Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice
Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunct...
Saved in:
Published in | Aging cell Vol. 19; no. 8; pp. e13195 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.08.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1474-9718 1474-9726 1474-9726 |
DOI | 10.1111/acel.13195 |
Cover
Abstract | Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.
Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells. |
---|---|
AbstractList | Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of
GDF15
as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic
Gdf15
expression. Mendelian randomization links reduced
GDF15
expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in
Gdf15
‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.
Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells. Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells. Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15 ‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress-induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro-inflammatory cytokines in elderly subjects. Circulating levels of cell-free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20-month-old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15-deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL-17 production in Th17 cells, GDF15 contributes to regulatory T-cell-mediated suppression of conventional T-cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging-mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress-induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro-inflammatory cytokines in elderly subjects. Circulating levels of cell-free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20-month-old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15-deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL-17 production in Th17 cells, GDF15 contributes to regulatory T-cell-mediated suppression of conventional T-cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging-mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. |
Audience | Academic |
Author | Byun, Jin‐Seok Lee, Young‐Sun Goeminne, Ludger J. E. Kim, Seok‐Hwan Shong, Minho Jeon, Jae‐Han Yi, Hyon‐Seung Auwerx, Johan Nga, Ha Thi Ryu, Dongryeol Moon, Ji Sun Kim, Jung Tae Tian, Jing Wen Kang, Baeki E. Kang, Seul Gi |
AuthorAffiliation | 9 Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea 3 Department of Medical Science Chungnam National University School of Medicine Daejeon Republic of Korea 1 Research Center for Endocrine and Metabolic Diseases Chungnam National University Hospital Chungnam National University School of Medicine Daejeon Republic of Korea 8 Department of Internal Medicine School of Medicine Kyungpook National University Daegu Korea 10 Samsung Biomedical Research Institute Samsung Medical Center Seoul Republic of Korea 2 Laboratory of Integrative Systems Physiology École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland 4 Department of Surgery Chungnam National University School of Medicine Daejeon Republic of Korea 7 Department of Internal Medicine Korea University College of Medicine Seoul Republic of Korea 6 Department of Oral Medicine School of Dentistry Kyungpook National University Daegu Republic of Korea 5 Department of Molecular Cell Biology |
AuthorAffiliation_xml | – name: 5 Department of Molecular Cell Biology Sungkyunkwan University School of Medicine Suwon Republic of Korea – name: 7 Department of Internal Medicine Korea University College of Medicine Seoul Republic of Korea – name: 2 Laboratory of Integrative Systems Physiology École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland – name: 6 Department of Oral Medicine School of Dentistry Kyungpook National University Daegu Republic of Korea – name: 4 Department of Surgery Chungnam National University School of Medicine Daejeon Republic of Korea – name: 3 Department of Medical Science Chungnam National University School of Medicine Daejeon Republic of Korea – name: 9 Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea – name: 1 Research Center for Endocrine and Metabolic Diseases Chungnam National University Hospital Chungnam National University School of Medicine Daejeon Republic of Korea – name: 8 Department of Internal Medicine School of Medicine Kyungpook National University Daegu Korea – name: 10 Samsung Biomedical Research Institute Samsung Medical Center Seoul Republic of Korea |
Author_xml | – sequence: 1 givenname: Ji Sun surname: Moon fullname: Moon, Ji Sun organization: Chungnam National University School of Medicine – sequence: 2 givenname: Ludger J. E. surname: Goeminne fullname: Goeminne, Ludger J. E. organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Jung Tae surname: Kim fullname: Kim, Jung Tae organization: Chungnam National University School of Medicine – sequence: 4 givenname: Jing Wen surname: Tian fullname: Tian, Jing Wen organization: Chungnam National University School of Medicine – sequence: 5 givenname: Seok‐Hwan surname: Kim fullname: Kim, Seok‐Hwan organization: Chungnam National University School of Medicine – sequence: 6 givenname: Ha Thi surname: Nga fullname: Nga, Ha Thi organization: Chungnam National University School of Medicine – sequence: 7 givenname: Seul Gi surname: Kang fullname: Kang, Seul Gi organization: Chungnam National University School of Medicine – sequence: 8 givenname: Baeki E. surname: Kang fullname: Kang, Baeki E. organization: Sungkyunkwan University School of Medicine – sequence: 9 givenname: Jin‐Seok surname: Byun fullname: Byun, Jin‐Seok organization: Kyungpook National University – sequence: 10 givenname: Young‐Sun surname: Lee fullname: Lee, Young‐Sun organization: Korea University College of Medicine – sequence: 11 givenname: Jae‐Han surname: Jeon fullname: Jeon, Jae‐Han organization: Kyungpook National University – sequence: 12 givenname: Minho surname: Shong fullname: Shong, Minho organization: Chungnam National University School of Medicine – sequence: 13 givenname: Johan surname: Auwerx fullname: Auwerx, Johan organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 14 givenname: Dongryeol orcidid: 0000-0001-5905-6760 surname: Ryu fullname: Ryu, Dongryeol email: jmpbooks@cnu.ac.kr, freefall@skku.edu organization: Samsung Medical Center – sequence: 15 givenname: Hyon‐Seung orcidid: 0000-0002-3767-1954 surname: Yi fullname: Yi, Hyon‐Seung email: jmpbooks@cnu.ac.kr, freefall@skku.edu organization: Chungnam National University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32691494$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9u0zAUxiM0xP7ADQ-ALHGDkFri2EnsG6SqGgOpEjdwbbnOcespsYvtMnrHI-wZ9yScrKOwaYLkIo7z-z6fc_KdFkc-eCiKl7ScUrzeaQP9lDIq6yfFCeUtn8i2ao4OayqOi9OULsuStrJkz4pjVjWScslPih8XMVzlNemctRDBZ6ezC55YbXKIhNZkE0MGkxPRK-18yiSvAdfOr25-Xg_QoQA6knYpw-AMcd72ehg0qnckQtoEnwB3yXo7aI8uviPIwfPiqdV9ghd3z7Pi64fzL_OPk8Xni0_z2WJimlLWE2xENxZaoPhGm6XtGLW6MUstLS8lHzupaqp5CVaKdskMZ4KBgaaWRmrOzor3e9_NdonVGmwx6l5toht03Kmgnbr_xbu1WoXvquWMClajwZs7gxi-bSFlNbiEE--1h7BNquJVLaRgtEL09QP0Mmyjx_aQ4qJiovofxXgjeCvYH2qle1A41YDVmfFoNWvLVlR1XY9e00covLvxZ2BMrMP9e4JXf4_jMIffiUDg7R4wMaQUwR4QWqoxbmqMm7qNG8LlA9i4fBsgLMP1j0voXnKFle3-Ya5m8_PFXvMLqh_nxw |
CitedBy_id | crossref_primary_10_1007_s00520_023_07771_x crossref_primary_10_1016_j_cmet_2024_10_005 crossref_primary_10_1016_j_radonc_2022_02_039 crossref_primary_10_1159_000513600 crossref_primary_10_3390_biom12101456 crossref_primary_10_1016_j_arr_2022_101569 crossref_primary_10_1038_s41574_021_00529_7 crossref_primary_10_3389_fragi_2022_837575 crossref_primary_10_1002_agm2_12128 crossref_primary_10_3389_fnagi_2022_1058665 crossref_primary_10_3390_jcm14061876 crossref_primary_10_1007_s11357_020_00287_w crossref_primary_10_1016_j_arr_2025_102694 crossref_primary_10_3389_fgene_2021_686320 crossref_primary_10_3390_molecules28145525 crossref_primary_10_1016_j_abb_2020_108668 crossref_primary_10_3390_biomedicines11061572 crossref_primary_10_1080_13510002_2024_2428152 crossref_primary_10_3390_ijms23137043 crossref_primary_10_1159_000538313 crossref_primary_10_3803_EnM_2021_956 crossref_primary_10_20517_jca_2024_15 crossref_primary_10_4049_jimmunol_2200641 crossref_primary_10_1111_bcp_14808 crossref_primary_10_1016_j_biopha_2024_116809 crossref_primary_10_1007_s10522_024_10164_0 crossref_primary_10_3390_v16121902 crossref_primary_10_3390_nu16050734 crossref_primary_10_1210_endrev_bnad028 crossref_primary_10_1038_s12276_023_01046_5 crossref_primary_10_3390_ijms25042104 crossref_primary_10_1007_s00018_020_03748_9 crossref_primary_10_1038_s42003_021_02289_6 crossref_primary_10_3803_EnM_2020_405 crossref_primary_10_1002_med_22102 crossref_primary_10_1016_j_molmet_2020_101117 crossref_primary_10_1016_j_hrthm_2024_11_017 crossref_primary_10_1016_j_metabol_2022_155237 crossref_primary_10_1038_s41598_025_92572_x crossref_primary_10_1146_annurev_biochem_032620_104401 crossref_primary_10_14814_phy2_15293 crossref_primary_10_3389_fimmu_2022_942796 crossref_primary_10_4093_dmj_2021_0272 crossref_primary_10_1002_jcsm_13163 crossref_primary_10_1016_j_ejim_2023_01_026 crossref_primary_10_1080_14728222_2022_2029410 crossref_primary_10_1111_acel_13770 crossref_primary_10_3390_cells10081901 crossref_primary_10_3389_fendo_2023_1185221 crossref_primary_10_1016_j_tem_2022_08_004 crossref_primary_10_1016_j_ajpath_2025_01_007 crossref_primary_10_1016_j_jare_2024_11_017 crossref_primary_10_1073_pnas_2316161121 crossref_primary_10_1161_JAHA_122_026942 crossref_primary_10_1186_s12967_024_05801_8 crossref_primary_10_1007_s00432_022_04500_5 crossref_primary_10_1038_s41590_021_00927_z crossref_primary_10_3389_fimmu_2024_1514518 crossref_primary_10_1002_jcsm_12823 crossref_primary_10_4093_dmj_2022_0089 crossref_primary_10_1111_jcmm_17725 crossref_primary_10_1016_j_brainres_2025_149591 crossref_primary_10_1080_1744666X_2022_2021879 crossref_primary_10_1159_000536150 crossref_primary_10_1186_s12967_022_03534_0 crossref_primary_10_1186_s12979_023_00339_7 crossref_primary_10_1093_gerona_glab011 crossref_primary_10_1016_j_artere_2024_03_003 crossref_primary_10_1016_j_arteri_2024_02_002 crossref_primary_10_1016_j_cmet_2022_10_008 crossref_primary_10_1016_j_bbrc_2024_150305 crossref_primary_10_3390_ijms232113180 crossref_primary_10_1210_endrev_bnad004 crossref_primary_10_3389_fmed_2020_594137 crossref_primary_10_1038_s12276_023_01047_4 crossref_primary_10_1007_s11357_022_00554_y crossref_primary_10_1111_eci_14290 crossref_primary_10_3390_ijms25137313 crossref_primary_10_1093_gerona_glac020 |
Cites_doi | 10.3390/jcm6070068 10.4049/jimmunol.1000021 10.1083/jcb.201607110 10.1126/science.1262110 10.1016/j.molmed.2007.01.003 10.1161/ATVBAHA.108.165100 10.1093/bioinformatics/19.2.185 10.1038/s41586-018-0590-4 10.1038/nature08780 10.1038/nm.4393 10.1186/s13059-014-0550-8 10.1371/journal.pone.0201584 10.1073/pnas.1514511113 10.1093/bioinformatics/bti270 10.1089/rej.2017.1989 10.1186/s41232-018-0082-9 10.1016/j.cell.2012.08.012 10.3803/EnM.2014.29.4.443 10.3389/fimmu.2019.01173 10.1016/j.bbabio.2015.05.021 10.2337/db08-0536 10.1038/ijo.2015.242 10.2337/db17-0333 10.1016/j.mad.2006.11.016 10.1186/s13059-018-1406-4 10.1530/EJE-12-0466 10.1038/nm.4392 10.1038/s41598-018-25098-0 10.1038/s41467-018-03998-z 10.1038/srep23992 10.3803/EnM.2019.34.1.39 10.1073/pnas.0908771107 10.1038/nm.4394 10.1530/JME-18-0005 10.1038/s41598-017-17574-w 10.1186/gb-2010-11-3-r25 10.3389/fcvm.2018.00012 10.1038/374647a0 10.1093/bioinformatics/btm412 10.1038/nature21363 10.1007/s00125-019-05082-7 10.1038/nature13818 10.1016/j.cmet.2017.07.007 10.1016/j.cmet.2015.11.011 10.1126/scitranslmed.aan8732 10.1373/clinchem.2012.190322 10.1016/j.cmet.2019.12.005 10.3389/fgene.2018.00097 10.1093/bioinformatics/btp616 10.2202/1544-6115.1027 10.1155/2017/6862439 10.1371/journal.pgen.1002078 10.7554/eLife.34408 10.1038/s41419-019-1494-4 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright John Wiley & Sons, Inc. Aug 2020 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd – notice: 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright John Wiley & Sons, Inc. Aug 2020 – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/acel.13195 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | MOON et al |
EISSN | 1474-9726 |
EndPage | n/a |
ExternalDocumentID | PMC7431835 A707825552 32691494 10_1111_acel_13195 ACEL13195 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2017K1A1A2013124; 2017R1E1A1A01075126; 2018R1C1B6004439; 2019M3E5D1A02068575 – fundername: Gilead Sciences Asia Ltd – fundername: Chungnam National University Hospital – fundername: NIMH NIH HHS grantid: R01 MH101822 – fundername: NIMH NIH HHS grantid: R01 MH101810 – fundername: NIDA NIH HHS grantid: R01 DA006227 – fundername: CCR NIH HHS grantid: HHSN261200800001C – fundername: NIMH NIH HHS grantid: R01 MH101819 – fundername: NIMH NIH HHS grantid: R01 MH090936 – fundername: NIMH NIH HHS grantid: R01 MH101820 – fundername: NIMH NIH HHS grantid: R01 MH101814 – fundername: NIMH NIH HHS grantid: R01 MH101782 – fundername: NIMH NIH HHS grantid: R01 MH090948 – fundername: ; – fundername: ; grantid: 2017K1A1A2013124; 2017R1E1A1A01075126; 2018R1C1B6004439; 2019M3E5D1A02068575 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB PMFND 7QP 7TK ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c6095-726a6fe7e109516bfd31fa6cba9f40943269251a40ef987b3c4383ece659c9a43 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:07:17 EDT 2025 Fri Sep 05 12:45:53 EDT 2025 Wed Aug 13 06:06:02 EDT 2025 Wed Aug 13 08:00:04 EDT 2025 Tue Jun 17 21:36:12 EDT 2025 Tue Jun 10 20:43:01 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Tue Jul 01 01:49:16 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Wed Jan 22 16:37:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | senescence aging inflammation T cell mitochondria |
Language | English |
License | Attribution 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6095-726a6fe7e109516bfd31fa6cba9f40943269251a40ef987b3c4383ece659c9a43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5905-6760 0000-0002-3767-1954 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13195 |
PMID | 32691494 |
PQID | 2448238212 |
PQPubID | 1036381 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7431835 proquest_miscellaneous_2425898312 proquest_journals_2448238212 proquest_journals_2434684783 gale_infotracmisc_A707825552 gale_infotracacademiconefile_A707825552 pubmed_primary_32691494 crossref_primary_10_1111_acel_13195 crossref_citationtrail_10_1111_acel_13195 wiley_primary_10_1111_acel_13195_ACEL13195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 6 2010; 11 2017; 7 2018; 562 2012; 167 2010; 107 2020; 63 2019; 10 2010; 464 2004; 3 2010; 185 2005; 21 2003; 19 2014; 29 2015; 348 2012; 58 1995; 374 2017; 9 2018; 7 2018; 9 2009; 58 2018; 8 2010; 26 2018; 5 2008; 28 2016; 113 2014; 15 2016; 40 2007; 23 2018; 38 2011; 2 2014; 516 2007; 128 2017; 2017 2017; 26 2017; 66 2019; 34 2017; 23 2007 2018; 61 2018; 21 2007; 13 2011; 7 2017; 216 2012; 150 2018; 19 2016; 6 2020; 31 2015; 1847 2017; 542 2016; 23 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Fox J. G. (e_1_2_9_11_1) 2007 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Multhoff G. (e_1_2_9_35_1) 2011; 2 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 150 start-page: 1287 issue: 6 year: 2012 end-page: 1299 article-title: Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits publication-title: Cell – volume: 23 start-page: 1158 issue: 10 year: 2017 end-page: 1166 article-title: GFRAL is the receptor for GDF15 and is required for the anti‐obesity effects of the ligand publication-title: Nature Medicine – volume: 374 start-page: 647 issue: 6523 year: 1995 end-page: 650 article-title: Activation of microglial cells by beta‐amyloid protein and interferon‐gamma publication-title: Nature – volume: 21 start-page: 350 issue: 4 year: 2018 end-page: 359 article-title: Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders publication-title: Rejuvenation Research – volume: 10 start-page: 1173 year: 2019 article-title: Adipose tissue‐resident immune cells in obesity and type 2 diabetes publication-title: Frontiers in Immunology – volume: 516 start-page: 414 issue: 7531 year: 2014 end-page: 417 article-title: Mitochondrial UPR‐regulated innate immunity provides resistance to pathogen infection publication-title: Nature – volume: 63 start-page: 837 issue: 4 year: 2020 end-page: 852 article-title: An adipocyte‐specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet‐induced obesity in mouse models publication-title: Diabetologia – volume: 13 issue: 8 year: 2018 article-title: GDF15 deficiency promotes high fat diet‐induced obesity in mice publication-title: PLoS One – volume: 10 start-page: 249 issue: 3 year: 2019 article-title: T‐cell senescence contributes to abnormal glucose homeostasis in humans and mice publication-title: Cell Death & Disease – volume: 29 start-page: 443 issue: 4 year: 2014 end-page: 449 article-title: Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients publication-title: Endocrinology and Metabolism (Seoul) – volume: 23 start-page: 2700 issue: 20 year: 2007 end-page: 2707 article-title: A comparison of background correction methods for two‐colour microarrays publication-title: Bioinformatics – volume: 167 start-page: 671 issue: 5 year: 2012 end-page: 678 article-title: Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial publication-title: European Journal of Endocrinology – volume: 9 issue: 412 year: 2017 article-title: Long‐acting MIC‐1/GDF15 molecules to treat obesity: Evidence from mice to monkeys publication-title: Science Translational Medicine – volume: 11 start-page: R25 issue: 3 year: 2010 article-title: A scaling normalization method for differential expression analysis of RNA‐seq data publication-title: Genome Biology – volume: 7 start-page: 17238 issue: 1 year: 2017 article-title: GDF15 deficiency exacerbates chronic alcohol‐ and carbon tetrachloride‐induced liver injury publication-title: Scientific Reports – volume: 562 start-page: 367 issue: 7727 year: 2018 end-page: 372 article-title: Single‐cell transcriptomics of 20 mouse organs creates a Tabula Muris publication-title: Nature – volume: 23 start-page: 1215 issue: 10 year: 2017 end-page: 1219 article-title: The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL publication-title: Nature Medicine – volume: 38 start-page: 24 year: 2018 article-title: The impact of senescence‐associated T cells on immunosenescence and age‐related disorders publication-title: Inflammation and Regeneration – volume: 9 start-page: 1551 issue: 1 year: 2018 article-title: Reduced oxidative capacity in macrophages results in systemic insulin resistance publication-title: Nature Communications – volume: 58 start-page: 385 issue: 2 year: 2009 end-page: 393 article-title: Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole‐body insulin action in healthy Pima Indians publication-title: Diabetes – volume: 40 start-page: 193 issue: 2 year: 2016 end-page: 197 article-title: Anorexia‐cachexia and obesity treatment may be two sides of the same coin: role of the TGF‐b superfamily cytokine MIC‐1/GDF15 publication-title: International Journal of Obesity – volume: 464 start-page: 104 issue: 7285 year: 2010 end-page: 107 article-title: Circulating mitochondrial DAMPs cause inflammatory responses to injury publication-title: Nature – volume: 23 start-page: 1150 issue: 10 year: 2017 end-page: 1157 article-title: GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates publication-title: Nature Medicine – volume: 107 start-page: 9765 issue: 21 year: 2010 end-page: 9770 article-title: Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 113 start-page: 1026 issue: 4 year: 2016 end-page: 1031 article-title: Prolongevity hormone FGF21 protects against immune senescence by delaying age‐related thymic involution publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 419 issue: 2 year: 2017 end-page: 428 article-title: mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression publication-title: Cell Metabolism – volume: 2 start-page: 98 year: 2011 article-title: Chronic inflammation in cancer development publication-title: Frontiers in Immunology – volume: 61 start-page: R91 issue: 3 year: 2018 end-page: R105 article-title: The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases publication-title: Journal of Molecular Endocrinology – volume: 19 start-page: 24 issue: 1 year: 2018 article-title: Observation weights unlock bulk RNA‐seq tools for zero inflation and single‐cell applications publication-title: Genome Biology – volume: 66 start-page: 2774 issue: 11 year: 2017 end-page: 2788 article-title: Growth differentiation factor 15 mediates systemic glucose regulatory action of T‐helper type 2 cytokines publication-title: Diabetes – volume: 15 start-page: 550 issue: 12 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biology – volume: 216 start-page: 149 issue: 1 year: 2017 end-page: 165 article-title: Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis publication-title: Journal of Cell Biology – volume: 26 start-page: 139 issue: 1 year: 2010 end-page: 140 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 185 start-page: 1836 issue: 3 year: 2010 end-page: 1845 article-title: Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance publication-title: The Journal of Immunology – volume: 348 start-page: 648 issue: 6235 year: 2015 end-page: 660 article-title: Human genomics. The Genotype‐Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans publication-title: Science – volume: 58 start-page: 1582 issue: 11 year: 2012 end-page: 1591 article-title: Clinical and genetic correlates of growth differentiation factor 15 in the community publication-title: Clinical Chemistry – volume: 6 start-page: 23992 year: 2016 article-title: Cell‐free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection publication-title: Scientific Reports – volume: 7 issue: 5 year: 2011 article-title: Identification, replication, and functional fine‐mapping of expression quantitative trait loci in primary human liver tissue publication-title: PLoS Genetics – volume: 28 start-page: 1304 issue: 7 year: 2008 end-page: 1310 article-title: T‐lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity‐mediated insulin resistance publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 6 start-page: 68 issue: 7 year: 2017 article-title: Pathogenic role of IL‐17‐producing immune cells in obesity, and related inflammatory diseases publication-title: Journal of Clinical Medicine – year: 2007 – volume: 1847 start-page: 1387 issue: 11 year: 2015 end-page: 1400 article-title: The role of mitochondrial dysfunction in age‐related diseases publication-title: Biochimica Et Biophysica Acta – volume: 2017 start-page: 6862439 year: 2017 article-title: Hepatic immune microenvironment in alcoholic and nonalcoholic liver disease publication-title: BioMed Research International – volume: 34 start-page: 39 issue: 1 year: 2019 end-page: 46 article-title: Implications of Mitochondrial Unfolded Protein Response and Mitokines: A Perspective on Fatty Liver Diseases publication-title: Endocrinology and Metabolism – volume: 21 start-page: 2067 issue: 9 year: 2005 end-page: 2075 article-title: Use of within‐array replicate spots for assessing differential expression in microarray experiments publication-title: Bioinformatics – volume: 7 year: 2018 article-title: The MR‐Base platform supports systematic causal inference across the human phenome publication-title: Elife – volume: 9 start-page: 97 year: 2018 article-title: A meta‐analysis of genome‐wide association studies of growth differentiation factor‐15 concentration in blood publication-title: Frontiers in Genetics – volume: 3 start-page: 1 year: 2004 end-page: 25 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments publication-title: Statistical Applications in Genetics and Molecular Biology – volume: 13 start-page: 108 issue: 3 year: 2007 end-page: 116 article-title: Natural regulatory T cells: mechanisms of suppression publication-title: Trends in Molecular Medicine – volume: 5 start-page: 12 year: 2018 article-title: Source of chronic inflammation in aging publication-title: Frontiers in Cardiovascular Medicine – volume: 8 start-page: 6789 issue: 1 year: 2018 article-title: Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice publication-title: Scientific Reports – volume: 31 start-page: 363 issue: 2 year: 2020 end-page: 374 article-title: Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention publication-title: Cell Metabolism – volume: 128 start-page: 92 issue: 1 year: 2007 end-page: 105 article-title: Inflammaging and anti‐inflammaging: a systemic perspective on aging and longevity emerged from studies in humans publication-title: Mechanisms of Ageing and Development – volume: 542 start-page: 177 issue: 7640 year: 2017 end-page: 185 article-title: Inflammation, metaflammation and immunometabolic disorders publication-title: Nature – volume: 19 start-page: 185 issue: 2 year: 2003 end-page: 193 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics – volume: 23 start-page: 303 issue: 2 year: 2016 end-page: 314 article-title: Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype publication-title: Cell Metabolism – ident: e_1_2_9_5_1 doi: 10.3390/jcm6070068 – ident: e_1_2_9_51_1 doi: 10.4049/jimmunol.1000021 – ident: e_1_2_9_8_1 doi: 10.1083/jcb.201607110 – ident: e_1_2_9_9_1 doi: 10.1126/science.1262110 – volume-title: The Mouse in Biomedical Research year: 2007 ident: e_1_2_9_11_1 – ident: e_1_2_9_33_1 doi: 10.1016/j.molmed.2007.01.003 – ident: e_1_2_9_24_1 doi: 10.1161/ATVBAHA.108.165100 – ident: e_1_2_9_3_1 doi: 10.1093/bioinformatics/19.2.185 – ident: e_1_2_9_45_1 doi: 10.1038/s41586-018-0590-4 – ident: e_1_2_9_57_1 doi: 10.1038/nature08780 – ident: e_1_2_9_10_1 doi: 10.1038/nm.4393 – ident: e_1_2_9_28_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_9_46_1 doi: 10.1371/journal.pone.0201584 – ident: e_1_2_9_56_1 doi: 10.1073/pnas.1514511113 – ident: e_1_2_9_44_1 doi: 10.1093/bioinformatics/bti270 – ident: e_1_2_9_38_1 doi: 10.1089/rej.2017.1989 – ident: e_1_2_9_13_1 doi: 10.1186/s41232-018-0082-9 – ident: e_1_2_9_2_1 doi: 10.1016/j.cell.2012.08.012 – ident: e_1_2_9_32_1 doi: 10.3803/EnM.2014.29.4.443 – ident: e_1_2_9_29_1 doi: 10.3389/fimmu.2019.01173 – ident: e_1_2_9_25_1 doi: 10.1016/j.bbabio.2015.05.021 – ident: e_1_2_9_30_1 doi: 10.2337/db08-0536 – ident: e_1_2_9_47_1 doi: 10.1038/ijo.2015.242 – ident: e_1_2_9_26_1 doi: 10.2337/db17-0333 – ident: e_1_2_9_12_1 doi: 10.1016/j.mad.2006.11.016 – ident: e_1_2_9_48_1 doi: 10.1186/s13059-018-1406-4 – ident: e_1_2_9_21_1 doi: 10.1530/EJE-12-0466 – ident: e_1_2_9_34_1 doi: 10.1038/nm.4392 – ident: e_1_2_9_23_1 doi: 10.1038/s41598-018-25098-0 – ident: e_1_2_9_20_1 doi: 10.1038/s41467-018-03998-z – ident: e_1_2_9_27_1 doi: 10.1038/srep23992 – ident: e_1_2_9_53_1 doi: 10.3803/EnM.2019.34.1.39 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.0908771107 – ident: e_1_2_9_52_1 doi: 10.1038/nm.4394 – ident: e_1_2_9_54_1 doi: 10.1530/JME-18-0005 – ident: e_1_2_9_7_1 doi: 10.1038/s41598-017-17574-w – ident: e_1_2_9_41_1 doi: 10.1186/gb-2010-11-3-r25 – ident: e_1_2_9_42_1 doi: 10.3389/fcvm.2018.00012 – ident: e_1_2_9_31_1 doi: 10.1038/374647a0 – ident: e_1_2_9_39_1 doi: 10.1093/bioinformatics/btm412 – ident: e_1_2_9_16_1 doi: 10.1038/nature21363 – ident: e_1_2_9_6_1 doi: 10.1007/s00125-019-05082-7 – ident: e_1_2_9_37_1 doi: 10.1038/nature13818 – ident: e_1_2_9_22_1 doi: 10.1016/j.cmet.2017.07.007 – ident: e_1_2_9_49_1 doi: 10.1016/j.cmet.2015.11.011 – ident: e_1_2_9_50_1 doi: 10.1126/scitranslmed.aan8732 – ident: e_1_2_9_15_1 doi: 10.1373/clinchem.2012.190322 – ident: e_1_2_9_36_1 doi: 10.1016/j.cmet.2019.12.005 – ident: e_1_2_9_19_1 doi: 10.3389/fgene.2018.00097 – ident: e_1_2_9_40_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_9_43_1 doi: 10.2202/1544-6115.1027 – ident: e_1_2_9_4_1 doi: 10.1155/2017/6862439 – ident: e_1_2_9_18_1 doi: 10.1371/journal.pgen.1002078 – ident: e_1_2_9_14_1 doi: 10.7554/eLife.34408 – ident: e_1_2_9_55_1 doi: 10.1038/s41419-019-1494-4 – volume: 2 start-page: 98 year: 2011 ident: e_1_2_9_35_1 article-title: Chronic inflammation in cancer development publication-title: Frontiers in Immunology |
SSID | ssj0017903 |
Score | 2.5756962 |
Snippet | Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and... Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13195 |
SubjectTerms | Adipose tissue Age Aging Aging - physiology Animals Body weight Cell activation Cell differentiation Chronic illnesses Cytokines Datasets Deoxyribonucleic acid Diabetes Diabetes mellitus (non-insulin dependent) Disease DNA Female Geriatrics Growth Growth Differentiation Factor 15 - metabolism Helper cells Homeostasis Humans Inflammation Inflammation - metabolism Inflammation - pathology Insulin Insulin resistance Kinases Liver Lymphocytes Lymphocytes T Male Mendelian Randomization Analysis Metabolic disorders Metabolism Mice Mice, Inbred C57BL Mice, Knockout mitochondria Mitochondrial DNA Older people Original Paper Phosphorylation Plasma senescence Serum levels T cell T cells Type 2 diabetes |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9UwFD7MOwS_iO9Wp0QURKHutk3a5oPIddw5RC8iDvatpMmJuzB753YH-s2f4G_0l3hO-sI6dN9KcwhNcpLzpDl5HoBneVnWypo09tLXsfQ4jTV6E3uCss45j8rxfeePi3xvX74_UAcbsOjvwnBaZb8mhoXarSz_I9-mMFRSeKGV9s3x95hVo_h0tZfQMJ20gnsdKMauwCYZqukENt_OF58-D-cKhQ5ayYksZKxpWe4ISzm3x1g8epWQR6pRiLq4UJ-LVBezKM-j2xCedm_A9Q5XilnrCDdhA5tbcLVVmvx5G368o-32-lD0eijrdkREK7cjEiU6woZTYb6aJWFGQchQBAmjP79-h_slhE1FS_y8tIIck3zpWzijFydtoi3SWxFE_6iWxglWur8D-7vzLzt7cSe6EFvmnouLNDe5xwITBl957V2WeJPb2mjPe0GCe5owkZFT9Los6swy2SlazJW22sjsLkyaVYP3Qfg60XWCmKLMJKZZ7b02iUudKx0amUfwou_nynaM5CyMcVT1OxMekyqMSQRPB9vjlofjn1bPebgqnpxUkzXdHQP6Hqa5qmaBH1AplUawNbKkSWXHxf2AV92kPq1SakZO0bzM_lPce2gET4Zirpjz2BpcnbFNqkpdZmxzr3WfoTncs7RflREUI8caDJgJfFzSLA8DIzjDQILSEbwMLnhJD1WznfmH8PTg8jY8hGsp_1oIuY5bMFmfnOEjwl_r-nE3qf4CuiQy0g priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qRfCleDe1yoqCKESazW6SBV8OpbWIig8W-hb2MmsP1FR6TkHf_An-Rn-JM5uL5xQVfAvZyZLszOx8u5n9BuBp1TROeyvzqKLLVcTd3GC0eSQoG0KIqAOfd373vjo8Um-O9fEGvBrPwvT8ENOGG3tGmq_Zwa1brDi59Xj6siAL0lfgKqH6ku1bqg_TP4TapLrIhapVbmgKHshJOY_n97Nr4ejypLwSlS5nTK4i2RSKDm7A1oAhxaxX-k3YwO4WXOurSn67DV9f09J6eSLG2ifLfvRFX1pHFFoM5AwLYT_ZOeFDQShQpHJFP7__SGdJCIeKnuR57gUZIdnN5_Q_Xpz3SbVId0Uq8Ee9dEFwVfs7cHSw_3HvMB8KLOSeeebyWla2ilhjwUCrcjGURbSVd9ZEXvcRtDOEf6zaxWia2pWeiU3RY6WNN1aVd2GzO-vwPojoCuMKRImqVChLF6OxRZAhNAGtqjJ4Po5z6wf2cS6CcdqOqxDWSZt0ksGTSfZLz7nxR6lnrK6WHZF68nY4T0Dvw5RW7SxxAWqtZQY7a5LkQH69eVR4OzjwopX0GRVF7qb8S7NqCOxQ3M_g8dTMHXPOWodnFywjdWOakmXu9eYzfQ6PLK1NVQb1mmFNAsz6vd7SzU8S-zdDPoLNGbxIJviPEWpne_tv09X2_wg_gOuSNxVSluMObC7PL_AhIa-le5Qc7Bdvqy1F priority: 102 providerName: Wiley-Blackwell |
Title | Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13195 https://www.ncbi.nlm.nih.gov/pubmed/32691494 https://www.proquest.com/docview/2434684783 https://www.proquest.com/docview/2448238212 https://www.proquest.com/docview/2425898312 https://pubmed.ncbi.nlm.nih.gov/PMC7431835 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3batwwEB1yodCX0nvcpotKC6UFh1iWbOuhlG26aXoLIXQhb0bWpVnYOslmA8lbP6Hf2C_pjGxv45DmZfGuxmKlGVlH1ugcgJdZUVTSaB574atYeLcZK-d17BHKWmu9k5bOO3_bzXbG4vOBPFiCTr-z7cDTa5d2pCc1nk03zk8u3uGAf9tl5WjjphsJxpJchtWwT0QpfOLfbkKugkJyInIRK3wYtzSl_Xt7E9PVx_Ol-elq7uRlTBsmpe27cKdFk2zYuP8eLLn6Ptxq9CUvHsD5R1xkzw9Zp4Iyb_zAGpEdlkjW0jScMv1DTxApMsSDLAgX_fn1O5wqQUTKGrrniWHYQRhBP8POPJs16bUOf2VB6g9rqS0jffuHMN4efd_aiVuphdgQ41yc80xn3uUuIciVVd6mideZqbTytAJEkKcQCWmx6bwq8io1RHHqjMukMkqL9BGs1Ee1WwPmq0RViXPciVQ4nlbeK51Ybm1hnRZZBK-7fi5Ny0NOchjTsluPkE_K4JMIXixsjxv2jWutXpG7SgoSrMno9mQB_h8ityqHgRVQSskjWO9Z4lAy_eLO4WUXiSXHZmQ4hxfpf4pFgbAHEUAEzxfFVDFlr9Xu6IxsuCxUkZLN4yZ8Fs2hnsVVqogg7wXWwoD4v_sl9eQw8IAT-EMAHcGbEII39FA53Bp9DVdPbm7DU7jN6YVCyHBch5X57Mw9Q9Q1rwawzMXeAFbfj3b39vHbh09fBuENBn3u80EYcn8BgV4zpA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgBQlQKNI6TTQ4VWsqWLd1WCLVSb8Gxx3Slki3draA3HoEn4mF4EmacZNWtoLfeonhkxfaM5xtn_A3AszTLysRoGTrlylA5XAlzdDp0BGWttQ4Ty_edt7bTwa76sJfsLcDv9i4Mp1W2e6LfqO3Y8Bn5a3JDGbkX2mnfHH4LuWoU_11tS2joprSCXfUUY83Fjk08-U4h3GR14x2t93Mp1_s7a4OwqTIQGiZbC7sy1anDLkaMNtLS2ThyOjWlzh0HP4RvcgIBWq2gowC9jA2ze6LBNMlNrlVM_V6CRcUHKB1YfNvf_vhp9h-jm_vazJHqqjAnN9AQpHIukTZ48CoiC0jmXOJZx3DKM57N2jyNpr07XL8O1xocK3q14t2ABaxuwuW6suXJLfjxnsL76b5o669Maw0QdXkfESWiIYiYCP1FjwijCkKiwpdM-vPzl7_PQlhY1ETTIyPIEEh3v_qcAHFUJ_YivRW-yCD1UllBcngbdi9k-u9ApxpXeA-EK6O8jBAlqlihjEvnch1ZaW1mUas0gJftPBemYUDnQhwHRRsJ8ZoUfk0CeDqTPax5P_4p9YKXq-DNgHoyurnTQN_DtFpFz_MRJkkiA1iakyQjNvPN7YIXzSYyKSQNIyX0kMX_aW4tIoAns2bumPPmKhwfs4xMsjyLWeZurT6z4fDMUnysAujOKdZMgJnH51uq0b5nIGfYSdA9gGWvgufMUNFb6w_90_3zx_AYrgx2tobFcGN78wFclXys4fMsl6AzPTrGh4T9puWjxsAEfL5om_4LmINuyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB9qi-KL-N9o1RUFUUhpkt0kC74ctWfVWnzwpPgSNruz9qCmpb2CvvkR_Ix-Emc2f7wUFXw7spPlsjOz85tk9jcAT_KyrJU1aeylr2PpcTPW6E3sCco65zwqx-ed3-3lOzP5Zl_tr8CL_ixMyw8xvHBjzwj7NTv4sfNLTm4sHm4kZEHqAqxRHJeUeq1NPs4-zYavCIUOnZETWchY0ybc0ZNyJc_vu0cB6fy2vBSXztdMLmPZEIymV-FKhyLFpFX7NVjB5jpcbPtKfrsBX19Rcr04EH33k0W7_qJtriMSJTp6hlNhPps5IURBOFCEhkU_v_8Ip0kIiYqW5nluBZkhWc6X8EVenLRltUhXRWjxR7M0TnBf-5swm25_2NqJuxYLsWWmubhIc5N7LDBhqJXX3mWJN7mtjfac-RG404SAjNxEr8uizixTm6LFXGmrjcxuwWpz1OAdEL5OdJ0gpigziWlWe69N4lLnSodG5hE869e5sh3_OLfBOKz6PIR1UgWdRPB4kD1uWTf-KPWU1VWxK9JM1nQnCuj_MKlVNQlsgEqpNIL1kSS5kB0P9wqvOhc-rVJ6jJxid5n9ZViWBHco8kfwaBjmiblqrcGjM5ZJVanLjGVut-YzPA6vLGWnMoJiZFiDAPN-j0ea-UHg_2bQR8A5gufBBP-xQtVka3s3_Lr7P8IP4dL7l9Nq9_Xe23twOeU3DKHkcR1WFydneJ9g2KJ-0HnbL2J-Mas |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+differentiation+factor+15+protects+against+the+aging%E2%80%90mediated+systemic+inflammatory+response+in+humans+and+mice&rft.jtitle=Aging+cell&rft.au=Ji+Sun+Moon&rft.au=Goeminne%2C+Ludger+J+E&rft.au=Kim%2C+Jung+Tae&rft.au=Jing+Wen+Tian&rft.date=2020-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=19&rft.issue=8&rft_id=info:doi/10.1111%2Facel.13195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |