电网不平衡情况下基于神经网络并网逆变器同步技术研究

为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 21; no. 6; pp. 66 - 74
Main Author 阳同光
Format Journal Article
LanguageChinese
Published 湖南城市学院机械与电气工程学院,湖南益阳,413000 2017
Subjects
Online AccessGet full text
ISSN1007-449X
DOI10.15938/j.emc.2017.06.009

Cover

Abstract 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。
AbstractList 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量。仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性。
TM315; 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法.首先,在两相静止坐标系下推导电网电压状态方程,并基于此建立神经网络;然后,利用网络输出电压矢量和实际电压矢量误差进行在线调整权值,并利用权值调整计算在线辨识电网电压频率、相位和幅值,从而可以构建电网电压的正负序分量.仿真和实验结果表明:该方法能在电网不平衡情况下快速有效在线自适应辨识电网电压频率和相位,提取电网电压正负序分量,具有较强的鲁棒性.
Abstract_FL To solve the problem of conventional phase locked loop technique under the condition of unbal-anced power grid voltage,a grid inverter synchronous technology based on neural network under unbal-anced power grid case is developed.At first,grid voltage state equation was derived in the two-phase sta-tionary coordinates,and a neural network was built based on the state equation;the biases of output volt-age vector and the actual voltage vector were used to adjust the neural network weight online,and thus to find out the amplitude,frequency and the phase of the grid voltage,which can construct the positive and negative components of grid voltage.Simulation and experimental results show that the method can be on-line adaptive to identify the frequency and the phase of grid voltage quickly and efficiently in the case of unbalanced power grid,detect the positive and negative sequences of grid voltage,and has strong robust-ness.
Author 阳同光
AuthorAffiliation 湖南城市学院机械与电气工程学院,湖南益阳413000
AuthorAffiliation_xml – name: 湖南城市学院机械与电气工程学院,湖南益阳,413000
Author_FL YANG Tong-guang
Author_FL_xml – sequence: 1
  fullname: YANG Tong-guang
Author_xml – sequence: 1
  fullname: 阳同光
BookMark eNotzz1PwkAYB_AbMBGRL-Do5NJ612uf9kZDfIskLgxu5NpeEZSiEKM4kRgZfEMTBk2IykCig3EwEF7it6E9_Rae0en_H355nvznUCKshAKhBYJ1YjHqLJd0UfZ0AxNbx6BjzBIoSTC2NdNkO7MoXasVXYzBAkqZkURbst2Xn3fT4XU0-vjqduOz86jZnw4vo6fxdHwje49y0lJATjrRaKDKd6MZte6jh5fo9ip-68UXjbjzLp_b8nUwj2YCvl8T6f9Modzaai6zoWW31zczK1nNA8w0wDYQAczgjAoTOHMd03Vtyh3XtwLAfuAw4jPh2b7wDRL4ILBiEFCwDNcQNIWW_s4e8zDgYSFfqhxVQ_Uw75fqe6cn7u94DGq6oot_1NuthIXDosIH1WKZV-t5sA3LpCYB-gNHS3hc
ClassificationCodes TM315
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15938/j.emc.2017.06.009
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Research on grid synchronization of grid-connected inverter based on neural network under unbalanced voltage conditions
DocumentTitle_FL Research on grid synchronization of grid-connected inverter based on neural network under unbalanced voltage conditions
EndPage 74
ExternalDocumentID djykzxb201706009
672543416
GrantInformation_xml – fundername: 国家自然科学基金重点资助项目; 湖南省自然科学基金; 湖南省教育厅科学研究重点项目
  funderid: (51037004); (2017JJ2022); (17A036)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c609-60761e692a93e46a9b84bb73a8bd5f60df891d9ec7ded21fd6e046a6f3652b2e3
ISSN 1007-449X
IngestDate Thu May 29 04:05:40 EDT 2025
Wed Feb 14 10:00:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 同步
robust
电网不平衡
synchronization
神经网络
并网逆变器
grid-connected inverter
grid voltage unbalance
neural network
鲁棒性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c609-60761e692a93e46a9b84bb73a8bd5f60df891d9ec7ded21fd6e046a6f3652b2e3
Notes grid voltage unbalance ; grid-connected inverter; neural network ; synchronization ; robust
To solve the problem of conventional phase locked loop technique under the condition of unbalanced power grid voltage, a grid inverter synchronous technology based on neural network under unbalanced power grid case is developed. At first, grid voltage state equation was derived in the two-phase sta- tionary coordinates, and a neural network was built based on the state equation ; the biases of output volt- age vector and the actual voltage vector were used to adjust the neural network weight online, and thus to find out the amplitude, frequency and the phase of the grid voltage, which can construct the positive and negative components of grid voltage. Simulation and experimental results show that the method can be online adaptive to identify the frequency and the phase of grid voltage quickly and efficiently in the case of unbalanced power grid, detect the positive and negative sequences of grid voltage, and has strong
PageCount 9
ParticipantIDs wanfang_journals_djykzxb201706009
chongqing_primary_672543416
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 电机与控制学报
PublicationTitleAlternate Electric Machines and Control
PublicationTitle_FL Electric Machines and Control
PublicationYear 2017
Publisher 湖南城市学院机械与电气工程学院,湖南益阳,413000
Publisher_xml – name: 湖南城市学院机械与电气工程学院,湖南益阳,413000
SSID ssib006563392
ssib025702231
ssib000271328
ssib051374584
ssib036435450
ssib017479520
ssib001129775
ssib023166998
Score 2.1297524
Snippet 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法。首先,在两相静止...
TM315; 为解决常规锁相环技术在电网电压不平衡情况下难以对电网电压频率和相位进行有效检测的问题,提出一种电网不平衡情况下基于神经网络的并网逆变器同步算法.首先,在两...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 66
SubjectTerms 同步
并网逆变器
电网不平衡
神经网络
鲁棒性
Title 电网不平衡情况下基于神经网络并网逆变器同步技术研究
URI http://lib.cqvip.com/qk/90977A/201706/672543416.html
https://d.wanfangdata.com.cn/periodical/djykzxb201706009
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-449X
  databaseCode: ADMLS
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib025702231
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJxYsoKsaoRLCPG-fVr-NMdpagxosRcltmtmcSItn4SEBzCog5-IpCDgpBzSGgB_EgCXno32R29C-s6plMBiKiwtLU9tRUVXf1dFc_qpqQKzFPLC093dCJKxqencpG3IHvMbVBbM9KtIjQ33n8Jh-77V2bZJN9fd9qp5YW5uORzuJv_Ur-R6uQB3pFL9l_0GxFFDIABv1CChqG9K90TENBlUcDhkDQpMqmIfyVVDZpyGigaODSUFLfxl_IqXSpZPhIcvNWgRxgjmrRwDc5PpUhEvQh0wBBQGWrxsLkqNEDFrz2SOHJCSCOLFpUSUNZUb8A4NEoiuE3kTjK4yM-AEDNNyx8C0uEAFKum861whr8UlpppOWY-sLwlUYkZrjwkovPDloWyghyYcVUEjGsleKOoYMVkMLVs-yucaHV88xlvFV_Xnhcl-223jlzXhvmi7uBjgwgTJl48TMjySwGuLSFie5qqcPhsjrEyAUGEgCD9hgZcHA1qJ8M-M3xG7fqu7p2PRYS2raiZq6BLe26h7vaMDkUih2a72B6c16bDuOFg05t19YFaxIM4Aqf2a7AbW-zwV9WTOknhsW6eqRQGE9keq47dQ-sJOO01k2j7lTNvpo4SU6UE6Nhv2jlp0jf4vRpcj1f3cy_v97ffpHtfP2xvt57_CRb3tzffpa9393ffZlvvMv3VgAh31vLdrYA-Lm0nK28yd5-zF49733e6D1d6q19yT-s5p-2zpCJVjgxOtYor_9odLilGhxX2BKunEi5iccjFUsvjoUbyVizlFs6lcrWKukInWjHTjX0OoDGU5czJ3YS9yzp7851k3Nk2NVMJ0xEjnaEl0bQNynJHJ3yjtSRiNUgGarqoX23iPLSrtQ7SC6XNdMuv_0HbT3z6M7iw9gpok9Z6vwfKQyR44hZrNxdIP3z9xeSi2DLzseXyibzC0j1g-g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%94%B5%E7%BD%91%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%83%85%E5%86%B5%E4%B8%8B%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%B9%B6%E7%BD%91%E9%80%86%E5%8F%98%E5%99%A8%E5%90%8C%E6%AD%A5%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E9%98%B3%E5%90%8C%E5%85%89&rft.date=2017&rft.issn=1007-449X&rft.volume=21&rft.issue=6&rft.spage=66&rft.epage=74&rft_id=info:doi/10.15938%2Fj.emc.2017.06.009&rft.externalDocID=672543416
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg