Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice

Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunct...

Full description

Saved in:
Bibliographic Details
Published inAging cell Vol. 19; no. 8; pp. e13195 - n/a
Main Authors Moon, Ji Sun, Goeminne, Ludger J. E., Kim, Jung Tae, Tian, Jing Wen, Kim, Seok‐Hwan, Nga, Ha Thi, Kang, Seul Gi, Kang, Baeki E., Byun, Jin‐Seok, Lee, Young‐Sun, Jeon, Jae‐Han, Shong, Minho, Auwerx, Johan, Ryu, Dongryeol, Yi, Hyon‐Seung
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.08.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1474-9718
1474-9726
1474-9726
DOI10.1111/acel.13195

Cover

Abstract Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells.
AbstractList Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15 ‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells.
Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice. Aging‐induced GDF15 production is observed in humans and mice, which is positively correlated with systemic inflammation and mitochondrial stress. GDF15 deficiency promotes glucose intolerance as well as hepatic and adipose inflammation in old mice. GDF15 contributes to regulatory T cells‐mediated suppression of conventional T cell activation, but senescent T cells were resistant to regulatory T cells‐mediated suppression compared to conventional T cells.
Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.
Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress‐induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro‐inflammatory cytokines in elderly subjects. Circulating levels of cell‐free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20‐month‐old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15 ‐deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL‐17 production in Th17 cells, GDF15 contributes to regulatory T‐cell‐mediated suppression of conventional T‐cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging‐mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.
Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress-induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro-inflammatory cytokines in elderly subjects. Circulating levels of cell-free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20-month-old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15-deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL-17 production in Th17 cells, GDF15 contributes to regulatory T-cell-mediated suppression of conventional T-cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging-mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress-induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro-inflammatory cytokines in elderly subjects. Circulating levels of cell-free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20-month-old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15-deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL-17 production in Th17 cells, GDF15 contributes to regulatory T-cell-mediated suppression of conventional T-cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging-mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.
Audience Academic
Author Byun, Jin‐Seok
Lee, Young‐Sun
Goeminne, Ludger J. E.
Kim, Seok‐Hwan
Shong, Minho
Jeon, Jae‐Han
Yi, Hyon‐Seung
Auwerx, Johan
Nga, Ha Thi
Ryu, Dongryeol
Moon, Ji Sun
Kim, Jung Tae
Tian, Jing Wen
Kang, Baeki E.
Kang, Seul Gi
AuthorAffiliation 9 Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
3 Department of Medical Science Chungnam National University School of Medicine Daejeon Republic of Korea
1 Research Center for Endocrine and Metabolic Diseases Chungnam National University Hospital Chungnam National University School of Medicine Daejeon Republic of Korea
8 Department of Internal Medicine School of Medicine Kyungpook National University Daegu Korea
10 Samsung Biomedical Research Institute Samsung Medical Center Seoul Republic of Korea
2 Laboratory of Integrative Systems Physiology École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
4 Department of Surgery Chungnam National University School of Medicine Daejeon Republic of Korea
7 Department of Internal Medicine Korea University College of Medicine Seoul Republic of Korea
6 Department of Oral Medicine School of Dentistry Kyungpook National University Daegu Republic of Korea
5 Department of Molecular Cell Biology
AuthorAffiliation_xml – name: 5 Department of Molecular Cell Biology Sungkyunkwan University School of Medicine Suwon Republic of Korea
– name: 7 Department of Internal Medicine Korea University College of Medicine Seoul Republic of Korea
– name: 2 Laboratory of Integrative Systems Physiology École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
– name: 6 Department of Oral Medicine School of Dentistry Kyungpook National University Daegu Republic of Korea
– name: 4 Department of Surgery Chungnam National University School of Medicine Daejeon Republic of Korea
– name: 3 Department of Medical Science Chungnam National University School of Medicine Daejeon Republic of Korea
– name: 9 Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
– name: 1 Research Center for Endocrine and Metabolic Diseases Chungnam National University Hospital Chungnam National University School of Medicine Daejeon Republic of Korea
– name: 8 Department of Internal Medicine School of Medicine Kyungpook National University Daegu Korea
– name: 10 Samsung Biomedical Research Institute Samsung Medical Center Seoul Republic of Korea
Author_xml – sequence: 1
  givenname: Ji Sun
  surname: Moon
  fullname: Moon, Ji Sun
  organization: Chungnam National University School of Medicine
– sequence: 2
  givenname: Ludger J. E.
  surname: Goeminne
  fullname: Goeminne, Ludger J. E.
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Jung Tae
  surname: Kim
  fullname: Kim, Jung Tae
  organization: Chungnam National University School of Medicine
– sequence: 4
  givenname: Jing Wen
  surname: Tian
  fullname: Tian, Jing Wen
  organization: Chungnam National University School of Medicine
– sequence: 5
  givenname: Seok‐Hwan
  surname: Kim
  fullname: Kim, Seok‐Hwan
  organization: Chungnam National University School of Medicine
– sequence: 6
  givenname: Ha Thi
  surname: Nga
  fullname: Nga, Ha Thi
  organization: Chungnam National University School of Medicine
– sequence: 7
  givenname: Seul Gi
  surname: Kang
  fullname: Kang, Seul Gi
  organization: Chungnam National University School of Medicine
– sequence: 8
  givenname: Baeki E.
  surname: Kang
  fullname: Kang, Baeki E.
  organization: Sungkyunkwan University School of Medicine
– sequence: 9
  givenname: Jin‐Seok
  surname: Byun
  fullname: Byun, Jin‐Seok
  organization: Kyungpook National University
– sequence: 10
  givenname: Young‐Sun
  surname: Lee
  fullname: Lee, Young‐Sun
  organization: Korea University College of Medicine
– sequence: 11
  givenname: Jae‐Han
  surname: Jeon
  fullname: Jeon, Jae‐Han
  organization: Kyungpook National University
– sequence: 12
  givenname: Minho
  surname: Shong
  fullname: Shong, Minho
  organization: Chungnam National University School of Medicine
– sequence: 13
  givenname: Johan
  surname: Auwerx
  fullname: Auwerx, Johan
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 14
  givenname: Dongryeol
  orcidid: 0000-0001-5905-6760
  surname: Ryu
  fullname: Ryu, Dongryeol
  email: jmpbooks@cnu.ac.kr, freefall@skku.edu
  organization: Samsung Medical Center
– sequence: 15
  givenname: Hyon‐Seung
  orcidid: 0000-0002-3767-1954
  surname: Yi
  fullname: Yi, Hyon‐Seung
  email: jmpbooks@cnu.ac.kr, freefall@skku.edu
  organization: Chungnam National University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32691494$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9u0zAUxiM0xP7ADQ-ALHGDkFri2EnsG6SqGgOpEjdwbbnOcespsYvtMnrHI-wZ9yScrKOwaYLkIo7z-z6fc_KdFkc-eCiKl7ScUrzeaQP9lDIq6yfFCeUtn8i2ao4OayqOi9OULsuStrJkz4pjVjWScslPih8XMVzlNemctRDBZ6ezC55YbXKIhNZkE0MGkxPRK-18yiSvAdfOr25-Xg_QoQA6knYpw-AMcd72ehg0qnckQtoEnwB3yXo7aI8uviPIwfPiqdV9ghd3z7Pi64fzL_OPk8Xni0_z2WJimlLWE2xENxZaoPhGm6XtGLW6MUstLS8lHzupaqp5CVaKdskMZ4KBgaaWRmrOzor3e9_NdonVGmwx6l5toht03Kmgnbr_xbu1WoXvquWMClajwZs7gxi-bSFlNbiEE--1h7BNquJVLaRgtEL09QP0Mmyjx_aQ4qJiovofxXgjeCvYH2qle1A41YDVmfFoNWvLVlR1XY9e00covLvxZ2BMrMP9e4JXf4_jMIffiUDg7R4wMaQUwR4QWqoxbmqMm7qNG8LlA9i4fBsgLMP1j0voXnKFle3-Ya5m8_PFXvMLqh_nxw
CitedBy_id crossref_primary_10_1007_s00520_023_07771_x
crossref_primary_10_1016_j_cmet_2024_10_005
crossref_primary_10_1016_j_radonc_2022_02_039
crossref_primary_10_1159_000513600
crossref_primary_10_3390_biom12101456
crossref_primary_10_1016_j_arr_2022_101569
crossref_primary_10_1038_s41574_021_00529_7
crossref_primary_10_3389_fragi_2022_837575
crossref_primary_10_1002_agm2_12128
crossref_primary_10_3389_fnagi_2022_1058665
crossref_primary_10_3390_jcm14061876
crossref_primary_10_1007_s11357_020_00287_w
crossref_primary_10_1016_j_arr_2025_102694
crossref_primary_10_3389_fgene_2021_686320
crossref_primary_10_3390_molecules28145525
crossref_primary_10_1016_j_abb_2020_108668
crossref_primary_10_3390_biomedicines11061572
crossref_primary_10_1080_13510002_2024_2428152
crossref_primary_10_3390_ijms23137043
crossref_primary_10_1159_000538313
crossref_primary_10_3803_EnM_2021_956
crossref_primary_10_20517_jca_2024_15
crossref_primary_10_4049_jimmunol_2200641
crossref_primary_10_1111_bcp_14808
crossref_primary_10_1016_j_biopha_2024_116809
crossref_primary_10_1007_s10522_024_10164_0
crossref_primary_10_3390_v16121902
crossref_primary_10_3390_nu16050734
crossref_primary_10_1210_endrev_bnad028
crossref_primary_10_1038_s12276_023_01046_5
crossref_primary_10_3390_ijms25042104
crossref_primary_10_1007_s00018_020_03748_9
crossref_primary_10_1038_s42003_021_02289_6
crossref_primary_10_3803_EnM_2020_405
crossref_primary_10_1002_med_22102
crossref_primary_10_1016_j_molmet_2020_101117
crossref_primary_10_1016_j_hrthm_2024_11_017
crossref_primary_10_1016_j_metabol_2022_155237
crossref_primary_10_1038_s41598_025_92572_x
crossref_primary_10_1146_annurev_biochem_032620_104401
crossref_primary_10_14814_phy2_15293
crossref_primary_10_3389_fimmu_2022_942796
crossref_primary_10_4093_dmj_2021_0272
crossref_primary_10_1002_jcsm_13163
crossref_primary_10_1016_j_ejim_2023_01_026
crossref_primary_10_1080_14728222_2022_2029410
crossref_primary_10_1111_acel_13770
crossref_primary_10_3390_cells10081901
crossref_primary_10_3389_fendo_2023_1185221
crossref_primary_10_1016_j_tem_2022_08_004
crossref_primary_10_1016_j_ajpath_2025_01_007
crossref_primary_10_1016_j_jare_2024_11_017
crossref_primary_10_1073_pnas_2316161121
crossref_primary_10_1161_JAHA_122_026942
crossref_primary_10_1186_s12967_024_05801_8
crossref_primary_10_1007_s00432_022_04500_5
crossref_primary_10_1038_s41590_021_00927_z
crossref_primary_10_3389_fimmu_2024_1514518
crossref_primary_10_1002_jcsm_12823
crossref_primary_10_4093_dmj_2022_0089
crossref_primary_10_1111_jcmm_17725
crossref_primary_10_1016_j_brainres_2025_149591
crossref_primary_10_1080_1744666X_2022_2021879
crossref_primary_10_1159_000536150
crossref_primary_10_1186_s12967_022_03534_0
crossref_primary_10_1186_s12979_023_00339_7
crossref_primary_10_1093_gerona_glab011
crossref_primary_10_1016_j_artere_2024_03_003
crossref_primary_10_1016_j_arteri_2024_02_002
crossref_primary_10_1016_j_cmet_2022_10_008
crossref_primary_10_1016_j_bbrc_2024_150305
crossref_primary_10_3390_ijms232113180
crossref_primary_10_1210_endrev_bnad004
crossref_primary_10_3389_fmed_2020_594137
crossref_primary_10_1038_s12276_023_01047_4
crossref_primary_10_1007_s11357_022_00554_y
crossref_primary_10_1111_eci_14290
crossref_primary_10_3390_ijms25137313
crossref_primary_10_1093_gerona_glac020
Cites_doi 10.3390/jcm6070068
10.4049/jimmunol.1000021
10.1083/jcb.201607110
10.1126/science.1262110
10.1016/j.molmed.2007.01.003
10.1161/ATVBAHA.108.165100
10.1093/bioinformatics/19.2.185
10.1038/s41586-018-0590-4
10.1038/nature08780
10.1038/nm.4393
10.1186/s13059-014-0550-8
10.1371/journal.pone.0201584
10.1073/pnas.1514511113
10.1093/bioinformatics/bti270
10.1089/rej.2017.1989
10.1186/s41232-018-0082-9
10.1016/j.cell.2012.08.012
10.3803/EnM.2014.29.4.443
10.3389/fimmu.2019.01173
10.1016/j.bbabio.2015.05.021
10.2337/db08-0536
10.1038/ijo.2015.242
10.2337/db17-0333
10.1016/j.mad.2006.11.016
10.1186/s13059-018-1406-4
10.1530/EJE-12-0466
10.1038/nm.4392
10.1038/s41598-018-25098-0
10.1038/s41467-018-03998-z
10.1038/srep23992
10.3803/EnM.2019.34.1.39
10.1073/pnas.0908771107
10.1038/nm.4394
10.1530/JME-18-0005
10.1038/s41598-017-17574-w
10.1186/gb-2010-11-3-r25
10.3389/fcvm.2018.00012
10.1038/374647a0
10.1093/bioinformatics/btm412
10.1038/nature21363
10.1007/s00125-019-05082-7
10.1038/nature13818
10.1016/j.cmet.2017.07.007
10.1016/j.cmet.2015.11.011
10.1126/scitranslmed.aan8732
10.1373/clinchem.2012.190322
10.1016/j.cmet.2019.12.005
10.3389/fgene.2018.00097
10.1093/bioinformatics/btp616
10.2202/1544-6115.1027
10.1155/2017/6862439
10.1371/journal.pgen.1002078
10.7554/eLife.34408
10.1038/s41419-019-1494-4
ContentType Journal Article
Copyright 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd
2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright John Wiley & Sons, Inc. Aug 2020
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd
– notice: 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright John Wiley & Sons, Inc. Aug 2020
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/acel.13195
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Calcium & Calcified Tissue Abstracts
CrossRef
MEDLINE

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate MOON et al
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC7431835
A707825552
32691494
10_1111_acel_13195
ACEL13195
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2017K1A1A2013124; 2017R1E1A1A01075126; 2018R1C1B6004439; 2019M3E5D1A02068575
– fundername: Gilead Sciences Asia Ltd
– fundername: Chungnam National University Hospital
– fundername: NIMH NIH HHS
  grantid: R01 MH101822
– fundername: NIMH NIH HHS
  grantid: R01 MH101810
– fundername: NIDA NIH HHS
  grantid: R01 DA006227
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NIMH NIH HHS
  grantid: R01 MH101819
– fundername: NIMH NIH HHS
  grantid: R01 MH090936
– fundername: NIMH NIH HHS
  grantid: R01 MH101820
– fundername: NIMH NIH HHS
  grantid: R01 MH101814
– fundername: NIMH NIH HHS
  grantid: R01 MH101782
– fundername: NIMH NIH HHS
  grantid: R01 MH090948
– fundername: ;
– fundername: ;
  grantid: 2017K1A1A2013124; 2017R1E1A1A01075126; 2018R1C1B6004439; 2019M3E5D1A02068575
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
PMFND
7QP
7TK
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6095-726a6fe7e109516bfd31fa6cba9f40943269251a40ef987b3c4383ece659c9a43
IEDL.DBID M48
ISSN 1474-9718
1474-9726
IngestDate Thu Aug 21 18:07:17 EDT 2025
Fri Sep 05 12:45:53 EDT 2025
Wed Aug 13 06:06:02 EDT 2025
Wed Aug 13 08:00:04 EDT 2025
Tue Jun 17 21:36:12 EDT 2025
Tue Jun 10 20:43:01 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
Tue Jul 01 01:49:16 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Wed Jan 22 16:37:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords senescence
aging
inflammation
T cell
mitochondria
Language English
License Attribution
2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6095-726a6fe7e109516bfd31fa6cba9f40943269251a40ef987b3c4383ece659c9a43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5905-6760
0000-0002-3767-1954
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13195
PMID 32691494
PQID 2448238212
PQPubID 1036381
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7431835
proquest_miscellaneous_2425898312
proquest_journals_2448238212
proquest_journals_2434684783
gale_infotracmisc_A707825552
gale_infotracacademiconefile_A707825552
pubmed_primary_32691494
crossref_primary_10_1111_acel_13195
crossref_citationtrail_10_1111_acel_13195
wiley_primary_10_1111_acel_13195_ACEL13195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 6
2010; 11
2017; 7
2018; 562
2012; 167
2010; 107
2020; 63
2019; 10
2010; 464
2004; 3
2010; 185
2005; 21
2003; 19
2014; 29
2015; 348
2012; 58
1995; 374
2017; 9
2018; 7
2018; 9
2009; 58
2018; 8
2010; 26
2018; 5
2008; 28
2016; 113
2014; 15
2016; 40
2007; 23
2018; 38
2011; 2
2014; 516
2007; 128
2017; 2017
2017; 26
2017; 66
2019; 34
2017; 23
2007
2018; 61
2018; 21
2007; 13
2011; 7
2017; 216
2012; 150
2018; 19
2016; 6
2020; 31
2015; 1847
2017; 542
2016; 23
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Fox J. G. (e_1_2_9_11_1) 2007
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Multhoff G. (e_1_2_9_35_1) 2011; 2
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 150
  start-page: 1287
  issue: 6
  year: 2012
  end-page: 1299
  article-title: Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits
  publication-title: Cell
– volume: 23
  start-page: 1158
  issue: 10
  year: 2017
  end-page: 1166
  article-title: GFRAL is the receptor for GDF15 and is required for the anti‐obesity effects of the ligand
  publication-title: Nature Medicine
– volume: 374
  start-page: 647
  issue: 6523
  year: 1995
  end-page: 650
  article-title: Activation of microglial cells by beta‐amyloid protein and interferon‐gamma
  publication-title: Nature
– volume: 21
  start-page: 350
  issue: 4
  year: 2018
  end-page: 359
  article-title: Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders
  publication-title: Rejuvenation Research
– volume: 10
  start-page: 1173
  year: 2019
  article-title: Adipose tissue‐resident immune cells in obesity and type 2 diabetes
  publication-title: Frontiers in Immunology
– volume: 516
  start-page: 414
  issue: 7531
  year: 2014
  end-page: 417
  article-title: Mitochondrial UPR‐regulated innate immunity provides resistance to pathogen infection
  publication-title: Nature
– volume: 63
  start-page: 837
  issue: 4
  year: 2020
  end-page: 852
  article-title: An adipocyte‐specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet‐induced obesity in mouse models
  publication-title: Diabetologia
– volume: 13
  issue: 8
  year: 2018
  article-title: GDF15 deficiency promotes high fat diet‐induced obesity in mice
  publication-title: PLoS One
– volume: 10
  start-page: 249
  issue: 3
  year: 2019
  article-title: T‐cell senescence contributes to abnormal glucose homeostasis in humans and mice
  publication-title: Cell Death & Disease
– volume: 29
  start-page: 443
  issue: 4
  year: 2014
  end-page: 449
  article-title: Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients
  publication-title: Endocrinology and Metabolism (Seoul)
– volume: 23
  start-page: 2700
  issue: 20
  year: 2007
  end-page: 2707
  article-title: A comparison of background correction methods for two‐colour microarrays
  publication-title: Bioinformatics
– volume: 167
  start-page: 671
  issue: 5
  year: 2012
  end-page: 678
  article-title: Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial
  publication-title: European Journal of Endocrinology
– volume: 9
  issue: 412
  year: 2017
  article-title: Long‐acting MIC‐1/GDF15 molecules to treat obesity: Evidence from mice to monkeys
  publication-title: Science Translational Medicine
– volume: 11
  start-page: R25
  issue: 3
  year: 2010
  article-title: A scaling normalization method for differential expression analysis of RNA‐seq data
  publication-title: Genome Biology
– volume: 7
  start-page: 17238
  issue: 1
  year: 2017
  article-title: GDF15 deficiency exacerbates chronic alcohol‐ and carbon tetrachloride‐induced liver injury
  publication-title: Scientific Reports
– volume: 562
  start-page: 367
  issue: 7727
  year: 2018
  end-page: 372
  article-title: Single‐cell transcriptomics of 20 mouse organs creates a Tabula Muris
  publication-title: Nature
– volume: 23
  start-page: 1215
  issue: 10
  year: 2017
  end-page: 1219
  article-title: The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL
  publication-title: Nature Medicine
– volume: 38
  start-page: 24
  year: 2018
  article-title: The impact of senescence‐associated T cells on immunosenescence and age‐related disorders
  publication-title: Inflammation and Regeneration
– volume: 9
  start-page: 1551
  issue: 1
  year: 2018
  article-title: Reduced oxidative capacity in macrophages results in systemic insulin resistance
  publication-title: Nature Communications
– volume: 58
  start-page: 385
  issue: 2
  year: 2009
  end-page: 393
  article-title: Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole‐body insulin action in healthy Pima Indians
  publication-title: Diabetes
– volume: 40
  start-page: 193
  issue: 2
  year: 2016
  end-page: 197
  article-title: Anorexia‐cachexia and obesity treatment may be two sides of the same coin: role of the TGF‐b superfamily cytokine MIC‐1/GDF15
  publication-title: International Journal of Obesity
– volume: 464
  start-page: 104
  issue: 7285
  year: 2010
  end-page: 107
  article-title: Circulating mitochondrial DAMPs cause inflammatory responses to injury
  publication-title: Nature
– volume: 23
  start-page: 1150
  issue: 10
  year: 2017
  end-page: 1157
  article-title: GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates
  publication-title: Nature Medicine
– volume: 107
  start-page: 9765
  issue: 21
  year: 2010
  end-page: 9770
  article-title: Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 113
  start-page: 1026
  issue: 4
  year: 2016
  end-page: 1031
  article-title: Prolongevity hormone FGF21 protects against immune senescence by delaying age‐related thymic involution
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 419
  issue: 2
  year: 2017
  end-page: 428
  article-title: mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression
  publication-title: Cell Metabolism
– volume: 2
  start-page: 98
  year: 2011
  article-title: Chronic inflammation in cancer development
  publication-title: Frontiers in Immunology
– volume: 61
  start-page: R91
  issue: 3
  year: 2018
  end-page: R105
  article-title: The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases
  publication-title: Journal of Molecular Endocrinology
– volume: 19
  start-page: 24
  issue: 1
  year: 2018
  article-title: Observation weights unlock bulk RNA‐seq tools for zero inflation and single‐cell applications
  publication-title: Genome Biology
– volume: 66
  start-page: 2774
  issue: 11
  year: 2017
  end-page: 2788
  article-title: Growth differentiation factor 15 mediates systemic glucose regulatory action of T‐helper type 2 cytokines
  publication-title: Diabetes
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biology
– volume: 216
  start-page: 149
  issue: 1
  year: 2017
  end-page: 165
  article-title: Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis
  publication-title: Journal of Cell Biology
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  end-page: 140
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 185
  start-page: 1836
  issue: 3
  year: 2010
  end-page: 1845
  article-title: Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance
  publication-title: The Journal of Immunology
– volume: 348
  start-page: 648
  issue: 6235
  year: 2015
  end-page: 660
  article-title: Human genomics. The Genotype‐Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans
  publication-title: Science
– volume: 58
  start-page: 1582
  issue: 11
  year: 2012
  end-page: 1591
  article-title: Clinical and genetic correlates of growth differentiation factor 15 in the community
  publication-title: Clinical Chemistry
– volume: 6
  start-page: 23992
  year: 2016
  article-title: Cell‐free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection
  publication-title: Scientific Reports
– volume: 7
  issue: 5
  year: 2011
  article-title: Identification, replication, and functional fine‐mapping of expression quantitative trait loci in primary human liver tissue
  publication-title: PLoS Genetics
– volume: 28
  start-page: 1304
  issue: 7
  year: 2008
  end-page: 1310
  article-title: T‐lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity‐mediated insulin resistance
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 6
  start-page: 68
  issue: 7
  year: 2017
  article-title: Pathogenic role of IL‐17‐producing immune cells in obesity, and related inflammatory diseases
  publication-title: Journal of Clinical Medicine
– year: 2007
– volume: 1847
  start-page: 1387
  issue: 11
  year: 2015
  end-page: 1400
  article-title: The role of mitochondrial dysfunction in age‐related diseases
  publication-title: Biochimica Et Biophysica Acta
– volume: 2017
  start-page: 6862439
  year: 2017
  article-title: Hepatic immune microenvironment in alcoholic and nonalcoholic liver disease
  publication-title: BioMed Research International
– volume: 34
  start-page: 39
  issue: 1
  year: 2019
  end-page: 46
  article-title: Implications of Mitochondrial Unfolded Protein Response and Mitokines: A Perspective on Fatty Liver Diseases
  publication-title: Endocrinology and Metabolism
– volume: 21
  start-page: 2067
  issue: 9
  year: 2005
  end-page: 2075
  article-title: Use of within‐array replicate spots for assessing differential expression in microarray experiments
  publication-title: Bioinformatics
– volume: 7
  year: 2018
  article-title: The MR‐Base platform supports systematic causal inference across the human phenome
  publication-title: Elife
– volume: 9
  start-page: 97
  year: 2018
  article-title: A meta‐analysis of genome‐wide association studies of growth differentiation factor‐15 concentration in blood
  publication-title: Frontiers in Genetics
– volume: 3
  start-page: 1
  year: 2004
  end-page: 25
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Statistical Applications in Genetics and Molecular Biology
– volume: 13
  start-page: 108
  issue: 3
  year: 2007
  end-page: 116
  article-title: Natural regulatory T cells: mechanisms of suppression
  publication-title: Trends in Molecular Medicine
– volume: 5
  start-page: 12
  year: 2018
  article-title: Source of chronic inflammation in aging
  publication-title: Frontiers in Cardiovascular Medicine
– volume: 8
  start-page: 6789
  issue: 1
  year: 2018
  article-title: Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice
  publication-title: Scientific Reports
– volume: 31
  start-page: 363
  issue: 2
  year: 2020
  end-page: 374
  article-title: Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention
  publication-title: Cell Metabolism
– volume: 128
  start-page: 92
  issue: 1
  year: 2007
  end-page: 105
  article-title: Inflammaging and anti‐inflammaging: a systemic perspective on aging and longevity emerged from studies in humans
  publication-title: Mechanisms of Ageing and Development
– volume: 542
  start-page: 177
  issue: 7640
  year: 2017
  end-page: 185
  article-title: Inflammation, metaflammation and immunometabolic disorders
  publication-title: Nature
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  end-page: 193
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
– volume: 23
  start-page: 303
  issue: 2
  year: 2016
  end-page: 314
  article-title: Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype
  publication-title: Cell Metabolism
– ident: e_1_2_9_5_1
  doi: 10.3390/jcm6070068
– ident: e_1_2_9_51_1
  doi: 10.4049/jimmunol.1000021
– ident: e_1_2_9_8_1
  doi: 10.1083/jcb.201607110
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1262110
– volume-title: The Mouse in Biomedical Research
  year: 2007
  ident: e_1_2_9_11_1
– ident: e_1_2_9_33_1
  doi: 10.1016/j.molmed.2007.01.003
– ident: e_1_2_9_24_1
  doi: 10.1161/ATVBAHA.108.165100
– ident: e_1_2_9_3_1
  doi: 10.1093/bioinformatics/19.2.185
– ident: e_1_2_9_45_1
  doi: 10.1038/s41586-018-0590-4
– ident: e_1_2_9_57_1
  doi: 10.1038/nature08780
– ident: e_1_2_9_10_1
  doi: 10.1038/nm.4393
– ident: e_1_2_9_28_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pone.0201584
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.1514511113
– ident: e_1_2_9_44_1
  doi: 10.1093/bioinformatics/bti270
– ident: e_1_2_9_38_1
  doi: 10.1089/rej.2017.1989
– ident: e_1_2_9_13_1
  doi: 10.1186/s41232-018-0082-9
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cell.2012.08.012
– ident: e_1_2_9_32_1
  doi: 10.3803/EnM.2014.29.4.443
– ident: e_1_2_9_29_1
  doi: 10.3389/fimmu.2019.01173
– ident: e_1_2_9_25_1
  doi: 10.1016/j.bbabio.2015.05.021
– ident: e_1_2_9_30_1
  doi: 10.2337/db08-0536
– ident: e_1_2_9_47_1
  doi: 10.1038/ijo.2015.242
– ident: e_1_2_9_26_1
  doi: 10.2337/db17-0333
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mad.2006.11.016
– ident: e_1_2_9_48_1
  doi: 10.1186/s13059-018-1406-4
– ident: e_1_2_9_21_1
  doi: 10.1530/EJE-12-0466
– ident: e_1_2_9_34_1
  doi: 10.1038/nm.4392
– ident: e_1_2_9_23_1
  doi: 10.1038/s41598-018-25098-0
– ident: e_1_2_9_20_1
  doi: 10.1038/s41467-018-03998-z
– ident: e_1_2_9_27_1
  doi: 10.1038/srep23992
– ident: e_1_2_9_53_1
  doi: 10.3803/EnM.2019.34.1.39
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.0908771107
– ident: e_1_2_9_52_1
  doi: 10.1038/nm.4394
– ident: e_1_2_9_54_1
  doi: 10.1530/JME-18-0005
– ident: e_1_2_9_7_1
  doi: 10.1038/s41598-017-17574-w
– ident: e_1_2_9_41_1
  doi: 10.1186/gb-2010-11-3-r25
– ident: e_1_2_9_42_1
  doi: 10.3389/fcvm.2018.00012
– ident: e_1_2_9_31_1
  doi: 10.1038/374647a0
– ident: e_1_2_9_39_1
  doi: 10.1093/bioinformatics/btm412
– ident: e_1_2_9_16_1
  doi: 10.1038/nature21363
– ident: e_1_2_9_6_1
  doi: 10.1007/s00125-019-05082-7
– ident: e_1_2_9_37_1
  doi: 10.1038/nature13818
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cmet.2017.07.007
– ident: e_1_2_9_49_1
  doi: 10.1016/j.cmet.2015.11.011
– ident: e_1_2_9_50_1
  doi: 10.1126/scitranslmed.aan8732
– ident: e_1_2_9_15_1
  doi: 10.1373/clinchem.2012.190322
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cmet.2019.12.005
– ident: e_1_2_9_19_1
  doi: 10.3389/fgene.2018.00097
– ident: e_1_2_9_40_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_9_43_1
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_9_4_1
  doi: 10.1155/2017/6862439
– ident: e_1_2_9_18_1
  doi: 10.1371/journal.pgen.1002078
– ident: e_1_2_9_14_1
  doi: 10.7554/eLife.34408
– ident: e_1_2_9_55_1
  doi: 10.1038/s41419-019-1494-4
– volume: 2
  start-page: 98
  year: 2011
  ident: e_1_2_9_35_1
  article-title: Chronic inflammation in cancer development
  publication-title: Frontiers in Immunology
SSID ssj0017903
Score 2.5756962
Snippet Mitochondrial dysfunction is associated with aging‐mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and...
Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13195
SubjectTerms Adipose tissue
Age
Aging
Aging - physiology
Animals
Body weight
Cell activation
Cell differentiation
Chronic illnesses
Cytokines
Datasets
Deoxyribonucleic acid
Diabetes
Diabetes mellitus (non-insulin dependent)
Disease
DNA
Female
Geriatrics
Growth
Growth Differentiation Factor 15 - metabolism
Helper cells
Homeostasis
Humans
Inflammation
Inflammation - metabolism
Inflammation - pathology
Insulin
Insulin resistance
Kinases
Liver
Lymphocytes
Lymphocytes T
Male
Mendelian Randomization Analysis
Metabolic disorders
Metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondrial DNA
Older people
Original Paper
Phosphorylation
Plasma
senescence
Serum levels
T cell
T cells
Type 2 diabetes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9UwFD7MOwS_iO9Wp0QURKHutk3a5oPIddw5RC8iDvatpMmJuzB753YH-s2f4G_0l3hO-sI6dN9KcwhNcpLzpDl5HoBneVnWypo09tLXsfQ4jTV6E3uCss45j8rxfeePi3xvX74_UAcbsOjvwnBaZb8mhoXarSz_I9-mMFRSeKGV9s3x95hVo_h0tZfQMJ20gnsdKMauwCYZqukENt_OF58-D-cKhQ5ayYksZKxpWe4ISzm3x1g8epWQR6pRiLq4UJ-LVBezKM-j2xCedm_A9Q5XilnrCDdhA5tbcLVVmvx5G368o-32-lD0eijrdkREK7cjEiU6woZTYb6aJWFGQchQBAmjP79-h_slhE1FS_y8tIIck3zpWzijFydtoi3SWxFE_6iWxglWur8D-7vzLzt7cSe6EFvmnouLNDe5xwITBl957V2WeJPb2mjPe0GCe5owkZFT9Los6swy2SlazJW22sjsLkyaVYP3Qfg60XWCmKLMJKZZ7b02iUudKx0amUfwou_nynaM5CyMcVT1OxMekyqMSQRPB9vjlofjn1bPebgqnpxUkzXdHQP6Hqa5qmaBH1AplUawNbKkSWXHxf2AV92kPq1SakZO0bzM_lPce2gET4Zirpjz2BpcnbFNqkpdZmxzr3WfoTncs7RflREUI8caDJgJfFzSLA8DIzjDQILSEbwMLnhJD1WznfmH8PTg8jY8hGsp_1oIuY5bMFmfnOEjwl_r-nE3qf4CuiQy0g
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qRfCleDe1yoqCKESazW6SBV8OpbWIig8W-hb2MmsP1FR6TkHf_An-Rn-JM5uL5xQVfAvZyZLszOx8u5n9BuBp1TROeyvzqKLLVcTd3GC0eSQoG0KIqAOfd373vjo8Um-O9fEGvBrPwvT8ENOGG3tGmq_Zwa1brDi59Xj6siAL0lfgKqH6ku1bqg_TP4TapLrIhapVbmgKHshJOY_n97Nr4ejypLwSlS5nTK4i2RSKDm7A1oAhxaxX-k3YwO4WXOurSn67DV9f09J6eSLG2ifLfvRFX1pHFFoM5AwLYT_ZOeFDQShQpHJFP7__SGdJCIeKnuR57gUZIdnN5_Q_Xpz3SbVId0Uq8Ee9dEFwVfs7cHSw_3HvMB8KLOSeeebyWla2ilhjwUCrcjGURbSVd9ZEXvcRtDOEf6zaxWia2pWeiU3RY6WNN1aVd2GzO-vwPojoCuMKRImqVChLF6OxRZAhNAGtqjJ4Po5z6wf2cS6CcdqOqxDWSZt0ksGTSfZLz7nxR6lnrK6WHZF68nY4T0Dvw5RW7SxxAWqtZQY7a5LkQH69eVR4OzjwopX0GRVF7qb8S7NqCOxQ3M_g8dTMHXPOWodnFywjdWOakmXu9eYzfQ6PLK1NVQb1mmFNAsz6vd7SzU8S-zdDPoLNGbxIJviPEWpne_tv09X2_wg_gOuSNxVSluMObC7PL_AhIa-le5Qc7Bdvqy1F
  priority: 102
  providerName: Wiley-Blackwell
Title Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13195
https://www.ncbi.nlm.nih.gov/pubmed/32691494
https://www.proquest.com/docview/2434684783
https://www.proquest.com/docview/2448238212
https://www.proquest.com/docview/2425898312
https://pubmed.ncbi.nlm.nih.gov/PMC7431835
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3batwwEB1yodCX0nvcpotKC6UFh1iWbOuhlG26aXoLIXQhb0bWpVnYOslmA8lbP6Hf2C_pjGxv45DmZfGuxmKlGVlH1ugcgJdZUVTSaB574atYeLcZK-d17BHKWmu9k5bOO3_bzXbG4vOBPFiCTr-z7cDTa5d2pCc1nk03zk8u3uGAf9tl5WjjphsJxpJchtWwT0QpfOLfbkKugkJyInIRK3wYtzSl_Xt7E9PVx_Ol-elq7uRlTBsmpe27cKdFk2zYuP8eLLn6Ptxq9CUvHsD5R1xkzw9Zp4Iyb_zAGpEdlkjW0jScMv1DTxApMsSDLAgX_fn1O5wqQUTKGrrniWHYQRhBP8POPJs16bUOf2VB6g9rqS0jffuHMN4efd_aiVuphdgQ41yc80xn3uUuIciVVd6mideZqbTytAJEkKcQCWmx6bwq8io1RHHqjMukMkqL9BGs1Ee1WwPmq0RViXPciVQ4nlbeK51Ybm1hnRZZBK-7fi5Ny0NOchjTsluPkE_K4JMIXixsjxv2jWutXpG7SgoSrMno9mQB_h8ityqHgRVQSskjWO9Z4lAy_eLO4WUXiSXHZmQ4hxfpf4pFgbAHEUAEzxfFVDFlr9Xu6IxsuCxUkZLN4yZ8Fs2hnsVVqogg7wXWwoD4v_sl9eQw8IAT-EMAHcGbEII39FA53Bp9DVdPbm7DU7jN6YVCyHBch5X57Mw9Q9Q1rwawzMXeAFbfj3b39vHbh09fBuENBn3u80EYcn8BgV4zpA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgBQlQKNI6TTQ4VWsqWLd1WCLVSb8Gxx3Slki3draA3HoEn4mF4EmacZNWtoLfeonhkxfaM5xtn_A3AszTLysRoGTrlylA5XAlzdDp0BGWttQ4Ty_edt7bTwa76sJfsLcDv9i4Mp1W2e6LfqO3Y8Bn5a3JDGbkX2mnfHH4LuWoU_11tS2joprSCXfUUY83Fjk08-U4h3GR14x2t93Mp1_s7a4OwqTIQGiZbC7sy1anDLkaMNtLS2ThyOjWlzh0HP4RvcgIBWq2gowC9jA2ze6LBNMlNrlVM_V6CRcUHKB1YfNvf_vhp9h-jm_vazJHqqjAnN9AQpHIukTZ48CoiC0jmXOJZx3DKM57N2jyNpr07XL8O1xocK3q14t2ABaxuwuW6suXJLfjxnsL76b5o669Maw0QdXkfESWiIYiYCP1FjwijCkKiwpdM-vPzl7_PQlhY1ETTIyPIEEh3v_qcAHFUJ_YivRW-yCD1UllBcngbdi9k-u9ApxpXeA-EK6O8jBAlqlihjEvnch1ZaW1mUas0gJftPBemYUDnQhwHRRsJ8ZoUfk0CeDqTPax5P_4p9YKXq-DNgHoyurnTQN_DtFpFz_MRJkkiA1iakyQjNvPN7YIXzSYyKSQNIyX0kMX_aW4tIoAns2bumPPmKhwfs4xMsjyLWeZurT6z4fDMUnysAujOKdZMgJnH51uq0b5nIGfYSdA9gGWvgufMUNFb6w_90_3zx_AYrgx2tobFcGN78wFclXys4fMsl6AzPTrGh4T9puWjxsAEfL5om_4LmINuyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB9qi-KL-N9o1RUFUUhpkt0kC74ctWfVWnzwpPgSNruz9qCmpb2CvvkR_Ix-Emc2f7wUFXw7spPlsjOz85tk9jcAT_KyrJU1aeylr2PpcTPW6E3sCco65zwqx-ed3-3lOzP5Zl_tr8CL_ixMyw8xvHBjzwj7NTv4sfNLTm4sHm4kZEHqAqxRHJeUeq1NPs4-zYavCIUOnZETWchY0ybc0ZNyJc_vu0cB6fy2vBSXztdMLmPZEIymV-FKhyLFpFX7NVjB5jpcbPtKfrsBX19Rcr04EH33k0W7_qJtriMSJTp6hlNhPps5IURBOFCEhkU_v_8Ip0kIiYqW5nluBZkhWc6X8EVenLRltUhXRWjxR7M0TnBf-5swm25_2NqJuxYLsWWmubhIc5N7LDBhqJXX3mWJN7mtjfac-RG404SAjNxEr8uizixTm6LFXGmrjcxuwWpz1OAdEL5OdJ0gpigziWlWe69N4lLnSodG5hE869e5sh3_OLfBOKz6PIR1UgWdRPB4kD1uWTf-KPWU1VWxK9JM1nQnCuj_MKlVNQlsgEqpNIL1kSS5kB0P9wqvOhc-rVJ6jJxid5n9ZViWBHco8kfwaBjmiblqrcGjM5ZJVanLjGVut-YzPA6vLGWnMoJiZFiDAPN-j0ea-UHg_2bQR8A5gufBBP-xQtVka3s3_Lr7P8IP4dL7l9Nq9_Xe23twOeU3DKHkcR1WFydneJ9g2KJ-0HnbL2J-Mas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+differentiation+factor+15+protects+against+the+aging%E2%80%90mediated+systemic+inflammatory+response+in+humans+and+mice&rft.jtitle=Aging+cell&rft.au=Ji+Sun+Moon&rft.au=Goeminne%2C+Ludger+J+E&rft.au=Kim%2C+Jung+Tae&rft.au=Jing+Wen+Tian&rft.date=2020-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=19&rft.issue=8&rft_id=info:doi/10.1111%2Facel.13195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon