电网不平衡情况下基于神经网络并网逆变器同步技术研究
为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。...
Saved in:
| Published in | 电机与控制学报 Vol. 21; no. 6; pp. 66 - 74 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
湖南城市学院机械与电气工程学院,湖南益阳,413000
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-449X |
| DOI | 10.15938/j.emc.2017.06.009 |
Cover
| Abstract | 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。 |
|---|---|
| AbstractList | 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。 TM315; 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法.首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量.仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性. |
| Abstract_FL | To solve the problem of conventional phase locked loop technique under the condition of unbal-anced power grid voltage,a grid inverter synchronous technology based on neural network under unbal-anced power grid case is developed.At first,grid voltage state equation was derived in the two-phase sta-tionary coordinates,and a neural network was built based on the state equation;the biases of output volt-age vector and the actual voltage vector were used to adjust the neural network weight online,and thus to find out the amplitude,frequency and the phase of the grid voltage,which can construct the positive and negative components of grid voltage.Simulation and experimental results show that the method can be on-line adaptive to identify the frequency and the phase of grid voltage quickly and efficiently in the case of unbalanced power grid,detect the positive and negative sequences of grid voltage,and has strong robust-ness. |
| Author | 阳同光 |
| AuthorAffiliation | 湖南城市学院机械与电气工程学院,湖南益阳413000 |
| AuthorAffiliation_xml | – name: 湖南城市学院机械与电气工程学院,湖南益阳,413000 |
| Author_FL | YANG Tong-guang |
| Author_FL_xml | – sequence: 1 fullname: YANG Tong-guang |
| Author_xml | – sequence: 1 fullname: 阳同光 |
| BookMark | eNotzz1PwkAYB_AbMBGRL-Do5NJ612uf9kZDfIskLgxu5NpeEZSiEKM4kRgZfEMTBk2IykCig3EwEF7it6E9_Rae0en_H355nvznUCKshAKhBYJ1YjHqLJd0UfZ0AxNbx6BjzBIoSTC2NdNkO7MoXasVXYzBAkqZkURbst2Xn3fT4XU0-vjqduOz86jZnw4vo6fxdHwje49y0lJATjrRaKDKd6MZte6jh5fo9ip-68UXjbjzLp_b8nUwj2YCvl8T6f9Modzaai6zoWW31zczK1nNA8w0wDYQAczgjAoTOHMd03Vtyh3XtwLAfuAw4jPh2b7wDRL4ILBiEFCwDNcQNIWW_s4e8zDgYSFfqhxVQ_Uw75fqe6cn7u94DGq6oot_1NuthIXDosIH1WKZV-t5sA3LpCYB-gNHS3hc |
| ClassificationCodes | TM315 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.15938/j.emc.2017.06.009 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Research on grid synchronization of grid-connected inverter based on neural network under unbalanced voltage conditions |
| DocumentTitle_FL | Research on grid synchronization of grid-connected inverter based on neural network under unbalanced voltage conditions |
| EndPage | 74 |
| ExternalDocumentID | djykzxb201706009 672543416 |
| GrantInformation_xml | – fundername: 国家自然科学基金重点资助项目; 湖南省自然科学基金; 湖南省教育厅科学研究重点项目 funderid: (51037004); (2017JJ2022); (17A036) |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c609-60761e692a93e46a9b84bb73a8bd5f60df891d9ec7ded21fd6e046a6f3652b2e3 |
| ISSN | 1007-449X |
| IngestDate | Thu May 29 04:05:40 EDT 2025 Wed Feb 14 10:00:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | 同步 robust 电网不平衡 synchronization 神经网络 并网逆变器 grid-connected inverter grid voltage unbalance neural network 鲁棒性 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c609-60761e692a93e46a9b84bb73a8bd5f60df891d9ec7ded21fd6e046a6f3652b2e3 |
| Notes | grid voltage unbalance ; grid-connected inverter; neural network ; synchronization ; robust To solve the problem of conventional phase locked loop technique under the condition of unbalanced power grid voltage, a grid inverter synchronous technology based on neural network under unbalanced power grid case is developed. At first, grid voltage state equation was derived in the two-phase sta- tionary coordinates, and a neural network was built based on the state equation ; the biases of output volt- age vector and the actual voltage vector were used to adjust the neural network weight online, and thus to find out the amplitude, frequency and the phase of the grid voltage, which can construct the positive and negative components of grid voltage. Simulation and experimental results show that the method can be online adaptive to identify the frequency and the phase of grid voltage quickly and efficiently in the case of unbalanced power grid, detect the positive and negative sequences of grid voltage, and has strong |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_djykzxb201706009 chongqing_primary_672543416 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 电机与控制学报 |
| PublicationTitleAlternate | Electric Machines and Control |
| PublicationTitle_FL | Electric Machines and Control |
| PublicationYear | 2017 |
| Publisher | 湖南城市学院机械与电气工程学院,湖南益阳,413000 |
| Publisher_xml | – name: 湖南城市学院机械与电气工程学院,湖南益阳,413000 |
| SSID | ssib006563392 ssib025702231 ssib000271328 ssib051374584 ssib036435450 ssib017479520 ssib001129775 ssib023166998 |
| Score | 2.1297524 |
| Snippet | 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止... TM315; 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法.首先,在两... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 66 |
| SubjectTerms | 同步 并网逆变器 电网不平衡 神经网络 鲁棒性 |
| Title | 电网不平衡情况下基于神经网络并网逆变器同步技术研究 |
| URI | http://lib.cqvip.com/qk/90977A/201706/672543416.html https://d.wanfangdata.com.cn/periodical/djykzxb201706009 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-449X databaseCode: ADMLS dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib025702231 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJxYsoKsaoRLCPG-fVr-NMdpagxosRcltmtmcSItn4SEBzCog5-IpCDgpBzSGgB_EgCXno32R29C-s6plMBiKiwtLU9tRUVXf1dFc_qpqQKzFPLC093dCJKxqencpG3IHvMbVBbM9KtIjQ33n8Jh-77V2bZJN9fd9qp5YW5uORzuJv_Ur-R6uQB3pFL9l_0GxFFDIABv1CChqG9K90TENBlUcDhkDQpMqmIfyVVDZpyGigaODSUFLfxl_IqXSpZPhIcvNWgRxgjmrRwDc5PpUhEvQh0wBBQGWrxsLkqNEDFrz2SOHJCSCOLFpUSUNZUb8A4NEoiuE3kTjK4yM-AEDNNyx8C0uEAFKum861whr8UlpppOWY-sLwlUYkZrjwkovPDloWyghyYcVUEjGsleKOoYMVkMLVs-yucaHV88xlvFV_Xnhcl-223jlzXhvmi7uBjgwgTJl48TMjySwGuLSFie5qqcPhsjrEyAUGEgCD9hgZcHA1qJ8M-M3xG7fqu7p2PRYS2raiZq6BLe26h7vaMDkUih2a72B6c16bDuOFg05t19YFaxIM4Aqf2a7AbW-zwV9WTOknhsW6eqRQGE9keq47dQ-sJOO01k2j7lTNvpo4SU6UE6Nhv2jlp0jf4vRpcj1f3cy_v97ffpHtfP2xvt57_CRb3tzffpa9393ffZlvvMv3VgAh31vLdrYA-Lm0nK28yd5-zF49733e6D1d6q19yT-s5p-2zpCJVjgxOtYor_9odLilGhxX2BKunEi5iccjFUsvjoUbyVizlFs6lcrWKukInWjHTjX0OoDGU5czJ3YS9yzp7851k3Nk2NVMJ0xEjnaEl0bQNynJHJ3yjtSRiNUgGarqoX23iPLSrtQ7SC6XNdMuv_0HbT3z6M7iw9gpok9Z6vwfKQyR44hZrNxdIP3z9xeSi2DLzseXyibzC0j1g-g |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%94%B5%E7%BD%91%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%83%85%E5%86%B5%E4%B8%8B%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%B9%B6%E7%BD%91%E9%80%86%E5%8F%98%E5%99%A8%E5%90%8C%E6%AD%A5%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E9%98%B3%E5%90%8C%E5%85%89&rft.date=2017&rft.issn=1007-449X&rft.volume=21&rft.issue=6&rft.spage=66&rft.epage=74&rft_id=info:doi/10.15938%2Fj.emc.2017.06.009&rft.externalDocID=672543416 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg |