
crossref_primary_10_1111_mmi_13944
crossref_primary_10_1534_g3_115_024885
crossref_primary_10_1038_s41564_018_0160_4
crossref_primary_10_1534_g3_115_021378
crossref_primary_10_3390_genes9070332
crossref_primary_10_1080_08927014_2020_1793963
crossref_primary_10_1371_journal_pone_0159692
crossref_primary_10_1128_mbio_01840_23
crossref_primary_10_1016_j_cell_2015_04_014
crossref_primary_10_1016_j_heliyon_2020_e04663
crossref_primary_10_1007_s11046_020_00445_w
crossref_primary_10_1016_j_tim_2016_09_004
crossref_primary_10_1111_mmi_12565
crossref_primary_10_1093_g3journal_jkad070
crossref_primary_10_1128_microbiolspec_MB_0005_2014
crossref_primary_10_1016_j_ijmm_2014_11_001
crossref_primary_10_1371_journal_ppat_1004542
crossref_primary_10_3390_jof9111078
crossref_primary_10_3390_microorganisms8020154
crossref_primary_10_1016_j_fgb_2014_12_007
crossref_primary_10_1111_jam_14289
crossref_primary_10_1038_nmicrobiol_2017_14
crossref_primary_10_1111_mmi_12329
crossref_primary_10_1371_journal_pone_0183176
crossref_primary_10_1101_gr_174623_114
crossref_primary_10_1371_journal_ppat_1012154
crossref_primary_10_1038_s44259_024_00040_9
crossref_primary_10_1007_s13205_018_1383_z
crossref_primary_10_1080_21505594_2017_1414132
crossref_primary_10_1128_mbio_02063_23
crossref_primary_10_3390_ijms242417227
crossref_primary_10_1534_genetics_112_138958
crossref_primary_10_3389_fmicb_2020_00996
crossref_primary_10_3390_jof4010012
crossref_primary_10_3390_jof8030233
crossref_primary_10_3390_microorganisms8050660
crossref_primary_10_1080_1040841X_2021_1884641
crossref_primary_10_1371_journal_pone_0286547
crossref_primary_10_1111_mmi_12310
crossref_primary_10_1021_acssuschemeng_6b00309
crossref_primary_10_1016_j_tcsw_2022_100084
crossref_primary_10_3389_fmicb_2018_00198
crossref_primary_10_1016_j_resmic_2021_103813
crossref_primary_10_1093_bib_bbt071
crossref_primary_10_1080_08927014_2021_1919301
crossref_primary_10_1128_spectrum_01689_23
crossref_primary_10_1038_s41579_025_01147_0
crossref_primary_10_1099_mic_0_001447
crossref_primary_10_1038_s41467_024_48525_5
crossref_primary_10_3390_jof9010080
crossref_primary_10_3390_cancers10010011
crossref_primary_10_1128_mBio_01911_14
crossref_primary_10_1073_pnas_2003700117
crossref_primary_10_1111_myc_13291
crossref_primary_10_1111_mmi_13758
crossref_primary_10_1016_j_tcsw_2023_100111
crossref_primary_10_1038_s41522_020_0114_5
crossref_primary_10_3390_jof9010098
crossref_primary_10_1016_j_phyplu_2022_100285
crossref_primary_10_1128_AAC_01851_13
crossref_primary_10_1128_mBio_01201_14
crossref_primary_10_2144_fsoa_2019_0027
crossref_primary_10_1371_journal_ppat_1003305
crossref_primary_10_1128_AAC_02290_12
crossref_primary_10_1039_D2BM01797K
crossref_primary_10_1128_mSphere_00161_17
crossref_primary_10_1128_IAI_00914_12
crossref_primary_10_1371_journal_ppat_1003780
crossref_primary_10_1128_AAC_00543_15
crossref_primary_10_2174_1389203720666191007103004
crossref_primary_10_1371_journal_pbio_1001510
crossref_primary_10_1016_j_mib_2024_102493
crossref_primary_10_1016_j_tig_2019_01_005
crossref_primary_10_1016_j_actbio_2024_06_002
crossref_primary_10_1038_s41564_020_0760_7
crossref_primary_10_1534_genetics_116_195024
crossref_primary_10_3389_fmicb_2022_990318
crossref_primary_10_2174_1389203720666190722152415
crossref_primary_10_1371_journal_pgen_1006350
crossref_primary_10_7554_eLife_45954
crossref_primary_10_1016_S2666_5247_23_00067_8
crossref_primary_10_1111_j_1365_2958_2012_08193_x
crossref_primary_10_3390_jof7010037
crossref_primary_10_1111_omi_12049
crossref_primary_10_1128_microbiolspec_FUNK_0014_2016
crossref_primary_10_1038_s41467_020_20010_9
crossref_primary_10_1007_s42770_024_01558_w
crossref_primary_10_1038_s41467_021_22845_2
crossref_primary_10_2174_1570180815666180917125916
crossref_primary_10_1007_s00253_022_12211_7
crossref_primary_10_1007_s00253_021_11187_0
crossref_primary_10_1038_srep26667
crossref_primary_10_1128_AAC_00726_15
crossref_primary_10_1371_journal_pbio_3000957
crossref_primary_10_1016_j_mimet_2015_06_004
crossref_primary_10_3390_jof7020097
crossref_primary_10_1007_s12038_014_9435_y
crossref_primary_10_1371_journal_ppat_1003519
crossref_primary_10_1016_j_bioorg_2024_107311
crossref_primary_10_1371_journal_pone_0063736
crossref_primary_10_1016_j_xcrm_2022_100632
crossref_primary_10_1111_mmi_12913
crossref_primary_10_1111_cmi_12890
crossref_primary_10_1128_EC_00292_13
crossref_primary_10_1371_journal_ppat_1012225
crossref_primary_10_1128_mbio_01521_23
crossref_primary_10_1177_0022034517714414
crossref_primary_10_3389_fcell_2021_607188
crossref_primary_10_1080_1040841X_2020_1843400
crossref_primary_10_1111_mmi_15050
crossref_primary_10_1016_j_riam_2014_11_001
crossref_primary_10_1093_femsyr_foy078
crossref_primary_10_1371_journal_pone_0129903
crossref_primary_10_7554_eLife_64682
crossref_primary_10_1371_journal_ppat_1002663
crossref_primary_10_3389_fmicb_2022_957879
crossref_primary_10_1007_s00294_018_0804_1
crossref_primary_10_1016_j_mito_2017_08_003
crossref_primary_10_5604_01_3001_0013_1605
crossref_primary_10_1128_mBio_01991_17
crossref_primary_10_1007_s11046_020_00511_3
crossref_primary_10_3390_antibiotics11111474
crossref_primary_10_1128_EC_00235_14
crossref_primary_10_1073_pnas_1221734110
crossref_primary_10_1371_journal_pgen_1005590
crossref_primary_10_1128_mSphere_00646_20
crossref_primary_10_1093_femsyr_foz057
crossref_primary_10_1080_1040841X_2024_2418125
crossref_primary_10_1371_journal_pgen_1007884
crossref_primary_10_3389_fmed_2018_00028
crossref_primary_10_1016_j_jmii_2018_04_002
crossref_primary_10_1038_s41435_019_0071_2
crossref_primary_10_1038_s41598_020_59750_5
crossref_primary_10_1016_j_biomed_2012_12_004
crossref_primary_10_1128_mSphere_00169_18
crossref_primary_10_1186_1471_2180_13_246
crossref_primary_10_1128_spectrum_02195_24
crossref_primary_10_1016_j_omtn_2019_09_016
crossref_primary_10_4161_trns_22281
crossref_primary_10_3389_fcimb_2021_700305
crossref_primary_10_1371_journal_ppat_1011109
crossref_primary_10_1038_s41522_023_00371_x
crossref_primary_10_3390_jof6010026
crossref_primary_10_1016_j_chembiol_2023_04_010
crossref_primary_10_1590_1678_7757_2019_0578
crossref_primary_10_1128_spectrum_02152_23
crossref_primary_10_1073_pnas_1305982110
crossref_primary_10_1007_s10096_020_03912_w
crossref_primary_10_1021_acsbiomaterials_3c00938
crossref_primary_10_1093_jac_dkz400
crossref_primary_10_1093_mmy_myad126
crossref_primary_10_1097_INF_0b013e3182863a1c
crossref_primary_10_3390_ma15113750
crossref_primary_10_1016_j_cub_2014_09_030
crossref_primary_10_3390_jof7010065
crossref_primary_10_1111_omi_12111
crossref_primary_10_1002_yea_3855
crossref_primary_10_3390_pathogens11091014
crossref_primary_10_1534_genetics_117_300295
crossref_primary_10_1007_s10096_015_2369_y
crossref_primary_10_1128_microbiolspec_FUNK_0024_2016
crossref_primary_10_2217_fmb_2016_0025
crossref_primary_10_1371_journal_pbio_3000422
crossref_primary_10_1371_journal_pgen_1006373
crossref_primary_10_1016_j_resmic_2022_104014
crossref_primary_10_3389_fmicb_2019_01085
crossref_primary_10_1111_omi_12109
crossref_primary_10_1371_journal_pgen_1006487
crossref_primary_10_1128_spectrum_04255_22
crossref_primary_10_1111_cmi_12767
crossref_primary_10_31083_j_fbe1502013
crossref_primary_10_1186_s40168_021_01085_y
crossref_primary_10_3389_fmicb_2020_581184
crossref_primary_10_1128_EC_00163_12
crossref_primary_10_1371_journal_pbio_1001525
crossref_primary_10_1371_journal_ppat_1008399
crossref_primary_10_1128_cmr_00019_23
crossref_primary_10_3389_fmolb_2014_00027
crossref_primary_10_5812_jjm_132692
crossref_primary_10_1016_j_ijmm_2020_151414
crossref_primary_10_1016_j_csbj_2022_06_030
crossref_primary_10_1016_j_csbj_2021_10_012
crossref_primary_10_1128_mSphere_00334_18
crossref_primary_10_1038_srep36055
crossref_primary_10_1111_1751_7915_13307
crossref_primary_10_1093_mmy_myz009
crossref_primary_10_1016_j_tim_2014_07_001
crossref_primary_10_1371_journal_pone_0137947
crossref_primary_10_1038_srep27463
Cites_doi 10.1038/nature02579
10.1128/MCB.18.10.5750
10.1016/S0092-8674(85)80119-7
10.1046/j.1365-2958.2000.02132.x
10.1099/mic.0.27696-0
10.1128/IAI.72.10.6023-6031.2004
10.1038/441300a
10.1093/nar/gkj013
10.1111/j.1365-2958.2010.07504.x
10.1101/gr.109553.110
10.1186/gb-2010-11-7-r71
10.1126/science.284.5418.1318
10.1038/nature09992
10.1128/JB.183.18.5385-5394.2001
10.1016/j.biocel.2009.07.009
10.1128/JB.181.20.6441-6448.1999
10.1126/science.275.5304.1314
10.1111/j.1365-2958.2010.07331.x
10.1128/CMR.17.2.255-267.2004
10.1126/science.8259520
10.1111/j.1574-6968.2002.tb11330.x
10.1186/gb-2010-11-12-r127
10.1371/journal.ppat.0020063
10.1099/mic.0.26003-0
10.1126/science.290.5500.2306
10.1016/j.cub.2008.06.034
10.1111/j.1574-6976.1995.tb00155.x
10.1093/bioinformatics/btm193
10.1016/j.cub.2010.06.031
10.1038/nature02800
10.1128/EC.00074-09
10.1016/j.plaphy.2010.01.017
10.1111/j.1365-2958.1996.tb02470.x
10.1126/science.7992058
10.2166/wst.2008.585
10.1186/gb-2007-8-4-r52
10.1371/journal.pgen.1000783
10.1101/gr.090233.108
10.1371/journal.pbio.1000133
10.1128/mcb.14.3.2100-2112.1994
10.1093/bioinformatics/btp612
10.1371/journal.pgen.1001070
10.1099/mic.0.043851-0
10.1038/nature09560
10.1093/emboj/16.8.1982
10.1186/1741-7007-8-49
10.1371/journal.pbio.0060038
10.1128/CMR.15.2.167-193.2002
10.1006/jmbi.2000.5197
10.1128/EC.4.2.298-309.2005
10.1038/ng.605
10.1038/msb4100018
10.1016/j.cub.2005.05.047
10.1038/nature04588
10.1093/bioinformatics/bth349
10.1371/journal.pbio.1000329
10.1128/EC.00194-06
10.1086/380796
10.1111/j.1834-7819.1998.tb00157.x
10.1016/j.mib.2006.06.007
10.1016/S0092-8674(00)80358-X
10.1128/EC.00325-09
10.1146/annurev.micro.59.030804.121310
10.1152/ajpendo.91002.2008
10.1128/MCB.23.22.8189-8201.2003
10.1111/j.1462-5822.2008.01198.x
10.1016/j.gene.2004.06.021
10.1128/IAI.01452-08
10.1128/AAC.48.12.4505-4512.2004
10.1371/journal.pcbi.1000279
10.1016/j.stem.2010.07.016
10.1186/1471-2148-4-2
10.1016/j.tripleo.2003.04.002
10.1126/science.1061320
10.1074/jbc.271.11.6298
10.1111/j.1365-2958.2006.05367.x
10.1101/gr.6111907
10.1038/sj.bdj.4809821
10.1038/nature08064
10.1073/pnas.1530509100
10.1101/gad.1781909
10.1038/355601a0
10.1016/j.cell.2011.01.032
10.1126/science.1204349
10.1126/science.1140748
10.1016/j.cub.2007.05.017
10.1128/MCB.15.12.6854
10.1016/S0966-842X(02)00002-1
10.1128/EC.1.3.353-365.2002
10.1126/science.1194554
10.1099/00222615-48-7-671
10.1371/journal.pbio.1000363
10.1038/nrg1204
10.1086/599838
10.1126/science.277.5322.105
10.1093/bioinformatics/bth078
10.1186/1471-2164-11-581
10.1038/nature06107
10.1128/AAC.48.5.1727-1732.2004
10.1111/j.1567-1364.2006.00074.x
10.1093/bioinformatics/14.1.48
10.1016/S0076-6879(10)70031-8
10.1101/gad.1389306
10.1128/IAI.00480-10
10.1371/journal.ppat.1000828
10.1128/EC.00111-10
10.1128/iai.62.3.915-921.1994
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
2011 Elsevier Inc. All rights reserved. 2011
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc. All rights reserved. 2011
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
M7N
5PM
DOI 10.1016/j.cell.2011.10.048
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE - Academic

Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 138
ExternalDocumentID PMC3266547
22265407
10_1016_j_cell_2011_10_048
US201600000398
S0092867411013614
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01AI049187
– fundername: NHLBI NIH HHS
  grantid: T32 HL007899
– fundername: NIAID NIH HHS
  grantid: R01 AI073289
– fundername: NIAID NIH HHS
  grantid: F32AI088822
– fundername: NIAID NIH HHS
  grantid: T32 AI060537
– fundername: NIAID NIH HHS
  grantid: R01 AI083311
– fundername: NIAID NIH HHS
  grantid: R01AI073289
– fundername: NIAID NIH HHS
  grantid: T32AI060537
– fundername: NIAID NIH HHS
  grantid: F32 AI088822
– fundername: NIAID NIH HHS
  grantid: R01 AI049187
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI073289-05 || AI
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI049187-09 || AI
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABOCM
ABTAH
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YYQ
YZZ
ZCA
ZY4
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
AAIAV
AAQXK
AAUCE
AAXJY
ABEFU
ABMWF
ABPTK
ABVKL
ADJPV
ADMUD
AEQTP
AETEA
AFDAS
AI.
ALKID
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
H~9
MVM
NCXOZ
OHT
OMK
OZT
PUQ
R2-
RCE
UBW
UHB
VH1
VQA
WQ6
X7M
XFK
YYP
ZA5
ZGI
ZHY
ZKB
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
M7N
5PM
ID FETCH-LOGICAL-c609t-1c67e22245a998c574c72e63beb4846594dbadddec65a07598c19d116c78bcc33
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:12:50 EDT 2025
Thu Sep 04 22:04:48 EDT 2025
Fri Sep 05 04:46:02 EDT 2025
Fri Sep 05 10:13:42 EDT 2025
Mon Jul 21 06:06:20 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 03:52:02 EDT 2025
Wed Dec 27 19:19:27 EST 2023
Sun Apr 06 06:54:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-1c67e22245a998c574c72e63beb4846594dbadddec65a07598c19d116c78bcc33
Notes http://dx.doi.org/10.1016/j.cell.2011.10.048
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Current Address: Amyris, Emeryville, CA, USA
Current Address: Genome Analysis Unit, Amgen, South San Francisco, CA, USA
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867411013614
PMID 22265407
PQID 2000035427
PQPubID 24069
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3266547
proquest_miscellaneous_926882578
proquest_miscellaneous_917577341
proquest_miscellaneous_2000035427
pubmed_primary_22265407
crossref_citationtrail_10_1016_j_cell_2011_10_048
crossref_primary_10_1016_j_cell_2011_10_048
fao_agris_US201600000398
elsevier_sciencedirect_doi_10_1016_j_cell_2011_10_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-20
PublicationDateYYYYMMDD 2012-01-20
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mitrovich, Tuch, De La Vega, Guthrie, Johnson (bib27) 2010; 330
Donlan, Costerton (bib10) 2002; 15
Nobile, Mitchell (bib32) 2005; 15
Hepworth, Friesen, Segall (bib16) 1998; 18
Madhani, Fink (bib26) 1997; 275
Kojic, Darouiche (bib19) 2004; 17
Chandra, Kuhn, Mukherjee, Hoyer, McCormick, Ghannoum (bib7) 2001; 183
Douglas (bib11) 2003; 11
Nett, Marchillo, Spiegel, Andes (bib30) 2010; 78
Hamoen, Venema, Kuipers (bib13) 2003; 149
Harbison, Gordon, Lee, Rinaldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo (bib14) 2004; 431
Sellam, Hogues, Askew, Tebbji, van Het Hoog, Lavoie, Kumamoto, Whiteway, Nantel (bib42) 2010; 11
Tuch, Mitrovich, Homann, Hernday, Monighetti, De La Vega, Johnson (bib45) 2010; 6
Nobile, Andes, Nett, Smith, Yue, Phan, Edwards, Filler, Mitchell (bib33) 2006; 2
Webb, Thomas, Willcox, Harty, Knox (bib49) 1998; 43
Long, Betrán, Thornton, Wang (bib24) 2003; 4
Sahni, Yi, Daniels, Huang, Srikantha, Soll (bib39) 2010; 8
Kolter, Greenberg (bib20) 2006; 441
Süel, Garcia-Ojalvo, Liberman, Elowitz (bib43) 2006; 440
Zhu, Byers, McCord, Shi, Berger, Newburger, Saulrieta, Smith, Shah, Radhakrishnan (bib53) 2009; 19
Nett, Andes (bib29) 2006; 9
Wilson, Foster, Wang, Knezevic, Schütte, Kaimakis, Chilarska, Kinston, Ouwehand, Dzierzak (bib51) 2010; 7
Müller, Stelling (bib28) 2009; 5
Wapinski, Pfeffer, Friedman, Regev (bib48) 2007; 449
Young (bib52) 2011; 144
Nobile, Schneider, Nett, Sheppard, Filler, Andes, Mitchell (bib35) 2008; 18
Askew, Sellam, Epp, Mallick, Hogues, Mullick, Nantel, Whiteway (bib3) 2011; 79
Lin, Wu, Liang, Woo, Li (bib22) 2010; 11
Uppuluri, Pierce, Thomas, Bubeck, Saville, Lopez-Ribot (bib47) 2010; 9
Locke, Southern, Kozma-Bognár, Hibberd, Brown, Turner, Millar (bib23) 2005; 1
Borneman, Leigh-Bell, Yu, Bertone, Gerstein, Snyder (bib5) 2006; 20
Lavoie, Hogues, Mallick, Sellam, Nantel, Whiteway (bib21) 2010; 8
Ramage, VandeWalle, López-Ribot, Wickes (bib37) 2002; 214
Bruno, Wang, Marjani, Euskirchen, Martin, Sherlock, Snyder (bib6) 2010; 20
Homann, Johnson (bib17) 2010; 8
Uppuluri, Chaturvedi, Srinivasan, Banerjee, Ramasubramaniam, Köhler, Kadosh, Lopez-Ribot (bib46) 2010; 6
Ramage, Tomsett, Wickes, López-Ribot, Redding (bib38) 2004; 98
Hawser, Douglas (bib15) 1994; 62
Baillie, Douglas (bib4) 1999; 48
Fernández, Lynch (bib12) 2011; 474
Homann, Dea, Noble, Johnson (bib18) 2009; 5
Sugino, Innan (bib44) 2011
Andes, Nett, Oschel, Albrecht, Marchillo, Pitula (bib2) 2004; 72
Schinabeck, Long, Hossain, Chandra, Mukherjee, Mohamed, Ghannoum (bib40) 2004; 48
Sellam, Tebbji, Nantel (bib41) 2009; 8
Costerton, Stewart, Greenberg (bib8) 1999; 284
Losick, Stragier (bib25) 1992; 355
Wilson (bib50) 1998; 185
de Hoon, Eichenberger, Vitkup (bib9) 2010; 20
Alabadí, Oyama, Yanovsky, Harmon, Más, Kay (bib1) 2001; 293
Nobile, Nett, Andes, Mitchell (bib34) 2006; 5
Nobile, Nett, Hernday, Homann, Deneault, Nantel, Andes, Johnson, Mitchell (bib36) 2009; 7
Ni, Bruce, Hart, Leigh-Bell, Gelperin, Umansky, Gerstein, Snyder (bib31) 2009; 23
Sugino (10.1016/j.cell.2011.10.048_bib44) 2011
Costerton (10.1016/j.cell.2011.10.048_bib8) 1999; 284
Ramage (10.1016/j.cell.2011.10.048_bib38) 2004; 98
10.1016/j.cell.2011.10.048_bib70
10.1016/j.cell.2011.10.048_bib71
Nobile (10.1016/j.cell.2011.10.048_bib35) 2008; 18
10.1016/j.cell.2011.10.048_bib67
10.1016/j.cell.2011.10.048_bib68
10.1016/j.cell.2011.10.048_bib65
10.1016/j.cell.2011.10.048_bib66
10.1016/j.cell.2011.10.048_bib63
10.1016/j.cell.2011.10.048_bib64
10.1016/j.cell.2011.10.048_bib61
10.1016/j.cell.2011.10.048_bib62
10.1016/j.cell.2011.10.048_bib69
Ni (10.1016/j.cell.2011.10.048_bib31) 2009; 23
10.1016/j.cell.2011.10.048_bib81
10.1016/j.cell.2011.10.048_bib82
Nett (10.1016/j.cell.2011.10.048_bib30) 2010; 78
10.1016/j.cell.2011.10.048_bib80
10.1016/j.cell.2011.10.048_bib78
10.1016/j.cell.2011.10.048_bib79
Harbison (10.1016/j.cell.2011.10.048_bib14) 2004; 431
10.1016/j.cell.2011.10.048_bib76
Kolter (10.1016/j.cell.2011.10.048_bib20) 2006; 441
10.1016/j.cell.2011.10.048_bib77
10.1016/j.cell.2011.10.048_bib74
10.1016/j.cell.2011.10.048_bib75
10.1016/j.cell.2011.10.048_bib72
10.1016/j.cell.2011.10.048_bib73
Wilson (10.1016/j.cell.2011.10.048_bib50) 1998; 185
Lavoie (10.1016/j.cell.2011.10.048_bib21) 2010; 8
Losick (10.1016/j.cell.2011.10.048_bib25) 1992; 355
Baillie (10.1016/j.cell.2011.10.048_bib4) 1999; 48
Mitrovich (10.1016/j.cell.2011.10.048_bib27) 2010; 330
Madhani (10.1016/j.cell.2011.10.048_bib26) 1997; 275
Müller (10.1016/j.cell.2011.10.048_bib28) 2009; 5
Askew (10.1016/j.cell.2011.10.048_bib3) 2011; 79
Long (10.1016/j.cell.2011.10.048_bib24) 2003; 4
Wapinski (10.1016/j.cell.2011.10.048_bib48) 2007; 449
Lin (10.1016/j.cell.2011.10.048_bib22) 2010; 11
Kojic (10.1016/j.cell.2011.10.048_bib19) 2004; 17
Uppuluri (10.1016/j.cell.2011.10.048_bib46) 2010; 6
10.1016/j.cell.2011.10.048_bib60
10.1016/j.cell.2011.10.048_bib108
Nobile (10.1016/j.cell.2011.10.048_bib32) 2005; 15
10.1016/j.cell.2011.10.048_bib106
Schinabeck (10.1016/j.cell.2011.10.048_bib40) 2004; 48
10.1016/j.cell.2011.10.048_bib107
10.1016/j.cell.2011.10.048_bib104
10.1016/j.cell.2011.10.048_bib105
10.1016/j.cell.2011.10.048_bib56
10.1016/j.cell.2011.10.048_bib102
Nobile (10.1016/j.cell.2011.10.048_bib33) 2006; 2
10.1016/j.cell.2011.10.048_bib57
10.1016/j.cell.2011.10.048_bib103
10.1016/j.cell.2011.10.048_bib54
10.1016/j.cell.2011.10.048_bib100
10.1016/j.cell.2011.10.048_bib55
10.1016/j.cell.2011.10.048_bib101
10.1016/j.cell.2011.10.048_bib58
10.1016/j.cell.2011.10.048_bib59
Alabadí (10.1016/j.cell.2011.10.048_bib1) 2001; 293
Douglas (10.1016/j.cell.2011.10.048_bib11) 2003; 11
Sellam (10.1016/j.cell.2011.10.048_bib42) 2010; 11
Zhu (10.1016/j.cell.2011.10.048_bib53) 2009; 19
Wilson (10.1016/j.cell.2011.10.048_bib51) 2010; 7
Homann (10.1016/j.cell.2011.10.048_bib18) 2009; 5
Young (10.1016/j.cell.2011.10.048_bib52) 2011; 144
Nobile (10.1016/j.cell.2011.10.048_bib34) 2006; 5
Andes (10.1016/j.cell.2011.10.048_bib2) 2004; 72
Locke (10.1016/j.cell.2011.10.048_bib23) 2005; 1
Süel (10.1016/j.cell.2011.10.048_bib43) 2006; 440
Borneman (10.1016/j.cell.2011.10.048_bib5) 2006; 20
Hamoen (10.1016/j.cell.2011.10.048_bib13) 2003; 149
Uppuluri (10.1016/j.cell.2011.10.048_bib47) 2010; 9
Homann (10.1016/j.cell.2011.10.048_bib17) 2010; 8
Webb (10.1016/j.cell.2011.10.048_bib49) 1998; 43
Hepworth (10.1016/j.cell.2011.10.048_bib16) 1998; 18
10.1016/j.cell.2011.10.048_bib92
10.1016/j.cell.2011.10.048_bib93
10.1016/j.cell.2011.10.048_bib90
10.1016/j.cell.2011.10.048_bib91
10.1016/j.cell.2011.10.048_bib89
Nobile (10.1016/j.cell.2011.10.048_bib36) 2009; 7
10.1016/j.cell.2011.10.048_bib87
10.1016/j.cell.2011.10.048_bib88
Sahni (10.1016/j.cell.2011.10.048_bib39) 2010; 8
10.1016/j.cell.2011.10.048_bib85
10.1016/j.cell.2011.10.048_bib86
10.1016/j.cell.2011.10.048_bib83
10.1016/j.cell.2011.10.048_bib84
de Hoon (10.1016/j.cell.2011.10.048_bib9) 2010; 20
Fernández (10.1016/j.cell.2011.10.048_bib12) 2011; 474
Tuch (10.1016/j.cell.2011.10.048_bib45) 2010; 6
Bruno (10.1016/j.cell.2011.10.048_bib6) 2010; 20
10.1016/j.cell.2011.10.048_bib98
10.1016/j.cell.2011.10.048_bib99
Donlan (10.1016/j.cell.2011.10.048_bib10) 2002; 15
10.1016/j.cell.2011.10.048_bib96
10.1016/j.cell.2011.10.048_bib97
Ramage (10.1016/j.cell.2011.10.048_bib37) 2002; 214
10.1016/j.cell.2011.10.048_bib94
10.1016/j.cell.2011.10.048_bib95
Sellam (10.1016/j.cell.2011.10.048_bib41) 2009; 8
Nett (10.1016/j.cell.2011.10.048_bib29) 2006; 9
Chandra (10.1016/j.cell.2011.10.048_bib7) 2001; 183
Hawser (10.1016/j.cell.2011.10.048_bib15) 1994; 62
References_xml – volume: 330
  start-page: 838
  year: 2010
  end-page: 841
  ident: bib27
  article-title: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss
  publication-title: Science
– volume: 8
  start-page: 49
  year: 2010
  ident: bib17
  article-title: MochiView: versatile software for genome browsing and DNA motif analysis
  publication-title: BMC Biol.
– volume: 214
  start-page: 95
  year: 2002
  end-page: 100
  ident: bib37
  article-title: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans
  publication-title: FEMS Microbiol. Lett.
– volume: 8
  start-page: e1000329
  year: 2010
  ident: bib21
  article-title: Evolutionary tinkering with conserved components of a transcriptional regulatory network
  publication-title: PLoS Biol.
– volume: 15
  start-page: 1150
  year: 2005
  end-page: 1155
  ident: bib32
  article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p
  publication-title: Curr. Biol.
– volume: 48
  start-page: 671
  year: 1999
  end-page: 679
  ident: bib4
  article-title: Role of dimorphism in the development of Candida albicans biofilms
  publication-title: J. Med. Microbiol.
– volume: 293
  start-page: 880
  year: 2001
  end-page: 883
  ident: bib1
  article-title: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
  publication-title: Science
– volume: 98
  start-page: 53
  year: 2004
  end-page: 59
  ident: bib38
  article-title: Denture stomatitis: a role for Candida biofilms
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
– volume: 1
  year: 2005
  ident: bib23
  article-title: Extension of a genetic network model by iterative experimentation and mathematical analysis
  publication-title: Mol. Syst. Biol.
– volume: 62
  start-page: 915
  year: 1994
  end-page: 921
  ident: bib15
  article-title: Biofilm formation by Candida species on the surface of catheter materials in vitro
  publication-title: Infect. Immun.
– volume: 23
  start-page: 1351
  year: 2009
  end-page: 1363
  ident: bib31
  article-title: Dynamic and complex transcription factor binding during an inducible response in yeast
  publication-title: Genes Dev.
– volume: 20
  start-page: 435
  year: 2006
  end-page: 448
  ident: bib5
  article-title: Target hub proteins serve as master regulators of development in yeast
  publication-title: Genes Dev.
– volume: 4
  start-page: 865
  year: 2003
  end-page: 875
  ident: bib24
  article-title: The origin of new genes: glimpses from the young and old
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: e1000279
  year: 2009
  ident: bib28
  article-title: Precise regulation of gene expression dynamics favors complex promoter architectures
  publication-title: PLoS Comput. Biol.
– volume: 5
  start-page: e1000783
  year: 2009
  ident: bib18
  article-title: A phenotypic profile of the Candida albicans regulatory network
  publication-title: PLoS Genet.
– volume: 11
  start-page: R71
  year: 2010
  ident: bib42
  article-title: Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays
  publication-title: Genome Biol.
– volume: 72
  start-page: 6023
  year: 2004
  end-page: 6031
  ident: bib2
  article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model
  publication-title: Infect. Immun.
– volume: 7
  start-page: e1000133
  year: 2009
  ident: bib36
  article-title: Biofilm matrix regulation by Candida albicans Zap1
  publication-title: PLoS Biol.
– volume: 185
  start-page: 380
  year: 1998
  end-page: 384
  ident: bib50
  article-title: The aetiology, diagnosis and management of denture stomatitis
  publication-title: Br. Dent. J.
– volume: 449
  start-page: 54
  year: 2007
  end-page: 61
  ident: bib48
  article-title: Natural history and evolutionary principles of gene duplication in fungi
  publication-title: Nature
– volume: 8
  start-page: e1000363
  year: 2010
  ident: bib39
  article-title: Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways
  publication-title: PLoS Biol.
– volume: 18
  start-page: 5750
  year: 1998
  end-page: 5761
  ident: bib16
  article-title: NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
– volume: 149
  start-page: 9
  year: 2003
  end-page: 17
  ident: bib13
  article-title: Controlling competence in Bacillus subtilis: shared use of regulators
  publication-title: Microbiology
– volume: 441
  start-page: 300
  year: 2006
  end-page: 302
  ident: bib20
  article-title: Microbial sciences: the superficial life of microbes
  publication-title: Nature
– volume: 78
  start-page: 3650
  year: 2010
  end-page: 3659
  ident: bib30
  article-title: Development and validation of an in vivo Candida albicans biofilm denture model
  publication-title: Infect. Immun.
– volume: 79
  start-page: 940
  year: 2011
  end-page: 953
  ident: bib3
  article-title: The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion
  publication-title: Mol. Microbiol.
– year: 2011
  ident: bib44
  article-title: Natural selection on gene order in the genome re-organization process after whole genome duplication of yeast
  publication-title: Mol. Biol. Evol.
– volume: 284
  start-page: 1318
  year: 1999
  end-page: 1322
  ident: bib8
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
– volume: 275
  start-page: 1314
  year: 1997
  end-page: 1317
  ident: bib26
  article-title: Combinatorial control required for the specificity of yeast MAPK signaling
  publication-title: Science
– volume: 474
  start-page: 502
  year: 2011
  end-page: 505
  ident: bib12
  article-title: Non-adaptive origins of interactome complexity
  publication-title: Nature
– volume: 43
  start-page: 160
  year: 1998
  end-page: 166
  ident: bib49
  article-title: Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species
  publication-title: Aust. Dent. J.
– volume: 9
  start-page: 340
  year: 2006
  end-page: 345
  ident: bib29
  article-title: Candida albicans biofilm development, modeling a host-pathogen interaction
  publication-title: Curr. Opin. Microbiol.
– volume: 144
  start-page: 940
  year: 2011
  end-page: 954
  ident: bib52
  article-title: Control of the embryonic stem cell state
  publication-title: Cell
– volume: 440
  start-page: 545
  year: 2006
  end-page: 550
  ident: bib43
  article-title: An excitable gene regulatory circuit induces transient cellular differentiation
  publication-title: Nature
– volume: 2
  start-page: e63
  year: 2006
  ident: bib33
  article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo
  publication-title: PLoS Pathog.
– volume: 5
  start-page: 1604
  year: 2006
  end-page: 1610
  ident: bib34
  article-title: Function of Candida albicans adhesin Hwp1 in biofilm formation
  publication-title: Eukaryot. Cell
– volume: 48
  start-page: 1727
  year: 2004
  end-page: 1732
  ident: bib40
  article-title: Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy
  publication-title: Antimicrob. Agents Chemother.
– volume: 6
  start-page: e1001070
  year: 2010
  ident: bib45
  article-title: The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation
  publication-title: PLoS Genet.
– volume: 9
  start-page: 1531
  year: 2010
  end-page: 1537
  ident: bib47
  article-title: The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion
  publication-title: Eukaryot. Cell
– volume: 19
  start-page: 556
  year: 2009
  end-page: 566
  ident: bib53
  article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors
  publication-title: Genome Res.
– volume: 17
  start-page: 255
  year: 2004
  end-page: 267
  ident: bib19
  article-title: Candida infections of medical devices
  publication-title: Clin. Microbiol. Rev.
– volume: 6
  start-page: e1000828
  year: 2010
  ident: bib46
  article-title: Dispersion as an important step in the Candida albicans biofilm developmental cycle
  publication-title: PLoS Pathog.
– volume: 20
  start-page: R735
  year: 2010
  end-page: R745
  ident: bib9
  article-title: Hierarchical evolution of the bacterial sporulation network
  publication-title: Curr. Biol.
– volume: 15
  start-page: 167
  year: 2002
  end-page: 193
  ident: bib10
  article-title: Biofilms: survival mechanisms of clinically relevant microorganisms
  publication-title: Clin. Microbiol. Rev.
– volume: 8
  start-page: 1174
  year: 2009
  end-page: 1183
  ident: bib41
  article-title: Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans
  publication-title: Eukaryot. Cell
– volume: 11
  start-page: 30
  year: 2003
  end-page: 36
  ident: bib11
  article-title: Candida biofilms and their role in infection
  publication-title: Trends Microbiol.
– volume: 11
  start-page: 581
  year: 2010
  ident: bib22
  article-title: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation
  publication-title: BMC Genomics
– volume: 355
  start-page: 601
  year: 1992
  end-page: 604
  ident: bib25
  article-title: Crisscross regulation of cell-type-specific gene expression during development in B. subtilis
  publication-title: Nature
– volume: 183
  start-page: 5385
  year: 2001
  end-page: 5394
  ident: bib7
  article-title: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance
  publication-title: J. Bacteriol.
– volume: 431
  start-page: 99
  year: 2004
  end-page: 104
  ident: bib14
  article-title: Transcriptional regulatory code of a eukaryotic genome
  publication-title: Nature
– volume: 20
  start-page: 1451
  year: 2010
  end-page: 1458
  ident: bib6
  article-title: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq
  publication-title: Genome Res.
– volume: 7
  start-page: 532
  year: 2010
  end-page: 544
  ident: bib51
  article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 1017
  year: 2008
  end-page: 1024
  ident: bib35
  article-title: Complementary adhesin function in C. albicans biofilm formation
  publication-title: Curr. Biol.
– ident: 10.1016/j.cell.2011.10.048_bib68
  doi: 10.1038/nature02579
– volume: 18
  start-page: 5750
  year: 1998
  ident: 10.1016/j.cell.2011.10.048_bib16
  article-title: NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.10.5750
– ident: 10.1016/j.cell.2011.10.048_bib79
  doi: 10.1016/S0092-8674(85)80119-7
– ident: 10.1016/j.cell.2011.10.048_bib95
  doi: 10.1046/j.1365-2958.2000.02132.x
– ident: 10.1016/j.cell.2011.10.048_bib73
  doi: 10.1099/mic.0.27696-0
– volume: 72
  start-page: 6023
  year: 2004
  ident: 10.1016/j.cell.2011.10.048_bib2
  article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.10.6023-6031.2004
– volume: 441
  start-page: 300
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib20
  article-title: Microbial sciences: the superficial life of microbes
  publication-title: Nature
  doi: 10.1038/441300a
– ident: 10.1016/j.cell.2011.10.048_bib101
  doi: 10.1093/nar/gkj013
– volume: 79
  start-page: 940
  year: 2011
  ident: 10.1016/j.cell.2011.10.048_bib3
  article-title: The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07504.x
– volume: 20
  start-page: 1451
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib6
  article-title: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq
  publication-title: Genome Res.
  doi: 10.1101/gr.109553.110
– volume: 11
  start-page: R71
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib42
  article-title: Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-7-r71
– volume: 284
  start-page: 1318
  year: 1999
  ident: 10.1016/j.cell.2011.10.048_bib8
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
  doi: 10.1126/science.284.5418.1318
– volume: 474
  start-page: 502
  year: 2011
  ident: 10.1016/j.cell.2011.10.048_bib12
  article-title: Non-adaptive origins of interactome complexity
  publication-title: Nature
  doi: 10.1038/nature09992
– volume: 183
  start-page: 5385
  year: 2001
  ident: 10.1016/j.cell.2011.10.048_bib7
  article-title: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.18.5385-5394.2001
– ident: 10.1016/j.cell.2011.10.048_bib78
  doi: 10.1016/j.biocel.2009.07.009
– ident: 10.1016/j.cell.2011.10.048_bib54
  doi: 10.1128/JB.181.20.6441-6448.1999
– volume: 275
  start-page: 1314
  year: 1997
  ident: 10.1016/j.cell.2011.10.048_bib26
  article-title: Combinatorial control required for the specificity of yeast MAPK signaling
  publication-title: Science
  doi: 10.1126/science.275.5304.1314
– ident: 10.1016/j.cell.2011.10.048_bib83
  doi: 10.1111/j.1365-2958.2010.07331.x
– volume: 17
  start-page: 255
  year: 2004
  ident: 10.1016/j.cell.2011.10.048_bib19
  article-title: Candida infections of medical devices
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.17.2.255-267.2004
– ident: 10.1016/j.cell.2011.10.048_bib80
  doi: 10.1126/science.8259520
– volume: 214
  start-page: 95
  year: 2002
  ident: 10.1016/j.cell.2011.10.048_bib37
  article-title: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2002.tb11330.x
– ident: 10.1016/j.cell.2011.10.048_bib63
  doi: 10.1186/gb-2010-11-12-r127
– volume: 2
  start-page: e63
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib33
  article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020063
– volume: 149
  start-page: 9
  year: 2003
  ident: 10.1016/j.cell.2011.10.048_bib13
  article-title: Controlling competence in Bacillus subtilis: shared use of regulators
  publication-title: Microbiology
  doi: 10.1099/mic.0.26003-0
– ident: 10.1016/j.cell.2011.10.048_bib92
  doi: 10.1126/science.290.5500.2306
– volume: 18
  start-page: 1017
  year: 2008
  ident: 10.1016/j.cell.2011.10.048_bib35
  article-title: Complementary adhesin function in C. albicans biofilm formation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.06.034
– ident: 10.1016/j.cell.2011.10.048_bib97
  doi: 10.1111/j.1574-6976.1995.tb00155.x
– ident: 10.1016/j.cell.2011.10.048_bib106
  doi: 10.1093/bioinformatics/btm193
– volume: 20
  start-page: R735
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib9
  article-title: Hierarchical evolution of the bacterial sporulation network
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.06.031
– volume: 431
  start-page: 99
  year: 2004
  ident: 10.1016/j.cell.2011.10.048_bib14
  article-title: Transcriptional regulatory code of a eukaryotic genome
  publication-title: Nature
  doi: 10.1038/nature02800
– volume: 8
  start-page: 1174
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib41
  article-title: Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00074-09
– ident: 10.1016/j.cell.2011.10.048_bib77
  doi: 10.1016/j.plaphy.2010.01.017
– ident: 10.1016/j.cell.2011.10.048_bib70
  doi: 10.1111/j.1365-2958.1996.tb02470.x
– ident: 10.1016/j.cell.2011.10.048_bib81
  doi: 10.1126/science.7992058
– ident: 10.1016/j.cell.2011.10.048_bib69
  doi: 10.2166/wst.2008.585
– ident: 10.1016/j.cell.2011.10.048_bib104
  doi: 10.1186/gb-2007-8-4-r52
– volume: 5
  start-page: e1000783
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib18
  article-title: A phenotypic profile of the Candida albicans regulatory network
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000783
– volume: 19
  start-page: 556
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib53
  article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors
  publication-title: Genome Res.
  doi: 10.1101/gr.090233.108
– volume: 7
  start-page: e1000133
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib36
  article-title: Biofilm matrix regulation by Candida albicans Zap1
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000133
– ident: 10.1016/j.cell.2011.10.048_bib72
  doi: 10.1128/mcb.14.3.2100-2112.1994
– ident: 10.1016/j.cell.2011.10.048_bib105
  doi: 10.1093/bioinformatics/btp612
– volume: 6
  start-page: e1001070
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib45
  article-title: The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001070
– ident: 10.1016/j.cell.2011.10.048_bib65
  doi: 10.1099/mic.0.043851-0
– ident: 10.1016/j.cell.2011.10.048_bib59
  doi: 10.1038/nature09560
– ident: 10.1016/j.cell.2011.10.048_bib99
  doi: 10.1093/emboj/16.8.1982
– volume: 8
  start-page: 49
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib17
  article-title: MochiView: versatile software for genome browsing and DNA motif analysis
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-8-49
– ident: 10.1016/j.cell.2011.10.048_bib102
  doi: 10.1371/journal.pbio.0060038
– volume: 15
  start-page: 167
  year: 2002
  ident: 10.1016/j.cell.2011.10.048_bib10
  article-title: Biofilms: survival mechanisms of clinically relevant microorganisms
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.15.2.167-193.2002
– ident: 10.1016/j.cell.2011.10.048_bib91
  doi: 10.1006/jmbi.2000.5197
– ident: 10.1016/j.cell.2011.10.048_bib88
  doi: 10.1128/EC.4.2.298-309.2005
– ident: 10.1016/j.cell.2011.10.048_bib89
  doi: 10.1038/ng.605
– volume: 1
  year: 2005
  ident: 10.1016/j.cell.2011.10.048_bib23
  article-title: Extension of a genetic network model by iterative experimentation and mathematical analysis
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100018
– volume: 15
  start-page: 1150
  year: 2005
  ident: 10.1016/j.cell.2011.10.048_bib32
  article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.05.047
– volume: 440
  start-page: 545
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib43
  article-title: An excitable gene regulatory circuit induces transient cellular differentiation
  publication-title: Nature
  doi: 10.1038/nature04588
– ident: 10.1016/j.cell.2011.10.048_bib94
  doi: 10.1093/bioinformatics/bth349
– volume: 8
  start-page: e1000329
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib21
  article-title: Evolutionary tinkering with conserved components of a transcriptional regulatory network
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000329
– volume: 5
  start-page: 1604
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib34
  article-title: Function of Candida albicans adhesin Hwp1 in biofilm formation
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00194-06
– ident: 10.1016/j.cell.2011.10.048_bib90
  doi: 10.1086/380796
– volume: 43
  start-page: 160
  year: 1998
  ident: 10.1016/j.cell.2011.10.048_bib49
  article-title: Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species
  publication-title: Aust. Dent. J.
  doi: 10.1111/j.1834-7819.1998.tb00157.x
– volume: 9
  start-page: 340
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib29
  article-title: Candida albicans biofilm development, modeling a host-pathogen interaction
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2006.06.007
– ident: 10.1016/j.cell.2011.10.048_bib82
  doi: 10.1016/S0092-8674(00)80358-X
– ident: 10.1016/j.cell.2011.10.048_bib96
  doi: 10.1128/EC.00325-09
– ident: 10.1016/j.cell.2011.10.048_bib56
  doi: 10.1146/annurev.micro.59.030804.121310
– ident: 10.1016/j.cell.2011.10.048_bib76
  doi: 10.1152/ajpendo.91002.2008
– ident: 10.1016/j.cell.2011.10.048_bib58
  doi: 10.1128/MCB.23.22.8189-8201.2003
– ident: 10.1016/j.cell.2011.10.048_bib87
  doi: 10.1111/j.1462-5822.2008.01198.x
– ident: 10.1016/j.cell.2011.10.048_bib93
  doi: 10.1016/j.gene.2004.06.021
– ident: 10.1016/j.cell.2011.10.048_bib71
  doi: 10.1128/IAI.01452-08
– ident: 10.1016/j.cell.2011.10.048_bib64
  doi: 10.1128/AAC.48.12.4505-4512.2004
– volume: 5
  start-page: e1000279
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib28
  article-title: Precise regulation of gene expression dynamics favors complex promoter architectures
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000279
– volume: 7
  start-page: 532
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib51
  article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.016
– ident: 10.1016/j.cell.2011.10.048_bib74
  doi: 10.1186/1471-2148-4-2
– volume: 98
  start-page: 53
  year: 2004
  ident: 10.1016/j.cell.2011.10.048_bib38
  article-title: Denture stomatitis: a role for Candida biofilms
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
  doi: 10.1016/j.tripleo.2003.04.002
– volume: 293
  start-page: 880
  year: 2001
  ident: 10.1016/j.cell.2011.10.048_bib1
  article-title: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
  publication-title: Science
  doi: 10.1126/science.1061320
– ident: 10.1016/j.cell.2011.10.048_bib98
  doi: 10.1074/jbc.271.11.6298
– ident: 10.1016/j.cell.2011.10.048_bib57
  doi: 10.1111/j.1365-2958.2006.05367.x
– ident: 10.1016/j.cell.2011.10.048_bib85
  doi: 10.1101/gr.6111907
– volume: 185
  start-page: 380
  year: 1998
  ident: 10.1016/j.cell.2011.10.048_bib50
  article-title: The aetiology, diagnosis and management of denture stomatitis
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.4809821
– ident: 10.1016/j.cell.2011.10.048_bib62
  doi: 10.1038/nature08064
– ident: 10.1016/j.cell.2011.10.048_bib100
  doi: 10.1073/pnas.1530509100
– volume: 23
  start-page: 1351
  year: 2009
  ident: 10.1016/j.cell.2011.10.048_bib31
  article-title: Dynamic and complex transcription factor binding during an inducible response in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.1781909
– volume: 355
  start-page: 601
  year: 1992
  ident: 10.1016/j.cell.2011.10.048_bib25
  article-title: Crisscross regulation of cell-type-specific gene expression during development in B. subtilis
  publication-title: Nature
  doi: 10.1038/355601a0
– volume: 144
  start-page: 940
  year: 2011
  ident: 10.1016/j.cell.2011.10.048_bib52
  article-title: Control of the embryonic stem cell state
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.032
– ident: 10.1016/j.cell.2011.10.048_bib103
  doi: 10.1126/science.1204349
– ident: 10.1016/j.cell.2011.10.048_bib60
  doi: 10.1126/science.1140748
– ident: 10.1016/j.cell.2011.10.048_bib84
  doi: 10.1016/j.cub.2007.05.017
– ident: 10.1016/j.cell.2011.10.048_bib107
  doi: 10.1128/MCB.15.12.6854
– volume: 11
  start-page: 30
  year: 2003
  ident: 10.1016/j.cell.2011.10.048_bib11
  article-title: Candida biofilms and their role in infection
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(02)00002-1
– ident: 10.1016/j.cell.2011.10.048_bib108
  doi: 10.1128/EC.1.3.353-365.2002
– volume: 330
  start-page: 838
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib27
  article-title: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss
  publication-title: Science
  doi: 10.1126/science.1194554
– volume: 48
  start-page: 671
  year: 1999
  ident: 10.1016/j.cell.2011.10.048_bib4
  article-title: Role of dimorphism in the development of Candida albicans biofilms
  publication-title: J. Med. Microbiol.
  doi: 10.1099/00222615-48-7-671
– volume: 8
  start-page: e1000363
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib39
  article-title: Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000363
– volume: 4
  start-page: 865
  year: 2003
  ident: 10.1016/j.cell.2011.10.048_bib24
  article-title: The origin of new genes: glimpses from the young and old
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1204
– ident: 10.1016/j.cell.2011.10.048_bib86
  doi: 10.1086/599838
– ident: 10.1016/j.cell.2011.10.048_bib61
  doi: 10.1126/science.277.5322.105
– ident: 10.1016/j.cell.2011.10.048_bib67
  doi: 10.1093/bioinformatics/bth078
– volume: 11
  start-page: 581
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib22
  article-title: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-581
– volume: 449
  start-page: 54
  year: 2007
  ident: 10.1016/j.cell.2011.10.048_bib48
  article-title: Natural history and evolutionary principles of gene duplication in fungi
  publication-title: Nature
  doi: 10.1038/nature06107
– volume: 48
  start-page: 1727
  year: 2004
  ident: 10.1016/j.cell.2011.10.048_bib40
  article-title: Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.5.1727-1732.2004
– ident: 10.1016/j.cell.2011.10.048_bib66
  doi: 10.1111/j.1567-1364.2006.00074.x
– ident: 10.1016/j.cell.2011.10.048_bib55
  doi: 10.1093/bioinformatics/14.1.48
– ident: 10.1016/j.cell.2011.10.048_bib75
  doi: 10.1016/S0076-6879(10)70031-8
– volume: 20
  start-page: 435
  year: 2006
  ident: 10.1016/j.cell.2011.10.048_bib5
  article-title: Target hub proteins serve as master regulators of development in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.1389306
– volume: 78
  start-page: 3650
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib30
  article-title: Development and validation of an in vivo Candida albicans biofilm denture model
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00480-10
– year: 2011
  ident: 10.1016/j.cell.2011.10.048_bib44
  article-title: Natural selection on gene order in the genome re-organization process after whole genome duplication of yeast
  publication-title: Mol. Biol. Evol.
– volume: 6
  start-page: e1000828
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib46
  article-title: Dispersion as an important step in the Candida albicans biofilm developmental cycle
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000828
– volume: 9
  start-page: 1531
  year: 2010
  ident: 10.1016/j.cell.2011.10.048_bib47
  article-title: The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00111-10
– volume: 62
  start-page: 915
  year: 1994
  ident: 10.1016/j.cell.2011.10.048_bib15
  article-title: Biofilm formation by Candida species on the surface of catheter materials in vitro
  publication-title: Infect. Immun.
  doi: 10.1128/iai.62.3.915-921.1994
SSID ssj0008555
Score 2.5796983
Snippet A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those...
A biofilm is an organized, resilient group of microbes where individual cells acquire properties, such as drug resistance, that are distinct from those...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms animal models
Animals
biofilm
Biofilms - growth & development
Candida albicans
Candida albicans - genetics
Candida albicans - physiology
Candida albicans - ultrastructure
Candidiasis, Oral - microbiology
Candidiasis, Vulvovaginal - microbiology
Catheter-Related Infections - microbiology
Disease Models, Animal
drug resistance
evolution
Evolution, Molecular
Female
Gene Expression Profiling
Gene Expression Regulation, Fungal
Gene Regulatory Networks
genes
Genes, Fungal
Male
mammals
Microscopy, Confocal
Rats
Rats, Sprague-Dawley
Stomatitis, Denture - microbiology
transcription (genetics)
transcription factors
yeasts
Title A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans
URI https://dx.doi.org/10.1016/j.cell.2011.10.048
https://www.ncbi.nlm.nih.gov/pubmed/22265407
https://www.proquest.com/docview/2000035427
https://www.proquest.com/docview/917577341
https://www.proquest.com/docview/926882578
https://pubmed.ncbi.nlm.nih.gov/PMC3266547
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfBFav1orJYVfJPQ29x-JI_1aKmKfdGDAx-W_YpGzlzxroX-953JJkev1HvwMZsZSHZ2fzObzMwP4H3tizoE5_PgeMyF9VVelt7lpS-iR8SUsqN7-3qhzqfi80zOdmAy1MJQWmWP_QnTO7TuR4772Ty-bBqq8a2KUqFH5NR3rCOzpqpSKuKbfVyjcSllYjGocOejdF84k3K86ON4auNJGV7EAfSwc3pU28VDIej9TMo7rulsD572MSU7SY_9DHZiuw-PE8vkzXP4ccIwOETV-Q07RTS6joF1LmoADNS9SNngbJIy15cMtetm_ofdSSpiTcsmVAUTLLNzR_i5fAHTs9Pvk_O851TIvRpVq5x7pSPGBEJaPGh5qYXXRVRjF53AUERWIjiEvBC9khbDCZThVeBceV0678fjl7DbLtp4AGwkycqh0No7UVdlaUc8eFdRvxycdJEBHybT-L7hOPFezM2QWfbbkAEMGYDG0AAZfFjrXKZ2G1ul5WAjs7FoDPqDrXoHaFBjfyKOmum3grrsjboyZbz1brCywY1GmraNi6sl8XXSb1dR6AzYP2Tw7Cs1vj_fIlIoPNQgTmbwKq2d9YuiWRT1Q8xAb6yqtQC1At-80za_upbgGIQTi_Tr_5yQQ3iCV5Sjg6j5BnZXf6_iWwy2Vu4Ijxmfvhx1e-oWS_QoYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN6Gfau99SA3QajkSNZ9rELWqRbm8saIMAOgl7uPGRO0aQD-u9HWnbQDF0Ou1okEJPSRyomPwJ8rFxWeW9d6i0PqTCuTIvC2bRwWXCImFK2497OJvl4Kr7M5GwHRn0vDJVVdtgfMb1F6-7JQWfNg8u6ph7fMityjIiceMdomPV9zAYGtLVPZp_XcFxIGccYlHj0UbzrnIlFXvTveOTxpBIvGgJ0d3S6V5nFXTno36WUt2LT8WN41CWV7DD-7iewE5qn8CCOmbx5Bt8PGWaHqDq_YUcIR7-DZ22M6hEDdSexHJyNYun6kqF2Vc9_sVtVRaxu2IjaYLxhZm4JQJfPYXp8dD4ap91QhdShbVYpd7kKmBQIafCm5aQSTmUhH9pgBeYishTeIub54HJpMJ9AGV56znOnCuvccPgCdptFE_aBDSS52WdKOSuqsijMgHtnSyLMQaOLBHhvTO06xnEafDHXfWnZT00O0OQAeoYOSODTWucy8m1slZa9j_TGrtEYELbq7aNDtblAINXTbxnR7A3aPmVc-tB7WeNJI03ThMX1kgZ20ndXkakE2D9k8PIrFb4_3yKS5XirQaBM4GXcO-sXRbfkRIiYgNrYVWsB4gLfXGnqHy0nOGbhNEb61X8a5D08HJ-fnerTk8nX17CHK1SwgxD6BnZXV9fhLWZeK_uuPVl_ADy1Koo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recently+Evolved+Transcriptional+Network+Controls+Biofilm+Development+in+Candida+albicans&rft.jtitle=Cell&rft.au=Nobile%2C+Clarissa+J&rft.au=Fox%2C+Emily+P&rft.au=Nett%2C+Jeniel+E&rft.au=Sorrells%2C+Trevor+R&rft.date=2012-01-20&rft.issn=0092-8674&rft.volume=148&rft.issue=1-2&rft.spage=126&rft.epage=138&rft_id=info:doi/10.1016%2Fj.cell.2011.10.048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon